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Probeware for the Modern Era: [oT Datatlow
System Design for Secondary Classrooms

Leslie G. Bondaryk, Sherry Hsi, and Seth Van Doren

Abstract—Sensor systems have the potential to make abstract
science phenomena concrete for K-12 students. Internet of Things
(IoT) sensor systems provide a variety of benefits for modern
classrooms, creating the opportunity for global data production,
orienting learners to the opportunities and drawbacks of
distributed sensor and control systems, and reducing classroom
hardware burden by allowing many students to “listen” to the
same data stream. To date, few robust [oT classroom systems have
emerged, partially due to lack of appropriate curriculum and
student-accessible interfaces, and partially due to lack of
classroom-compliant server technology. We present an
architecture and sensor kit system that addresses issues of sensor
ubiquity, acquisition clarity, data transparency, reliability, and
security. The system has a dataflow programming interface to
support both science practices and computational data practices,
exposing the movement of data through programs and data files.
The IoT Dataflow System supports authentic uses of
computational tools for data production through this distributed
cloud-based system, overcoming a variety of implementation
challenges specific to making programs run for arbitrary duration
on a variety of sensors. In practice, this system provides a number
of unique yet unexplored educational opportunities. Early results
show promise for Dataflow as a valuable learning technology from
research conducted in a high school classroom.

Index Terms—Data-driven inquiry learning, educational
technology, Internet of Things, STEM education, sensor systems
and applications.

I. PROBEWARE AND THE OPPORTUNITY IN K—12 EDUCATION

OMPUTER-BASED labs and probeware provide a uniquely

beneficial component for science education in K-12

classrooms where they offer data-rich inquiry-driven
learning opportunities in STEM subjects [1]-[6]. Classroom
studies have shown that learners who interact with sensors and
tools for physical measurements alongside well-designed
curricula are better able to reason about their physical world and
learn about complex phenomena [6]-[8]. Sensor-based
laboratories closely coupled with physical model building and
virtual simulations also help build students’ intuitive ideas and
develop deeper engagement with phenomena [8], [9].
Additionally, sensor-based laboratories create opportunities for
STEM students to create arguments with data, a critical science
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practice and part of the Next Generation Science Standards
being adopted across the U.S. [10]. Data argumentation skills
and data production in the classroom are generative for
learning: data activities in the classroom increase students’
confidence to ask questions, to reason with and interpret data,
and to answer their own questions [11], [12]. A student’s ability
to produce, reason about, and share data also supports
computational thinking skills such as purposeful uses of
computational tools for data acquisition, hypothesis generation,
data interpretation and analyses, data organization, data
visualization, and extraction of meaning [13]-[16].

Even with the many benefits of data-rich learning, many
classes still have not incorporated probeware because of the
significant cost, training, and technical burden. A single sensor
creates a single measurement on a single computer. Many
sensors are required for each classroom, and direct access to any
physical environment in which data is to be collected.
Classroom implementation requires teachers to be fluent with
the use and maintenance of the devices and collection system
[15]. One solution to source classroom data is to aggregate data
across many students in a classroom from purpose-built or
repurposed commercial devices [17]. Data files can also be
shared more broadly with the community, as exemplified in
citizen science sites such as iSense [18] and FieldScope [19].
Teachers who wish to incorporate data analysis without the
burden of individual measurement may turn to the many open
public scientific data clearinghouses from NOAA, NASA, and
others. Reuse of preexisting data recorded by others, however,
misses learning in the place and context where data is collected,
aspects of the experimental design process, and hands-on
learning [20]. The solution described here is an alternative that
allows students to design and acquire datasets of their own.

Recent innovations in Internet of Things (IoT) hardware and
Internet cloud services provide a promising data-driven inquiry
alternative to the one student/one sensor class setup or to data
aggregation services [21]. IoT sensors can instrument any
object or experiment to communicate position, acceleration,
orientation, local magnetic field, temperature, humidity, or
frequency of use. Wired or Internet-enabled science classrooms
can use loT-enabled objects to collect any form of numerical,
graphical, or photographic data in ways that are increasingly
rich and useful for education [22]. The distinguishing

S. Hsi was with The Concord Consortium, Emeryville, CA 94608, USA. She
is now with BSCS Science Learning, Colorado Springs, CO 80523, USA (e-
mail: shsi@bscs.org).
Digital Object Identifier XXX



TLT-2020-03-0060.R2

characteristic of an IoT educational sensor system is that all data
serves all students in an on-demand fashion. A single IoT data
stream from an instrumented object can be both shared and
accessed by any student in the classroom, at home in a distance
learning scenario [23], [24], or on the other side of the globe, if
account permissions allow it [25]. Students can collect data in
environments that would otherwise be inaccessible, such as on
the International Space Station [26] or inside the human body
[27]. Teachers and students no longer need to be limited by the
particular hardware, resources, or setup of individual
classrooms. Today, students at schools with fewer resources
can and do share measurements with other classrooms or
sensors provided by institutions, greatly reducing the cost per
measurement and enhancing student experience [21]-[27].

The volume and extensive nature of rich IoT data, while
potentially useful for education, presents a new interface design
challenge. Students require systems that encourage them to
think computationally about how to design programs and
acquire data with appropriate characteristics to construct data
stories [28]. In order to successfully run experiments, they must
understand concepts like sampling rate, transformation,
threshold, and latency, all of which are critical to their ability to
correctly interpret IoT data. With IoT systems, it is now both
possible and desirable to teach students how to reason about
measurements and control their environment with them [17].

We describe an alternative to distributed data collection by
using a novel Internet-of-Things (IoT) system called the IoT
Dataflow System (“Dataflow”). In the classroom, students can
use Dataflow to design their own science experiments, such as
the control and monitoring of humidity in a terrarium, or
investigation of primary science phenomena such as plant
respiration. Dataflow is a solution to the challenges of setting
up and maintaining a classroom lab full of traditional, non-
networked devices [21], [22], [29] or reusing data from citizen
or public data repositories. We aim to support more student
autonomy and choice about which data to collect in which
context. Simultaneously, we aimed to resolve some of the cost,
maintenance, teacher expertise, and interface issues that exist
with single-user collection scenarios. This approach has
elements of both the constructivist probeware use [1], [30] and
the more familiar microcomputer lab approach [2]-[5].

The Concord Consortium iteratively designed and tested the
Dataflow system to assess its impact on student learning,
interest, and participation [13], [31]. We present the design of
our IoT system for use in secondary science classrooms that
extends prior probeware systems [31] to enable student-driven
laboratories with experimental data acquisition and control. We
share the design rationale, implementation, and results from
testing the system in a U.S. high school classroom.

II. INTRODUCTION TO THE IOT DATAFLOW SYSTEM

Dataflow consists of a modular hardware kit, a cloud
connectivity interface, and a student-friendly dataflow
programming interface (see Section IV). The kit includes
programmable IoT relays for device control (actuators) and
IoT-enabled sensors (CO2, light, temperature, humidity, and
oxygen) that together plug into a Wi-Fi enabled hub (Fig. 1). A
single hub can connect up to six components using small cables
and ports, making it easy to swap out relays or sensors. A
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student’s hub device has a unique-assigned label to differentiate
it from others in the classroom. Students access Dataflow in the
classroom by logging into an online portal that directs them to
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Fig. 1. Sensaurus ESP32Hub shown with a power relay and light,
temperature/humidity, CO2 gas sensors.

the Dataflow workspace where programs can be created. A
program in Dataflow is made by dragging and connecting
programming nodes into the workspace (Fig. 2). Within a given
node, the student uses a pull-down menu to associate and
connect a specific loT hardware device to that node. In this way,
students can construct programs that acquire, filter, and record
data from sensors, or control relays available on the network.
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Fig. 2. The IoT Dataflow System with programming nodes for sensing, logic
functions, data storage, and relay control.

Once a student pairs a digital sensor node with physical
sensor hardware, the numerical values from that sensor
immediately appear on the screen. A mini viewgraph of the
values enables students to watch for evidence of real-time
readings. Students create programs by connecting virtual wires
to link nodes. They begin data collection by setting a duration
and clicking the “Run” button. Experiments can be as short as
one minute long or as long as a month (e.g., for observing plant
growth in chambers). Students see all data collected in a graph
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that updates in real time. Fig. 3 shows an example of a running
three-sensor experiment generating data recordings.
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Fig. 3. Dataflow program during an experiment involving data recording from
three sensors.

A. Dataflow in the Science Classroom

Dataflow allows students to engage in next generation
science practices such as using sensors and data for model
development and experimental design. Dataflow activities can
incorporate mathematical and computational thinking, and
creates opportunities for students to construct arguments from
evidence [10]. Dataflow programming creates opportunities for
engaging in realistic science, including both data measurement
and logically controlled feedback in scientific lab investigations
[16], [34].

Dataflow activities also provide teachers with opportunities
to discuss calibration, accuracy, and sensitivities of the sensors,
sources of error, and the science of sampling statistics. Teachers
can further emphasize to students that data are not just
theoretical or numerical values, but the product of physical
sensors and computational systems that allow for the study of a
scientific phenomenon. Classroom activities can incorporate
practices of collecting, interpreting, transforming, organizing,
and visualizing data. Students are introduced naturally to
computing practices and computational performance issues
such as latency and discontinuities from dropouts or mechanical
failure (often caused by the students themselves).

The “flat data” lab is an example of a high school science
curricular activity which integrated the use of Dataflow in a
hands-on lab. Students are provided with the prompt, “Can we
use computers to keep COz levels in a healthy range?”. At the
beginning of class periods, student groups decide what
hardware they will need, the length of their experiments, the
frequency they will record sensor readings, and whether they
will manipulate conditions computationally or physically.
Some students may choose to monitor COz levels in a plant
chamber while others may monitor CO: levels generated by
students’ collective respiration in their classroom. Once
students develop a tentative plan for their investigation and
gather hardware, they log into Dataflow and begin building a

program to record data to support their model.

When interacting with Dataflow for the first time, many
student groups bring unrelated nodes into the workspace
seemingly at random. They create and delete nodes until they
gain a sense of Dataflow’s functionality and workflow.
Eventually, they construct complete systems of connected
sensors and can begin collecting and viewing data on the sensor
blocks in recorded datasets. When students are viewing real-
time data, they observe and interpret data trends, gaps in the
data recording, or sudden peaks in the viewgraph. When
returning to Dataflow in subsequent class periods, students
prefer to modify or debug existing programs to fit their needs
for that day's investigations. As experiments evolve, students
may have additional questions about previously produced
datasets that encourage them to add number, logic, or additional
sensor types to support sensemaking from the CO: data. The
ease of modifying existing programs and tinkering with the
hardware components gives students the ability to rapidly
iterate on their strategies.

III. TOT CLASSROOM DESIGN CONSTRAINTS AND
AFFORDANCES

A. Sensor Ubiquity: Distributed, Robust, Multi-user Sensors

Our goal for introducing IoT into classrooms was motivated
by the promise of distributed, collaborative data sharing across
individuals and classes, along with opportunities for
computational thinking afforded by student design of
experiments and experimental data. Because data from any
given sensor can be broadcast and made public over the
Internet, a given teacher with a single IoT sensor experiment in
a resource-constrained classroom could share her data stream
and virtually loan or borrow access to IoT hardware setups in
other classrooms or institutions. Students also need to be able
to construct an experiment using data from many sensors
distributed across the classroom (e.g., monitor CO: levels over
time near room exits and windows) and acquire data over
meaningful time periods from minutes to days or weeks,
depending on the application. The desire for spatially and
temporally distributed data means that experiments should be
unbounded by the number of sensors present in a given
classroom, the time limit of a single class period, or the physical
location of the sensor. Students needed straightforward ways to
identify data sources from this larger pool, aggregate data from
multiple sensors, and report about it.

B. Acquisition Clarity: Computational User Interface for
Device Control

Dataflow enables students to manipulate data to control and
analyze experiments, learning computational concepts (e.g.,
sequencing, stabilization, debugging, cycling, feedback) as part
of the same interface they use for data acquisition. It is also
possible to actuate a relay-controlled device, such as a lamp or
fan, from within the same environment. Dataflow software user
interface is designed as a browser-based visual dataflow
programming language [35]. Research has shown dataflow
languages to be a natural way to think about programming, and
are productive in educational environments [36]-[39] and it is
the format of language used in Amazon Web Services (AWS)
IoT services programming; we have chosen a visual dataflow
diagrammatic approach in an effort to invite and bootstrap
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novice programmers into making Dataflow programs while
reducing the need for mental translation of logic applied to
sequences of values for students. The application also enables
the user to record data, view and compare archived datasets as
time-series graphs, and export datasets for further analyses.

C. Data Transparency: Teacher Monitoring and Student
Sharing

Cloud storage, execution, and synchronization of sensor data
and programs enables a variety of cross-user inspection
scenarios for teachers and students. Real-time file and data
synchronization with the server allow teachers to view student-
written scripts that operate IoT devices while the students are
working on them or asynchronously during classroom
preparation. Teachers can monitor science experiments across
all local and remote classrooms from an online dashboard.
Traces of user interactions or data about learner usage can be
captured for assessment purposes. Students are able to share
their computational approaches and the resulting datasets with
their instructor and their peers to create a community data lab
in the classroom.

D. Classroom Reliability and Security

In addition to pedagogical affordances, IoT in the classroom
needs to meet or exceed requirements for reliability, security,
affordability, scalability, and performance for commercial IoT
applications, given the relative lack of technical support or
reliable Internet connectivity in the average school. The typical
high school classroom presents a number of challenges for
reliable implementation of an IoT setup. Wi-Fi firewalls often
require special setup to enable access and can suffer
inconsistency or slowness. Slow networks or unconditioned
power can make sampling rates and sensor connections
unreliable in reality or by perception. Delays in data recording
or display, dropouts, failed sensor readings, or just incorrect
programming logic (user error) may be perceived as
malfunctions by students who are unfamiliar with the realities
of hardware speed and connectivity. They need to be able to
“open up the hood” in an accessible way that will keep them
experimenting rather than giving up in frustration.

Feedback mechanisms in the form of live updating values
and minigraphs have been built into the dataflow UI to help
students orient to the physical sensors and debug their programs
and sensors and to clarify the interpretation of data. Dataflow
software uses a variety of automatic correction methods when
connecting to devices to catch situations which may stall either
the students or the teacher from proceeding in standard
operation. We also designed administrative access so the
teacher or the software team can terminate running programs.
This facility also allowed software team members to evaluate
live classroom scenarios and repair them remotely if needed.

Finally, any scenario which allows students to record
measurements of their own design has the opportunity to reveal
private information, however far removed a string of numbers
might seem from the data producer. We designed Dataflow to
have appropriate authentication not only for user access to
recorded files and programs, but also with respect to access to
the devices and IoT data streams. Only authorized users can
access the data in its raw form or take readings from remote
devices.

IV. DATAFLOW SYSTEM ARCHITECTURE AND
IMPLEMENTATION

The Dataflow system’s physical hardware kit is a
microprocessor-based hub and sensors, an AWS cloud-based
system for collecting sensor values and running/storing student
programs, and a browser-based flow programming
environment and document management system. The
components together allow students to sample streams of sensor
data and write programs to manipulate and record data or use
data to control actuating devices. We discuss the design of the
system components along with justifications for design
decisions that were focused on successful K-12 classroom
implementations.

A. IoT Device Hub and Sensors

Sensors in the kit are plugged into a custom-built ESP32
chip-based hub, the central board which houses all the sensor
connection points, power, and communication
hardware/software. The sensors and hub were designed for
minimal cost and ease of connection to Wi-Fi. They can be
programmed with school authentication credentials so they can
work on a secure school network. The microprocessor-based
hub runs custom Python code called Sensaurus [40]. The
onboard code is responsible for recognizing when individual
sensors are plugged or unplugged, and communicating the
device ID, type, signal and physical measurement units to the
central AWS IoT Server. Hubs also listen for and respond to
messages, which can control relays and adjust sampling rates,
while the software execution of student-written programs is
handled by the cloud server.

Communications with the hub use the Message Queue
Telemetry Transport (MQTT) protocol. This is one of several
standard [oT communication protocols, selected because of its
ubiquity, and its ability to authenticate access to data, which is
critical in school systems. Hubs are secured using cryptographic
keys to authenticate and encrypt the communication with the
MQTT broker.

Each hub has audio jacks for sensor and relay connections as
well as power (Fig. 3). Audio jacks were chosen because of
their lack of directionality and relative robustness. In class
testing, they were found to be the most trouble-free in terms of
getting sensor plugs seated correctly. They can (and did)
withstand repeated plugging and unplugging of sensors as
students learned their way around the hardware setup. The
current suite of sensors can measure CO2, O, temperature,
humidity, lux, soil moisture, and particulate matter.

School affordability also drove successive iterations [30] of
hardware kits to use less expensive microprocessor hardware.
The ESP32 chips used cost only a few dollars each, and provide
the necessary Wi-Fi and communications capability without the
expense of a full computational chip and memory. We have
instead incurred the expense of cloud computing and distributed
device management, which is cheaper than individual
computational edge systems with more expensive sensors.
Similarly, tradeoffs were made to keep the cost of sensors low,
especially the CO: sensor components, which had limited
operating ranges (<10,000 ppm) to be affordable, yet still useful
for school laboratory experiments.
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B. Dataflow Visual Programming Interface

The ToT Dataflow System interface uses a connected-node
diagramming convention along with synchronization features
built into both local (in the browser) and cloud (on the server)
execution to support and extend student understanding of
data [35]. Users write programs using connected-node
diagramming conventions with nodes and connectors similar to
visual programming interfaces in a dataflow context that have
been recommended broadly for professional use in this context
[36], [37]. Data flows through nodes and wires from left to right
in the user interface. As values progress through sensor, timer,
math, logic, transform, generator, relay, and/or data storage
nodes, the value of the data at that node is displayed in real time
as soon as inputs to the node are present. Directed-node
dataflow diagrams allow easy communication of ideas for
novices [38] and have been successful in educational
environments [38]. This metaphor was adopted for the system
and is reflected in the naming of the software: IoT Dataflow
System.

Students learn about computation and control systems as they
create programs by live inspection of sensor data as it flows
through the nodes. The moment a student selects a particular
sensor or connects a downstream operation node they will see
numerical results. We call this instantaneous execution “tinker
mode” because it allows students to play and test their
understanding in a constructive and low-stakes manner
comparable to tinkering with physical systems. Each visible
node includes a large updating numerical current value display,
an equation display if a mathematical operation is performed,
and a scrolling minigraph that shows the most recent 15 values
in the sequence (Fig. 4). These values all update in real time as
soon as inputs are available from a sensor or an upstream node.
Tinker mode and the inherent model diagram nature of the
dataflow interface allow students to reason about the stream of
values that propagate across the network.

Tinker mode is enabled by browser-based evaluation that
processes the same program as the server-side execution
described below. Student programs execute on the client
(student’s local computer) until the student chooses to run the
program. Tinker mode’s live updating equations and
minigraphs serve as valuable debugging tools for students,
emphasizing sampling and the evolution of sensor and program
results over time.

The student action of running programs is needed to record
data or trigger relays in control scenarios. Once the Run button
is pressed, the state of the program and the list of connected
devices are frozen, and a new “data” file is created to store that
program specification and the resulting recorded data values.
The program instance is sent to execute on the server until it
completes or is stopped manually. If a data storage node is used,
the student sees a live updating graph, showing the requested
data traces as they evolve, alongside the program used to
produce them. The student can now close this file and begin a
new file, return to their tinkering and run a different scenario,
or close their session entirely; running programs will continue
to operate in the background.

Previous versions of Dataflow executed programs on
Raspberry Pi hubs [30], restricting the sensors on that hub to a
single program and student at a time. This significantly reduced
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Fig. 4. A close-up view of Dataflow node functions including nodes for sensors,
math operations, logic operations, simulated data generators, data transform,
relays, and data storage.

classroom capacity and made it impossible for remote users to
access ongoing experiments.

C. IoT Server/Hub/Program Communications

To enable the ubiquitous and multi-user IoT scenario desired
for classrooms, the IoT Dataflow system consists of a set of
sensors all continuously reporting values to an Amazon Web
Services (AWS) IoT Core server [41]. AWS IoT Rules save the
sensor values in AWS IoT Device Shadows, which are software
replicas of the data stream from hardware. Shadows allow the
current values of the sensors to be accessed without waiting for
the next message from the sensor hub. This allows multiple
programs to access a single sensor’s value without all
individually communicating with the hub. It behaves like a data
“party line,” where anyone with access may listen to the data
stream coming from the shadow. Student-created Dataflow
programs access sensor data streams through these shadow
devices, so any number of programs can access the same device
at the same time without colliding. This setup also reduces
overall throughput for hubs, making it a scalable solution for
large numbers of sensors all reporting around the world.

Cloud-based program execution is orchestrated through
AWS Lambda functions communicating with the device
shadows and stored in the DynamoDB database (Fig. 5). If the
program has a data storage block, the data is also stored in
DynamoDB. When applied to reactive systems such as sensor
measurement and control, Dataflow programming has a built-
in notion of data frequency, such that each measurement or
calculation at each node is synchronized with all other program
actions on each data point. We created a universal timer to
synchronize the data readings, the program calculations at each
node, and the data values displayed to the student. During every
program cycle, Lambda functions read the sensor values from
the Device Shadows, execute the program, and then send
MQTT messages to trigger relays. In this way, data readings,
recordings, calculations, and display move in lock step together.

D. File Management, Sharing, and Authorization

All software used in classrooms requires security to prevent
outsiders from viewing student data, (e.g., images, geographic
location, or other identifying data). The Dataflow user interface
is accessed through Concord Consortium’s STEM Resource
Finder, which is used to register users and provides the scope
of allowable sensor and data viewing and sharing. Students and
teachers can create and retrieve files associated with a user
account and publish data and programs securely for sharing
with others in their class. The authentication system allows us
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to scope programs, data, and devices to the class, teacher, or
institution, establishing circles of trust for the work in the
system. Multiple students can perform experiments with the
same sensor within their scope of authorization, and can access
sensors in remote locations as long as they have permission to
use those sensors.

The AWS IoT Server includes built-in authentication in their
MQTT library, which requires passing a secret key for every
device access. The software will automatically limit access to
the institution associated with the instructor. It is possible for
software administrators at the Concord Consortium to share
devices more broadly so that citizen science-style experiments
and analysis can take place.

The IoT Dataflow System browser application uses Google’s
Firebase database to provide real-time authenticated file
management. Firebase connects to the loT server’s DynamoDB
to queue programs to be run on the server, and to display
recorded data back in the browser. The browser application also
connects to the MQTT broker to monitor the real-time
(shadowed) sensor values. This architecture makes it possible
for multiple users to monitor the ongoing, updated state of any
document. This WYSIWIS architecture allows a sidebar
dashboard full of live updating views for the student so they can
monitor multiple experiments at once. The document state
saving, logging, and storage mechanisms also enable instructor
and administrator monitoring, performance analysis, and
diagnostics. An administrator uses a control panel dashboard to
monitor hardware in use and live views of student work. This
feature was especially important during the initial rollout of the
system in the classroom to monitor and debug problems with
data saving and restoration as students worked with sensor
systems in unanticipated ways.

E. Hardware Dropout and Synchronization Error Handling

As described above, Dataflow programs in tinker mode
display their values live so the student can see if they are
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producing expected results, including display of sensor values
so students can check both programs and hardware connections.
In the course of normal operation, a sensor may, for reasons of
interface or connectivity fail to report some values. If a few are
missing, the overall data should still make sense. If a large
series of values are missing the data become meaningless or at
least misleading. The length of time we chose as a distinction
between these cases was one minute. Once programs are
debugged and the student formally runs them to record data,
program blocks report when sensors have been offline for more
than one minute, and performs this check on any running
programs when a session is restored. These checks require
orchestration between the running program, the IoT shadow,
and the MQTT message stream from the devices. Messages
include the status of each connector on a hub and the ID of
devices plugged into each hub, along with a timestamp. This
allows polling of devices associated with a program to tell
whether data is being sent. In this way, overnight runs and other
out-of-view programs can be highlighted when the student
needs to adjust faulty hardware. Because the data is no longer
being collected, these will not impact the data, but are instead a
record of the sensor used, and a note that a new one must be
chosen to run the program again.

In the more benign case of data dropouts under a minute, the
server reports back simply that there is no value for that
synchronized measurement. These are reflected as missing
points, which are not connected to adjacent points in graphs. In
a similar scenario, data storage and the start time on Dataflow
graphs begin at the time the Run button is pushed. If for reasons
of Wi-Fi or hardware delay, the first recorded point does not
occur at the start of the program time, the actual time of
collection on the graph is stored.

V. TECHNICAL CONSIDERATIONS FROM CLASSROOM TESTING

The progressive and iterative design of an IoT system for K—
12 classrooms presented unique design challenges, which
required not only meeting pedagogical requirements, but also
engineering a system to meet the practical needs and constraints
of K—12 classrooms. Here, we discuss these implementation
challenges faced by educational IoT systems based on lessons
learned during class testing.

A. Unexpected Tinkering

In addition to the known issues of classroom IT support, we
encountered another source of system instability: the students
themselves. Many students inadvertently or intentionally
disconnected hardware as they learned about how the system
worked. This created scenarios in which data was seemingly
acquired but was not recorded. Server-side programs were
designed to maintain records of the last known hub for any
given sensor ID so that they could record over long periods
when students were not logged in. We encountered situations in
which students unplugged sensors that were in use and moved
them to a different hub. We now manage this scenario so that
programs that are recording data from these sensors can
continue to do so, and will gracefully register the period during
which the sensor was offline without failing outright.

We introduced numerous points in the Dataflow code to retry
connections across the hardware messaging and server.
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Dataflow can now reallocate sensor IDs to different hubs,
refresh available hardware lists, and offer administrative access
to end running programs. Checks run continuously to determine
whether to handle the dropout silently or to warn the student
depending on the duration of the dropouts.

As we analyzed the student interactions in the classroom, we
elected to prevent students from beginning a run with failed
sensors or relays, or when relays are already in use by another
program. Once a program has started, we alert the student when
a device fails, but do not end the recording until instructed,
leaving that choice to the user. Because experiments can be
running on the server while the student’s browser session is
closed, we also return alerts to the student in their list of
ongoing data acquisition programs when they next open
Dataflow.

B. Data Size, Sampling Rates, and Cost

One of the primary concerns in IoT technology is the cost to
transmit and store the data,. Data quickly become large at scale,
and hence expensive. The class tests of this system allowed us
to understand the realistic data usage in a several-week
classroom setting. This encouraged us to create limits in the
program settings relating the length of time a student records
data to the minimum sampling rate. Programs that are run for
10 minutes or less can be sampled every second or two, while
those that run for a month can be sampled no more frequently
than once a minute. We are not typically concerned with under-
sampling in these school scenarios because the biological
phenomena in experiments changes slowly on the order of
minutes or hours rather than in seconds. If different kinds of
measurements were desired by an expanded curriculum, we
would have to consider overrides for sampling restrictions.

C. Scalability

If any such IoT system is to become successful at scale, even
in a single school district that serves multiple schools, it needs
to accommodate large numbers of users. Many thousands of
students could simultaneously read hundreds of thousands of
data points from shadow sensors, address thousands of relays,
and execute thousands of calculations in online programs. Our
initial implementation of the Dataflow system was not capable
of this kind of scale, but has since been built on top of the
scalable and secure commercial AWS system and MQTT
protocol that make data exchange and server redundancy
possible.

Another issue of scalability has to do with the generally low-
level client-side computing capability of school laptops.
Chromebooks are ubiquitous in secondary schools, though
older models often have difficulty with large client-side
applications. The more computation we can move to the server
and the less chatter we can communicate across the network,
the better Dataflow will perform. We have already done some
tuning in this respect by propagating only messages that affect
the user's current view to the client, but more work could be
done to reduce the client computing and rendering burden.

VI. DESIGN-BASED RESEARCH STUDY IN BIOLOGY

IoT Dataflow system was iteratively tested in design-based
research studies in four cycles of testing between 2017 and
2020. In each iteration, the Dataflow user interface and
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accompanying curricular activities were improved and revised.
Here, we report on a study with one teacher from the final test
and implementation of the IoT Dataflow system with high
school students in an urban classroom in Northern California.
This school served a larger percentage of non-White students
(33% African American, 39% Latinx, 16% Asian American,
7% White, and other races) and a majority who qualified for
free and reduced lunch (73%). Four ninth grade high school
biology classes used the loT Dataflow system in a sequence of
lab activities taught by one early career teacher familiar with
technology for classroom teaching. The broader project sought
to answer questions about students’ content learning of biology,
interest in science, and computational data practices. This study
aimed to understand if this version of Dataflow [oT system with
a cloud-based implementation could support students in
successfully carrying out the planned curricular activities. The
results reported here focus on the following questions: 1) What
kind of programs did students create and how many programs
and datasets did students create? 2) How did the system perform
with multiple simultaneous users of the IoT Dataflow system in
the classroom? 3) How did students find the curricular activities
with Dataflow? What aspects lead to positive or negative
affectivity? 4) To what extent did students engage in
computational data practices as they employed the IoT
Dataflow system?

A. Curriculum and Lab Activities

The three-week curriculum unit focused on COz2 in human
and plant systems that integrated Dataflow in a high school
biology class. Students used a storyline-based curriculum [32]
about how and where COz is generated, studied photosynthesis
and plant respiration, and measured the changes in CO: in a
closed chamber containing spinach leaves during light and dark
conditions [31]. In each unit, students investigated a driving
question such as “What does light have to do with plants and
C0O.?” and “Why do I breathe out CO.?” Any time people or
animals are in a closed space, they produce carbon dioxide gas
and over time, the levels can become unhealthy. Students figure
out that they can use light to control the process of
photosynthesis. Students were also given the challenge to
stabilize COz levels within a healthy range (400-1,000 ppm).
The lab activities asked students in their groups of 2-3 to
develop a data collection strategy that suited their experimental
design preferences. Some students produced one long dataset
where they changed conditions during the experiment, others
produced smaller individual datasets, one for each trial
condition. Students groups were provided with one set of
hardware (COz gas, light temperature, humidity sensors, cables,
hub controller), as well as access to a range of lab materials to
choose from which to stabilize CO2 (food containers, plastic
wrap, rubber bands, tape, spinach leaves, wax paper, lamps,
etc.). During and after each lab, students shared their data with
the class, and reflected on what worked and what did not in a
whole class discussion and in writing.

B. Methods and Instruments

1) Dataflow system performance: System performance was
studied via remote system monitoring and direct observations
by researchers in the classroom. In each class period, twelve
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hubs each with multiple sensors were used by 20 to 25 students
to actuate physical devices using Dataflow programs.

2) Usage data: We gathered statistics around the number of
programs per student and complexity of programs (number of
program blocks) by collating the stored student program
documents from the program’s server storage. Because
programs are stored as a series of blocks and metadata for
playback, we were able to write a script to extract this structured
information to count the number of blocks and connections.

3) Student experiences and interests: A post-experience
survey was administered online via SurveyMonkey at the end
of a three-week curricular unit. Eighty percent of the students
(92 out of 115) students took the survey, which consisted of 36
questions covering topics such as student interests, attitudes,
experience with the curriculum, and self-reported curriculum
outcomes. Students were asked to rate statements such as “I
liked using and learning about the electronics (sensors, hubs,
relays),” “I liked making and running programs to collect data,”
and “My data reflected my own choices and decisions” on a
five-point Likert scale. Students were also asked to report on
their interests in particular activities: “In general in your life,
how much do you enjoy or are interested in the following
activities?” as well as open-ended questions such as “What
parts over the last few weeks did you like the best? Least?
Please explain.”

4) Screencast video sampling for computational data
practices:  Screencasting software (Screencast-o-Matic)
installed on student laptops captured interactions and video of
students working in groups of 2-3. Data were recorded from a
subset of consented students (12 focal groups) across four
classes. Altogether 61 class sessions (63 hours) of screencast
video was collected. Using a prior taxonomy for computational
thinking in STEM [16], instances of computational data
practices were tagged by the specific data practice afforded by
Dataflow: collection, transformation, analysis/ interpretation,
control, organization, and visualizaiton. Each video was coded
using a rubric to identify computational data practices (Table
II). One third of the data, randomly selected from the video
sessions, was coded independently by two researchers into six
major categories and 17 subcategories of data practices. In these
analyses, we focus specifically on whether students engaged in
the expected computational data practices when using Dataflow
in lab activities.

VII. RESULTS FROM CLASSROOM DATAFLOW TESTING

A. Results from Usage Data

Documents from the Dataflow program’s server storage were
tabulated (Table I). Forty four student groups successfully
produced 129 editable programs and executed them a total of
646 times using Dataflow. These generated 359 stored program
runs containing a relay node and 559 stored program runs that
produced a dataset (a number of the total program runs produce
a record of a run containing both a relay node and a program
producing a dataset). Altogether, students created 775
documents (programs and record of program run). The ratio of
programs to program runs (1:5) indicates programs were run
multiple times while students iterated and tinkered. The
repetitive refinement of computations is one of the established
metrics to evaluate computational thinking [28].

8
TABLEI
OVERVIEW OF STUDENT USAGE OF DATAFLOW DURING THREE-
WEEK CURRICULUM UNIT
Program Program
Runs Runs
Editable Program Using a Producing
Documents  Programs Runs Relay Dataset
Total 775 129 646 359 559
Mean 17.61 2.93 14.68 8.16 12.70
SD 10.41 233 9.60 8.09 8.13

B. Results from Dataflow System Performance

In the first week of the described classroom tests of Dataflow,
the newly implemented IoT server architecture revealed some
performance and sensor identity issues. These issues included a
lag in the system response, blank datasets, and unresponsive
sensors. These kinds of issues are more critical in the classroom
or with any group of novice users because they lack the skills
or the class time to overcome imperfect infrastructure. Software
team members were able to monitor and debug activity in
classes remotely and in a large degree of detail. Student
behavior revealed a new test case, which was critical for system
design: students were unplugging and replugging the same
sensor into different hubs, often randomly and while some
running programs had already begun recording from the sensor
as part of a previous hub. The interplay between this behavior
and system checks for unresponsive hardware caused data loss.
This led to an important refinement of warning/offline rules and
handling of changed sensor addresses. We also optimized the
number of messages from simultaneous running programs,
which we chose to synchronize both on the student’s display
and on the server to avoid overflowing memory in both cases.
In all of these scenarios, the ability of the software engineering
team to remotely monitor what sensor and program values were
produced was critical to correcting the issues in time to ensure
successful class testing.

Once software and hardware issues were addressed, students
were able to conduct experiments and encounter challenges that
mirror authentic practices of scientists and engineers. Students
generated many datasets requiring them to name their files for
later retrieval, distinguish previously run program versions
from the editable program, conduct multiple trials through
tinkering with the hardware setups, and troubleshoot a
computational system.

C. Results from Student Experiences and Interest Survey

When asked if they agree with the statement “I like using the
online software, Dataflow” on a five-point likert scale, 43% of
the students said they agreed or agreed strongly compared to
24% who disagreed or disagreed strongly (while 34% remained
neutral). Similarly, students reported they liked making and
running programs to collect data (44% agree; 23% disagree), as
well as creating programs to turn on/off relays (45% agree; 23%
disagree). Of most interest were student responses to learning
about how data was created. This yielded the fewest
disagreements (41% agree; 11% disagree). This is viewed as a
favorable result by the teacher given that many of the students
had difficulty engaging in school and in science class before



TLT-2020-03-0060.R2

this activity was introduced. The teacher also commented that

students who were typically disengaged in science class were

participating more actively in the activities involving
programming Dataflow and setting up experiments.

Students elaborated their feedback with open-ended written
responses that included 68 positive comments and 67 negative
comments. The following student quotes are representative of
the set of positive comments:

e  “Iliked using the computers and electronics (CO2 and
oxygen thing) to see when the COz levels became
unhealthy.”

e  “Tlike hooking the sensors and see how they collect
data.”

e “Doing hands on experiments and working with my
team.”

e “Doing the lab where we used sensors to see the CO2
levels in the classroom or in spinach.”

e “Ireally enjoyed watching a program make data based on
information the sensors recorded.”

e “My favorite part of last week’s activities was designing
our own way to make the COz levels stay stabilised.”

The negative comments fell into broad categories with some
common trends. Thirty-one percent of the comments were
related to technology; 15% complained about the amount of
writing needed with the packet of worksheets; 9% described
feelings of boredom; 6% were about not liking group work; and
39% were a wide range of general dislikes ranging from school
to specific aspects of their labs. Some comments reflect some
early issues with lag time and issues with relay devices. These
are representative negative comments:

e “I disliked all the writing we had to do.”

e  “The group work. I work better by myself.”

e  “The experiments have no interest for me.”

e  “Tliked most of it but the thing that I liked least was
probably when our computer program was laggy and we
couldn't do anything about it.”

e “Ididn’t necessarily enjoy creating and running data sets
especially with relays because they were more
problematic and I didn’t feel I had enough class time to
work through all the problems presented.”

While not representative, some students expressed a desire to
exercise more creativity in their experiments such as ways to
generate more CO:z in the chambers by lighting a match to
change conditions or wished for more time to explore things
they noticed. For example, one student noted disappointment in
“not [being] able to do something better like putting fire to see
how much COz are we going to get.” Students and teacher both
valued having more time to tinker and use the tools than the
normal classroom period would allow.

D. Results from Screencast Sampling

Screencast data indicated that Dataflow supported students in
engaging in computational data practices. Interrater agreement
reached 85.7% between two independent coders across major
categories (collecting, transforming, interpreting, controlling,
organizing, visualizing) and 72.2% in subcategories while
observing a sample of focal student screencasts (Table II).

TABLE II
PROPORTION OF COMPUTATIONAL DATA PRACTICES ENGAGED BY FOCAL
STUDENTS USING DATAFLOW DURING A LESSON WITHIN THE CURRICULAR
UNIT SAMPLE

Major Categories Subcategories of data practices %

a. started a run 76.4%

b. made a data file

Collecting data

Transforming data a. applied a logic or math function 71.4%

b changed shape of the data curve

a. discussed their data 71.4%
b. asked a question
c. puzzled about measurement

d. sought an answer

Interpreting data

Controlling data a. used a relay node 61.9%
b. used program logic

c. change conditions to control a

relay

57.4%

Organizing data a. named experiment runs

b. created custom name when saving
Visualizing data a. viewed data graph on sensor node 71.4%
b. viewed data graph during data run
c. retrieved data and inspected
visually
d. changed view type on a graph

Consistent with the usage data, all student groups were
successful in creating programs that collected data for their
planned experiments at some point across the entire curricular
unit, yet within the focal student sample data collection
practices were taken up 76.6% of the time. Fewer student
groups (71.4%) applied transformations (although this was not
unexpected as students could have used external materials to
manipulate data). There was a similar proportion of students
who engaged in data interpretation with the data they produced,
they discussed the data outputs, anomalies, and trends with their
lab partners (71.4%). Using the features provided in the IoT
Dataflow System, students also often visualized data during
experiments (71.4%). Few students used the viewgraphs on the
sensor nodes (28%), but instead chose to visualize data streams
over a whole experiment. When students used a data storage
node or started a new experiment, a majority provided custom
names or names for experiments (57.4%) while the remainder
of students simply used the automatic file naming feature. A
majority of student groups used Dataflow’s features as designed
to engage in computational data practices.

VIII. DISCUSSION AND IMPLICATIONS FOR FUTURE WORK

Our implementation of Dataflow balanced tradeoffs to
develop a reliable, secure learning application for the high
school classroom use with many pedagogical affordances for
both science practices and computational data practices. The
system exposes students to working with hardware and
software control in a cost-effective manner as it allows as many
students to acquire data streams from the same device. Students
can perform open-ended experiments of an unrestricted and
interleaved duration. Design iteration and student testing
allowed us to refine a variety of sensor and system checks to
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reliably record student data throughout multiple program runs,
sessions, and time frames. Dataflow document and sensor
authentication created a secure environment for sharing that can
be scoped to the individual, group, or class, while still offering
the future possibility of public sensors. The system protects
student data privacy and allows users to make choices about
how and with whom their data is shared. Student and teacher
comments reflected positive reception of Dataflow to support
lab activities. The data and programs produced reflected
productive computational thinking.

Teachers and students who tested the [oT Dataflow System
using a design curriculum showed that such a system resulted
in successful use of computational tools in science class, even
if students interest in engaging with data varied. Students could
reliably engage in computational data practices with a Dataflow
interface that enabled them to create programs to collect,
transform, interpret, organize, and visualize data. While
students’ comments were mixed regarding their preferences for
different aspects of the activities such as writing, working in
groups, and the length of labs, the teacher and the students
demonstrated they could use Dataflow’s features to complete
the planned activities.

Future research and implementation will continue to explore
configurations to optimize program execution and data
acquisition. We can explore running all programs in the cloud
or with local hubs, and balancing program execution between
these two modalities.

While the Dataflow application was designed for the
secondary classroom, future applications can broaden learning
scenarios to include out-of-school environments. Future
classrooms that engage in community science and global lab
science investigations may need to handle over 100,000
simultaneous users. Scalability of these kinds of citizen science
activities would need reliable services with server redundancy.
Students as community scientists can collectively monitor,
view, and aggregate real-time data gathered from, for example,
air quality, temperature and humidity across different
environments and geographic locations [19]. These kinds of
experiments emphasize both the benefits of working in
distributed teams, and the importance of IoT technologies to
enable them.

The IoT hardware developed in the Dataflow System to date
is a research prototype that will be further developed into an
open-source hardware product. To ensure the design and
robustness of the hardware, questions exist regarding the
lifetime and durability of IoT hardware with long-term use in
schools, the replacement rate, and the cost over a five-year
period. Unresolved issues and future designs could examine
ways to integrate and support existing off-the-shelf home
automation devices like relays and smart bulbs. Slowly
changing scientific phenomena such as indoor farms,
decomposition, and closed chamber biospheres require
controlled environmental conditions which can be instrumented
with Dataflow actuated devices. These scenarios would allow
students to participate in long-term environmental monitoring
to learn additional computational concepts (e.g., stabilization,
cycling, data control-feedback). Multiple data sources over long
timescales periodically sampled (particularly, over an Internet
connection) may reveal new discoveries in conceptual
understanding of the system and the data made possible by
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timescales beyond a single class period afforded by IoT. Robust
long-term operation will be key to these scenarios. To support
such scenarios, expanding the use of IoT from a single
classroom to multiple classrooms will need to further address
and mitigate privacy concerns especially when actuated devices
involve the use of cameras or other devices that control and
cross social boundaries from private and public learning
environments.

STEM classrooms will be expected to promote ways for
students to learn with large and messy datasets to solve
problems and generate insights about the world. Being
immersed in the “data deluge” within science classrooms
should become an integral part of science learning. Data and
their analysis are already part of the Next Generation Science
Standards (NGSS) currently being adopted by many states. We
need to examine the interactions of students with Dataflow to
better understand how students can meaningfully learn to
extract and analyze data in classes with other domains (e.g.
physics, chemistry, Earth science). Bypassing manual or single-
source collection allows students to aggregate data from
multiple sensors of the same type; the variation in sensor values
even for sensors of the same type can become a data science
teaching opportunity: a place to discuss calibration, accuracies
and sensitivities of the sensors, sources of error, and the science
of sampling statistics. Gracefully integrating these topics in
science courses whose focus is not solely statistics will require
careful orchestration.

Additional research in software interface and curriculum is
needed. We expect to expand the data analysis, annotation, and
export facilities of the Dataflow software in future versions as
we learn more about how students need to manipulate data to
support their own experimental designs.

ACKNOWLEDGMENTS

We acknowledge Peter Sand at Manylabs for Sensaurus
hardware kits and team members at the Concord Consortium
who have contributed to the project: Scott Cytacki, Colin
Dixon, Lisa Hardy, Thomas Farmer, Sam Fentress, Sarah
Haavind, Christine Hart, Evangeline Ireland, Matthew
Lewandowski, Kirk Swenson, Michael Tirenin, and Charles
Xie. We also thank the teachers and students who participated
in the formative testing and studies. We thank Cynthia
Mclntyre and Lisa Buoncuore for their editorial assistance.

REFERENCES

[1] R. F. Tinker and S. Papert, “Tools for science education,” in AETS
Yearbook: Information Technology and Science Education, J. D. Ellis,
Ed., Columbus, OH, USA: ERIC Clearinghouse for Science,
Mathematics, and Environmental Education, 1988, pp. 1-24. [Online].
Available: https:/files.eric.ed.gov/fulltext/ED307114.pdf

[2] C. Staudt, “Curriculum design principles for using probeware in a
project—based learning setting: Learning science in context,” in Portable
Technologies: Science Learning in Context, R. F. Tinker and J. S. Krajcik,
Eds., New York, NY, USA: Springer, 2001, ch. 4, pp. 87-102, doi:
10.1007/978-94-010-0638-5_5.

[3] R. Tinker and J. Krajcik, Eds. Portable Technologies: Science Learning
in Context, New York, NY: Springer, 2001, doi: 10.1007/978-94-010-
0638-5.

[4] D.Russell, K. Lucas, and C. McRobbie, “The role of the microcomputer-
based laboratory display in supporting the construction of new
understandings in kinematics,” Res. Sci. Educ., vol. 33, no. 2, pp. 217—
243, Jun. 2003, doi: 10.1023/A:1025073410522.



TLT-2020-03-0060.R2

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

S. J. Metcalf and R. F. Tinker, “Probeware and handhelds in elementary
and middle school science,” J. Sci. Educ. & Technol., vol. 13, no. 1, pp.
43-49, Mar. 2004, doi: 10.1023/B:JOST.0000019637.22473.02.

A. A. Zucker, R. Tinker, C. Staudt, A. Mansfield, and S. Metcalf,
“Learning science in grades 3-8 using probeware and computers:
Findings from the TEEMSSS II project,” J. Sci. Educ. & Technol., vol.
17, no. 1, pp. 4248, Feb. 2008, doi: 10.1007/s10956-007-9086-y.

J. R. Mokros and R. F. Tinker, “The impact of microcomputer-based labs
on children's ability to interpret graphs,” J. Res. Sci. Teaching, vol. 24,
no. 4, pp. 369-383, Apr. 1987. doi:10.1002/tea.3660240408.

J. L. Chiu, C. J. DeJaegher, and J. Chao, “The effects of augmented virtual
science laboratories on middle school students’ understanding of gas
properties,” Comput. & Educ., vol. 85, pp. 59-73, Jul. 2015, doi:
10.1016/j.compedu.2015.02.007.

P. Blikstein, T. Fuhrmann, D. Greene, and S. Salehi, “Bifocal modeling:
Mixing real and virtual labs for advanced science learning,” in Proc. 11th
Int. Conf. Interaction Design and Children (IDC ’12), Bremen, Germany,
Jun. 2012, pp. 296-299, doi: 10.1145/2307096.2307150.

National Research Council, Next Generation Science Standards: For
States, By States. Washington, DC, USA: The National Academies Press,
2013, doi: 10.17226/18290.

T. Erickson, M. Wilkerson, M., W. Finzer, and F. Reichsman, “Data
moves,” Technol. Innov. Statist. Educ., vol. 12, no. 1, 2019. [Online].
Available: https://escholarship.org/uc/item/0mg8m7g6

R. Lehrer, M.+j. Kim, and L. Schauble, “Supporting the development of
conceptions of statistics by engaging students in measuring and modeling
variability,” Int. J. Comput. Math. Learn., vol. 12, no. 3, pp. 195—
216, Dec. 2007, doi: 10.1007/s10758-007-9122-2.

L. Hardy, C. Dixon, and S. Hsi, “From data collectors to data producers:
Shifting students’ relationship to data,” J. Learn. Sci., vol. 29, no. 1, pp.
104-126, Nov. 2019, doi: 10.1080/10508406.2019.1678164.

V. R. Lee and M. H. Wilkerson, “Data use by middle and secondary
students in the digital age: A status report and future prospects,”
commissioned paper for the National Academies of Sciences,
Engineering, and Medicine, Board on Science Education, Committee on
Science Investigations and Engineering Design for Grades 6-12,
Washington, DC, USA, 2018.

A. G. Chakarov, Q. Biddy, J. Jacobs, M. Recker, and T. Sumner,
“Opening the black box: Investigating student understanding of data
displays using programmable sensor technology,” in Proc. ACM Conf.
Int. Computing Education Research (ICER ’20), Virtual Event, New
Zealand, Aug. 2020, pp. 291-301, doi: 10.114/3372782.3406268.

D. Weintrop et al., “Defining computational thinking for mathematics and
science classrooms,” J. Sci. Educ. & Technol., vol.25,no. 1, pp. 127-147,
Feb. 2016, doi: 10.1007/S10956-015-9581-5.

V. R. Lee and M. DuMont, “An exploration into how physical activity
data-recording devices could be used in computer-supported data
investigations,” Int. J. Comput. Math. Learn., vol. 15, no. 3, pp. 167-189,
Oct. 2010, doi: 10.1007/s10758-010-9172-8.

F. Martin et al., “iISENSE: A web environment and hardware platform for
data sharing and citizen science,” paper presented at the AAAI Spring
Symp. Series, Palo Alto, CA, USA, Mar. 22-24, 2010. [Online].
Available:
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1099

E. Russell, D. Edelson, and A. Switzer, “National Geographic FieldScope:
A collaboratory geospatial platform for citizen science,” in Proc. 7th
IEEE Int. Conf. e-Science Workshops, Stockholm, Sweden, Dec. 2011,
pp. 34-38, doi: 10.1109/eScienceW.2011.24.

B. Hug and K. L. McNeill, “Use of first-hand and second-hand data in
science: Does data type influence classroom conversations?,” Int. J. Sci.
Educ., vol. 30, no. 13, pp. 1725-1751, Oct. 2008, doi:
10.1080/09500690701506945.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645-1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A
survey on role of Internet of Things in education,” Int. J. Comput. Sci. &
Netw. Secur., vol. 17,no. 5, pp. 159-165, May 2017. [Online]. Available:
http://paper.ijcsns.org/07 _book/201705/20170520.pdf

J. Goémez, J. F. Huete, O. Hoyosa, L. Perez, and D. Grigori, “Interaction
system based on Internet of Things as support for education,” Procedia
Comput. Sci., vol. 21, pp- 132-139, 2013, doi:
10.1016/j.procs.2013.09.019.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

11

P. Putjorn, P. Siriaraya, F. Deravi, and C. S. Ang. “Investigating the use
of sensor-based IoET to facilitate learning for children in rural Thailand,”
PLoS ONE, vol. 13, no. 8, Aug. 2018, Art. no. ¢0201875, doi:
10.1371/journal.pone.0201875.

G. Gonzalez, M. M. Organero, and C. D. Kloos, “Early infrastructure of
an Internet of things in spaces for learning,” in Proc. 8th IEEE Int. Conf.
Advanced Learning Technologies, Santander, Spain, Jul. 2008, pp. 381—
383, doi: 10.1109/icalt.2008.210.

NASA Earth Science & Remote Sensing Unit. “Earth science & remote
sensing missions on ISS.”
https://eol.jsc.nasa.gov/ESRS/ISS_Remote Sensing Systems/ (accessed
Mar. 1, 2020).

L. Norooz, M. L. Mauriello, A. Jorgensen, B. McNally, and J. E.
Froehlich, “BodyVis: A new approach to body learning through wearable
sensing and visualization, ” in Proc. 33rd Annu. ACM Conf. Human
Factors in Computer Systems (CHI ’15), Seoul, South Korea, Apr. 2015,
pp. 1025-1034, doi: 10.1145/2702123.2702299.

M. Wilkerson and V. Laina, “Middle school students’ reasoning about
data and context through storytelling with repurposed local data,” ZDM—
Math. Educ., vol. 50, no. 3, pp. 1223-1235, Jul. 2018, doi:
10.1007/s11858-018-0974-9.

C. Xie, “National Science Foundation funds research and development of
an loT platform for smart schools,” Concord Consortium Blog, May 2017.
[Online]. Available:
http://molecularworkbench.blogspot.com/2017/05/national-science-
foundation-funds.html

M. Resnick, F. Martin., R. Sargent, and B. Silverman, “Programmable
bricks: Toys to think with,” IBM Syst. J., vol. 35, no. 3—4, pp. 443-452,
1996, doi: 10.1147/sj.353.0443.

C. Dixon, L. Hardy, S. Hsi, and S. Van Doren, “Computational tinkering
in science: Designing space for computational participation in high school
biology,” in Proc. 14th Int. Conf. Learning Sciences (ICLS "20), vol. 1,
M. Gresalfi and 1. S. Horn, Eds. Nashville, TN, USA, Jun. 2020, pp. 154—
161, doi: 10.22318/ic1s2020.154.

Next Generation Science Storylines. http://www.nextgenstorylines.org
(accessed Oct. 12, 2020).

L. Hardy and M. Lewandowski, “Under the hood: Using Raspberry Pis
and WiFis to do more with data,” @Concord, vol. 22, no. 2, p. 14,
2018. [Online]. Available: https://concord.org/newsletter/2018-
fall/using-raspberry-pis-and-wifis-to-do-more-with-data/

Computer Science Teachers Association, “CSTA K-12 CS Standards,”
2017. [Online]. Available: http://www.csteachers.org/standards.

W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Comput. Surv., vol. 36, no. 1, pp. 1-34,
Mar. 2004, doi: 10.1145/1013208.1013209.

K. N. Whitley, L. R. Novick, and D. Fisher, “Evidence in favor of visual
representation for the dataflow paradigm: An experiment testing
LabVIEW’s comprehensibility,” Int. J. Human-Comput. Stud., vol. 64,
no. 4, pp. 281-303, Apr. 2006, doi: 10.1016/j.ijhcs.2005.06.005.

E. Baroth and C. Hartsough, “Visual programming in the real world,” in
Visual Object-Oriented Programming: Concepts and Environments, M.
Burnett, A. Goldberg, and T. Lewis, Eds. Shelter Island, NY, USA:
Manning, 1995, ch. 2, pp. 21-42.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” in Proc. I[EEE, vol. 79, no.
9, pp. 1305-1320, Sep. 1991, doi: 10.1109/5.97300.

S. Gauvin, M. Paquet, and V. Freiman, “Vizwik—visual data flow
programming and its educational implications,” in Proc. 2015 World
Conf. Educational Media and Technology (EdMedia ’15), S. Carliner, C.
Fulford, and N. Ostashewksi, Eds. Montréal, Canada, Jun. 2015, pp.
1594-1600. [Online]. Available:
https://www .learntechlib.org/primary/p/151435/

Sensaurus. (2020). Manylabs. Accessed: Feb. 16, 2020. [Online].
Available: https://github.com/manylabs/sensaurus

Amazon Web Services. “AWS IoT core documentation.”
https://docs.aws.amazon.com/iot/?id=docs_gateway (accessed Jan. 23,
2020).

Dataflow. (2020). The Concord Consortium. Accessed: Feb. 16, 2020.
[Online]. Available: https://github.com/concord-
consortium/collaborative-learning/tree/dataflow-production



TLT-2020-03-0060.R2

Leslie G. Bondaryk received her B.S.
degree in electrical engineering from the
Massachusetts Institute of Technology in
1988 and M.S. degree in Electrical
Engineering from the University of
California, Santa Barbara in 1990.

From 1992 to 2020 she has introduced
new technologies to educational research
and publishing projects across computer
science, mathematics, engineering and sciences, including the
first Web Calculus text, The Analytical Engine Online (PWS
Publishing, 1998), and Schaum’s Interactive Outline Series
(McGraw Hill, 1994-2000). She is the author of papers, articles
and book chapters on technology adoption in traditional
classrooms, citizen science, and more recently on collaborative
technologies in STEM software. Her research interests include
data visualization, collaborative learning technologies, and
novel interfaces to communicate modeling concepts. She is
currently the Director of Technology at the Concord
Consortium, Concord, MA.

Sherry Hsi received her B.S., M.S., and
Ph.D. degrees in engineering science,
mechanical engineering and science
education in 1986, 1988, and 1997 from
the University of California Berkeley.

She has conducted design-based
research, evaluation studies, and learning
technology design for over 30 years
working in science centers, out-of-school
settings, and in middle and secondary school classrooms. She is
co-author of Computers, Teachers, Peers: Science Learning
Partners, and has served as an Associate Editor of the Journal
of the Learning Sciences. She is currently a Principal Scientist
at BSCS Science Learning, Colorado Springs, CO.

Dr. Hsi is the principal investigator of several National
Science Foundation-supported research projects with an
interest in supporting inquiry-based STEM education,
tinkering, and agentive learning among youth.

Seth Van Doren received his B.A. degree
in Chemistry from the University of
California Berkeley in 2019.

He has worked as a research assistant at
Lawrence Berkeley National Laboratory
and the Berkeley Cal Teach program,
primarily studying the effects of
undergraduate research experiences on
STEM identity development. From 2019 to
2020, he was a research associate at the Concord Consortium.
He is currently a Research Assistant at at BSCS Science
Learning, Colorado Springs, CO. His research interests include
authentic STEM investigations in K-12 settings, social
learning, and increasing student epistemic agency.

12



