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ABSTRACT
Deep learning has been the engine powering many successes of data science. However, the deep neural
network (DNN), as the basic model of deep learning, is often excessively over-parameterized, causing many
difficulties in training, prediction and interpretation. We propose a frequentist-like method for learning
sparse DNNs and justify its consistency under the Bayesian framework: the proposed method could learn
a sparse DNN with at most O(n/ log(n)) connections and nice theoretical guarantees such as posterior
consistency, variable selection consistency and asymptotically optimal generalization bounds. In particular,
we establish posterior consistency for the sparse DNN with a mixture Gaussian prior, show that the structure
of the sparse DNN can be consistently determined using a Laplace approximation-based marginal posterior
inclusion probability approach, and use Bayesian evidence to elicit sparse DNNs learned by an optimization
method such as stochastic gradient descent in multiple runs with different initializations. The proposed
method is computationally more efficient than standard Bayesian methods for large-scale sparse DNNs.
The numerical results indicate that the proposed method can perform very well for large-scale network
compression and high-dimensional nonlinear variable selection, both advancing interpretable machine
learning.
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1. Introduction

During the past decade, the deep neural network (DNN) has
achieved great successes in solving many complex machine
learning tasks such as pattern recognition and natural language
processing. A key factor to the successes is its superior approx-
imation power over the shallow one (Montufar et al. 2014;
Mhaskar, Liao, and Poggio 2017; Telgarsky 2017; Yarotsky 2017).
The DNNs used in practice may consist of hundreds of layers
and millions of parameters, see, for example, He et al. (2016)
on image classification. Training and operation of DNNs of this
scale entail formidable computational challenges. Moreover, the
DNN models with massive parameters are more easily overfitted
when the training samples are insufficient. DNNs are known to
have many redundant parameters (Glorot, Bordes, and Bengio
2011; Denil et al. 2013; Cheng et al. 2015; Scardapane et al.
2017; Yoon and Hwang 2017; Mocanu et al. 2018). For example,
Denil et al. (2013) showed that in some networks, only 5% of
the parameters are enough to achieve acceptable models; and
Glorot, Bordes, and Bengio (2011) showed that sparsity (via
employing a ReLU activation function) can generally improve
the training and prediction performance of the DNN. Over-
parameterization often makes the DNN model less interpretable
and miscalibrated (Guo et al. 2017), which can cause serious
issues in human-machine trust and thus hinder applications of
artificial intelligence (AI) in human life.

The desire to reduce the complexity of DNNs naturally leads
to two questions: (i) Is a sparsely connected DNN, also known
as sparse DNN, able to approximate the target mapping with a

CONTACT Faming Liang fmliang@purdue.edu Department of Statistics, Purdue University, West Lafayette, IN 47907.
∗Sun and Song contribute equally and are co-first authors.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

desired accuracy? and (ii) how to train and determine the struc-
ture of a sparse DNN? This article answers these two questions
in a coherent way. The proposed method is essentially a regular-
ization method, but justified under the Bayesian framework.

The approximation power of sparse DNNs has been studied
in the literature from both frequentist and Bayesian perspec-
tives. From the frequentist perspective, Bölcskei et al. (2019)
quantified the minimum network connectivity that guarantees
uniform approximation rates for a class of affine functions; and
Schmidt-Hieber (2017) and Bauler and Kohler (2019) charac-
terized the approximation error of a sparsely connected neu-
ral network for Hölder smooth functions. From the Bayesian
perspective, Liang, Li, and Zhou (2018) established posterior
consistency for Bayesian shallow neural networks under mild
conditions; and Polson and Ročková (2018) established poste-
rior consistency for Bayesian DNNs but under some restrictive
conditions such as a spike-and-slab prior is used for connection
weights, the activation function is ReLU, and the number of
input variables keeps at an order of O(1) while the sample size
grows to infinity.

The existing methods for learning sparse DNNs are usually
developed separately from the approximation theory. For exam-
ple, Alvarez and Salzmann (2016), Scardapane et al. (2017), and
Ma et al. (2019) developed some regularization methods for
learning sparse DNNs; Wager, Wang, and Liang (2013) showed
that dropout training is approximately equivalent to an L2-
regularization; Han, Mao, and Dally (2015) introduced a deep
compression pipeline, where pruning, trained quantization and
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https://doi.org/10.1080/01621459.2021.1895175
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1895175&domain=pdf&date_stamp=2021-04-10
mailto:fmliang@purdue.edu
http://www.tandfonline.com/r/JASA


2 Y. SUN, Q. SONG, AND F. LIANG

Huffman coding work together to reduce the storage require-
ment of DNNs; Liu et al. (2015) proposed a sparse decomposi-
tion method to sparsify convolutional neural networks (CNNs);
Frankle and Carbin (2018) considered a lottery ticket hypothesis
for selecting a sparse subnetwork; and Ghosh and Doshi-Velez
(2017) proposed to learn Bayesian sparse neural networks via
node selection with a horseshoe prior under the framework of
variational inference. For these methods, it is generally unclear
if the resulting sparse DNN is able to provide a desired approxi-
mation accuracy to the true mapping and how close in structure
the sparse DNN is to the underlying true DNN.

On the other hand, there are some work which developed the
approximation theory for sparse DNNs but not the associated
learning algorithms (see, e.g., Polson and Ročková 2018;
Bölcskei et al. 2019). An exception is Liang, Li, and Zhou
(2018), where the population stochastic approximation Monte
Carlo (pop-SAMC) algorithm (Song, Wu, and Liang 2014)
was employed to learn sparse neural networks. However, since
the pop-SAMC algorithm belongs to the class of traditional
MCMC algorithms, where the full data likelihood needs to
be evaluated at each iteration, it is not scalable for big data
problems. Moreover, it needs to run for a large number
of iterations for ensuring convergence. As an alternative to
overcome the convergence issue of MCMC simulations, the
variational Bayesian method (Jordan et al. 1999) has been
widely used in the machine learning community. Recently, it
has been applied to learn Bayesian neural networks (BNNs)
(see, e.g., Mnih and Gregor 2014; Blundell et al. 2015). However,
theoretical properties of the variational posterior of the BNN are
still not well understood due to its approximation nature.

This article provides a frequentist-like method for learning
sparse DNNs, which, with theoretical guarantee, converges to
the underlying true DNN model in probability. The proposed
method is to first train a dense DNN using an optimization
method such as stochastic gradient descent (SGD) by maximiz-
ing its posterior distribution with a mixture Gaussian prior, and
then sparsify its structure according to the Laplace approxima-
tion of the marginal posterior inclusion probabilities. Finally,
Bayesian evidence is used as the criterion for eliciting sparse
DNNs learned by the optimization method in multiple runs
with different initializations. To justify consistency of the spar-
sified DNN, we first establish posterior consistency for Bayesian
DNNs with mixture Gaussian priors and consistency of struc-
ture selection for Bayesian DNNs based on the marginal pos-
terior inclusion probabilities, and then establish consistency of
the sparsified DNN via Laplace approximation to the marginal
posterior inclusion probabilities. In addition, we show that the
Bayesian sparse DNN has asymptotically an optimal generaliza-
tion bound.

The proposed method works with various activation func-
tions such as sigmoid, tanh, and ReLU, and our theory allows
the number of input variables to increase with the training
sample size in an exponential rate. Under regularity conditions,
the proposed method learns a sparse DNN of size O(n/ log(n))

with nice theoretical guarantees such as posterior consistency,
variable selection consistency, and asymptotically optimal gen-
eralization bound. Since, for the proposed method, the DNN
only needs to be trained using an optimization method, it is
computationally much more efficient than standard Bayesian

methods. As a by-product, this work also provides an effec-
tive method for high-dimensional nonlinear variable selection.
Our numerical results indicate that the proposed method can
work very well for large-scale DNN compression and high-
dimensional nonlinear variable selection. For some benchmark
DNN compression examples, the proposed method produced
the state-of-the-art prediction accuracy using about the same
amounts of parameters as the existing methods. In summary,
this article provides a complete treatment for sparse DNNs in
both theory and computation.

The remaining part of the article is organized as follows. Sec-
tion 2 studies the consistency theory of Bayesian sparse DNNs.
Section 3 proposes a computational method for training sparse
DNNs. Section 4 presents some numerical examples. Section 5
concludes the article with a brief discussion.

2. Consistent Sparse DNNs: Theory

2.1. Bayesian Sparse DNNs With Mixture Gaussian Prior

Let Dn = (x(i), y(i))i=1,...,n denote a training dataset of n iid
observations, where x(i) ∈ Rpn , y(i) ∈ R, and pn denotes the
dimension of input variables and is assumed to grow with the
training sample size n. We first study the posterior approxima-
tion theory of Bayesian sparse DNNs under the framework of
generalized linear models, for which the distribution of y given
x is given by

f (y|μ∗(x)) = exp{A(μ∗(x))y + B(μ∗(x)) + C(y)},

where μ∗(x) denotes a nonlinear function of x, and A(·), B(·)
and C(·) are appropriately defined functions. The theoretical
results presented in this work mainly focus on logistic regres-
sion models and normal linear regression models. For logistic
regression, we have A(μ∗) = μ∗, B(μ∗) = − log(1 + eμ∗

),
and C(y) = 1. For normal regression, by introducing an extra
dispersion parameter σ 2, we have A(μ∗) = μ∗/σ 2, B(μ∗) =
−μ∗2/2σ 2 and C(y) = −y2/2σ 2−log(2πσ 2)/2. For simplicity,
σ 2 = 1 is assumed to be known in this article. How to extend
our results to the case that σ 2 is unknown will be discussed in
Remark 2.3.

We approximate μ∗(x) using a DNN. Consider a DNN with
Hn − 1 hidden layers and Lh hidden units at layer h, where
LHn = 1 for the output layer and L0 = pn for the input layer.
Let wh ∈ R

Lh×Lh−1 and bh ∈ R
Lh×1, h ∈ {1, 2, . . . , Hn} denote

the weights and bias of layer h, and let ψh : RLh×1 → R
Lh×1

denote a coordinate-wise and piecewise differentiable activation
function of layer h. The DNN forms a nonlinear mapping

μ(β , x) = wHnψHn−1 [· · · ψ1 [
w1x + b1] · · · ] + bHn , (1)

where β = (w, b) = {
wh

ij, bh
k : h ∈ {1, 2, . . . , Hn}, i, k ∈

{1, . . . , Lh}, j ∈ {1, . . . , Lh−1}
}

denotes the collection of all
weights and biases, consisting of Kn = ∑Hn

h=1
(
Lh−1 × Lh + Lh

)
elements in total. To facilitate representation of the sparse DNN,
we introduce an indicator variable for each weight and bias of
the DNN, which indicates the existence of the connection in
the network. Let γ wh and γ bh denote the matrix and vector
of the indicator variables associated with wh and bh, respec-
tively. Further, we let γ = {γ wh

ij , γ bh

k : h ∈ {1, 2, . . . , Hn},
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i, k ∈ {1, . . . , Lh} , j ∈ {
1, . . . , Lh−1

}} and βγ = {wh
ij, bh

k :

γ wh
ij = 1, γ bh

k = 1 ,h ∈ {1, 2, . . . , Hn}, i, k ∈ {1, . . . , Lh},
j ∈ {

1, . . . , Lh−1
}}, which specify, respectively, the structure and

associated parameters for a sparse DNN.
To conduct Bayesian analysis for the sparse DNN, we con-

sider a mixture Gaussian prior specified as follows:

γ wh
ij ∼ Bernoulli(λn), γ bh

k ∼ Bernoulli(λn), (2)

wh
ij|γ wh

ij ∼ γ wh
ij N(0, σ 2

1,n) + (1 − γ wh
ij )N(0, σ 2

0,n),

bh
k|γ bh

k ∼ γ bh

k N(0, σ 2
1,n) + (1 − γ bh

k )N(0, σ 2
0,n), (3)

where h ∈ {1, 2, . . . , HN}, i ∈ {
1, . . . , Lh−1

}
, j, k ∈ {1, . . . , Lh},

and σ 2
0,n < σ 2

1,n are prespecified constants. Marginally, we have

wh
ij ∼ λnN(0, σ 2

1,n) + (1 − λn)N(0, σ 2
0,n),

bh
k ∼ λnN(0, σ 2

1,n) + (1 − λn)N(0, σ 2
0,n). (4)

Typically, we set σ 2
0,n to be a very small value while σ 2

1,n to be
relatively large. When σ 2

0,n → 0, the prior is reduced to the
spike-and-slab prior (Ishwaran and Rao 2005). Therefore, this
prior can be viewed as a continuous relaxation of the spike-
and-slab prior. Such a prior has been used by many authors
in Bayesian variable selection (see, e.g., George and McCulloch
1993; Song and Liang 2017).

2.2. Posterior Consistency

Posterior consistency plays a major role in validating Bayesian
methods especially for high-dimensional models (see, e.g., Jiang
2007; Liang, Song, and Yu 2013). For DNNs, since the total
number of parameters Kn is often much larger than the sam-
ple size n, posterior consistency provides a general guideline
in prior setting or choosing prior hyperparameters for a class
of prior distributions. Otherwise, the prior information may
dominate data information, rendering a biased inference for the
underlying true model. In what follows, we prove the posterior
consistency of the DNN model with the mixture Gaussian prior
(4).

With slight abuse of notation, we rewrite μ(β , x) in (1) as
μ(β , γ , x) for a sparse network by including its network struc-
ture information. We assume μ∗(x) can be well approximated by
a sparse DNN with relevant variables, and call this sparse DNN
as the true DNN in this article. More precisely, we define the true
DNN as

(β∗, γ ∗) = arg min
(β ,γ )∈Gn, ||μ(β ,γ ,x)−μ∗(x)||L2(�)≤�n

|γ |, (5)

where Gn := G(C0, C1, ε, pn, Hn, L1, L2, . . . , LHn) denotes the
space of valid sparse networks satisfying condition A.2 (given
below) for the given values of Hn, pn, and Lh’s, and �n is some
sequence converging to 0 as n → ∞. For any given DNN (β , γ ),
the error μ(β , γ , x) − μ∗(x) can be generally decomposed as
the network approximation error μ(β∗, γ ∗, x) − μ∗(x) and
the network estimation error μ(β , γ , x) − μ(β∗, γ ∗, x). The L2
norm of the former one is bounded by �n, and the order of the
latter will be given in Theorem 2.1. In what follows, we will treat
�n as the network approximation error. In addition, we make
the following assumptions:

A.1 The input x is bounded by 1 entry-wisely, that is, x ∈ � =
[−1, 1]pn , and the density of x is bounded in its support �

uniformly with respect to n.
A.2 The true sparse DNN model satisfies the following condi-

tions:

A.2.1 The network structure satisfies: rnHn log n+rn log L+
sn log pn ≤ C0n1−ε , where 0 < ε < 1 is a small
constant, rn = |γ ∗| denotes the connectivity of γ ∗,
L = max1≤j≤Hn−1 Lj denotes the maximum hidden
layer width, sn denotes the input dimension of γ ∗.

A.2.2 The network weights are polynomially bounded:
||β∗||∞ ≤ En, where En = nC1 for some constant
C1 > 0.

A.3 The activation function ψ is Lipschitz continuous with a
Lipschitz constant of 1.

Assumption A.1 is a typical assumption for posterior con-
sistency (see, e.g., Jiang 2007; Polson and Ročková 2018). In
practice, all bounded data can be normalized to satisfy this
assumption, for example, image data are bounded and usually
normalized before training. Assumption A.3 is satisfied by many
conventional activation functions such as sigmoid, tanh and
ReLU.

Assumption A.2 specifies the class of DNN models that we
are considering in this article. They are sparse, while still being
able to approximate many types of functions arbitrarily well as
the training sample size becomes large, that is, limn→∞ �n = 0.
The approximation power of sparse DNNs has been studied in
several existing work. For example, for the functions that can
be represented by an affine system, Bölcskei et al. (2019) proved
that if the network parameters are bounded in absolute value
by some polynomial g(rn), that is, ||β∗||∞ ≤ g(rn), then the
approximation error �n = O(r−α∗

n ) for some constant α∗. To
fit this this result into our framework, we can let rn � n(1−ε)/2

for some 0 < ε < 1, pn = d for some constant d, Hn <

rn + d and L̄ < rn (i.e., the setting given in Proposition 3.6
of Bölcskei et al. (2019)). Suppose that the degree of g(·) is c2,
that is, g(rn) ≺ rc2

n , then ||β∗||∞ ≺ nc2(1−ε)/2 ≺ nC1 = En
for some constant C1 > c2(1 − ε)/2. Therefore, Assumption
A.2 is satisfied with the approximation error �n = O(r−α∗

n ) =
O(n−α∗(1−ε)/2)

�= O(n−ς ) (by defining ς = α∗(1 − ε)/2),
which goes to 0 as n → ∞. In summary, the minimax rate in
supμ∗(x)∈C inf (β ,γ )∈G ||μ(β , γ , x)−μ∗(x)||L2(�) ∈ O(n−ς ) can
be achieved by sparse DNNs under our assumptions, where C
denotes the class of functions represented by an affine system.

Other than affine functions, our setup for the sparse DNN
also matches the approximation theory for many other types of
functions. For example, Corollary 3.7 of Petersen and Voigtlaen-
der (2018) showed that for a wide class of piecewise smooth
functions with a fixed input dimension, a fixed depth ReLU
network can achieve an �n-approximation with log(rn) =
O(− log �n) and log En = O(− log �n). This result satisfies
condition A.2 by setting �n = O(n−ς ) for some constant
ς > 0. As another example, Theorem 3 of Schmidt-Hieber
(2017) (see also Lemma 5.1 of Polson and Ročková (2018))
proved that any bounded α-Hölder smooth function μ∗(x)

can be approximated by a sparse ReLU DNN with the net-
work approximation error �n = O(log(n)α/pn n−α/(2α+pn)) for
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some Hn � log n log pn, Lj � pnnpn/(2α+pn)/ log n, rn =
O(p2

nα
2pn npn/(2α+pn) log pn), and En = C for some fixed con-

stant C > 0. This result also satisfies condition A.2.2 as long as
p2

n 
 log n.
It is important to note that there is a fundamental difference

between the existing neural network approximation theory and
ours. In the existing neural network approximation theory, no
data is involved and a small network can potentially achieve an
arbitrarily small approximation error by allowing the connec-
tion weights to take values in an unbounded space. In contrast,
in our theory, the network approximation error, the network
size, and the bound of connection weights are all linked to the
training sample size. A small network approximation error is
required only when the training sample size is large; other-
wise, over-fitting might be a concern from the point of view
of statistical modeling. In the practice of modern neural net-
works, the depth and width have been increased without much
scruple. These increases reduce the training error, improve the
generalization performance under certain regimes (Nakkiran
et al. 2020), but negatively affect model calibration (Guo et al.
2017). We expect that our theory can tame the powerful neural
networks into the framework of statistical modeling; that is, by
selecting an appropriate network size according to the training
sample size, the proposed method can generally improve the
generalization and calibration of the DNN model while control-
ling the training error to a reasonable level. The calibration of
the sparse DNN will be explored elsewhere.

Let P∗ and E∗ denote the respective probability measure
and expectation for data Dn. Let d(p1, p2) = ( ∫ [

p
1
2
1 (x, y)

− p
1
2
2 (x, y)

]2dydx
) 1

2 denote the Hellinger distance between two
density functions p1(x, y) and p2(x, y). Let π(A|Dn) be the
posterior probability of an event A. The following theorem
establishes posterior consistency for sparse DNNs under the
mixture Gaussian prior (4).

Theorem 2.1. Suppose Assumptions A.1–A.3 hold. If the
mixture Gaussian prior (4) satisfies the conditions: λn =
O(1/{Kn[nHn(Lpn)]τ }) for some constant τ > 0, En/{Hn log n+
log L}1/2 � σ1,n � nα for some constant α > 0, and σ0,n �
min

{
1/{√nKn(n3/2σ1,0/Hn)Hn}, 1/{√nKn(nEn/Hn)Hn}},

then there exists an error sequence ε2
n = O(� 2

n ) + O(ζ 2
n ) such

that limn→∞ εn = 0 and limn→∞ nε2
n = ∞, and the posterior

distribution satisfies

P∗ {
π [d(pβ , pμ∗) > 4εn|Dn] ≥ 2e−cnε2

n
}

≤ 2e−cnε2
n ,

E∗
Dnπ [d(pβ , pμ∗) > 4εn|Dn] ≤ 4e−2cnε2

n ,
(6)

for sufficiently large n, where c denotes a constant, ζ 2
n =

[rnHn log n+ rn log L+ sn log pn]/n, pμ∗ denotes the underlying
true data distribution, and pβ denotes the data distribution
reconstructed by the Bayesian DNN based on its posterior
samples.

The proof of Theorem 2.1 can be found in the supplementary
materials. Regarding this theorem, we have a few remarks:

Remark 2.1. Theorem 2.1 provides a posterior contraction rate
εn for the sparse BNN. The contraction rate contains two com-

ponents, �n and ζn, where �n, as defined previously, repre-
sents the network approximation error, and ζn represents the
network estimation error measured in Hellinger distance. Since
the estimation error ζn grows with the network connectivity rn,
there is a trade-off between the network approximation error
and the network estimation error. A larger network has a lower
approximation error and a higher estimation error, and vice
versa.

Remark 2.2. Theorem 2.1 implies that given a training sample
size n, the proposed method can learn a sparse neural network
with at most O(n/ log(n)) connections. Compared to the fully
connected DNN, the sparsity of the proposed BNN enables
some theoretical guarantees for its performance. The sparse
BNN has nice theoretical properties, such as posterior consis-
tency, variable selection consistency, and asymptotically optimal
generalization bounds, which are beyond the ability of general
neural networks. The latter two properties will be established in
Sections 2.3 and 2.4, respectively.

Remark 2.3. Although Theorem 2.1 is proved by assuming σ 2 is
known, it can be easily extended to the case that σ 2 is unknown
by assuming an inverse gamma prior σ 2 ∼ IG(a0, b0) for
some constants a0, b0 > 0. If a relatively uninformative prior is
desired, one can choose a0 ∈ (0, 1) such that the inverse gamma
prior is very diffuse with a nonexisting mean value. However,
if a0 = b0 = 0, that is, the Jeffreys’ prior π(σ 2) ∝ 1/σ 2, the
posterior consistency theory established Theorem 2.1 might not
hold any more. In general, to achieve posterior consistency, the
prior is required, at least in the framework adopted by the article,
to satisfy two conditions (Ghosal, Ghosh, and Van Der Vaart
2000; Jiang 2007): (i) a not too little prior probability is placed
over the neighborhood of the true density, and (ii) a very little
prior probability is placed outside of a region that is not too
complex. Obviously, the Jeffreys’ prior and thus the joint prior
of σ 2 and the regression coefficients do not satisfy neither of the
two conditions. We note that the inverse gamma prior σ 2 ∼
IG(a0, b0) has long been used in Bayesian inference for many
different statistical models, such as linear regression (George
and McCulloch 1997), nonparametric regression (Kohn, Smith,
and Chan 2001), and Gaussian graphical models (Dobra et al.
2004).

2.3. Consistency of DNN Structure Selection

This section establishes consistency of DNN structure selec-
tion under posterior consistency. It is known that the DNN
model is generally nonidentifiable due to the symmetry of the
network structure. For example, the approximation μ(β , γ , x)

can be invariant if one permutes the orders of certain hidden
nodes, simultaneously changes the signs of certain weights and
biases if tanh is used as the activation function, or rescales
certain weights and bias if Relu is used as the activation func-
tion. However, by introducing appropriate constraints (see, e.g.,
Pourzanjani, Jiang, and Petzold 2017; Liang, Li, and Zhou 2018),
we can define a set of neural networks such that any possible
neural networks can be represented by one and only one neural
network in the set via nodes permutation, sign changes, weight
rescaling, etc. Let � denote such set of DNNs, where each
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element in � can be viewed as an equivalent class of DNN
models. Let ν(γ , β) ∈ � be an operator that maps any neural
network to � via appropriate transformations such as nodes
permutation, sign changes, weight rescaling, etc. To serve the
purpose of structure selection in the space �, we consider
the marginal posterior inclusion probability approach proposed
in Liang, Song, and Yu (2013) for high-dimensional variable
selection.

For a better description of this approach, we reparameterize
β and γ as β = (β1, β2, . . . , βKn) and γ = (γ 1, γ 2, . . . , γ Kn),
respectively, according to their elements. Without possible con-
fusions, we will often use the indicator vector γ and the active
set {i : γ i = 1, i = 1, 2, . . . , Kn} exchangeably; that is, i ∈ γ and
γ i = 1 are equivalent. In addition, we will treat the connection
weights w and the hidden unit biases b equally; that is, they will
not be distinguished in β and γ . For convenience, we will call
each element of β and γ a “connection” in what follows.

2.3.1. Marginal Posterior Inclusion Probability Approach
For each connection ci, we define its marginal posterior inclu-
sion probability by

qi =
∫ ∑

γ

ei|ν(γ ,β)π(γ |β , Dn)π(β|Dn)dβ , i = 1, 2, . . . , Kn,

(7)
where ei|ν(γ ,β) is the indicator for the existence of connection
ci in the network ν(γ , β). Similarly, we define ei|ν(γ ∗,β∗) as the
indicator for the existence of connection ci in the true model
ν(γ ∗, β∗). The proposed approach is to choose the connections
whose marginal posterior inclusion probabilities are greater
than a threshold value q̂; that is, setting γ̂ q̂ = {i : qi >

q̂, i = 1, 2, . . . , Kn} as an estimator of γ ∗ = {i : ei|ν(γ ∗,β∗) =
1, i = 1, . . . , Kn}, where γ ∗ can be viewed as the uniquenized
true model. To establish the consistency of γ̂ q̂, an identifiability
condition for the true model is needed. Let A(εn) = {β :
d(pβ , pμ∗) ≥ εn}. Define

ρ(εn) = max
1≤i≤Kn

∫
A(εn)c

∑
γ

|ei|ν(γ ,β) − ei|ν(γ ∗,β∗)|π(γ |β , Dn)

× π(β|Dn)dβ ,

which measures the structure difference between the true model
and the sampled models on the set A(εn)c. Then the identifia-
bility condition can be stated as follows:

B.1 ρ(εn) → 0, as n → ∞ and εn → 0.

That is, when n is sufficiently large, if a DNN has approximately
the same probability distribution as the true DNN, then the
structure of the DNN, after mapping into the parameter space
�, must coincide with that of the true DNN. Note that this iden-
tifiability is different from the one mentioned at the beginning of
the section. The earlier one is only with respect to structure and
parameter rearrangement of the DNN. Theorem 2.2 concerns
consistency of γ̂ q̂ and its sure screening property, whose proof
is given in the supplementary materials.

Theorem 2.2. Assume that the conditions of Theorem 2.1 and
the identifiability condition B.1 hold. Then

(i) max1≤i≤Kn{|qi − ei|ν(γ ∗,β∗)|} p→ 0, where
p→ denotes

convergence in probability;
(ii) (Sure screening) P(γ ∗ ⊂ γ̂ q̂)

p→ 1 for any prespecified
q̂ ∈ (0, 1).

(iii) (Consistency) P(γ ∗ = γ̂ 0.5)
p→ 1.

For a network γ , it is easy to identify the relevant variables.
Recall that γ wh ∈ R

Lh×Lh−1 denotes the connection indicator
matrix of layer h. Let

γ x = γ wHn
γ wHn−1 · · · γ w1 ∈ R

1×pn , (8)

and let γ x
i denote the ith element of γ x. It is easy to see that

if γ x
i > 0 then the variable xi is effective in the network γ ,

and γ x
i = 0 otherwise. Let exi|ν(γ ∗,β∗) be the indicator for the

effectiveness of variable xi in the network ν(γ ∗, β∗), and let
γ x∗ = {i : exi|ν(γ ∗,β∗) = 1, i = 1, . . . , pn} denote the set of true
variables. Similar to (7), we can define the marginal inclusion
probability for each variable:

qx
i =

∫ ∑
γ

exi|ν(γ ,β)π(γ |β , Dn)π(β|Dn)dβ , i = 1, 2, . . . , pn.

(9)
Then we can select the variables whose marginal posterior
inclusion probabilities greater than a threshold q̂x, for example,
setting q̂x = 0.5. As implied by (8), the consistency of structure
selection implies consistency of variable selection.

It is worth noting that the above variable selection consis-
tency result is with respect to the relevant variables defined by
the true network γ ∗. To achieve the variable selection consis-
tency with respect to the relevant variables of μ∗(x), some extra
assumptions are needed in defining (β∗, γ ∗). How to specify
these assumptions is an open problem and we would leave it
to readers. However, as shown by our simulation example, the
sparse model (β∗, γ ∗) defined in (5) works well, which correctly
identifies all the relevant variables of the underlying nonlinear
system.

2.3.2. Laplace Approximation of Marginal Posterior
Inclusion Probabilities

Theorem 2.2 establishes the consistency of DNN structure selec-
tion based on the marginal posterior inclusion probabilities. To
obtain Bayesian estimates of the marginal posterior inclusion
probabilities, intensive Markov chain Monte Carlo (MCMC)
simulations are usually required. Instead of performing MCMC
simulations, we propose to approximate the marginal posterior
inclusion probabilities using the Laplace method based on the
DNN model trained by an optimization method such as SGD.
Traditionally, such approximation is required to be performed
at the maximum a posteriori (MAP) estimate of the DNN. How-
ever, finding the MAP for a large DNN is not computationally
guaranteed, as there can be many local minima on its energy
landscape. To tackle this issue, we proposed a Bayesian evidence
method, see Section 3 for the detail, for eliciting sparse DNN
models learned by an optimization method in multiple runs
with different initializations. Since conventional optimization
methods such as SGD can be used to train the DNN here, the
proposed method is computationally much more efficient than
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the standard Bayesian method. More importantly, as explained
in Section 3, consistent estimates of the marginal posterior
inclusion probabilities might be obtained at a local maximizer of
the log-posterior instead of the MAP estimate. In what follows,
we justify the validity of Laplace approximation for marginal
posterior inclusion probabilities.

Based on the marginal posterior distribution π(β|Dn), the
marginal posterior inclusion probability qi of connection ci can
be re-expressed as

qi =
∫

π(γ i = 1|β)π(β|Dn)dβ , i = 1, 2, . . . , Kn.

Under the mixture Gaussian prior, it is easy to derive that

π(γ i = 1|β) = b̃i/(ãi + b̃i), (10)
where

ãi = 1 − λn
σ0,n

exp

{
− β2

i
2σ 2

0,n

}
, b̃i = λn

σ1,n
exp

{
− β2

i
2σ 2

1,n

}
.

Let’s define

hn(β) = 1
n

n∑
i=1

log(p(yi, xi|β)) + 1
n

log(π(β)), (11)

where p(yi, xi|β) denotes the likelihood function of the obser-
vation (yi, xi) and π(β) denotes the prior as specified in (4).
Then π(β|Dn) = enhn(β)∫

enhn(β)dβ
and, for a function b(β), the

posterior expectation is given by
∫

b(β)enhn(β)dβ∫
enhn(β)dβ

. Let β̂ denote

a strict local maximum of π(β|Dn). Then β̂ is also a local
maximum of hn(β). Let Bδ(β) denote an Euclidean ball of radius
δ centered at β . Let hi1,i2,...,id(β) denote the dth order partial
derivative ∂dh(β)

∂β i1 ∂β i2 ···∂β id
, let Hn(β) denote the Hessian matrix

of hn(β), let hij denote the (i, j)th component of the Hessian
matrix, and let hij denote the (i, j)-component of the inverse of
the Hessian matrix. Recall that γ ∗ denotes the set of indicators
for the connections of the true sparse DNN, rn denotes the size
of the true sparse DNN, and Kn denotes the size of the fully
connected DNN. The following theorem justifies the Laplace
approximation of the posterior mean for a bounded function
b(β).

Theorem 2.3. Assume that there exist positive numbers ε, M,
η, and n0 such that for any n > n0, the function hn(β) in (11)
satisfies the following conditions:

C.1 |hi1,...,id(β̂)| < M hold for any β ∈ Bε(β̂) and any 1 ≤
i1, . . . , id ≤ Kn, where 3 ≤ d ≤ 4.

C.2 |hij(β̂)| < M if γ ∗
i = γ ∗

j = 1 and |hij(β̂)| = O( 1
K2

n
)

otherwise.
C.3 det(− n

2π
Hn(β̂))

1
2
∫
RKn \Bδ(β̂)

en(hn(β)−hn(β̂))dβ = O(
r4

n
n ) =

o(1) for any 0 < δ < ε.

For any bounded function b(β), if |bi1,...,id(β)| =
| ∂db(β)
∂β i1 ∂β i2 ···∂β id

| < M holds for any 1 ≤ d ≤ 2 and any
1 ≤ i1, . . . , id ≤ Kn, then for the posterior mean of b(β),
we have ∫

b(β)enhn(β)dβ∫
enhn(β)dβ

= b(β̂) + O
(

r4
n
n

)
.

Conditions C.1 and C.3 are typical conditions for Laplace
approximation (see, e.g., Kass, Tierney, and Kadane 1990). Con-
dition C.2 requires the inverse Hessian to have very small values
for the elements corresponding to the false connections. To
justify condition C.2, we note that for a multivariate normal
distribution, the inverse Hessian is its covariance matrix. Thus,
we expect that for the weights with small variance, their cor-
responding elements in the inverse Hessian matrix would be
small as well. The following lemma quantifies the variance of
the weights for the false connections.

Lemma 2.1. Assume that supn
∫ |β i|2+δπ(βi|Dn)dβ i ≤ C <

∞ a.s. for some constants δ > 0 and C > 0 and ρ(εn) �
π(d(pβ , pμ∗) ≥ εn|Dn), where ρ(εn) is defined in Condition
B.1. Then with an appropriate choice of prior hyperparameters
and εn, P∗{E(β2

i |Dn) ≺ 1
K2Hn−1

n
} ≥ 1 − 2e−nε2

n/4 holds for any
false connection ci in γ ∗ (i.e., γ ∗

i = 0).

In addition, with an appropriate choice of prior hyperpa-
rameters, we can also show that π(γ i = 1|β) satisfies all the
requirements of b(β) in Theorem 2.3 with a probability tending
to 1 as n → ∞ (refer to Section 2.4 of the supplementary
materials for the detail). Then, by Theorem 2.3, qk and π(γ i =
1|β̂) are approximately the same as n → ∞, where π(γ i = 1|β̂)

is as defined in (10) but with β replaced by β̂ . Combining with
Theorem 2.2, we have that π(γ i = 1|β̂) is a consistent estimator
of ei|ν(γ ∗,β∗).

2.4. Asymptotically Optimal Generalization Bound

This section shows the sparse BNN has asymptotically an opti-
mal generalization bound. First, we introduce a PAC Bayesian
bound due to McAllester (1999a, 1999b), where the acronym
PAC stands for probably approximately correct. It states that
with an arbitrarily high probability, the performance (as pro-
vided by a loss function) of a learning algorithm is upper-
bounded by a term decaying to an optimal value as more data
is collected (hence, “approximately correct”). PAC-Bayes has
proven over the past two decades to be a powerful tool to derive
theoretical guarantees for many machine learning algorithms.

Lemma 2.2 (PAC Bayesian bound). Let P be any data indepen-
dent distribution on the machine parameters β , and Q be any
distribution that is potentially data-dependent and absolutely
continuous with respective to P. If the loss function l(β , x, y) ∈
[0, 1], then the following inequality holds with probability 1−δ,∫

Ex,yl(β , x, y)dQ ≤
∫ 1

n

n∑
i=1

l(β , x(i), y(i))dQ

+
√

d0(Q, P) + log 2
√

n
δ

2n
,

where d0(Q, P) denotes the Kullback–Leibler divergence
between Q and P, and (x(i), y(i)) denotes the ith observation
of the dataset.

For the binary classification problem, the DNN model fits
a predictive distribution as p̂1(x; β) := P̂r(y = 1|x) =
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logit−1(μ(β , x)) and p̂0(x; β) := P̂r(y = 0|x) = 1 −
logit−1(μ(β , x)). Given an observation (x, y), we define the loss
with margin ν > 0 as

lν(β , x, y) = 1(p̂y(x; β) − p̂1−y(x; β) < ν).

Therefore, the empirical loss for the whole dataset {x(i), y(i)}n
i=1

is defined as Lemp,ν(β) = ∑
lν(β , x(i), y(i))/n, and the popula-

tion loss is defined as Lν(β) = Ex,ylν(β , x, y).

Theorem 2.4 (Bayesian Generalization error for classification).
Suppose the conditions of Theorem 2.1 hold. For any ν > 0,
when n is sufficiently large, the following inequality holds with
probability greater than 1 − exp{c0nε2

n},∫
L0(β)dπ(β|Dn) ≤ 1

1 − 2 exp{−c1nε2
n}

×
∫

Lemp,ν(β)dπ(β|Dn)

+ O(εn + √
log n/n + exp{−c1nε2

n}),

for some c0, c1 > 0, where εn is as defined in Theorem 2.1.

Theorem 2.4 characterizes the relationship between Bayesian
population risk

∫
L0(β)dπ(β|Dn) and Bayesian empirical risk∫

Lemp,ν(β)dπ(β|Dn), and implies that the difference between
them is O(εn). Furthermore, this generalization performance
extends to any point estimator β̂ , as long as β̂ belongs to the
dominating posterior mode.

Theorem 2.5. Suppose that the conditions of Theorem 2.1 hold
and estimation β̂ belongs to the dominating posterior mode
under Theorem 2.1, then for any ν > 0, the following inequality
holds with probability greater than 1 − exp{c0nε2

n},

L0(β̂) ≤ Lemp,ν(β̂) + O(εn),

for some c0 > 0.

It is worth to clarify that the statement “β̂ belongs to the
dominating posterior mode” means β̂ ∈ Bn where Bn is defined
in the proof of Theorem 2.1 and its posterior is greater than
1−exp{−cnε2

n} for some c > 0. Therefore, if β̂ ∼ π(β|Dn), that
is, β̂ is one valid posterior sample, then with high probability,
it belongs to the dominating posterior mode. The proof of
the above two theorems can be found in the supplementary
materials.

Now we consider the generalization error for regression
models. Assume the following additional assumptions:

D.1 The activation function ψ ∈ [−1, 1].
D.2 The last layer weights and bias in β∗ are restricted to the

interval [−Fn, Fn] for some Fn ≤ En, while Fn → ∞ is still
allowed as n → ∞.

D.3 maxx∈� |μ∗(x)| ≤ F for some constant F.

Correspondingly, the priors of the last layer weights and bias are
truncated on [−Fn, Fn], that is, the two normal mixture prior
(4) truncated on [−Fn, Fn]. By the same argument of Theorem
S1 (in the supplementary materials), Theorem 2.1 still holds.

Note that the Hellinger distance for regression problem is
defined as

d2(pβ , pμ∗) = Ex

(
1 − exp

{
−[μ(β , x) − μ∗(x)]2

8σ 2

})
.

By our assumption, for any β on the prior support, |μ(β , x) −
μ∗(x)|2 ≤ (F + LFn)2 := F2, thus,

d2(pβ , pμ∗) ≥ CFEx|μ(β , x) − μ∗(x)|2, (12)

where CF = [1 − exp(−4F2
/8σ 2)]/4F2. Furthermore, (6)

implies that with probability at least 1 − 2 exp{−cnε2
n},∫

d2(pβ , pμ∗)dπ(β|Dn) ≤ 16ε2
n + 2e−cnε2

n . (13)

By combining (12) and (13), we obtain the following Bayesian
generalization error result:

Theorem 2.6 (Bayesian generalization error for regression). Sup-
pose the conditions of Theorem 2.1 hold. When n is sufficiently
large, the following inequality holds with probability at least
1 − 2 exp{−cnε2

n},∫
Ex|μ(β , x) − μ∗(x)|2dπ(β|Dn)

≤ [16ε2
n + 2e−cnε2

n ]/CF � [ε2
n + e−cnε2

n ]L2F2
n. (14)

Similarly, if an estimator β̂ belongs to the dominating pos-
terior mode (refer to the discussion of Theorem 2.5 for more
details), then β̂ ∈ {β : d(pβ , pμ∗) ≤ 4εn} and the following
result hold:

Theorem 2.7. Suppose the conditions of Theorem 2.1 hold, then

Ex|μ(β̂ , x) − μ∗(x)|2 ≤ [16ε2
n]/CF � ε2

nL2F2
n. (15)

3. Consistent Sparse DNN: Computation

The theoretical results established in previous sections show that
the Bayesian sparse DNN can be learned with a mixture Gaus-
sian prior and, more importantly, the posterior inference is not
necessarily directly drawn based on posterior samples, which
avoids the convergence issue of the MCMC implementation for
large complex models. As shown in Theorems 2.3, 2.5, and 2.7,
for the sparse BNN, a good local maximizer of the log-posterior
distribution also guarantees consistency of the network struc-
ture selection and asymptotic optimality of the network gen-
eralization performance. This local maximizer, in the spirit of
condition C.3 and the conditions of Theorems 2.5 and 2.7, is
not necessarily a MAP estimate, as the factor det(− n

2π
Hn(β̂))

1
2

can play an important role. In other words, an estimate of β lies
in a wide valley of the energy landscape is generally preferred.
This is consistent with the view of many other authors (see,
e.g., Chaudhari et al. 2016; Izmailov et al. 2018), where different
techniques have been developed to enhance convergence of
SGD to a wide valley of the energy landscape.

Condition C.3 can be re-expressed as
∫
RKn \Bδ(β̂)

enhn(β))dβ =
o(det(− n

2π
Hn(β̂))− 1

2 enhn(β̂)), which requires that β̂ is a
dominating mode of the posterior. Based on this observation,
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Algorithm 1 Sparse DNN elicitation with Bayesian evidence
Input: T—the number of independent tries in training the
DNN, and the prior hyperparameters σ0,n, σ1,n, and λn.
for t = 1, 2, . . . , T do

(i) Initialization: Randomly initialize the weights and biases,
set γ i=1 for i = 1, 2, . . . , Kn.
(ii) Optimization: Run SGD to maximize hn(β) as defined
in (11). Denote the estimate of β by β̂ .
(iii) Connection sparsification: For each i ∈ {1, 2, . . . , Kn},

set γ i = 1 if |β̂ i| >

√
2σ0,nσ1,n√
σ 2

1,n−σ 2
0,n

√
log

(
1−λn
λn

σ1,n
σ0,n

)
and 0

otherwise. Denote the yielded sparse DNN structure by
γ t , and set β̂γ t = β̂ ◦ γ t , where ◦ denotes element-wise
production.
(iv) Nonzero-weights refining: Refine the nonzero weights of
the sparsified DNN by maximizing

hn(βγ t ) = 1
n

n∑
i=1

log(p(yi, xi|βγ t ))+ 1
n

log(π(βγ t )), (16)

which can be accomplished by running SGD for a few
epochs with the initial value β̂γ t . Denote the resulting DNN
model by β̃γ t .
(v) Model evaluation: Calculate the Bayesian evidence:
Evidencet = det(− n

2π
Hn(β̃γ t ))−

1
2 enhn(β̃γ t ), where

Hn(βγ ) = ∂2hn(βγ )

∂βγ ∂Tβγ
is the Hessian matrix.

end for
Output β̃γ t with the largest Bayesian evidence.

we suggest to use the Bayesian evidence (MacKay 1992;
Liang 2005) as the criterion for eliciting estimates of β

produced by an optimization method in multiple runs with
different initializations. The Bayesian evidence is calculated
as det(− n

2π
Hn(β̂))− 1

2 enhn(β̂). Since Theorem 2.2 ensures only
consistency of structure selection but not consistency of
parameter estimation, we suggest to refine its nonzero weights
by a short optimization process after structure selection. The
complete algorithm is summarized in Algorithm 1.

For a large-scale neural network, even if it is sparse, the
number of nonzero elements can easily exceed a few thou-
sands or millions, see, for example, the networks considered
in Section 4.2. In this case, evaluation of the determinant of
the Hessian matrix can be very time consuming. For this rea-
son, we suggest to approximate the log(Bayesian evidence) by
nhn(β̂γ ) − 1

2 |γ | log(n) with the detailed arguments given in
Section 2.5 of the supplementary materials. As explained there,
if the prior information imposed on the sparse DNNs is further
ignored, then the sparse DNNs can be elicited by BIC.

The main parameters for Algorithm 1 are the prior hyper-
parameters σ0,n, σ1,n, and λn. Theorem 2.1 provides theoretical
suggestions for the choice of the prior-hyperparameters, see also
the proof of Lemma 2.1 for a specific setting for them. Our
theory allows σ1,n to grow with n from the perspective of data
fitting, but in our experience, the magnitude of weights tend to
adversely affect the generalization ability of the network. For this

reason, we usually set σ1,n to a relatively small number such as
0.01 or 0.02, and then tune the values of σ0,n and λn for the
network sparsity as well as the network approximation error. As
a trade-off, the resulting network might be a little denser than
the ideal one. If it is too dense to satisfy the sparse constraint
given in Assumption A.2.2, one might increase the value of σ0,n
and/or decrease the value of λn, and rerun the algorithm to
get a sparser structure. This process can be repeated until the
constraint is satisfied.

Algorithm 1 employs SGD to optimize the log-posterior of
the BNN. Since SGD generally converges to a local optimal
solution, the multiple initialization method is used to find a
local optimum close to the global one. It is interesting to note
that SGD has some nice properties in nonconvex optimization:
It works on the convolved (thus smoothed) version of the loss
function (Kleinberg, Li, and Yuan 2018) and tends to converge
to flat local minimizers which are with very high probability also
global minimizers (Zhang et al. 2018). In this article, we set the
number of initializations to T = 10 as default unless otherwise
stated. We note that Algorithm 1 is not very sensitive to the
value of T, although a large value of T can generally improve
its performance.

For network weight initialization, we adopted the standard
method, see Glorot and Bengio (2010) for tanh activation and
He et al. (2015) for ReLU activation, which ensures that the
variance of the gradient of each layer is of the same order at the
beginning of the training process.

4. Numerical Examples

This section demonstrates the performance of the proposed
algorithm on synthetic datasets and real datasets.

4.1. Simulated Examples

For all simulated examples, the covariates x1, x2, . . . , xp were
generated in the following procedure: (i) simulate e, z1, . . . , zpn
independently from the truncated standard normal distribution
on the interval [−10, 10]; and (ii) set xi = e+zi√

2 for i =
1, 2, . . . , pn. In this way, all the covariates fall into a compact
set and are mutually correlated with a correlation coefficient
of about 0.5. We generated 10 datasets for each example. Each
dataset consisted of n = 10,000 training samples, 1000 val-
idation samples and 1000 test samples. For comparison, the
sparse input neural network (Spinn) (Feng and Simon 2017),
dropout (Srivastava et al. 2014) , and dynamic pruning with
feedback (DPF) (Lin et al. 2020) methods were also applied to
these examples. Note that the validation samples were only used
by Spinn, but not by the other methods. The performances of
these methods in variable selection or connection selection were
measured using the false selection rate (FSR) and the negative
selection rate (NSR):

FSR =
∑10

i=1 |Ŝi\S|∑10
i=1 |Ŝi|

, NSR =
∑10

i=1 |S\Ŝi|∑10
i=1 |S| ,

where S is the set of true variables/connections, Ŝi is the set
of selected variables/connections for dataset i, and |Ŝi| is the
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Figure 1. The left and right panels show the network structures selected for one dataset after the stages of training and retraining, respectively, where the black lines show
the connections that are selected and exist in the true model, and the red lines show the connections that are selected but do not exist in the true model.

size of Ŝi. For the regression examples, the prediction and fit-
ting performances of each method were measured by mean
square prediction error (MSPE) and mean square fitting error
(MSFE), respectively; and for the classification examples, they
were measured by prediction accuracy (PA) and fitting accuracy
(FA), respectively. To make each method to achieve the best or
nearly best performance, we intentionally set the training and
nonzero-weight refining process excessively long. In general,
this is unnecessary. For example, for the read data example
reported in Section 4.2, the nonzero-weight refining process
consisted of only one epoch.

4.1.1. Network Structure Selection
We generated 10 datasets from the following neural network
model:

y = tanh(2 tanh(2x1 − x2)) + 2 tanh(tanh(x3 − 2x4)

− tanh(2x5)) + +0x6 + · · · + 0x1000 + ε,

where ε ∼ N(0, 1) and is independent of xi’s. We fit the data
using a neural network with structure 1000-5-3-1 and tanh as
the activation function. For each dataset, we ran SGD for 80,000
iterations to train the neural network with a learning rate of
εt = 0.01. The subsample size was set to 500. For the mixture
Gaussian prior, we set σ1,n = 0.01, σ0,n = 0.0005, and λn =
0.00001. The number of independent tries was set to T = 10.
After structure selection, the DNN was retrained using SGD for
40,000 iterations. Over the 10 datasets, we got MSFE = 1.030
(0.004) and MSPE = 1.041 (0.014), where the numbers in the
parentheses denote the standard deviation of the estimates. This
indicates a good approximation of the neural network to the
underlying true function. In terms of variable selection, we got
perfect results with FSR = 0 and NSR = 0. In terms of structure
selection, under the above setting, our method selected a little
more connections with FSR = 0.377 and NSR = 0. The left panel
of Figure 1 shows a network structure selected for one dataset,
which includes a few more connections than the true network.
This “redundant” connection selection phenomenon is due to

that σ1,n = 0.01 was too small, which enforces more connec-
tions to be included in the network to compensate the effect
of the shrunk true connection weights. However, in practice,
such an under-biased setting of σ1,n is usually preferred from the
perspective of neural network training and prediction, which
effectively prevents the neural network to include large connec-
tion weights. It is known that including large connection weights
in the neural network is likely to cause vanishing gradients in
training as well as large error in prediction especially when the
future observations are beyond the range of training samples.
We also note that such a “redundant” connection selection
phenomenon can be alleviated by performing another round of
structure selection after retraining. In this case, the number of
false connections included in the network and their effect on
the objective function (16) are small, the true connections can
be easily identified even with an under-biased value of σ1,n. The
right panel of Figure 1 shows the network structure selected after
retraining, which indicates that the true network structure can
be identified almost exactly. Summarizing over the networks
selected for the 10 datasets, we had FSR = 0.152 and NSR =
0 after retraining; that is, on average, there were only about
1.5 more connections selected than the true network for each
dataset. This result is remarkable!

For comparison, we have applied the sparse input neural net-
work (Spinn) method (Feng and Simon 2017) to this example,
where Spinn was run with a LASSO penalty and a regularization
parameter of λ = 0.05. We have tried λ ∈ {0.01, 0.02, . . . , 0.1}
and found that λ = 0.05 generally led to a better structure
selection result. In terms of structure selection, Spinn got FSR
= 0.221 and NSR = 0.26. Even with another round of structure
selection after retraining, Spinn only got FSR = 0.149 and NSR
= 0.26. It indicates that Spinn missed some true connections,
which is inferior to the proposed method.

4.1.2. Nonlinear Regression
We generated 10 datasets from the following model:

y = 5x2

1 + x2
1

+ 5 sin(x3x4)+ 2x5 + 0x6 +· · ·+ 0x2000 + ε, (17)
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Table 1. Comparison of different methods for the simulated nonlinear regression
example, where MSFE and MSPE were calculated by averaging over 10 datasets with
the standard deviation given in the parentheses.

Activation Method |Ŝ| FSR NSR MSFE MSPE

BNN 5(0) 0 0 2.372(0.093) 2.439(0.132)
Spinn 36.1(15.816) 0.861 0 3.090(0.194) 3.250(0.196)

Tanh
DPF 55.6(1.002) 0.910 0 2.934(0.132) 3.225(0.524)

dropout – – – 10.491(0.078) 13.565(0.214)

BNN 5(0) 0 0 2.659(0.098) 2.778(0.111)
Spinn 136.3(46.102) 0.963 0 3.858(0.243) 4.352(0.171)

ReLU
DPF 67.8(1.606) 0.934 0 5.893(0.619) 6.252(0.480)

dropout – – – 17.279(0.571) 18.630(0.559)

where ε ∼ N(0, 1) and is independent of xi’s. We modeled the
data by a 3-hidden layer neural network, which has 6, 4, and
3 hidden units on the first, second, and third hidden layers,
respectively. The tanh was used as the activation function. For
each dataset, we ran SGD for 80,000 iterations to train the neural
network with a learning rate of εt = 0.005. The subsample
size was set to 500. For the mixture Gaussian prior, we set
σ1,n = 0.01, σ0,n = 0.0001, and λn = 0.00001. The number of
independent tries was set to T = 10. After structure selection,
the DNN was retrained using SGD for 40,000 iterations.

For comparison, the Spinn, dropout and DPF methods were
also applied to this example with the same DNN structure
and the same activation function. For Spinn, the regularization
parameter for the weights in the first layer was tuned from the set
{0.01, 0.02, . . . , 0.1}. For a fair comparison, it was also retrained
for 40,000 iterations after structure selection as for the proposed
method. For dropout, we set the dropout rate to be 0.2 for the
first layer and 0.5 for the other layers. For DPF, we set the target
pruning ratio to the ideal value 0.688%, which is the ratio of the
number of connections related to true variables and the total
number of connections, that is, (12,053 − 1995 × 6)/12,053
with 12,053 being the total number of connections including the
biases. The results were summarized in Table 1.

Table 1 indicates that the proposed BNN method signifi-
cantly outperforms the Spinn and DPF methods in both pre-
diction and variable selection. For this example, BNN can cor-
rectly identify the 5 true variables of the nonlinear regression
(17), while Spinn and DPF identified too many false variables.
Figure 2 shows the structure of a selected neural network by
the BNN method. In terms of prediction, BNN, Spinn and
DPF all significantly outperform the dropout method. In our
experience, when irrelevant features are present in the data,
learning a sparse DNN is always rewarded in prediction.

Figure 3 explores the relationship between Bayesian evidence
and prediction accuracy. Since we set the number of tries T = 10
for each of the 10 datasets, there are a total of 100 pairs of
(Bayesian evidence, prediction error) shown in the plot. The
plot shows a strong linear pattern that the prediction error of the
sparse neural network decreases as Bayesian evidence increases.
This justifies the rationale of Algorithm 1, where Bayesian evi-
dence is employed for eliciting sparse neural network models
learned by an optimization method in multiple runs with differ-
ent initializations.

For this example, we have also compared different methods
with the ReLU activation. The same network structure and the

Figure 2. A network structure selected by the Bayesian evidence method for a
simulated dataset from model (17), where the node “1” denotes the bias term.

same hyperparameter setting were used as in the experiments
with the tanh activation. The results are also summarized in
Table 1, which indicate that the proposed BNN method still
significantly outperforms the competing ones.

4.1.3. Nonlinear Classification
We generated 10 datasets from the following nonlinear system:

y =

⎧⎪⎨
⎪⎩

1

0

ex1 + x2
2 + 5 sin(x3x4)

−3 + 0x5 + · · · + 0x1000 > 0,
otherwise.

Each dataset consisted of half of the observations with the
response y = 1. We modeled the data by a 3-hidden layer logistic
regression neural network, which had 6,4,3 hidden units on
the first, second, and third hidden layers, respectively. The tanh
was used as the activation function. The proposed method was
compared with Spinn, dropout and DPF. For all the methods,
the same hyperparameter values were used as in the nonlinear
regression example of Section 4.1.2. The results are summarized
in Table 2, which shows that the proposed method can iden-
tify the true variable for the nonlinear system and make more
accurate prediction than Spinn, dropout and DPF. Compared to
BNN and Spinn, DPF missed some true variables and produced
a larger value of NSR.

4.2. Residual Network Compression

This section assessed the performance of the proposed BNN
method on network compression with CIFAR-10 (Krizhevsky
and Hinton 2009) used as the illustrative dataset. The CIFAR-
10 dataset is a benchmark dataset for computer vision, which
consists of 10 classes, 50,000 training images, and 10,000 test-
ing images. We modeled the data using both ResNet20 and
ResNet32 (He et al. 2016) and then pruned them to different
sparsity levels. We compared the proposed BNN method with
DPF (Lin et al. 2020), dynamic sparse reparameterization (DSR)
(Mostafa and Wang 2019), sparse momentum (SM) (Dettmers
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Figure 3. Scatterplot of MSPE versus the logarithm of Bayesian evidence, for which the fitted OLS regression line is y = −2.459 × 10−4x − 1.993 with R2 = 0.8037 and
p-value = 2.2 × 10−16.

Table 2. Comparison of different methods for the simulated classification example,
where FA and PA were calculated by averaging over 10 datasets with the standard
deviation given in the parentheses.

Method |Ŝ| FSR NSR FA PA

BNN 4(0) 0 0 0.8999(0.0023) 0.8958(0.0039)
Spinn 4.1(0.09) 0.024 0 0.8628(0.0009) 0.8606(0.0036)
DPF 61.9(0.81) 0.935 0.333 0.8920(0.0081) 0.8697(0.0010)
dropout – – – 0.4898(0.0076) 0.4906(0.0071)

and Zettlemoyer 2019), and variational Bayes (VB) (Blundell
et al. 2015). All experiments were implemented using PyTorch
(Paszke et al. 2017).

In all of our experiments, we followed the same training setup
as used in Lin et al. (2020), that is, the model was trained using
SGD with momentum for 300 epochs, the data augmentation
strategy (Zhong et al. 2017) was employed, the mini-batch size
was set to 128, the momentum parameter was set to 0.9, and
the initial learning rate was set to 0.1. We divided the learning
rate by 10 at epoch 150 and 225. For the proposed method, we
set the number of independent trials T = 10, and used BIC to
elicit sparse networks. In each trial, the mixture normal prior
was imposed on the network weights after 150 epochs. After
pruning, the model was retrained for one epoch for refining the
nonzero weights. For the mixture normal prior, we set σ 2

1,n =
0.02 and tried different values for σ0,n and λn to achieve different
sparsity levels. For ResNet-20, to achieve 10% target sparsity, we
set σ 2

0,n = 4e−5 and λn = 1e−6; to achieve 20% target sparsity,
we set σ 2

0,n = 6e − 6 and λn = 1e − 7. For ResNet-32, to achieve
5% target sparsity, we set σ 2

0,n = 6e − 5 and λn = 1e − 7; to
achieve 10% target sparsity, we set σ 2

0,n = 2e−5 and λn = 1e−5.
Following the experimental setup in Lin et al. (2020), all

experiments were run for 3 times and the averaged test accuracy

and standard deviation were reported. For the VB method, we
followed Blundell et al. (2015) to impose a mixture Gaussian
prior (the same prior as used in our method) on the connection
weights, and employed a diagonal multivariate Gaussian distri-
bution to approximate the posterior. As in Blundell et al. (2015),
we ordered the connection weights in the signal-to-noise ratio
|μ|
σ

, and identified a sparse structure by removing the weights
with a low signal-to-noise ratio. The results were summarized
in Table 3, where the results of other baseline methods were
taken from Lin et al. (2020). The comparison indicates that the
proposed method is able to produce better prediction accuracy
than the existing methods at about the same level of sparsity,
and that the VB method is not very competitive in statistical
inference although it is very attractive in computation. Note that
the proposed method provides a one-shot pruning strategy. As
discussed in Han et al. (2015), it is expected that these results can
be further improved with appropriately tuned hyperparameters
and iterative pruning and retraining.

The CIFAR-10 has been used as a benchmark example in
many DNN compression experiments. Other than the compet-
ing methods considered above, the targeted dropout method
(Gomez et al. 2019) reported a Resnet32 model with 47K param-
eters (90% sparsity) and the prediction accuracy 91.48%. The
Bayesian compression method with a group normal-Jeffreys’
prior (BC-GNJ) (Louizos, Ullrich, and Welling 2017) reported
a VGG16 model, a very deep convolutional neural network
model proposed by Simonyan and Zisserman (2014), with 9.2M
parameters (93.3% sparsity) and the prediction accuracy 91.4%.
A comparison with our results reported in Table 3 indicates
again the superiority of the proposed BNN method.

Finally, we note that the proposed BNN method belongs to
the class of pruning methods and it provides an effective way
for learning sparse DNNs. Contemporary experience shows that
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Table 3. Network compression for CIFAR-10 data, where the number in the paren-
theses denotes the standard deviation of the respective estimate.

ResNet-20 ResNet-32

Method Pruning ratio Test accuracy Pruning ratio Test accuracy

BNN 19.673%(0.054%) 92.27(0.03) 9.531%(0.043%) 92.74(0.07)
SM 20% 91.54(0.16) 10% 91.54(0.18)
DSR 20% 91.78(0.28) 10% 91.41(0.23)
DPF 20% 92.17(0.21) 10% 92.42(0.18)
VB 20% 90.20(0.04) 10% 90.11(0.06)

BNN 9.546%(0.029%) 91.27(0.05) 4.783%(0.013%) 91.21(0.01)
SM 10% 89.76(0.40) 5% 88.68(0.22)
DSR 10% 87.88(0.04) 5% 84.12(0.32)
DPF 10% 90.88(0.07) 5% 90.94(0.35)
VB 10% 89.33(0.16) 5% 88.14(0.04)

directly training a sparse or small dense network from the start
typically converges slower than training with a pruning method
(see, e.g., Frankle and Carbin 2018). This issue can be illustrated
using a network compression example. Three experiments were
conducted for a ResNe20 (with 10% sparsity level) on the CIFAR
10 dataset: (a) sparse BNN, that is, running the proposed BNN
method with randomly initialized weights; (b) starting with
sparse network, that is, training the sparse network learned
by the proposed BNN method but with the weights randomly
reinitialized; and (c) starting with small dense network, that is,
training a network whose number of parameters in each layer
is about the same as that of the sparse network in experiment
(b) and whose weights are randomly initialized. The experiment
(a) consisted of 400 epochs, where the last 100 epochs were
used for refining the nonzero-weights of the sparse network
obtained at epoch 300 via connection sparsification. Both the

experiments (b) and (c) consisted of 300 epochs. In each of the
experiments, the learning rate was set in the standard scheme
(Lin et al. 2020), that is, started with 0.1 and then decreased by
a factor of 10 at epochs 150 and 225, respectively. For random
initialization, we used the default method in PyTorch (He et al.
2015). For example, for a two-dimensional convolutional layer
with nin input feature map channels, nout output feature map
channels, and a convolutional kernel of size w × h, the weights
and bias of the layer were initialized by independent draws from
the uniform distribution Unif(− 1√

nin×w×h , 1√
nin×w×h ).

Figure 4 shows the training and testing paths obtained in the
three experiments. It indicates that the sparse neural network
learned by the proposed method significantly outperforms the
other two networks trained with randomly initialized weights.
This result is consistent with the finding of Frankle and Carbin
(2018) that the architectures uncovered by pruning are harder
to train from the start and they often reach lower accuracy than
the original neural networks.

Regarding this experiment, we have further two remarks.
First, the nonzero weights refining step in Algorithm 1 can
consist of a few epochs only. This step is mainly designed for a
theoretical purpose, ensuring the followed evidence evaluation
to be done on a local mode of the posterior. In terms of sparse
neural network learning, the mixture Gaussian prior plays a
key role in sparsifying the neural network, while the nonzero
weights refining step is not essential. As illustrated by Figure 4,
this step did not significantly improve the training and testing
errors of the sparse neural network. Second, as mentioned pre-
viously, the proposed BNN method falls into the class of pruning
methods suggested by Frankle and Carbin (2018) for learning

Figure 4. Training and testing paths of a ResNet20 model (with 10% sparsity level) on the CIFAR-10 dataset: “Sparse BNN: Training” is the path for fitting the full neural
network in experiment (a) (for epochs 1–300); “Sparse BNN Fine Tune: Training” is the path for refining the nonzero-weights of the sparse network obtained in experiment
(a) via connection sparsification (for epochs 301–400); “Starting with sparse network: Training”is the path for fitting a sparse neural network in experiment (b); and “Starting
with small dense network: Training” is the path for fitting a small dense neural network in experiment (c). The curves for testing can be interpreted similarly.
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sparse DNNs. Compared to the existing pruning methods, the
proposed method is more theoretically sound, which ensures
the resulting sparse network to possess nice theoretical proper-
ties such as posterior consistency, variable selection consistency
and asymptotically optimal generalization bounds.

5. Discussion

This article provides a complete treatment for sparse DNNs
in both theory and computation. The proposed method works
like a frequentist method, but is justified under the Bayesian
framework. With the proposed method, a sparse neural net-
work with at most O(n/ log(n)) connections could be learned
via sparsifying an over-parameterized one. Such a sparse neu-
ral network has nice theoretical properties, such as posterior
consistency, variable selection consistency, and asymptotically
optimal generalization bound.

In computation, we proposed to use Bayesian evidence or
BIC for eliciting sparse DNN models learned by an optimization
method in multiple runs with different initializations. Since
conventional optimization methods such as SGD and Adam
(Kingma and Ba 2014) can be used to train the DNNs, the
proposed method is computationally more efficient than the
standard Bayesian method. Our numerical results show that the
proposed method can perform very well in large-scale network
compression and high-dimensional nonlinear variable selec-
tion. The networks learned by the proposed method tend to
predict better than the existing methods.

Regarding the number of runs of the optimization method,
that is, the value of T, in Algorithm 1, we would note again
that Algorithm 1 is not very sensitive to it. For example,
for the nonlinear regression example, Algorithm 1 cor-
rectly identified the true variables in each of the 10 runs.
For the CIFAR-10 example with ResNet20 and 10% target
sparsity level, Algorithm 1 achieved the test accuracies in
10 runs: 91.09%, 91.16%, 91.17%, 91.18%, 91.18%, 91.24%,
91.24%, 91.24%, 91.27%, 91.31% (in ascending order), where
the worst one is still better than those achieved by the baseline
methods.

In this work, we choose the two-mixture Gaussian prior for
the weights and biases of the DNN, mainly for the sake of
computational convenience. Other choices, such as two-mixture
Laplace prior (Ročková 2018), which will lead to the same poste-
rior contraction with an appropriate choice for the prior hyper-
parameters. To be more specific, Theorem S1 (in the supplemen-
tary materials) establishes sufficient conditions that guarantee
the posterior consistency, and any prior distribution satisfying
the sufficient conditions can yield consistent posterior infer-
ences for the DNN.

Beyond the absolutely continuous prior, the hierarchical
prior used in Liang, Li, and Zhou (2018) and Polson and
Ročková (2018) can be adopted for DNNs. To be more precise,
one can assume that

βγ |γ ∼ N(0, σ 2
1,nI|γ |×|γ |), βγ c = 0; (18)

π(γ ) ∝ λ
|γ |
n (1 − λn)

Kn−|γ | 1 {1 ≤ |γ | ≤ r̄n, γ ∈ G} , (19)
where βγ c is the complement of βγ , |γ | is the number of
nonzero elements of γ , I|γ |×|γ | is a |γ | × |γ | identity matrix,

r̄n is the maximally allowed size of candidate networks, G is the
set of valid DNNs, and the hyperparameter λn, as in (4), can be
read as an approximate prior probability for each connection or
bias to be included in the DNN. Under this prior, the product of
the weight or bias and its indicator follows a discrete spike-and-
slab prior distribution, that is,

wh
ijγ

wh
ij |γ wh

ij ∼ γ wh
ij N(0, σ 2

1,n) + (1 − γ wh
ij )δ0,

bh
kγ

bh

k |γ bh

k ∼ γ bh

k N(0, σ 2
1,n) + (1 − γ bh

k )δ0,

where δ0 denotes the Dirac delta function. Under this hierar-
chical prior, it is not difficult to show that the posterior con-
sistency and structure selection consistency theory developed
in this article still hold. However, from the computational per-
spective, the hierarchical prior might be inferior to the mix-
ture Gaussian prior adopted in the article, as the posterior
π(βγ , γ |Dn) is hard to be optimized or simulated from. It
is known that directly simulating from π(βγ , γ |Dn) using an
acceptance-rejection based MCMC algorithm can be time con-
suming. A feasible way is to formulate the prior of βγ as βγ =
θ ⊗ γ , where θ ∼ N(0, σ 2

1,nIHn×Hn) can be viewed as a latent
variable and ⊗ denotes entry-wise product. Then one can first
simulate from the marginal posterior π(θ |Dn) using a stochastic
gradient MCMC algorithm and then make inference of the net-
work structure based on the conditional posterior π(γ |θ , Dn).
We note that the gradient ∇θ log π(θ |Dn) can be approximated
based on the following identity developed in Song et al. (2020),

∇θ log π(θ |Dn) =
∑
γ

π(γ |θ , Dn)∇θ log π(θ |γ , Dn),

where Dn can be replaced by a dataset duplicated with mini-
batch samples if the subsampling strategy is used to accelerate
the simulation. This identity greatly facilitates the simulations
for the dimension jumping problems, which requires only some
samples to be drawn from the conditional posterior π(γ |θ , Dn)
for approximating the gradient ∇θ log π(θ |Dn) at each iteration.
A further exploration of this discrete prior for its use in deep
learning is of great interest, although there are some difficulties
needing to be addressed in computation.

Supplementary Materials

Supplement description: (i) proofs of Theorems 2.1–2.7 and Lemma 2.1; (ii)
verification of the bounded gradient in Theorem 2.3; (iii) approximation of
Bayesian evidence; and (iv) some mathematical facts of the sparse DNN.
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