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Introduction

Causal reasoning is a fundamental part of child development. Children must learn to encode causal
structure to make predictions, generate explanations, and reason counterfactually. For example, infer-
ring that flipping a light switch to on will cause a light bulb to illuminate requires recognizing that
light switches cause light bulbs to turn on and not the other way around and that light bulbs generally
do not illuminate when their switches are off.

There is now considerable evidence showing that infants possess statistical learning mechanisms
that support learning across a variety of domains (e.g., Haith, 1993; Kirkham, Slemmer, & Johnson,
2002; Saffran, Aslin, & Newport, 1996). For example, infants between 4%2 and 10 months of age can
use statistical information as well as spatial and temporal cues to perceive causality (Cohen &
Amsel, 1998; Leslie & Keeble, 1987; Oakes & Cohen, 1990; Rakison & Krogh, 2012). By 2 years of
age, children make causal inferences that extend beyond the statistical regularities that they observe
(e.g., Luchkina, Sommerville, & Sobel, 2018; Meltzoff, Waismeyer, & Gopnik, 2012; Sobel & Kirkham,
2006; Waismeyer & Meltzoff, 2017; Waismeyer, Meltzoff, & Gopnik, 2015; Walker & Gopnik, 2014;
Walker, Lombrozo, Williams, Rafferty, & Gopnik, 2017). These findings suggest that infants might ini-
tially perceive and encode statistical regularity among events, but how these capacities support causal
reasoning in children is unclear.

One promising mechanism that may assist in making causal inferences from statistical regularity is
second-order correlational learning. This refers to the ability to make inferences about features that are
correlated but are separated in time and space. For example, it is commonplace for infants to register
that hands (A) convey information about goal-directed action (B) (e.g., Woodward, 1998). But objects
with hands (A) often also have legs (C). Can infants infer that objects with legs are goal-directed? That
is, given a correlation between A and B and between A and C, do infants also register that B and C
should co-occur? Second-order correlation is a powerful domain-general learning process because
learners need not be exposed to the full space of correlations for inferences to be made. For example,
a learner who is presented with the two sets of aforementioned relations (i.e., A and B and A and C)
may infer—through second-order correlation learning—that a novel object with legs is goal-directed.

Several studies have demonstrated that young children can detect second-order correlations
among the static features of objects (Cuevas, Rovee-Collier, & Learmonth, 2006; Yermolayeva &
Rakison, 2016). Rakison and Benton (2019) showed that toddlers also make such inferences about
the dynamic features of objects. They habituated 20- and 26-month-olds to separate correlations
between features of objects. First, they presented toddlers with stationary objects of different shapes
that had different surface features (e.g., blue squares had yellow hearts inside; red circles had white
crosses inside). The second involved a dynamic relation between an object and its motion trajectory
(featureless blue squares and blue pentagons moved rectilinearly; featureless red circles and triangles
moved curvilinearly). The study tested whether toddlers extracted the second-order correlation
between yellow hearts and rectilinear motion and between white crosses and curvilinear motion.

Toddlers were then shown a test event that was consistent with these second-order correlations (a
novel object with a yellow heart inside moved rectilinearly) and a test event that was inconsistent
with these correlations (a novel object with a yellow heart inside moved curvilinearly). Both age
groups detected the second-order correlation: the 20-month-olds looked longer at the inconsistent
test event, whereas the 26-month-olds looked longer at the consistent test event. Given that the fea-
tures were presented equally during habituation, greater interest in either test event could occur only
if infants learned the second-order correlation between features and motion paths. Rakison and
Benton (2019) also showed that a computational (connectionist) model provided a good description
of children’s inferences, including the developmental difference in looking times. These results indi-
cated that children (and the computational model) could detect the correlation between features that
are not presented together simultaneously.

The goal of the current investigation was to demonstrate that toddlers make similar inferences
about the causal properties of objects. We examined whether 2- and 3-year-olds could detect a
second-order correlation between objects’ surface features and their causal efficacy. Critically, exam-
ining this age group allowed us to expand on the Rakison and Benton (2019) findings and to address
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an important facet of children’s causal reasoning. Numerous studies on toddlers’ causal reasoning sug-
gest that various information-processing demands influence children’s ability to make certain infer-
ences (e.g., Luchkina et al.,, 2018; Walker & Gopnik, 2014). To detect a second-order correlation,
toddlers must be able to detect the first-order correlations that form the basis of the inference. We
examined whether children’s inferences are influenced by this capacity in a behavioral study. We then
presented a computational model similar to that of Rakison and Benton (2019). The computational
model enabled us to determine to what extent second-order correlation learning for causal stimuli
emerges in an associative-learning system that embodies certain information-processing constraints
such as constraints on the speed of learning and on the amount of information that is retained across
the phases of the experiment.

Behavioral study

In the behavioral study, 2- and 3-year-olds were shown two objects, each with a distinct correlated
feature (e.g., Object 1 with Feature A and Object 2 with Feature B). Children then observed that Object
1 without Feature A activated a novel machine, whereas Object 2 did not. Children were then asked to
choose which of two new objects—one with Feature A and one with Feature B—would activate the
machine. We predicted that children would choose the test object with Feature A if they detected
the indirect relation between that feature and the machine’s activation but that this choice would
depend critically on their encoding of the first- and second-order associations.

Method

Participants

Participants were 32 2-year-olds (17 boys and 15 girls; Mage = 29.21 months, range = 24-35) and 32
3-year-olds (17 boys and 15 girls; M,g. = 39.83 months, range = 36-47). Sample size for all analyses
was determined based on a power analysis for 2 tests (« = .05, power = .80, effect size =.50). An addi-
tional 3 children were tested but not included in the final analysis because of experimenter error
(n = 2) or because the child refused to participate in the experiment (n = 1). All participants were
tested in a quiet room in a local children’s museum. No explicit information about ethnicity or socioe-
conomic status was collected, but previous studies at the museum suggest the following breakdown:
14% Hispanic, 3% African American, 5% Asian American, 1% Native American, 58% Caucasian, 7% mixed
race, and 12% no response.

Materials

This experiment used a version of the blicket detector (Gopnik & Sobel, 2000). The machine was a
12.7 x 17.8 x 7.6-cm black plastic box with a translucent white top. Pressing a button on a wireless
remote control activated the machine, and the experimenter activated the machine as soon as an
object contacted it. This created the illusion that objects activated the machine. Six 3.8 x 2.54-cm
wooden blocks and two unique stickers were also used (Fig. 1).

Procedure
Children were tested in a quiet room in a local museum and were seated across the table facing a
male experimenter. The experiment consisted of two training trials and a test phase.

Training trials. In the static training trial, children were first shown a red cube and a green cylinder,
which were positioned next to each other on the table. One object had a yellow circle sticker on it
(e.g., the green cylinder), and the other object had a purple diamond sticker on it (e.g., the red cube).
The correlation between the blocks and stickers was counterbalanced across participants. Children
were shown each block one at a time and were told, “See this toy? This toy has a yellow [or red] thing
on it,” This was done twice. The order of presentation was random.

In the causal training trial, two new objects were placed on the table. These were sticker-less
objects that were identical to the first pair of objects. The experimenter then introduced the machine.
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Static training trial

Causal training trial

Test trial

Fig. 1. Examples of the stimuli used in the study. Children were shown the static training trial first, followed by the causal
training trial. Two novel, identical objects were presented at test. The inconsistent test object had the surface feature that was
indirectly associated with the machine’s nonactivation. The consistent test object had the surface feature was that indirectly
associated with the machine’s activation. Children were asked which object made the machine go.

Children were told that the machine “lights up and plays music when some toys are put on it, but not
when other toys are put on it.” The two blocks were then placed on the machine one at a time. One
block made the machine go (e.g., the red cube), and the other block did not (e.g., the green cylinder);
this was counterbalanced across participants.

Test trial. Two new, identical blue triangular blocks were brought out. One had the same sticker that
was paired with the red cube in the static training trial, and the other new block had the same sticker
that was paired with the green cylinder on the static training trial. The experimenter then said, “Here
are two new toys. Can you tell me which toy makes the machine go?” If children inferred an associ-
ation between the red cube and the yellow sticker during the static phase, and then an association
between the red cube (without the sticker) and the machine’s activation during the causal phase, then
at test they should use the blue block with the yellow sticker to make the machine go and not the
other block. This is because the yellow sticker was associated—via a second-order correlation—with
the machine’s activation (see Fig. 1).

All children were then given a memory check in which they were shown the static phase blocks
and stickers and were asked to place the stickers on the blocks to which they were initially appended.

Results

All p values were supplemented with Bayes factors (BFs) to quantify the relative support for the
alternative hypothesis compared with the null hypothesis. BFs close to 1 indicate equal support for
both hypotheses, whereas BFs > 3 and < 10 indicate moderate and strong evidence for the alternative
hypothesis, respectively (Lee & Wagenmakers, 2014). Table 1 shows the frequency with which chil-
dren passed the memory control and chose the object consistent with detecting the second-order cor-
relation between the two age groups. Preliminary analyses showed that neither children’s sex nor any
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Table 1
Frequency of children choosing the test object consistent with registering the second-order correlation.
2-year-olds 3-year-olds
Responded correctly on memory question (n = 47) 10 of 17 22 of 30
Responded incorrectly on memory question (n = 17) 90of 15 1of2
Total 19 of 32 23 of 32

of our counterbalancing measures was significantly related to their choice of the test object, all (1,
N = 64) values < 1.91, all p values > .16.

We next examined the relation between children’s age and their choices on the test question and
memory control. All 64 participants were used in these analyses. Although there was no relation
between children’s age (in months) and their choice of object at test, ry(62) = .02, p = .910, there
was a significant relation between children’s age and their performance on the memory control,
rs(62) = .40, p = .001. A logistic regression corroborated these results. This analysis revealed that
age did not significantly predict choices on the test question, odds ratio = 1.01, p = .98, 95% confidence
interval (CI) [-1.41, 3.44], BF = 0.13, but did significantly predict performance on the memory control,
odds ratio = 7.13, p < .01, 95% CI [0.11, 14.14], BF = 25.00. Children who passed the memory control
were more likely to choose the correct test object than children who did not pass it, 3*(1, N = 64) =
6.15, p =.01, BF = 5.37. Follow-up comparisons indicated that children who passed the memory control
chose the consistent test object 68% of the time (32 of 47 children), which is greater than expected by
chance, binomial test, p = .02, BF = 5.37. In contrast, children who did not pass the memory control
chose the consistent test object 59% of the time (10 of 17), which is not significantly different from
chance, binomial test, p = .63, BF = 0.62. This analysis suggests that 2- and 3-year-olds do not differ
in their ability to use second-order correlational information but potentially differ in their ability to
encode the first-order correlations on which the second-order correlation is built.

Discussion

Both 2- and 3-year-olds registered second-order correlations to make causal inferences, but only if
they remembered the feature-block pairings from the static phase. The ability to remember the initial
correlation in this procedure develops at 2 or 3 years of age. This result is consistent with other find-
ings suggesting that even younger children may be capable of encoding these correlations (Cuevas
et al,, 2006; Yermolayeva & Rakison, 2016). In those studies, the initial association between the stimuli
was presented for a much longer time, which may have allowed for better encoding of the
information.

We have suggested that second-order correlational learning is a domain-general associative-
learning mechanism that requires sufficient information-processing capacities. To examine this
hypothesis, we constructed a similar computational model (i.e., an autoencoder connectionist model)
to that of Rakison and Benton (2019) to assess whether it can explain children’s second-order corre-
lational learning and performance on the memory control. The success of the model in simulating chil-
dren’s second-order correlation learning performance as well as their performance on the memory
control is important because it would suggest that an associative-learning mechanism with sufficient
information-processing capacities can form second-order correlations for causal stimuli.

Computational model
Method

Network architecture

We used a three-layer, autoencoder neural network that was trained using backpropagation and
momentum. The learning rate, momentum, weight decay, and number of hidden units were set to
.08, .90, .001, and 15, respectively, and corresponded to children who passed the memory check

5



D.T. Benton, D.H. Rakison and D.M. Sobel Journal of Experimental Child Psychology 202 (2021) 105008

and were set to .001, .90, .005, and 13, respectively, and corresponded to children who failed the mem-
ory check. This implemented a simple model of development capable of simulating the difference in
choices on the test question between children who passed the memory check and those who failed it.
A total of 32 networks—each initialized with small (distribution range = +0.8) random weights—were
run for each simulation. This number paralleled the number of participants in the behavioral study.
Finally, both network types received 50 training epochs (or trials) because children who passed and
those who failed the memory check in the behavioral study received an equal number of training tri-
als. Our number of training epochs, 50, was chosen to mirror Rakison and Benton (2019), who used the
number of training epochs as a way of simulating the “age” of the model. A total of 50 training epochs
simulated the models for the 26-month-olds (which would be akin to the youngest participants tested
here). Nonetheless, the simulation results reported below held regardless of whether models were
trained for as few as 15 to 20 epochs or as many as 200 to 250 epochs.

The input to the network consisted of patterns of activity across three different groups of input
units: shape, color, and feature input groups (see Fig. 2). The shape group consisted of distributed
activity across 12 units, whereas activity was encoded locally across 3 units for the color group and
across 2 units for the feature group. Critically, the similarity between any two input patterns within
each of the three groups was orthogonal to ensure unbiased output responses. Each input group pro-
jected to a group of hidden units, which in turn were connected to output groups that were copies of
each input group and an additional single-unit output group that took on a value of 1 whenever a cau-
sal object was presented and a value of 0 otherwise.

We represented the task in terms of three input groups for three reasons. First, these dimensions
would be available to low-level perceptual processes that segment tasks and stimuli into component
parts. Second, representing the task and stimuli in terms of three feature groups would be the absolute

Activity

Shape 0 ° Color

Feature

R e i

‘ ‘ ‘ Hidden layer

0 ° . ‘ ‘ ‘ ‘ Inpu‘ Laycr
Feature

Shape Color

Fig. 2. Schematic of the model that was used to simulate the results from the behavioral study. The three input groups were
connected to one hidden layer, which in turn was connected to three output groups that mirrored the three input groups. The
task was to recreate the input patterns along the three input groups on each of the corresponding output groups as well as to
respond with a 0 or 1 in the activity group if a causally inefficacious or efficacious object was presented, respectively.
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minimum number of input groups needed to simulate successful second-order correlation learning.
Third, the simulations were designed to account for children’s second-order correlation learning
and memory control performance rather than to capture the precise stimuli that children attended
to during training and test. We do not suggest that these simulations are full cognitive models of
second-order correlation learning in children. Rather, they serve as proof of concept that these models
can register second-order correlations from only the statistical regularity in the data.

Training

In total, 32 simulations were run to simulate the successful networks and 32 for the unsuccessful
networks. Individual networks were simulated by initializing a fresh set of small, random weights.
During the static training phase, networks were trained to predict an internal circle shape on the out-
put when given a stationary red object as input and to predict an internal diamond shape on the out-
put when given a stationary green object. The feature-block pairings presented to networks during
the static training phase were counterbalanced. During the causal training phase, networks were
trained to predict either that a featureless red cube or a green cylinder made the machine go
(counterbalanced).

Testing

Networks were then presented with two identically shaped objects. One of the test objects pos-
sessed the feature that was indirectly associated with the machine’s activation, and the other object
possessed the feature that was indirectly associated with the machine’s inactivation. Correct test per-
formance was indicated by activity in the single activity output group that was above 0.5 for the object
that was designated as the correct test object, whereas chance or incorrect performance was indicated
by equal activity in the activity output unit for both test objects.

Results

All of the networks with parameters that were more consistent with passing the memory control
placed greater weight on the consistent test object (32 of 32 networks), binomial test, p < .001,
BF = 9105.00. Networks with parameters that were more consistent with not passing the memory con-
trol were at chance in their test object choice (16 of 32), binomial test, p = 1.00, BF = 0.40. Critically, the
number of consistent choices on the test question for networks that passed the memory control
(n = 32) did not differ from that for children who passed the memory control (n = 47), *(1, N = 79)
=0, p=1.00, BF = 1.01. Likewise, networks that did not pass the memory control (n = 32) did not differ
from children who did not pass it in their choice of the consistent object at test (n = 17), y*(1, N=49) =
1.38, p = .24, BF = 0.76.

To ensure that these results were not idiosyncratic to the precise parameter values used in the
reported simulation, we ran 384 additional simulations with modified parameter values. For networks
that simulated children who passed the memory control (Table 2), the number of hidden units varied
from 5 to 15 (N = 48), weight decay varied from 0 to .003 (N = 48), momentum varied from .875 to .900
(N =48), and learning rate varied from .004 to .006 (N = 48). For networks that simulated children who
failed the memory control (Table 3), the number of hidden units varied from 11 to 13 (N = 48), weight
decay varied from .005 to .006 (N = 48), momentum varied from .875 to.900 (N = 48), and learning rate
varied from .0008 to .001 (N = 48). As can be seen in Tables 2 and 3, models that simulated the per-
formance of children who passed the memory control were more likely to choose the test object that
embodied the consistent second-order correlation relation than the one that embodied the inconsis-
tent relation. In contrast, models that simulated the performance of children who did not pass the
memory control chose equally between test objects that embodied the consistent second-order corre-
lation relation and those that did not. Crucially, these additional simulations replicate the original
model results.
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Table 2
Effects of changing parameters on the computational model.

Networks corresponding to children who passed the memory control

Learning rate = .006 Learning rate = .005 Learning rate = .004

Binomial BF Binomial BF Binomial BF
(16 of 16), p < .001 585 (14 of 16), p < .01 18 (15 of 16), p < .001 83
Hidden units = 15 Hidden units = 10 Hidden units = 5

Binomial BF Binomial BF Binomial BF
(16 of 16), p < .001 585 (16 of 16), p < .001 585 (16 of 16), p <.001 585
Weight decay = 0 Weight decay = .0015 Weight decay = .003

Binomial BF Binomial BF Binomial BF
(16 of 16), p < .001 585 (16 of 16), p < .001 585 (15 of 16), p < .001 83
Momentum = .900 Momentum = .885 Momentum = .875

Binomial BF Binomial BF Binomial BF
(16 of 16), p < .001 585 (16 of 16), p < .001 585 (16 of 16), p <.001 585

Note. Numbers in parentheses correspond to the proportion of networks for each parameter value change that responded with
the consistent object at test to the total number of networks that responded with both types of objects.

Table 3
Effects of changing parameters on the computational model.

Networks corresponding to children who did not pass the memory control

Learning rate = .001 Learning rate = .0009 Learning rate = .0008

Binomial BF Binomial BF Binomial BF
(50f16),p=.21 1.20 (6 of 16), p = .45 0.75 (9 of 16), p = .80 0.56
Hidden units = 13 Hidden units = 12 Hidden units = 11

Binomial BF Binomial BF Binomial BF
(9 of 16), p = .80 0.56 (6 of 16), p <.001 0.75 (8 of 16), p = 1.00 0.52
Weight decay = .005 Weight decay = .0055 Weight decay = .006

Binomial BF Binomial BF Binomial BF
(6 of 16), p < .001 0.75 (50f16),p=.21 1.20 (7 of 16), p = .80 0.57
Momentum = .900 Momentum = .885 Momentum = .875

Binomial BF Binomial BF Binomial BF
(9 of 16), p = .80 0.56 (8 of 16), p = 1.00 0.52 (9 of 16), p = .80 0.56

Note. The numbers in parentheses correspond to the proportion of networks for each parameter value change that responded
with the consistent object at test to the total number of networks that responded with both types of objects.

Discussion

The simulations showed that networks that possessed more robust memory capacities weighted
the consistent test object more heavily than networks that possessed less robust memory capacities.
Critically, this result mirrored that in the behavioral study. The improved performance of networks
that corresponded to children who passed the memory control relative to those who failed it resulted
from their increased processing speed (e.g., higher learning rate), improved memory retention (e.g.,
lower weight decay and momentum), and larger memory storage (e.g., more hidden units). The
greater learning rate for networks that reflected the children who passed the memory control enabled
them to encode the first-order correlations within the allotted training trials. In contrast, the lower
learning rate for networks that reflected the children who failed the memory control was insufficient
to allow these networks to register the first-order correlations during training.

Combined with a higher learning rate, the lower weight decay and momentum and a larger set of
hidden units allowed the networks with more robust information processing capacities to form an
internal (hidden) representation that captured the first-order correlations (e.g., yellow sticker and
red cube, red cube and machine activation) as well as the second-order correlation between them
(e.g., yellow stickers and machine activation). Crucially, this ability to form a hidden representation
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that captured both the first- and second-order correlations served to facilitate second-order correla-
tion learning only in those children who passed the memory control.

General discussion

The current investigation demonstrated that young children could encode second-order correla-
tions to make causal inferences, but only if they recalled the feature-block pairings from the static
phase. The computational model showed that an associative-learning mechanism combined with suf-
ficient information-processing capacities is critical for registering second-order correlations among
causal stimuli. Together, the findings from this study extend previous findings on this topic by show-
ing that children with sufficient information-processing capacities can use second-order correlation
learning to infer causal relations.

Children’s developing information-processsing abilities may also explain why second-order corre-
lation learning emerges at different ages in studies on this topic (e.g., Rakison & Benton, 2019;
Yermolayeva & Rakison, 2016). For example, in Cuevas et al.’s (2006) study, 6-month-olds showed
second-order correlation learning, but only after extended exposure to the stimuli. In contrast, chil-
dren in the current study were given two brief exposures to the first-order correlations that consti-
tuted the second-order correlation. This difference in familiarization time might have affected the
current children’s ability to recall the initial association. Critically, age was not a critical factor for
encoding the second-order correlations in the current study. Instead, the results indicated a relation
between children’s age and their developing memory demands. The computational model simulated
how this difference in memory capacity might contribute to differences in second-order correlation
learning. This suggests that second-order correlation is an important learning mechanism that
depends on children’s developing information-processing capacities. Importantly, the “age” of the
model was not a relevant factor in the simulation; the results held regardless of whether the model
was trained for 15 or 250 epochs.

More generally, these results suggest that children might be using second-order correlation learn-
ing to interpret correlational data in causal ways. To illustrate, consider a study by Saxe, Tzelnic, and
Carey (2007), where 9-month-olds were habituated to alternating events in which a bean bag was
tossed either from behind an opaque screen located on the left-hand side of a stage or from behind
an opaque screen on the right-hand side of the stage. The screens were then lowered to reveal a hand
or puppet with human-like eyes on one side of the stage and a toy truck on the other side of the stage.
Saxe et al. (2007) found that 9-month-olds looked longer at the event in which the beanbag ostensibly
was tossed from the side on which the toy truck was located. They interpreted these data as suggest-
ing that infants understand that people, but not inanimate objects, are agents that can cause ballistic
motion. An alternative view is that infants’ conception of people as agents may well have derived from
encoding two separate correlations, namely that people have hands and eyes and people are self-
propelled. Based on these separate associations, infants might have understood that hands/eyes and
ballistic motion are correlated through a second-order association. Future studies should look care-
fully at the explanatory nature of second-order correlations as a mechanism for children’s causal infer-
ence, particularly in interpreting investigations with infants.

To conclude, the current experiment demonstrates that second-order correlation learning for cau-
sal stimuli is present by 2 years of age and that encoding the first-order relations—on which the
second-order correlations are built—is critical for second-order correlation learning. The current
results also suggest that second-order correlation learning may be grounded in associative processes
and represents a powerful mechanism by which infants and children can form broad generalizations
that span domains and content areas.
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