s S Taylor & Francis
Journal of ‘e Taylor & Francis Group

Statistical

SSUIEUEE  Journal of Statistical Computation and Simulation

an .
Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gscs20

Stochastic gradient Langevin dynamics with
adaptive drifts

Sehwan Kim, Qifan Song & Faming Liang

To cite this article: Sehwan Kim, Qifan Song & Faming Liang (2021): Stochastic gradient
Langevin dynamics with adaptive drifts, Journal of Statistical Computation and Simulation, DOI:
10.1080/00949655.2021.1958812

To link to this article: https://doi.org/10.1080/00949655.2021.1958812

. Published online: 27 Jul 2021.

- Submit your article to this journal Il

- Article views: 136

E View related articles Il

View Crossmark datalill

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=gscs20


https://www.tandfonline.com/action/journalInformation?journalCode=gscs20
https://www.tandfonline.com/loi/gscs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00949655.2021.1958812
https://doi.org/10.1080/00949655.2021.1958812
https://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00949655.2021.1958812
https://www.tandfonline.com/doi/mlt/10.1080/00949655.2021.1958812
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2021.1958812&domain=pdf&date_stamp=2021-07-27
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2021.1958812&domain=pdf&date_stamp=2021-07-27

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION Taylor & Francis

https://doi.org/10.1080/00949655.2021.1958812 Taylor & Francis Group

[ W) Check for updates‘

Stochastic gradient Langevin dynamics with adaptive drifts

Sehwan Kim, Qifan Song and Faming Liang

Department of Statistics, Purdue University, West Lafayette, IN, USA

ABSTRACT ARTICLE HISTORY

We propose a class of adaptive stochastic gradient Markov chain Received 8 April 2021
Monte Carlo (SGMCMC) algorithms, where the drift function is  Accepted 19 July 2021
adaptively adjusted according to the gradient of past samples to

. A - KEYWORDS
accelerate the convergence of the algorithm in simulations of the Adaptive MCMC; deep neural
distributions with pathological curvatures. We establish the conver- network: mini-batch data;

gence of the proposed algorithms under mild conditions. The numer- momentum; stochastic
ical examples indicate that the proposed algorithms can significantly gradient MCMC
outperform the popular SGMCMC algorithms, such as stochastic gra-

dient Langevin dynamics (SGLD), stochastic gradient Hamiltonian

Monte Carlo (SGHMC) and preconditioned SGLD, in both simulation

and optimization tasks. In particular, the proposed algorithms can

converge quickly for the distributions for which the energy landscape

possesses pathological curvatures.

1. Introduction

Bayesian learning is an important field in machine learning, which potentially is able to
quantify uncertainty of the prediction, leading to safe decision-making for artificial intel-
ligence (AI) machines. When the dataset is big, Bayesian learning is often conducted using
the stochastic gradient Langevin dynamics (SGLD) algorithm [1], which is scalable by
using a minj-batch of data to estimate the required gradient during iterations. However,
SGLD suffers from poor mixing rates when pathological curvatures present on the energy
landscape, i.e. the target density function has strong couplings and scales differently across
dimensions. This difficulty is caused by the mismatch between the geometry of the energy
landscape and the isotropic Langevin diffusion that SGLD relies on. As pointed out by
Simsekli et al. [2], the isotropic Langevin diffusion implicitly assumes that different com-
ponents of the underlying variable are uncorrelated and of the same scale, which is hardly
satisfied in real applications.

To tackle this difficulty, the second-order gradient algorithms, such as stochastic gra-
dient Fisher scoring (SGFS) [3] and stochastic gradient Riemannian Langevin dynamics
(SGRLD) [4,5] have been developed. With the use of the Fisher information matrix
of the target distribution, these algorithms rescale the stochastic gradient noise to be
isotropic near stationary points, which accelerates the convergence of the simulation. How-
ever, calculation of the Fisher information matrix can be time-consuming, which makes

CONTACT F.Liang @ fmliang@purdue.edu e Department of Statistics, Purdue University, West Lafayette, 47906 IN,
USA

© 2021 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2021.1958812&domain=pdf&date_stamp=2021-07-24
mailto:fmliang@purdue.edu

2 (& SKMETAL

these algorithms lack scalability necessary for learning large-scale models such as deep
neural networks (DNNs). Instead of using the exact Fisher information matrix, precondi-
tioned SGLD (pSGLD) [6] approximates it by a diagonal matrix adaptively updated with
the current gradient information, and stochastic quasi-Newton Langevin Monte Carlo
(SQNLMC) [2] approximates the Fisher information matrix using a limited history of sam-
ples and their stochastic gradients. Orthogonal to the use of the Fisher information of the
target distribution, stochastic gradient Hamiltonian Monte Carlo (SGHMC) [7], stochastic
gradient Nosé-Hoover thermostats (SGNHT) [8] and relativistic Monte Carlo [9] improve
the mixing of SGLD with momentum, where the moving direction can be adjusted by the
momentum term in a similar way to the Fisher information matrix. Refer to Lu et al. [9]
for more discussions on this issue.

Ma et al. [10] provides a general framework (see Section 2) for the existing SGMCMC
algorithms based on the Wiener process, where the stochastic gradient is restricted to be
unbiased. However, this restriction is unnecessary. As shown in the recent work, see, e.g.
Dalalyan and Karagulyan [11], Song et al. [12] and Bhatia et al. [13], the stochastic gradient
can be biased as long as its mean squared error can be upper bounded by an appropri-
ate function of 6y, the current sample of the stochastic gradient Markov chain. On the
other hand, a variety of adaptive SGD algorithms, such as momentum [14], Adagrad [15],
RMSprop [16], and Adam [17], have been proposed in the recent literature to accelerate
the convergence of SGD. These algorithms adjust the moving direction at each iteration
according to the current gradient as well as the past ones. It was shown in Staib et al. [18]
that, compared to SGD, these algorithms escape saddle points faster and can converge faster
overall to the second-order stationary points.

Motivated by the above two observations, we propose a class of adaptive SGLD algo-
rithms, where a bias term is included in the drift function to enhance escape from saddle
points and accelerate the convergence in the presence of pathological curvatures. The bias
term can be adaptively adjusted based on the path of the sampler. In particular, we pro-
pose to adjust the bias term based on the past gradients in the flavour of adaptive SGD
algorithms [19]. We establish the convergence of the proposed adaptive SGLD algorithms
under mild conditions, and demonstrate via numerical examples that the adaptive SGLD
algorithms can significantly outperform the popular SGMCMC algorithms, such as SGLD,
SGHMC and pSGLD.

The remaining part of the paper is organized as follows. Section 2 gives a brief review
for SGLD and its general formulation. Section 3 describes the proposed adaptive SGLD
algorithms and studies its convergence. Section 4 illustrates the performance of the pro-
posed algorithms via simulated examples. Section 5 applies the proposed algorithms to
deep neural networks. Section 6 concludes the paper with a brief discussion.

2. A brief review of SGLD and its general formulation

Let Xy = (X1, X2, ..., XN) denote a set of N independent and identically distributed sam-
ples drawn from the distribution f (x | 8), where N is the sample size and 6 is the vector of
parameters. Let p(Xn | 60) = ]_[fil f(Xi|0) denote the likelihood function, let 7 (6) denote
the prior distribution of 6, and let U(0) = —log p(Xn | 9) — log 7 (0) denote the energy
function of the posterior distribution. If 6 has a fixed dimension and U(6) is differentiable



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION e 3

with respect to 6, then SGLD can be used to simulate from the posterior by iterating
Orr1 = 0 — €0:1Vo UO) + v/ 2eri1T0041, M1 ~ N(O, L),

where d is the dimension of 0, I; is an d x d-identity matrix, €4 is the learning rate, 7 is
the temperature, and Vy U(0) denotes a noisy estimate of Vo U(0) based on a mini-batch
of data. The learning rate can be kept as a constant or decay with iterations. For the former,
the convergence of the algorithm has been studied in Sato and Nakagawa [20] and Dalalyan
and Karagulyan [11]. For the latter, the convergence of the algorithm has been studied in
Teh et al. [21].

As mentioned previously, many variants of SGLD have been developed in the literature
and they can be formulated under the same framework based on the Wiener process [10].
Let £ denote an augmented state, which may include some auxiliary components. For
example, SGHMC augments the state to £ = (0, v) by including an auxiliary velocity
component denoted by v. Then the general SGMCMC algorithm is given by

Or41 = 0r — €r41[DE) + QE)IVEHE) + T (€) + 26417 Ze41, (1)

where Z; 1 ~ N(0, D(&;)), H(§) is the energy function of the augmented system, V¢ H()
denotes an unbiased estimate of V¢ H(£), D(£) is a positive semi-definite diffusion matrix,

Q(&) is a skew-symmetric curl matrix, and I';(§) = Z;l:1 %(D,-j(g ) + Qij(§)). The diffu-
sion D(&) and curl Q(&) matrices can take various forms and the choice of the matrices will
affect the rate of convergence of the sampler. For example, for the SGHMC algorithm, we
have H(¢§) = U(#) + %VTV, D(&) = ($ 2) for some positive semi-definite matrix C, and
Q) = (97]) . For the SGRLD algorithm, we have £ = 6, H(§) = U(9),D(€) = G(6) ™,
Q(&) = 0, where G(0) is the Fisher information matrix of the posterior distribution. Refer
to Nemeth and Fearnhead [22] for more examples on this formulation.

3. Stochastic gradient Langevin dynamics with adaptive drifts

Motivated by the observations that the stochastic gradient used in SGLD is not necessarily
unbiased and that the past gradients can be used to enhance escape from saddle points for
SGD, we propose a class of adaptive SGLD algorithms, where the past gradients are used
to accelerate the convergence of the sampler by forming a bias to the drift at each iteration.
A general form of the adaptive SGLD algorithm is given by

Orv1 = 0 — €,01(VoUBy) + aAy) + /2€041T01115 (2)

where Ay is the adaptive bias term, a is called the bias factor, and 741 ~ N(0, I;). Two
adaptive SGLD algorithms are given in what follows. In the first algorithm, the bias term
is constructed based on the momentum algorithm [14]; and in the second algorithm, the
bias term is constructed based on the Adam algorithm [17]. Due to the inclusion of the
bias term, the proposed algorithms do not follow the framework provided by (1).

3.1. Momentum SGLD

It is known that SGD has trouble in navigating ravines, i.e. the regions where the energy
surface curves much more steep in one dimension than in another, which are common



4 (& S.KIMETAL

around local energy minima [19,23]. In this scenario, SGD oscillates across the slopes of
the ravine while making hesitant progress towards the local energy minima. To acceler-
ate SGD in the relevant direction and dampen oscillations, the momentum algorithm [14]
updates the moving direction at each iteration by adding a fraction of the moving direction
of the past iteration, the so-called momentum term, to the current gradient. By accu-
mulation, the momentum term increases updates for the dimensions whose gradients
pointing in the same directions and reduces updates for the dimensions whose gradi-
ents change directions. As a result, the oscillation is reduced and the convergence is
accelerated.

As an analogy of the momentum algorithm in stochastic optimization, we propose
the so-called momentum SGLD (MSGLD) algorithm, where the momentum is calcu-
lated as an exponentially decaying average of past stochastic gradients and added as a
bias term to the drift of SGLD. The resulting algorithm is depicted in Algorithm 1. The
ergodicity of the algorithm is established in Theorem 3.1, whose proof is given in the
Appendix.

Algorithm 1 MSGLD.

Input: Data {xi}fi 1> subsample size n, smoothing factor 0 < f; < 1, bias factor a,
temperature 7, and learning rate sequence {¢; : t = 1,2,...};
Initialization: 6y from an appropriate distribution, and my = 0.
fort=1,2,...,do
Draw a mini-batch of data {xj’.k ;1:1’ and calculate
Or1 = 0 — €1 (VU(O)) + amy) + erq1,
my = Bimy_1 + (1 — B)VUb;-1),
where e;11 ~ N(0,27€;411y), and d is the dimension of 6.
end for

Theorem 3.1 (Ergodicity of MSGLD): Suppose that the conditions (A.1)-(A.4) hold
(given in Appendix), and B € (0,1] is a constant. For any smooth function ¢(6), let

- L _
oL = W and ¢ = f®¢(o9)7r*(0) df, where m.(0) denotes the target posterior
k=1

distribution.

(i) If a constant learning rate of € is used, then E||<;3L — ¢ = O(?) as L — oo.
(ii) If the learning rate sequence {ex : k = 1,2, ...} decays and satisfies the conditions that

L 2 ~ —
PR SLI. 0, then E||¢r — ¢||> = 0as L — oo.

o .
€, = 00 and lim
Zk:l k L— o0 Zi:l o

Algorithm 1 contains a few parameters, including the subsample size n, smoothing fac-
tor B, bias factor g, temperature 7, and learning rate €. Among these parameters, , T and
€ are shared with SGLD and can be set as in SGLD. Refer to Nagapetyan et al. [24] and
Nemeth and Fearnhead [22] for more discussions on their settings. The smoothing factor
B1 is a constant, which is typically set to 0.9. The bias factor a is also a constant, which is
typically set to 1 or a slightly large value.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION e 5

3.2. Adam SGLD

The Adam algorithm [17] has been widely used in deep learning, which typically converges
much faster than SGD. Recently, Staib et al. [18] showed that Adam can be viewed as a pre-
conditioned SGD algorithm, where the preconditioner is estimated in an on-line manner
and it helps escape saddle points by rescaling the stochastic gradient noise to be isotropic
near stationary points.

Motivated by this result, we propose the so-called Adam SGLD (ASGLD) algorithm.
Ideally, we would construct the adaptive bias term as follows:

= Bimi—1 + (1 — B)VU(B1),

Ve=paVer + (1= UG- UG-, (3)

A=V, "m,,
where $ and B; are smoothing factors for the first and second moments of stochastic gra-
dients, respectively. Since V; can be viewed as an approximator of the true second moment
matrix E(VgU(0;—1) Vo U(6;_1)") at iteration t—1, A; can viewed as the rescaled momen-
tum which is isotropic near stationary points. If the bias factor a is chosen appropriately,
ASGLD is expected to converge very fast. In particular, the bias term may guide the sampler
to converge to a global optimal region quickly, similar to Adam in optimization. However,
when the dimension of 6 is high, calculation of V; and V, /2 can be time consuming.
To accelerate computation, we propose to approximate Vi using a diagonal matrix as in
pSGLD. This leads to Algorithm 2. The convergence of the algorithm is established in
Theorem 3.2, whose proof is given in the Appendix.

Algorithm 2 ASGLD.

Input: Data {x,-}fil, subsample size n, smoothing factors 81 and B, bias factor g,
temperature 7, and learning rate sequence {¢; : t = 1,2,.. .};
Initialization: 6y from appropriate distribution, my = 0 and V = 0;
fort=1,2,...,do

Draw a mini- batch of data {x M [ =B and calculate

Orr1 = 0 — €1 (VUO) + am; © Vi +21) + e,
my = prmi1 + (1 = pOVUO-1),
Vi=B2Vie1 + (1 = B2)VU(6-1) © VU(6¢-1),
where X is a small constant added to avoid zero-divisors, e;1-; ~ N(0,2t¢€:4115), and
d is the dimension of 6.
end for

Theorem 3.2: Suppose that the conditions (A.1)-(A.5) hold (given in Appendix), and ﬂl
Zk €x9 (6k)
Zk71 €k

B2 are two constants between 0 and 1. For any smooth function ¢ (0), let qu

and ¢ = f® ¢ (0)7(0) d9, where 7,.(0) denotes the target posterior distribution.

(i) If a constant learning rate of € is used, then E||¢L —¢|> = O(e?) as L — oo.



6 (& SKMETAL

(ii) If the learning rate sequence {ex : k = 1,2, ...} decays and satisfies the conditions that

L 2 ~ -
> ke €k = 00 and limp o % =0, then E||¢r — ¢||> = 0as L — oo.
k=1 €k
Compared to Algorithm 1, ASGLD contains one more parameter, 8, which works as
the smoothing factor for the second-moment term and is suggested to take a value of 0.999
in this paper.

3.3. Other adaptive SGLD algorithms

In addition to the Momentum and Adam algorithms, other optimization algorithms, such
as AdaMax [17] and Adadelta [25], can also be incorporated into SGLD to accelerate the
convergence of the simulation. Other than the drift term, the past gradients can also be
used to construct an adaptive preconditioner matrix in a similar way to pSGLD [6] and
SQNLMC [2]. Moreover, the adaptive drift and adaptive preconditioner matrix can be used
together to accelerate the convergence of SGLD.

Rather than adapting the drift and/or preconditioner matrix, the contour SGLD
algorithm [26] adapts the target density function in a dynamic importance sampling
scheme as developed in [27]. For optimization tasks, the SANTA algorithm [28] extends
further the SGNHT algorithm [8] with adaptive preconditioners and temperatures, where
the preconditioner matrix is approximated by a diagonal matrix based on the current and
past gradients as in pSGLD [6] and the temperature is updated in a simulated annealing
scheme [29].

4. lllustrative examples

Before applying the adaptive SGLD algorithms to DNN models, we first illustrate their
performance on two low-dimensional examples. The first example is a multi-modal distri-
bution, which mimics the scenario with multiple local energy minima. The second example
is more complicated, which mimics the scenario with pathological curvatures.

4.1. A multi-modal distribution

The target distribution is a 2-dimensional 5-component mixture Gaussian distribution,
whose density function is given by 7(0) = 21-5:1 ﬁ exp(—||60 — u;il|?), where pu =
(=3, -3 2 = (=3,00T, 43 = (0,007, g = (3,007, us = (3,3)T . For this example, we
considered the natural gradient variational inference (NGVI) algorithm [30], which is
known to converge very fast in the variational inference field, as the baseline algorithm
for comparison.

Both MSGLD and ASGLD algorithms were applied to this example. We set Vo U(6) =
VU(O) + e, where e ~ N(0,I;) and U(0) = —logm(0). For a fair comparison, each
algorithm was run in 6.0 CPU minutes. The numerical results were summarized in
Figure 1, which shows the contour of the energy function and its estimates by NGVI,
MSGLD and ASGLD. The plots indicate that MSGLD and ASGLD are better at exploring
the multi-modal distributions than NGVI.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION . 7

Figure 1. Contour plots of the true energy function (left) and its estimates by NGVI (middle left), MSGLD
(middle right), and ASGLD (right).

4.2. Adistribution with long narrow energy ravines

Consider a nonlinear regression
y=fo(x)+€, €~N(@1),

where x ~ Unif[—2,4], 6 = (61,6,)T € R, and fp(x) = (x — 1)2 + 2sin(6;x) + 3—1091 +
cos(Brx — 1) — %92. As 6 increases, the function fy (x) fluctuates more severely. Figure 2(a)
depicts the regression, where we set §; = 20 and 6, = 10. Since the random error € is rel-
atively large compared to the local fluctuation of fy (x), i.e. 2 sin(6;x) + %91 + cos(Bx —
1) — %02, identification of the exact values of (61, 6,) can be very hard, especially when
the mini-batch size n is small.

From this regression, we simulated 5 datasets with (0;,6,) = (20, 10) independently.
Each dataset consisted of 10,000 samples. To conduct Bayesian analysis for the problem, we
set the prior distribution: 6; ~ N(0,1) and 6, ~ N(0, 1), which are a priori independent.
This choice of the prior distribution makes the problem even harder, which discourages
the convergence of the posterior simulation to the true value of 6. Instead, it encourages to
estimate f (x) by the global pattern (x — 1)2.

Both MSGLD and ASGLD were run for each of the five datasets. Each run consisted
of 30,000 iterations, where the first 10,000 iterations were discarded for the burn-in pro-
cess and the samples generated from the remaining 20,000 iterations were averaged as the

(@) (b) *

i NI

e | B

[

[

44444

AT T ]

Figure 2. (a) The dashed line is for the global pattern (x — 1) and the solid line is for the regression
function fy (x), where 6; = 20 and 6, = 10. The points represent 100 random samples from the regres-
sion. (b) Contour plot of the energy function for one dataset and the sample paths produced by SGLD,
SGHMC, pSGLD, ASGLD and MSGLD in a run, where the sample paths have been thinned by a factor of
50 for readability of the plot.



8 (& S.KIMETAL

Table 1. Bayesian estimates of 6 produced by different algorithms for the long narrow energy ravines
example in five independent runs, where the true value of 6 is (20,10).

Method 0 1 2 3 4 5
SGLD 04 —5.79 —6.59 17.43 0.99 —3.01
6, —24 —1.76 9.02 —1.36 —4.74
SGHMC [ 9.22 14.73 23.19 11.39 —4.22
6, 1.27 6.23 11.03 2.65 —2.25
pSGLD 04 1.27 —19.77 16.52 5.14 —9.08
6, —2.22 —15.44 8.17 0.65 3.75
ASGLD [ 19.75 15.34 19.99 19.01 19.98
6, 9.99 9.29 9.92 9.66 9.99
MSGLD 64 20.01 20.07 19.99 20.00 19.99
6, 9.99 10.00 9.99 9.99 9.99

Bayesian estimate of 6. In the simulations, we set the mini-batch size n = 100. The set-
tings of other parameters are given in the Appendix. Table 1 shows the Bayesian estimates
of 6 produced by the two algorithms in each of the five runs. The MSGLD estimates con-
verged to the true value in all five runs, while the ASGLD estimates converged to the true
value in four of five runs. For comparison, SGLD, SGHMC and pSGLD were also applied
to this example with the settings given in the Appendix. As implied by Table 1, all the three
algorithms essentially failed for this example: none of their estimates converged to the true
value!

For further exploration, Figure 2(b) shows the contour plot of the energy function
for one dataset and the sample paths produced by SGLD, SGHMC, pSGLD, ASGLD and
MSGLD for the dataset. As shown by the contour plot, the energy landscape contains mul-
tiple long narrow ravines, which make the existing SGMCMC algorithms essentially fail.
However, due to the use of momentum information, ASGLD and MSGLD work extremely
well for this example. As indicated by their sample paths, they can move along narrow
ravines, and converge to the true value of 6 very quickly. It is interesting to point out that
pSGLD does not work well for this example, although it has used the past gradients in
constructing the preconditioned matrix. A possible reason for this failure is that it only
approximates the preconditioned matrix by a diagonal matrix and missed the correlation
between different components of 6.

5. DNN applications
5.1. Landsat data

The dataset is available at the UCI Machine Learning Repository, which consists of 4435
training instances and 2000 testing instances. Each instance consists of 36 attributes that
represent features of the earth surface images taken from a satellite. The training instances
consist of six classes, and the goal of this study is to learn a classifier for the earth surface
images.

We modelled this dataset by a fully connected DNN with structure 36-30-30-6 and
Relu as the activation function. Let 8 denote the vector of all parameters (i.e. connection
weights) of the DNN. We let 6 be subject to a Gaussian prior distribution: 8 ~ N(0, I),
where d is the dimension of . The SGLD, SGHMC, pSGLD, ASGLD and MSGLD algo-
rithms were all applied to simulate from the posterior of the DNN. Each algorithm was run



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION e 9

for 3000 epochs with the mini-batch size n = 50 and a decaying learning rate

e = oy /L1, (4)

where k indexes epochs, the initial learning rate €g = 0.1, y = 0.5, the step size L = 300,
and |z] denotes the maximum integer less than z. For the purpose of optimization, the
temperature was set to T = 0.01. The settings for the specific parameters of each algorithm
were given in the Appendix.

Each algorithm was run for five times for the example. In each run, the training and test
classification accuracy were calculated by averaging over the last 200 samples, which were
collected from the last 100,000 iterations with a thinning factor of 500. For each algorithm,
Table 2 reports the mean classification accuracy, for both training and test, averaged over
five runs and its standard deviation. The results indicate that MSGLD has significantly
outperforms other algorithms in both training and test for this example. While ASGLD
performs similarly to pSGLD for this example.

Finally, we note that for this example, the SGMCMC algorithms have been run exces-
sively long. Figure 3(a) and Figure 3(b) show, respectively, the training and test classi-
fication errors produced by SGLD, pSGLD, SGHMC, ASGLD and MSGLD along with
iterations. It indicates again that MSGLD significantly outperforms other algorithms in
both training and test.

Table 2. Training and test classification accuracy produced by
different SGMCMC algorithms for the Landsat data, where the
accuracy and its standard error were calculated based on 5
independent runs.

Method Training accuracy Test accuracy

SGLD 93.163 + 0.085 90.225 + 0.153
pSGLD 93.857 £0.125 90.712 £ 0.090
SGHMC 94.015 £ 0.117 90.848 £ 0.089
ASGLD 93.827 £ 0.087 90.794 £ 0.087
MSGLD 94.910 + 0.105 91.247 +0.141

—— test SGLD
—— test pSGLD
test SGHMC
—— test ASGLD
— test MSGLD

—— train SGLD
—— train pSGLD 15

train SGHMC 14
—— train ASGLD
—— train MSGLD

=
Now

-
oy

Classification error
=
o
Classification error

o
=)

N ® ©

T v T T T t T T T T y
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
epochs epochs

Figure 3. (a) Training classification errors produced by different SGMCMC algorithms for the Landsat
data example. (b) Test classification errors produced by different SGMCMC algorithms for the Landsat
data example.



10 (&) S.KIMETAL

5.2. MNIST data

The MNIST is a benchmark dataset of computer vision, which consists of 60,000 train-
ing instances and 10,000 test instances. Each instance is an image consisting of 28 x 28
attributes and representing a hand-written number of 0 to 9. For this data set, we tested
whether ASGLD or MSGLD can be used to train sparse DNNs. For this purpose, we
considered a mixture Gaussian prior for each of the connection weights:

7 (O) ~ MN(0,07,) + (1 — AN, 05), (5)

where k is the index of hidden layers, and ook isa relatively very small value compared to
01 k- In this paper, we set 1 = 10~ 7, o2 Lk = 0.02, 0?2 ok = 1x107 > for all k.

We trained a DNN with structure 784 800-800-10 using ASGLD and MSGLD for 250
epochs with subsample size 100. For the first 100 epochs, the DNN was trained as usual,
i.e. with a Gaussian prior N(0, ;) imposed on each connection weight. Then the DNN
was trained for 150 epochs with the prior (5). The settings for the other parameters of the
algorithms were given in the Appendix. Each algorithm was run for 3 times. In each run,
the training and prediction accuracy were calculated by averaging, respectively, the fitting
and prediction results over the iterations of the last 5 epochs. The numerical results were
summarized in Table 3, where ‘Sparse ratio’ is calculated as the percentage of the learned

connection weights satisfying the inequality 6| = \/ log (1 Lt > 2%"0”‘ . The thresh-

Ak o0k o
old is determined by solving the probability inequality P{6; ~ N(0, Uo,k) | 6k} < P{O ~
N(0,07,) | 6k}

Adam is a well-known DNN optimization method for MNIST data. For comparison,
it was also applied to train the sparse DNN. Interestingly, ASGLD outperforms Adam in
both training and prediction accuracy, although its resulting network is a little more dense
than that by Adam.

5.3. CIFAR 10 and CIFAR 100

The CIFAR-10 and CIFAR-100 are also benchmark datasets of computer vision. CIFAR-10
consists of 50,000 training images and 10,000 test images, and the images were classi-
fied into 10 classes. The CIFAR-100 dataset consists of 50,000 training images and 10,000
test images, but the images were classified into 100 classes. We modelled both datasets
using a ResNet-18 [31], and trained the model for 250 epochs using various optimization
and SGMCMC algorithms, including SGD, Adam, SGLD, SGHMC, pSGLD, ASGLD and
MSGLD with data augmentation techniques. The temperature v was set to 1.0e—5 for all

Table 3. Comparison of different algorithms for training sparse DNNs for the
MNIST data, where the reported results for each algorithm were averaged
based on three independent runs.

Method Training accuracy Test accuracy Sparsity ratio
ASGLD 99.542 + 0.026 98.417 £ 0.044 3.176 +0.155
MSGLD 99.494 + 0.002 98.319 +0.019 3.369 + 0.063

ADAM 99.383 £ 0.072 98.332 £ 0.003 2.169 £ 0.013




JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1

Table 4. Mean training and test classification accuracy (averaged over 5 runs) of the Bayesian ResNet-18
for CIFAR-10 and CIFAR-100 data.

CIFAR-10 CIFAR-100

Method Training Test Training Test

SGD 99.721 + 0.058 92.896 + 0.141 98.211 4+ 0.208 72.274 £ 0.145
ADAM 99.515 £ 0.087 92.144 £ 0.154 96.744 £ 0.390 67.564 £ 0.501
SGLD 99.713 £ 0.034 92.908 £ 0.114 97.650 £ 0.131 71.908 £ 0.149
pSGLD 97.209 +£ 0.465 89.398 £ 0.379 99.034 £ 0.101 69.234 £ 0.162
SGHMC 99.152 =+ 0.060 93.470 £ 0.073 96.92 £ 0.091 73112+ 0.139
ASGLD 99.738 & 0.052 93.018 +0.187 96.938 + 0.268 73.252 + 0.681
MSGLD 99.702 £ 0.066 93.512 £ 0.081 96.801 £ 0.150 73.670 £ 0.144

SGMCMC methods. The subsample sample size was set to 100. For CIFAR-10, the learning
rate was setasin (4) with L = 40 and y = 0.5; and the weight prior was set to N (0, z—lsld) for
all SGMCMC algorithms. For CIFAR-100, the learning rate was set as in (4) with L = 90
and y = 0.1; and the weight prior was set to N (0, %Id) for SGLD, pSGLD, and SGHMC,
and N(0, = I) for ASGLD and MSGLD. For SGD and Adam, we set the objective function

> 75
as
1 & 1 2
- > logf(xi16) + SHI01%, (6)
i=1

where f(x; | 6) denotes the likelihood function of observation 7, and A is the regularization
parameter. For SGD, we set A = 5.0e — 4 ; and for Adam we set A = 0. For Adam, we have
also tried the case A # 0, but the results were inferior to those reported below.

For each dataset, each algorithm was run for five times. In each run, the training and
test classification errors were calculated by averaging over the iterations of the last five
epochs. Table 4 reported the mean training and test classification accuracy (averaged over 5
runs) of the Bayesian ResNet-18 for CIFAR-10 and CIFAR-100. The comparison indicates
that MSGLD outperforms all other algorithms in test accuracy for the two datasets. In
terms of training accuracy, ASGLD and MSGLD work more like the existing momentum-
based algorithms such as ADAM and SGHMC, but tend to generalize better than them.
This result has been very remarkable, as all algorithms were run with a small number of
epochs; that is, the Monte Carlo algorithms are not necessarily slower than the stochastic
optimization algorithms in deep learning.

6. Conclusion

This paper has developed a class of adaptive SGMCMC algorithms by including a bias term
to the drift of SGLD, where the bias term is allowed to be adaptively adjusted with past
samples, past gradients, etc. The numerical results indicate that the proposed algorithms
have inherited many attractive properties, such as quick convergence in the scenarios with
pathological curvatures from their counterpart optimization algorithms, while ensuring
more extensive exploration of the sample space than the optimization algorithms due to
their simulation nature. As a result, the proposed algorithms can outperform the existing
SGMCMC algorithms in both simulation and optimization.



12 (&) S.KIMETAL

The performance of the proposed algorithms can be further improved by incorporat-
ing other advanced SGMCMC techniques into simulations. For example, cyclical SGM-
CMC [32] employed a cyclical step size schedule, where large step sizes are used for
discovering new modes, and small step sizes are used for characterizing each mode. This
technique can be easily incorporated into the adaptive SGLD algorithms to improve their
convergence to the stationary distribution.

Finally, we would mention that other than the SGLD algorithm and its variants, there
exist other classes of MCMC algorithms that make use of subsamples in Bayesian sim-
ulations for big data problems. They include the split-and-merge algorithms [33-35],
mini-batch Metropolis—-Hastings algorithms [36-40], and some algorithms based on non-
reversible Markov process [41-43]. These algorithms have achieved great successes for
some low-dimensional statistical models, but are rarely used for high-dimensional DNN
models. A further exploration for the performance of these algorithms in large-scale
machine learning models is of great interest.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Division of Mathematical Sciences [grant numbers DMS-1811812,
DMS-2015498] and the National Institute of General Medical Sciences [grant numbers RO1-
GM117597, R0O1-GM126089].

References

[1] Welling M, Teh YW.. Bayesian learning via stochastic gradient Langevin dynamics. Belle-
vue, Washington, USA; Proceedings of the 28th International Conference on International
Conference on Machine Learning, 2011.

[2] Simsekli U, Badeau R, Cemgil T, et al. Stochastic quasi-Newton Langevin Monte Carlo. In:
Balcan MF, Weinberger KQ, editors. Proceedings of The 33rd International Conference on
Machine Learning; Jun 20-22; New York, NY, USA. PMLR; 2016. p. 642-651. (Proceedings
of Machine Learning Research; vol. 48).

[3] Ahn S, Balan AK, Welling M. Bayesian Posterior Sampling via Stochastic Gradient Fisher
Scoring, Edinburgh Scotland, Proceedings of the 31st International Conference on Machine
Learning, 2012.

[4] Girolami M, Calderhead B. Riemann manifold Langevin and Hamiltonian Monte Carlo
methods (with discussion). J R Stat Soc Ser B. 2011;73(2):123-214.

[5] Patterson S, Teh YW. Stochastic Gradient Riemannian Langevin Dynamics on the Probability
Simplex. Lake Tahoe Nevada. Advances in Neural Information Processing Systems. 2013.

[6] LiC, Chen C, Carlson DE. Preconditioned Stochastic Gradient Langevin Dynamics for deep
neural networks. Phoenix Arizona. AAAT'16: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. 2016.

[7] Chen T, Fox EB, Guestrin C. Stochastic Gradient Hamiltonian Monte Carlo. Bejing, China.
Proceedings of the 31st International Conference on Machine Learning. 2014.

[8] Ding N, Fang Y, Babbush R, et al. Bayesian Sampling Using Stochastic Gradient Thermostats.
Montreal Canada. Advances in Neural Information Processing Systems. 2014.

[9] Lu X, Perrone V, Hasenclever L, et al. Relativistic Monte Carlo. In: Singh A, Zhu J, edi-
tors. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics;



(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]
(25]

(26]

(29]

(30]

(31]
(32]

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 13

April 20-22; Fort Lauderdale, FL, USA. PMLR; 2017. p. 1236-1245. (Proceedings of Machine
Learning Research; vol. 54).

Ma YA, Chen T, Fox EB. A Complete Recipe for Stochastic Gradient MCMC. Montreal, Canada.
Advances in Neural Information Processing Systems. 2015.

Dalalyan AS, Karagulyan AG. User-friendly guarantees for the Langevin Monte Carlo with
inaccurate gradient. CoRR; 2017. Available from: arXiv:1710.00095.

Song Q, Sun Y, Ye M, et al. Extended stochastic gradient MCMC for large-scale Bayesian
variable selection. Preprint; 2020. Available from: arXiv:2002.02919v1.

Bhatia K, Ma YA, Dragan AD, et al. Bayesian robustness: a nonasymptotic viewpoint. Preprint;
2019. Available from: arXiv:190711826.

Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw.
1999;12(1):145-151.

Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic
optimization. ] Mach Learn Res. 2011;12:2121-2159.

Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Netw Mach Learn. 2012;4(2):26-31.

Kingma D, Ba J. Adam: a Method for Stochastic Optimization. San Diego, CA, USA. 3rd
International Conference on Learning Representation. 2015.

Staib M, Reddi S, Kale S, et al. Escaping Saddle Points with Adaptive Gradient Methods. Long
Beach, California. Proceedings of the 36th International Conference on Machine Learning.
2019.

Ruder S. An overview of gradient descent optimization algorithms. CoRR; 2016. Available from
arXiv:abs/1609.04747.

Sato I, Nakagawa H. Approximation Analysis of Stochastic Gradient Langevin Dynamics
by using Fokker-Planck Equation and Ito Process. Bejing, China. Proceedings of the 31st
International Conference on Machine Learning. 2014.

Teh YW, Thiery AH, Vollmer S]. Consistency and fluctuations for stochastic gradient Langevin
dynamics. ] Mach Learn Res. 2016;17(1):193-225.

Nemeth C, Fearnhead P. Stochastic gradient Markov chain Monte Carlo. Preprint; 2019.
Available from: arXiv:190706986.

Sutton RS. Two problems with backpropagation and other steepest-descent learning proce-
dures for networks. In: Proceedings of the 8th Annual Conference of the Cognitive Science
Society. Hillsdale (NJ): Erlbaum; 1986.

Nagapetyan T, Duncan A, Hasenclever L, et al. The true cost of SGLD. Preprint; 2017. Available
from: arXiv:170602692v1.

Zeiler MD. ADADELTA: an adaptive learning rate method. CoRR; 2012. Available from:
arXiv:abs/1212.5701.

Deng W, Lin G, Liang E A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions. Virtual. The 34st Conference on Neural Informa-
tion Processing System. 2020.

Liang F, Liu C, Carroll R. Stochastic approximation in Monte Carlo computation. ] Am Stat
Assoc. 2007;102:305-320.

Chen C, Carlson D, Gan Z, et al. Bridging the gap between stochastic gradient MCMC and
stochastic optimization. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS); Cadiz, Spain; 2016.

Kirkpatrick S, Gelatt Jr C, Vecchi M. Optimization by simulated annealing. Sciences.
1983;220(4598):671-680.

Lin W, Khan ME, Schmidt M. Fast and simple natural-gradient variational inference with mix-
ture of exponential-family approximations. In: ICML. PMLR; 2019. (Proceedings of Machine
Learning Research).

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. CVPR; 2015.
Zhang R, Li C, Zhang J, et al. Cyclical stochastic gradient MCMC for Bayesian deep learning.
Preprint; 2019. Available from: arXiv:190203932.



14 (&) S.KIMETAL

(33]
(34]
(35]
(36]

(371

(38]

(39]

(40]
(41]
(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

Scott SL, Blocker AW, Bonassi FV, et al. Bayes and big data: the consensus Monte Carlo
algorithm. Int ] Manag Sci Eng Manag. 2016;11(2):78-88.

Srivastava S, Li C, Dunson DB. Scalable Bayes via Barycenter in Wasserstein space. ] Mach
Learn Res. 2018;19:1-35.

Xue J, Liang E. Double-parallel Monte Carlo for Bayesian analysis of big data. Stat Comput.
2019;29:23-32.

Chen H, Seita D, Pan X, et al. An efficient minibatch acceptance test for Metropolis-Hastings.
Preprint; 2016. Available from: arXiv:161006848.

Korattikara A, Chen Y, Welling M. Austerity in MCMC Land: Cutting the Metropolis-Hastings
Budget. Bejing, China. Proceedings of the 31st International Conference on Machine Learning.
2014.

Bardenet R, Doucet A, Holmes C. Towards scaling up Markov chain Monte Carlo: an adaptive
subsampling approach. Bejing, China. Proceedings of the 31st International Conference on
Machine Learning. 2014.

Maclaurin D, Adams RP. Firefly Monte Carlo: Exact MCMC with Subsets of Data. Quebec
City, Quebec, Canada. Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence. 2014.

Bardenet R, Doucet A, Holmes CC. On Markov chain Monte Carlo methods for tall data. J
Mach Learn Res. 2017;18(47):1-47. 43.

Bierkens ], Fearnhead P, Roberts G. The zig-zag process and super-efficient Monte Carlo for
Bayesian analysis of big data. Ann Stat. 2019;47(3):1288-1320.

Bouchard Coté A, Vollmer S, Doucet A. The bouncy particle sampler: a nonreversible
rejection-free Markov chain Monte Carlo method. ] Am Stat Assoc. 2018;113:855-867.
Pakman A, Gilboa D, Carlson D, et al. Stochastic bouncy particle sampler. In: Precup D, Teh
YW, editors. Proceedings of the 34th International Conference on Machine Learning; Aug
6-11. PMLR; 2017. p. 2741-2750. (Proceedings of Machine Learning Research; vol. 70).
Vollmer §J, Zygalakis KC, Teh YW. Exploration of the (non-)asymptotic bias and variance of
stochastic gradient Langevin dynamics. ] Mach Learn Res. 2016;17(159):1-48.

Chen C, Ding N, Carin L. On the convergence of stochastic gradient MCMC algorithms with
high-order integrators. Montreal, Canada. Proceedings of the 28th International Conference
on Neural Information Processing Systems. 2015.

Raginsky M, Rakhlin A, Telgarsky M. Non-convex learning via stochastic gradient Langevin
dynamics: a nonasymptotic analysis. Proc Mach Learn Res. 2017;65:1-30.

Xu P, Chen J, Zou D, et al. Global convergence of Langevin dynamics based algorithms for
nonconvex optimization. Red Hook, NY, United States. Proceedings of the 32nd International
Conference on Neural Information Processing Systems. 2015.

Mattingly J, Stuartb A, Highamc D. Ergodicity for SDEs and approximations: locally Lipschitz
vector fields and degenerate noise. Stoch Process Appl. 2002;101:185-232.

Deng W, Zhang X, Liang F, et al. An adaptive empirical Bayesian method for sparse deep
learning. Vancouver, Canada. 33rd Conference on Neural Information Processing System.
2019.

Appendices

Appendix 1. Proofs of Theorems 3.1 and 3.2

Without loss of generality and for notational simplicity, we assume in the proof that the temperature
7 in both the MSGLD and ASGLD algorithms takes a value of 1. Consider a generalized SGLD
algorithm with a biased drift term for simulating from the target distribution .. (6) o exp{—U(0)}.
Let 64 and 6 be two random vectors in © satisfying

Ok+1 = Ok — €x1[VUOk) + Ckg1] + v/ 2€x18k415 (A1)



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 15

where exy1 ~ N(0,1,), and &y = Vf](@k) VU(9;) denotes deviation between the drift V/U(Qk)
used in s1mulat10ns  and the ideal drift VU(6f) = —V log 7, (6k). For example, in Equation (2), we
have VU(6%) = Vo U(6)) + aAy.

For the generahzed SGLD algorithm (A1), we aim to analyse the deviation of the averaging

estimate ¢L % from the posterior mean ¢ = fo ¢ (0)m,(dO) for a bounded smooth

function ¢ (9) of interest. The key tool we employed in the analysis is the Poisson equation which is
used to characterize the fluctuation between ¢ and ¢:

Lg©®) =) — o, (A2)
where g(0) is the solution to the Poisson equation, and £ is the infinitesimal generator of the
Langevin diffusion

Lg:=(Vg,VU()) + TAg.
By imposing the following regularity conditions on the function g(), we can control the fluctuation
of ¢; — ¢, which enables convergence of the sample average.

(A.1) Given a sufficiently smooth function g(6) as defined in (A2) and a function V(0) such
that the derivatives satisfy the inequality |[D/g|| S VPi(6) for some constant p; > 0, where
j €1{0,1,2,3}. In addition, V? has a bounded expectation, i.e. sup, E[V?(6)] < oo; and
VP is smooth, i.e. SUPsc (0,1 VPO + (1 —9)8) SVPO)+ VP(9) forall 0,9 € ©® and p <
2 max]{p]}

For a stronger but verifiable version of the condition, we refer readers to Vollmer et al. [44]. In
what follows, we present a lemma which is adapted from Theorem 3 of [45] with a fixed learning
rate €. Note that [45] requires {{x : k = 1,2, ...} to be a zero mean sequence, while in our case { :
k=1,2,...} forms an auto-regressive sequence which makes the proof of Chen et al. [45] still go
through.

Lemma A.1: Assume the condition (A.1) hold and a constant learning rate € is used. For a smooth
function ¢, the mean square error (MSE) of the generalized SGLD algorithm (Al) at time S = €L is
bounded as

L
A 1 1
2 2 2
Ellgr —ol° =C (LZ kE_lEHCkH + e +e€ ) ) (A3)
for some constant C.

Lemma A.2 is established for a decaying learning rate sequence. Refer to Theorem 5 of [45] for
the proof.

Lemma A.2: Assume the condition (A.1) hold, and the learning rate €. is decreasing and satisfies the

conditions that Y po.| €x = 00 and limp_, oo %k‘ Z" = 0. For a smooth function ¢, the mean square
k=1 €k
error (MSE) of the generalized SGLD algorithm (A1) at time S, = Zk:l €x is bounded as
L L 2y
A - 1 Qk=1 €%)
Elgr — ¢l < C (Z SZEH{ Kll? + 5t kS; s ) (A4)
L

for some constant C.

To prove Theorems 3.1 and 3.2, we further make the following assumptions:

(A.2) (smoothness) U() is M-smooth; that is, there exists a constant M > 0 such that for any
0,0’ € O,
IVU@®) — VU@)| < M|6 —¢'|. (A5)



16 (&) S.KIMETAL

The smoothness of VU(0) is a standard assumption in studying the convergence of SGLD, and
it has been used in a few work, see, e.g. Raginsky et al. [46] and Xu et al. [47].

(A.3) (Dissipativity) There exist constants m > 0 and b > 0 such that for any 6 € O,
(VU(6),6) = m||0]|> — b. (A6)

This assumption has been widely used in proving the geometric ergodicity of dynamical sys-
tems [46-48]. It ensures the sampler to move towards the origin regardless the position of the current
point.

(A.4) (Gradient noise) The stochastic gradient £(0) = vU(9) — VU(H) is unbiased; that is, for
any 6 € ©, E[£(9)] = 0. In addition, there exists some constant B> 0 such that the sec-
ond moment of the stochastic gradient is bounded by E||£(9)||?> < M?||6||? + B2, where the
expectation is taken with respect to the distribution of the gradient noise.

Lemma A.3 (Uniform L? bound): Assume the conditions (A.2)-(A.4) hold. For any learning rate

M —aM2 (M2 .
sequence with0 < €; < Re(%j\wx there exists a constant G > 0 such that E||6¢||> < G,

where G = ||6p|> + %(b + 2€1BX(M? + 1) + p), p denotes the dimension of 9, and Re(-) denotes the
real part of a complex number.

Proof: The proof follows that of Lemma 1 in Deng et al. [49]. To make use of the proof in Deng
et al. [49], we can rewrite Equation (A1) as

Ok+1 = Ok — €xt1 VoL (k> Skr1) + / 2€k418k+15

where VgL (6k, ¢k+1) = [VoU(6k) + Ck+1] by viewing &k as an argument of the function L(-, ).
Then, it is easy to verify that the conditions (A.2)-(A.4) imply the conditions of Lemma 1 of Deng
et al. [49], and thus the uniform L? bound holds. Note that given the condition (A.3), the inequality
E(VoL(Ok, {xt1),6k) = mE||0k||> — b, required by Deng et al. [49] in its proof, will hold as long as €;
is sufficiently small or B is not very close to 1. ]

Let 0, denote the minimizer of U (). Therefore, VU(6,) = 0. Then, by Lemma A.3 and condition
(A.2), there exists a constant C; such that

E[[VU@O* < 2M*(G + 1|61 := C1 < o0. (A7)

Letéyy =V U(6r) — VU(6) be the gradient estimation error. By Lemma A.3 and condition (A.4),
there exists a constant C, such that

E(|l&I*) < M*G + B* == C; < oo (AS)

A.1 Proofof Theorem 3.1

Proof: The update of the MSGLD algorithm can be rewritten as x4+ = 6 — €41 [VU(6k) +

Ck+1] + +/2€k+16k41, where i1 = amy + &4 and mo = 0.
First, we study the bias of ;. According to the recursive update rule of m;, we have

EQk41 | F)/a = E(my | Fi) = (1 — BOVU(6k-1) + B1E(mj—1 | Fio)
= (1—B)VU®Bk-1) + (1 = BBIVUBk—2) + BIE(my o | Fi) = - --

k k
=> (A= BB VUG- + BIE(mo | Fi) = Y (1 — BB} ' VUB-).
i=1 i=1



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 17

Hence, by Jensen’s inequality

k k
IE@ri | Foll <ay (1= B IVUG-dIl < aJ D= BBTHIVUG-) 2.

i=1 i=1

By (A7), the bias is further bounded by

k
E|E@Gk1 | Fl* < @) (1= BB 'EIVU@G—»)|* < a*Cy. (A9)
i=1

For the variance of .1, we have
EllZk1 — E@Crsr | FOI? = Ellér1 + amy — Eamy | Fo)|)?
= E||&k1 + a(l — B1)VU(O—1) + apimy—1 — a(l — B)VUBk—1) — ap1E(mi—y | Fi) ||
= E||&k41 + a(l — B)ék + apimi—y — aprE(mi_y | F) > = - -

k
= Ellgi + »_a(l — BB i I”

i=1

Due to the independence among &’s, we have

k
Ellgis — EQrpr | FOI? < Ellgeq 17 + ) a* (1 — BB Ellgiin I
i=1

< Gl +d*(1 - )/ + B, (A10)

where the last inequality follows from (A8).
Combining (A9) and (A10), we have

Ellgis1l* < a’Cr+ Gl +a*(1 = B)/(1+ )] < 00,
which conclude the proof by applying Lemmas A.1 and A.2. ]

A.2 Proofof Theorem 3.2

Proof: The update of the ASGLD algorithm can be rewritten as ¢+ = 6 — €1 [VU(6k) +
Ck+1] + A/2€k+1€k+1, Where Lk = amy @ /Vk + A1 + Exq1.

According to the recursive update rule of m; and v;, we have
mi=1—pNUWB_1) + (1 — BTG + 1 — BTG + -,
vi=(1—B)U6:i-1) © UO:-1) + (1 — B)BUbi2) © UBi-2)
+ (1= B)BUG3) O UMi3) + -+ .

Therefore, by Cauchy-Schwarz inequality, when 87 < B, we have

i-1 2j—2
(1— BBy \/ (1-Bp* 1
i-1 @ /Vi-1lloo < E — =< =C
”m 1 v 1” \szl (1_132)/3£—1 1_[32 l_ﬂlz/,BZ

It implies that ||m;—1 @ v/vi—1 + A1|| < /pC almost surely, and in consequence,

ElE(¢ks1 | F)lI* < a*Cp, (A11)
and, by (A8),

Ellgk+1 — E@rr1 | FONI? < Bk I1? < Elléks1? + a®Ellmy @ /v + 2112



18 (&) S.KIMETAL

<a*C* + G (A12)
Combining (A11) and (A12), we have
Ellgks1l* < 2a*CPp + Cy < oo,

which concludes the proof by applying Lemmas A.1 and A.2. ]

Appendix 2. Experimental setup

All numerical experiments on deep learning were done with pytorch. For all SGMCMC algorithms,
the initial learning rates were set at the order of O(1/N) in all experiments except for in MNIST
training. For the optimization methods such as SGD and Adam, the objective function was set to (6),
where f (x; | 6) denotes the likelihood function of observation i, and X is the regularization parameter
whose value varies for different datasets.

A.3 Multi-modal distribution

For NGVI method, we chose a 5-component mixture Gaussian distribution, and set the initial
parameters as 7; = é, i ~ N(0,1.50), X; = I, fori = 1,...,5, and the learning rate € = 0.005.
For MSGLD, we set (a, 81) = (10,0.9) and the learning rate ¢ = 0.05. For Adam SGLD, we set
(a, B1, B2) = (1,0.9,0.999) and the learning rate € = 0.05. The CPU time limit was set to 6 min.

A.4 Distribution with long narrow ravines

Each algorithm was run for 30,000 iterations with the settings of specific parameters given in
Table Al.

Table A1. Parameter setting for the distribution with long narrow ravines.

Method Initial value B B2 a A
SGLD le—4

SGHMC le=5 0.9

pSGLD le—4 0.9 le—6
ASGLD le—4 0.9 0.999 1000 le—5
MSGLD le—4 0.99 10

A.5 Landsat

Each algorithm was run for 3000 epochs with the settings of specific parameters given in Table A2.

Table A2. Parameter setting for the Landsat data example.

Method Initial value B B a A
SGLD 0.1/4435

SGHMC 0.1/4435 0.9

pSGLD 0.1/4435 0.9 -5
ASGLD 0.1/4435 0.9 0.999 10 le—5

MSGLD 0.1/4435 0.9 5




A.6 MNIST

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 19

Each algorithm was run for 250 epochs, where the first 100 epochs were run with the conventional
Gaussian prior N(0, 1), and the followed 150 epochs were run with the mixture Gaussian prior given
in the paper. For Adam, the objective function was set as (6) with A = 0 for all 250 epochs. The
settings of the specific parameters were given in Table A3.

Table A3. Parameter settings for MNIST before (stage |) and after (stage Il) sparse learning.

Stage | Stage Il
Method Initial B B a A T Initial B B a A T
ADAM 0.001 0.9 0.999 le—8 0.0001 0.9 0.999 le—8
ASGLD 0.5 0.9 0.999 10 le—6 le—2 0.5/10 0.9 0.999 1 le—8 5
MSGLD 0.5 0.99 1 e-3 0.5/10 0.99 1 -5

A.7 Cifar-10 and Cifar-100

For SGD, the objective function was set as (6) with A = 5.0e—4 . For Adam, the objective function
was set as (6) with A = 0. The settings of specific parameters are given in Table A4.

Table A4. Parameter settings for CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100
Method Initial B B2 a A Initial B B2 a A
SGD 0.1 0.1
ADAM 0.001 0.9 0.999 le—8 0.001 0.9 0.999 le—8
SGLD 0.1/50000 0.1/50,000
SGHMC 0.1/50000 0.9 0.1/50,000 0.9
pSGLD 0.001/50000 0.99 le—6 0.0001/50,000 0.99 6
ASGLD 0.1/50000 0.9 0.999 20 e—6 0.1/50,000 0.9 0.999 20 le—8
MSGLD 0.1/50000 0.9 1 0.1/50,000 0.9 1




	1. Introduction
	2. A brief review of SGLD and its general formulation
	3. Stochastic gradient Langevin dynamics with adaptive drifts
	3.1. Momentum SGLD
	3.2. Adam SGLD
	3.3. Other adaptive SGLD algorithms

	4. Illustrative examples
	4.1. A multi-modal distribution
	4.2. A distribution with long narrow energy ravines

	5. DNN applications
	5.1. Landsat data
	5.2. MNIST data
	5.3. CIFAR 10 and CIFAR 100

	6. Conclusion
	Funding
	References
	A.1. Proof of Theorem 3.1
	A.2. Proof of Theorem 3.2
	A.3. Multi-modal distribution
	A.4. Distribution with long narrow ravines
	A.5. Landsat
	A.6. MNIST
	A.7. Cifar-10 and Cifar-100


