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Abstract—Sensor systems have the potential to make abstract 

science phenomena concrete for K–12 students. Internet of Things 
(IoT) sensor systems provide a variety of benefits for modern 
classrooms, creating the opportunity for global data production, 
orienting learners to the opportunities and drawbacks of 
distributed sensor and control systems, and reducing classroom 
hardware burden by allowing many students to “listen” to the 
same data stream. To date, few robust IoT classroom systems have 
emerged, partially due to lack of appropriate curriculum and 
student-accessible interfaces, and partially due to lack of 
classroom-compliant server technology. We present an 
architecture and sensor kit system that addresses issues of sensor 
ubiquity, acquisition clarity, data transparency, reliability, and 
security. The system has a dataflow programming interface to 
support both science practices and computational data practices, 
exposing the movement of data through programs and data files. 
The IoT Dataflow System supports authentic uses of 
computational tools for data production through this distributed 
cloud-based system, overcoming a variety of implementation 
challenges specific to making programs run for arbitrary duration 
on a variety of sensors. In practice, this system provides a number 
of unique yet unexplored educational opportunities. Early results 
show promise for Dataflow as a valuable learning technology from 
research conducted in a high school classroom. 
 
Index Terms—Data-driven inquiry learning, educational 

technology, Internet of Things, STEM education, sensor systems 
and applications. 

I. PROBEWARE AND THE OPPORTUNITY IN K–12 EDUCATION 
OMPUTER-BASED labs and probeware provide a uniquely 
beneficial component for science education in K–12 
classrooms where they offer data-rich inquiry-driven 

learning opportunities in STEM subjects [1]–[6]. Classroom 
studies have shown that learners who interact with sensors and 
tools for physical measurements alongside well-designed 
curricula are better able to reason about their physical world and 
learn about complex phenomena [6]–[8]. Sensor-based 
laboratories closely coupled with physical model building and 
virtual simulations also help build students’ intuitive ideas and 
develop deeper engagement with phenomena [8], [9]. 
Additionally, sensor-based laboratories create opportunities for 
STEM students to create arguments with data, a critical science 
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practice and part of the Next Generation Science Standards 
being adopted across the U.S. [10]. Data argumentation skills 
and data production in the classroom are generative for 
learning: data activities in the classroom increase students’ 
confidence to ask questions, to reason with and interpret data, 
and to answer their own questions [11], [12]. A student’s ability 
to produce, reason about, and share data also supports 
computational thinking skills such as purposeful uses of 
computational tools for data acquisition, hypothesis generation, 
data interpretation and analyses, data organization, data 
visualization, and extraction of meaning [13]–[16].  
Even with the many benefits of data-rich learning, many 

classes still have not incorporated probeware because of the 
significant cost, training, and technical burden. A single sensor 
creates a single measurement on a single computer. Many 
sensors are required for each classroom, and direct access to any 
physical environment in which data is to be collected. 
Classroom implementation requires teachers to be fluent with 
the use and maintenance of the devices and collection system 
[15]. One solution to source classroom data is to aggregate data 
across many students in a classroom from purpose-built or 
repurposed commercial devices [17]. Data files can also be 
shared more broadly with the community, as exemplified in 
citizen science sites such as iSense [18] and FieldScope [19]. 
Teachers who wish to incorporate data analysis without the 
burden of individual measurement may turn to the many open 
public scientific data clearinghouses from NOAA, NASA, and 
others. Reuse of preexisting data recorded by others, however, 
misses learning in the place and context where data is collected, 
aspects of the experimental design process, and hands-on 
learning [20]. The solution described here is an alternative that 
allows students to design and acquire datasets of their own.  
Recent innovations in Internet of Things (IoT) hardware and 

Internet cloud services provide a promising data-driven inquiry 
alternative to the one student/one sensor class setup or to data 
aggregation services [21]. IoT sensors can instrument any 
object or experiment to communicate position, acceleration, 
orientation, local magnetic field, temperature, humidity, or 
frequency of use. Wired or Internet-enabled science classrooms 
can use IoT-enabled objects to collect any form of numerical, 
graphical, or photographic data in ways that are increasingly 
rich and useful for education [22]. The distinguishing 
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characteristic of an IoT educational sensor system is that all data 
serves all students in an on-demand fashion. A single IoT data 
stream from an instrumented object can be both shared and 
accessed by any student in the classroom, at home in a distance 
learning scenario [23], [24], or on the other side of the globe, if 
account permissions allow it [25]. Students can collect data in 
environments that would otherwise be inaccessible, such as on 
the International Space Station [26] or inside the human body 
[27]. Teachers and students no longer need to be limited by the 
particular hardware, resources, or setup of individual 
classrooms. Today, students at schools with fewer resources 
can and do share measurements with other classrooms or 
sensors provided by institutions, greatly reducing the cost per 
measurement and enhancing student experience [21]–[27]. 
The volume and extensive nature of rich IoT data, while 

potentially useful for education, presents a new interface design 
challenge. Students require systems that encourage them to 
think computationally about how to design programs and 
acquire data with appropriate characteristics to construct data 
stories [28]. In order to successfully run experiments, they must 
understand concepts like sampling rate, transformation, 
threshold, and latency, all of which are critical to their ability to 
correctly interpret IoT data. With IoT systems, it is now both 
possible and desirable to teach students how to reason about 
measurements and control their environment with them [17].  
We describe an alternative to distributed data collection by 

using a novel Internet-of-Things (IoT) system called the IoT 
Dataflow System (“Dataflow”). In the classroom, students can 
use Dataflow to design their own science experiments, such as 
the control and monitoring of humidity in a terrarium, or 
investigation of primary science phenomena such as plant 
respiration. Dataflow is a solution to the challenges of setting 
up and maintaining a classroom lab full of traditional, non-
networked devices [21], [22], [29] or reusing data from citizen 
or public data repositories. We aim to support more student 
autonomy and choice about which data to collect in which 
context. Simultaneously, we aimed to resolve some of the cost, 
maintenance, teacher expertise, and interface issues that exist 
with single-user collection scenarios. This approach has 
elements of both the constructivist probeware use [1], [30] and 
the more familiar microcomputer lab approach [2]–[5].  
The Concord Consortium iteratively designed and tested the 

Dataflow system to assess its impact on student learning, 
interest, and participation [13], [31]. We present the design of 
our IoT system for use in secondary science classrooms that 
extends prior probeware systems [31] to enable student-driven 
laboratories with experimental data acquisition and control. We 
share the design rationale, implementation, and results from 
testing the system in a U.S. high school classroom.  

II. INTRODUCTION TO THE IOT DATAFLOW SYSTEM 
Dataflow consists of a modular hardware kit, a cloud 

connectivity interface, and a student-friendly dataflow 
programming interface (see Section IV). The kit includes 
programmable IoT relays for device control (actuators) and 
IoT-enabled sensors (CO2, light, temperature, humidity, and 
oxygen) that together plug into a Wi-Fi enabled hub (Fig. 1). A 
single hub can connect up to six components using small cables 
and ports, making it easy to swap out relays or sensors. A 

student’s hub device has a unique-assigned label to differentiate 
it from others in the classroom. Students access Dataflow in the 
classroom by logging into an online portal that directs them to  
 

 
Fig. 1. Sensaurus ESP32Hub shown with a power relay and light, 
temperature/humidity, CO2 gas sensors. 
 

the Dataflow workspace where programs can be created. A 
program in Dataflow is made by dragging and connecting 
programming nodes into the workspace (Fig. 2). Within a given 
node, the student uses a pull-down menu to associate and 
connect a specific IoT hardware device to that node. In this way, 
students can construct programs that acquire, filter, and record 
data from sensors, or control relays available on the network.  
 

Fig. 2. The IoT Dataflow System with programming nodes for sensing, logic 
functions, data storage, and relay control.  
 
Once a student pairs a digital sensor node with physical 

sensor hardware, the numerical values from that sensor 
immediately appear on the screen. A mini viewgraph of the 
values enables students to watch for evidence of real-time 
readings. Students create programs by connecting virtual wires 
to link nodes. They begin data collection by setting a duration 
and clicking the “Run” button. Experiments can be as short as 
one minute long or as long as a month (e.g., for observing plant 
growth in chambers). Students see all data collected in a graph 
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that updates in real time. Fig. 3 shows an example of a running 
three-sensor experiment generating data recordings.  
 

 
Fig. 3. Dataflow program during an experiment involving data recording from 
three sensors. 
 

A. Dataflow in the Science Classroom 
Dataflow allows students to engage in next generation 

science practices such as using sensors and data for model 
development and experimental design. Dataflow activities can 
incorporate mathematical and computational thinking, and 
creates opportunities for students to construct arguments from 
evidence [10]. Dataflow programming creates opportunities for 
engaging in realistic science, including both data measurement 
and logically controlled feedback in scientific lab investigations 
[16], [34].  
Dataflow activities also provide teachers with opportunities 

to discuss calibration, accuracy, and sensitivities of the sensors, 
sources of error, and the science of sampling statistics. Teachers 
can further emphasize to students that data are not just 
theoretical or numerical values, but the product of physical 
sensors and computational systems that allow for the study of a 
scientific phenomenon. Classroom activities can incorporate 
practices of collecting, interpreting, transforming, organizing, 
and visualizing data. Students are introduced naturally to 
computing practices and computational performance issues 
such as latency and discontinuities from dropouts or mechanical 
failure (often caused by the students themselves).  
The “flat data” lab is an example of a high school science 

curricular activity which integrated the use of Dataflow in a 
hands-on lab. Students are provided with the prompt, “Can we 
use computers to keep CO2 levels in a healthy range?”. At the 
beginning of class periods, student groups decide what 
hardware they will need, the length of their experiments, the 
frequency they will record sensor readings, and whether they 
will manipulate conditions computationally or physically. 
Some students may choose to monitor CO2 levels in a plant 
chamber while others may monitor CO2 levels generated by 
students’ collective respiration in their classroom. Once 
students develop a tentative plan for their investigation and 
gather hardware, they log into Dataflow and begin building a 
program to record data to support their model.  

When interacting with Dataflow for the first time, many 
student groups bring unrelated nodes into the workspace 
seemingly at random. They create and delete nodes until they 
gain a sense of Dataflow’s functionality and workflow. 
Eventually, they construct complete systems of connected 
sensors and can begin collecting and viewing data on the sensor 
blocks in recorded datasets. When students are viewing real-
time data, they observe and interpret data trends, gaps in the 
data recording, or sudden peaks in the viewgraph. When 
returning to Dataflow in subsequent class periods, students 
prefer to modify or debug existing programs to fit their needs 
for that day's investigations. As experiments evolve, students 
may have additional questions about previously produced 
datasets that encourage them to add number, logic, or additional 
sensor types to support sensemaking from the CO2 data. The 
ease of modifying existing programs and tinkering with the 
hardware components gives students the ability to rapidly 
iterate on their strategies. 

III. IOT CLASSROOM DESIGN CONSTRAINTS AND 
AFFORDANCES 

A. Sensor Ubiquity: Distributed, Robust, Multi-user Sensors 
Our goal for introducing IoT into classrooms was motivated 

by the promise of distributed, collaborative data sharing across 
individuals and classes, along with opportunities for 
computational thinking afforded by student design of 
experiments and experimental data. Because data from any 
given sensor can be broadcast and made public over the 
Internet, a given teacher with a single IoT sensor experiment in 
a resource-constrained classroom could share her data stream 
and virtually loan or borrow access to IoT hardware setups in 
other classrooms or institutions. Students also need to be able 
to construct an experiment using data from many sensors 
distributed across the classroom (e.g., monitor CO2 levels over 
time near room exits and windows) and acquire data over 
meaningful time periods from minutes to days or weeks, 
depending on the application. The desire for spatially and 
temporally distributed data means that experiments should be 
unbounded by the number of sensors present in a given 
classroom, the time limit of a single class period, or the physical 
location of the sensor. Students needed straightforward ways to 
identify data sources from this larger pool, aggregate data from 
multiple sensors, and report about it. 

B. Acquisition Clarity: Computational User Interface for 
Device Control  
Dataflow enables students to manipulate data to control and 

analyze experiments, learning computational concepts (e.g., 
sequencing, stabilization, debugging, cycling, feedback) as part 
of the same interface they use for data acquisition. It is also 
possible to actuate a relay-controlled device, such as a lamp or 
fan, from within the same environment. Dataflow software user 
interface is designed as a browser-based visual dataflow 
programming language [35]. Research has shown dataflow 
languages to be a natural way to think about programming, and 
are productive in educational environments [36]–[39] and it is 
the format of language used in Amazon Web Services (AWS) 
IoT services programming; we have chosen a visual dataflow 
diagrammatic approach in an effort to invite and bootstrap 
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novice programmers into making Dataflow programs while 
reducing the need for mental translation of logic applied to 
sequences of values for students. The application also enables 
the user to record data, view and compare archived datasets as 
time-series graphs, and export datasets for further analyses.  

C. Data Transparency: Teacher Monitoring and Student 
Sharing 
Cloud storage, execution, and synchronization of sensor data 

and programs enables a variety of cross-user inspection 
scenarios for teachers and students. Real-time file and data 
synchronization with the server allow teachers to view student-
written scripts that operate IoT devices while the students are 
working on them or asynchronously during classroom 
preparation. Teachers can monitor science experiments across 
all local and remote classrooms from an online dashboard. 
Traces of user interactions or data about learner usage can be 
captured for assessment purposes. Students are able to share 
their computational approaches and the resulting datasets with 
their instructor and their peers to create a community data lab 
in the classroom.  

D. Classroom Reliability and Security 
In addition to pedagogical affordances, IoT in the classroom 

needs to meet or exceed requirements for reliability, security, 
affordability, scalability, and performance for commercial IoT 
applications, given the relative lack of technical support or 
reliable Internet connectivity in the average school. The typical 
high school classroom presents a number of challenges for 
reliable implementation of an IoT setup. Wi-Fi firewalls often 
require special setup to enable access and can suffer 
inconsistency or slowness. Slow networks or unconditioned 
power can make sampling rates and sensor connections 
unreliable in reality or by perception. Delays in data recording 
or display, dropouts, failed sensor readings, or just incorrect 
programming logic (user error) may be perceived as 
malfunctions by students who are unfamiliar with the realities 
of hardware speed and connectivity. They need to be able to 
“open up the hood” in an accessible way that will keep them 
experimenting rather than giving up in frustration.  
Feedback mechanisms in the form of live updating values 

and minigraphs have been built into the dataflow UI to help 
students orient to the physical sensors and debug their programs 
and sensors and to clarify the interpretation of data. Dataflow 
software uses a variety of automatic correction methods when 
connecting to devices to catch situations which may stall either 
the students or the teacher from proceeding in standard 
operation. We also designed administrative access so the 
teacher or the software team can terminate running programs. 
This facility also allowed software team members to evaluate 
live classroom scenarios and repair them remotely if needed. 
Finally, any scenario which allows students to record 

measurements of their own design has the opportunity to reveal 
private information, however far removed a string of numbers 
might seem from the data producer. We designed Dataflow to 
have appropriate authentication not only for user access to 
recorded files and programs, but also with respect to access to 
the devices and IoT data streams. Only authorized users can 
access the data in its raw form or take readings from remote 
devices. 

IV. DATAFLOW SYSTEM ARCHITECTURE AND 
IMPLEMENTATION 

The Dataflow system’s physical hardware kit is a 
microprocessor-based hub and sensors, an AWS cloud-based 
system for collecting sensor values and running/storing student 
programs, and a browser-based flow programming 
environment and document management system. The 
components together allow students to sample streams of sensor 
data and write programs to manipulate and record data or use 
data to control actuating devices. We discuss the design of the 
system components along with justifications for design 
decisions that were focused on successful K–12 classroom 
implementations.  

A. IoT Device Hub and Sensors  
Sensors in the kit are plugged into a custom-built ESP32 

chip-based hub, the central board which houses all the sensor 
connection points, power, and communication 
hardware/software. The sensors and hub were designed for 
minimal cost and ease of connection to Wi-Fi. They can be 
programmed with school authentication credentials so they can 
work on a secure school network. The microprocessor-based 
hub runs custom Python code called Sensaurus [40]. The 
onboard code is responsible for recognizing when individual 
sensors are plugged or unplugged, and communicating the 
device ID, type, signal and physical measurement units to the 
central AWS IoT Server. Hubs also listen for and respond to 
messages, which can control relays and adjust sampling rates, 
while the software execution of student-written programs is 
handled by the cloud server. 
Communications with the hub use the Message Queue 

Telemetry Transport (MQTT) protocol. This is one of several 
standard IoT communication protocols, selected because of its 
ubiquity, and its ability to authenticate access to data, which is 
critical in school systems. Hubs are secured using cryptographic 
keys to authenticate and encrypt the communication with the 
MQTT broker. 
Each hub has audio jacks for sensor and relay connections as 

well as power (Fig. 3). Audio jacks were chosen because of 
their lack of directionality and relative robustness. In class 
testing, they were found to be the most trouble-free in terms of 
getting sensor plugs seated correctly. They can (and did) 
withstand repeated plugging and unplugging of sensors as 
students learned their way around the hardware setup. The 
current suite of sensors can measure CO2, O2, temperature, 
humidity, lux, soil moisture, and particulate matter.  
School affordability also drove successive iterations [30] of 

hardware kits to use less expensive microprocessor hardware. 
The ESP32 chips used cost only a few dollars each, and provide 
the necessary Wi-Fi and communications capability without the 
expense of a full computational chip and memory. We have 
instead incurred the expense of cloud computing and distributed 
device management, which is cheaper than individual 
computational edge systems with more expensive sensors. 
Similarly, tradeoffs were made to keep the cost of sensors low, 
especially the CO2 sensor components, which had limited 
operating ranges (<10,000 ppm) to be affordable, yet still useful 
for school laboratory experiments. 
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B. Dataflow Visual Programming Interface  
The IoT Dataflow System interface uses a connected-node 

diagramming convention along with synchronization features 
built into both local (in the browser) and cloud (on the server) 
execution to support and extend student understanding of 
data [35]. Users write programs using connected-node 
diagramming conventions with nodes and connectors similar to 
visual programming interfaces in a dataflow context that have 
been recommended broadly for professional use in this context 
[36], [37]. Data flows through nodes and wires from left to right 
in the user interface. As values progress through sensor, timer, 
math, logic, transform, generator, relay, and/or data storage 
nodes, the value of the data at that node is displayed in real time 
as soon as inputs to the node are present. Directed-node 
dataflow diagrams allow easy communication of ideas for 
novices [38] and have been successful in educational 
environments [38]. This metaphor was adopted for the system 
and is reflected in the naming of the software: IoT Dataflow 
System. 
Students learn about computation and control systems as they 

create programs by live inspection of sensor data as it flows 
through the nodes. The moment a student selects a particular 
sensor or connects a downstream operation node they will see 
numerical results. We call this instantaneous execution “tinker 
mode” because it allows students to play and test their 
understanding in a constructive and low-stakes manner 
comparable to tinkering with physical systems. Each visible 
node includes a large updating numerical current value display, 
an equation display if a mathematical operation is performed, 
and a scrolling minigraph that shows the most recent 15 values 
in the sequence (Fig. 4). These values all update in real time as 
soon as inputs are available from a sensor or an upstream node. 
Tinker mode and the inherent model diagram nature of the 
dataflow interface allow students to reason about the stream of 
values that propagate across the network. 
Tinker mode is enabled by browser-based evaluation that 

processes the same program as the server-side execution 
described below. Student programs execute on the client 
(student’s local computer) until the student chooses to run the 
program. Tinker mode’s live updating equations and 
minigraphs serve as valuable debugging tools for students, 
emphasizing sampling and the evolution of sensor and program 
results over time. 
The student action of running programs is needed to record 

data or trigger relays in control scenarios. Once the Run button 
is pressed, the state of the program and the list of connected 
devices are frozen, and a new “data” file is created to store that 
program specification and the resulting recorded data values. 
The program instance is sent to execute on the server until it 
completes or is stopped manually. If a data storage node is used, 
the student sees a live updating graph, showing the requested 
data traces as they evolve, alongside the program used to 
produce them. The student can now close this file and begin a 
new file, return to their tinkering and run a different scenario, 
or close their session entirely; running programs will continue 
to operate in the background.  
Previous versions of Dataflow executed programs on 

Raspberry Pi hubs [30], restricting the sensors on that hub to a 
single program and student at a time. This significantly reduced  

 
Fig. 4. A close-up view of Dataflow node functions including nodes for sensors, 
math operations, logic operations, simulated data generators, data transform, 
relays, and data storage. 
 

classroom capacity and made it impossible for remote users to 
access ongoing experiments.  
C. IoT Server/Hub/Program Communications 
To enable the ubiquitous and multi-user IoT scenario desired 

for classrooms, the IoT Dataflow system consists of a set of 
sensors all continuously reporting values to an Amazon Web 
Services (AWS) IoT Core server [41]. AWS IoT Rules save the 
sensor values in AWS IoT Device Shadows, which are software 
replicas of the data stream from hardware. Shadows allow the 
current values of the sensors to be accessed without waiting for 
the next message from the sensor hub. This allows multiple 
programs to access a single sensor’s value without all 
individually communicating with the hub. It behaves like a data 
“party line,” where anyone with access may listen to the data 
stream coming from the shadow. Student-created Dataflow 
programs access sensor data streams through these shadow 
devices, so any number of programs can access the same device 
at the same time without colliding. This setup also reduces 
overall throughput for hubs, making it a scalable solution for 
large numbers of sensors all reporting around the world.  
Cloud-based program execution is orchestrated through 

AWS Lambda functions communicating with the device 
shadows and stored in the DynamoDB database (Fig. 5). If the 
program has a data storage block, the data is also stored in 
DynamoDB. When applied to reactive systems such as sensor 
measurement and control, Dataflow programming has a built-
in notion of data frequency, such that each measurement or 
calculation at each node is synchronized with all other program 
actions on each data point. We created a universal timer to 
synchronize the data readings, the program calculations at each 
node, and the data values displayed to the student. During every 
program cycle, Lambda functions read the sensor values from 
the Device Shadows, execute the program, and then send 
MQTT messages to trigger relays. In this way, data readings, 
recordings, calculations, and display move in lock step together. 

D. File Management, Sharing, and Authorization  
All software used in classrooms requires security to prevent 

outsiders from viewing student data, (e.g., images, geographic 
location, or other identifying data). The Dataflow user interface 
is accessed through Concord Consortium’s STEM Resource 
Finder, which is used to register users and provides the scope 
of allowable sensor and data viewing and sharing. Students and 
teachers can create and retrieve files associated with a user 
account and publish data and programs securely for sharing 
with others in their class. The authentication system allows us  
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Fig. 5. Dataflow IoT network architecture and message passing. 
 
to scope programs, data, and devices to the class, teacher, or 
institution, establishing circles of trust for the work in the 
system. Multiple students can perform experiments with the 
same sensor within their scope of authorization, and can access 
sensors in remote locations as long as they have permission to 
use those sensors. 
The AWS IoT Server includes built-in authentication in their 

MQTT library, which requires passing a secret key for every 
device access. The software will automatically limit access to 
the institution associated with the instructor. It is possible for 
software administrators at the Concord Consortium to share 
devices more broadly so that citizen science-style experiments 
and analysis can take place.  
The IoT Dataflow System browser application uses Google’s 

Firebase database to provide real-time authenticated file 
management. Firebase connects to the IoT server’s DynamoDB 
to queue programs to be run on the server, and to display 
recorded data back in the browser. The browser application also 
connects to the MQTT broker to monitor the real-time 
(shadowed) sensor values. This architecture makes it possible 
for multiple users to monitor the ongoing, updated state of any 
document. This WYSIWIS architecture allows a sidebar 
dashboard full of live updating views for the student so they can 
monitor multiple experiments at once. The document state 
saving, logging, and storage mechanisms also enable instructor 
and administrator monitoring, performance analysis, and 
diagnostics. An administrator uses a control panel dashboard to 
monitor hardware in use and live views of student work. This 
feature was especially important during the initial rollout of the 
system in the classroom to monitor and debug problems with 
data saving and restoration as students worked with sensor 
systems in unanticipated ways. 

E. Hardware Dropout and Synchronization Error Handling  
As described above, Dataflow programs in tinker mode 

display their values live so the student can see if they are 

producing expected results, including display of sensor values 
so students can check both programs and hardware connections. 
In the course of normal operation, a sensor may, for reasons of 
interface or connectivity fail to report some values. If a few are 
missing, the overall data should still make sense. If a large 
series of values are missing the data become meaningless or at 
least misleading. The length of time we chose as a distinction 
between these cases was one minute. Once programs are 
debugged and the student formally runs them to record data, 
program blocks report when sensors have been offline for more 
than one minute, and performs this check on any running 
programs when a session is restored. These checks require 
orchestration between the running program, the IoT shadow, 
and the MQTT message stream from the devices. Messages 
include the status of each connector on a hub and the ID of 
devices plugged into each hub, along with a timestamp. This 
allows polling of devices associated with a program to tell 
whether data is being sent. In this way, overnight runs and other 
out-of-view programs can be highlighted when the student 
needs to adjust faulty hardware. Because the data is no longer 
being collected, these will not impact the data, but are instead a 
record of the sensor used, and a note that a new one must be 
chosen to run the program again.  
In the more benign case of data dropouts under a minute, the 

server reports back simply that there is no value for that 
synchronized measurement. These are reflected as missing 
points, which are not connected to adjacent points in graphs. In 
a similar scenario, data storage and the start time on Dataflow 
graphs begin at the time the Run button is pushed. If for reasons 
of Wi-Fi or hardware delay, the first recorded point does not 
occur at the start of the program time, the actual time of 
collection on the graph is stored.  

V. TECHNICAL CONSIDERATIONS FROM CLASSROOM TESTING 
The progressive and iterative design of an IoT system for K–

12 classrooms presented unique design challenges, which 
required not only meeting pedagogical requirements, but also 
engineering a system to meet the practical needs and constraints 
of K–12 classrooms. Here, we discuss these implementation 
challenges faced by educational IoT systems based on lessons 
learned during class testing. 

A. Unexpected Tinkering 
In addition to the known issues of classroom IT support, we 

encountered another source of system instability: the students 
themselves. Many students inadvertently or intentionally 
disconnected hardware as they learned about how the system 
worked. This created scenarios in which data was seemingly 
acquired but was not recorded. Server-side programs were 
designed to maintain records of the last known hub for any 
given sensor ID so that they could record over long periods 
when students were not logged in. We encountered situations in 
which students unplugged sensors that were in use and moved 
them to a different hub. We now manage this scenario so that 
programs that are recording data from these sensors can 
continue to do so, and will gracefully register the period during 
which the sensor was offline without failing outright.  
We introduced numerous points in the Dataflow code to retry 

connections across the hardware messaging and server. 
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Dataflow can now reallocate sensor IDs to different hubs, 
refresh available hardware lists, and offer administrative access 
to end running programs. Checks run continuously to determine 
whether to handle the dropout silently or to warn the student 
depending on the duration of the dropouts.  
As we analyzed the student interactions in the classroom, we 

elected to prevent students from beginning a run with failed 
sensors or relays, or when relays are already in use by another 
program. Once a program has started, we alert the student when 
a device fails, but do not end the recording until instructed, 
leaving that choice to the user. Because experiments can be 
running on the server while the student’s browser session is 
closed, we also return alerts to the student in their list of 
ongoing data acquisition programs when they next open 
Dataflow.  

B. Data Size, Sampling Rates, and Cost  
One of the primary concerns in IoT technology is the cost to 

transmit and store the data,. Data quickly become large at scale, 
and hence expensive. The class tests of this system allowed us 
to understand the realistic data usage in a several-week 
classroom setting. This encouraged us to create limits in the 
program settings relating the length of time a student records 
data to the minimum sampling rate. Programs that are run for 
10 minutes or less can be sampled every second or two, while 
those that run for a month can be sampled no more frequently 
than once a minute. We are not typically concerned with under-
sampling in these school scenarios because the biological 
phenomena in experiments changes slowly on the order of 
minutes or hours rather than in seconds. If different kinds of 
measurements were desired by an expanded curriculum, we 
would have to consider overrides for sampling restrictions.  

C. Scalability 
If any such IoT system is to become successful at scale, even 

in a single school district that serves multiple schools, it needs 
to accommodate large numbers of users. Many thousands of 
students could simultaneously read hundreds of thousands of 
data points from shadow sensors, address thousands of relays, 
and execute thousands of calculations in online programs. Our 
initial implementation of the Dataflow system was not capable 
of this kind of scale, but has since been built on top of the 
scalable and secure commercial AWS system and MQTT 
protocol that make data exchange and server redundancy 
possible.  
Another issue of scalability has to do with the generally low-

level client-side computing capability of school laptops. 
Chromebooks are ubiquitous in secondary schools, though 
older models often have difficulty with large client-side 
applications. The more computation we can move to the server 
and the less chatter we can communicate across the network, 
the better Dataflow will perform. We have already done some 
tuning in this respect by propagating only messages that affect 
the user's current view to the client, but more work could be 
done to reduce the client computing and rendering burden.  

VI. DESIGN-BASED RESEARCH STUDY IN BIOLOGY 
IoT Dataflow system was iteratively tested in design-based 
research studies in four cycles of testing between 2017 and 
2020. In each iteration, the Dataflow user interface and 

accompanying curricular activities were improved and revised. 
Here, we report on a study with one teacher from the final test 
and implementation of the IoT Dataflow system with high 
school students in an urban classroom in Northern California. 
This school served a larger percentage of non-White students 
(33% African American, 39% Latinx, 16% Asian American, 
7% White, and other races) and a majority who qualified for 
free and reduced lunch (73%). Four ninth grade high school 
biology classes used the IoT Dataflow system in a sequence of 
lab activities taught by one early career teacher familiar with  
technology for classroom teaching. The broader project sought 
to answer questions about students’ content learning of biology, 
interest in science, and computational data practices. This study 
aimed to understand if this version of Dataflow IoT system with 
a cloud-based implementation could support students in 
successfully carrying out the planned curricular activities. The 
results reported here focus on the following questions: 1) What 
kind of programs did students create and how many programs 
and datasets did students create? 2) How did the system perform 
with multiple simultaneous users of the IoT Dataflow system in 
the classroom? 3) How did students find the curricular activities 
with Dataflow? What aspects lead to positive or negative 
affectivity? 4) To what extent did students engage in 
computational data practices as they employed the IoT 
Dataflow system? 

A. Curriculum and Lab Activities 
The three-week curriculum unit focused on CO2 in human 

and plant systems that integrated Dataflow in a high school 
biology class. Students used a storyline-based curriculum [32] 
about how and where CO2 is generated, studied photosynthesis 
and plant respiration, and measured the changes in CO2 in a 
closed chamber containing spinach leaves during light and dark 
conditions [31]. In each unit, students investigated a driving 
question such as “What does light have to do with plants and 
CO2?” and “Why do I breathe out CO2?” Any time people or 
animals are in a closed space, they produce carbon dioxide gas 
and over time, the levels can become unhealthy. Students figure 
out that they can use light to control the process of 
photosynthesis. Students were also given the challenge to 
stabilize CO2 levels within a healthy range (400-1,000 ppm). 
The lab activities asked students in their groups of 2-3 to 
develop a data collection strategy that suited their experimental 
design preferences. Some students produced one long dataset 
where they changed conditions during the experiment, others 
produced smaller individual datasets, one for each trial 
condition. Students groups were provided with one set of 
hardware (CO2 gas, light temperature, humidity sensors, cables, 
hub controller), as well as access to a range of lab materials to 
choose from which to stabilize CO2 (food containers, plastic 
wrap, rubber bands, tape, spinach leaves, wax paper, lamps, 
etc.). During and after each lab, students shared their data with 
the class, and reflected on what worked and what did not in a 
whole class discussion and in writing. 
B. Methods and Instruments 
1) Dataflow system performance: System performance was 

studied via remote system monitoring and direct observations 
by researchers in the classroom. In each class period, twelve 
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hubs each with multiple sensors were used by 20 to 25 students 
to actuate physical devices using Dataflow programs. 
2) Usage data: We gathered statistics around the number of 

programs per student and complexity of programs (number of 
program blocks) by collating the stored student program 
documents from the program’s server storage. Because 
programs are stored as a series of blocks and metadata for 
playback, we were able to write a script to extract this structured 
information to count the number of blocks and connections. 
3) Student experiences and interests: A post-experience 

survey was administered online via SurveyMonkey at the end 
of a three-week curricular unit. Eighty percent of the students 
(92 out of 115) students took the survey, which consisted of 36 
questions covering topics such as student interests, attitudes, 
experience with the curriculum, and self-reported curriculum 
outcomes. Students were asked to rate statements such as “I 
liked using and learning about the electronics (sensors, hubs, 
relays),” “I liked making and running programs to collect data,” 
and “My data reflected my own choices and decisions” on a 
five-point Likert scale. Students were also asked to report on 
their interests in particular activities: “In general in your life, 
how much do you enjoy or are interested in the following 
activities?” as well as open-ended questions such as “What 
parts over the last few weeks did you like the best? Least? 
Please explain.” 
4) Screencast video sampling for computational data 

practices: Screencasting software (Screencast-o-Matic) 
installed on student laptops captured interactions and video of 
students working in groups of 2-3. Data were recorded from a 
subset of consented students (12 focal groups) across four 
classes. Altogether 61 class sessions (63 hours) of screencast 
video was collected. Using a prior taxonomy for computational 
thinking in STEM [16], instances of computational data 
practices were tagged by the specific data practice afforded by 
Dataflow: collection, transformation, analysis/ interpretation, 
control, organization, and visualizaiton. Each video was coded 
using a rubric to identify computational data practices (Table 
II). One third of the data, randomly selected from the video 
sessions, was coded independently by two researchers into six 
major categories and 17 subcategories of data practices. In these 
analyses, we focus specifically on whether students engaged in 
the expected computational data practices when using Dataflow 
in lab activities. 

VII. RESULTS FROM CLASSROOM DATAFLOW TESTING 

A. Results from Usage Data 
Documents from the Dataflow program’s server storage were 

tabulated (Table I). Forty four student groups successfully 
produced 129 editable programs and executed them a total of 
646 times using Dataflow. These generated 359 stored program 
runs containing a relay node and 559 stored program runs that 
produced a dataset (a number of the total program runs produce 
a record of a run containing both a relay node and a program 
producing a dataset). Altogether, students created 775 
documents (programs and record of program run). The ratio of 
programs to program runs (1:5) indicates programs were run 
multiple times while students iterated and tinkered. The 
repetitive refinement of computations is one of the established 
metrics to evaluate computational thinking [28].  

TABLE I 
 OVERVIEW OF STUDENT USAGE OF DATAFLOW DURING THREE-

WEEK CURRICULUM UNIT 

 Documents 
Editable 
Programs 

Program 
Runs 

Program 
Runs 
Using a 
Relay 

Program 
Runs 

Producing 
Dataset 

Total 775 129 646 359 559 

Mean 17.61 2.93 14.68 8.16 12.70 

SD 10.41 2.33 9.60 8.09 8.13 

 

B. Results from Dataflow System Performance 
In the first week of the described classroom tests of Dataflow, 
the newly implemented IoT server architecture revealed some 
performance and sensor identity issues. These issues included a 
lag in the system response, blank datasets, and unresponsive 
sensors. These kinds of issues are more critical in the classroom 
or with any group of novice users because they lack the skills 
or the class time to overcome imperfect infrastructure. Software 
team members were able to monitor and debug activity in 
classes remotely and in a large degree of detail. Student 
behavior revealed a new test case, which was critical for system 
design: students were unplugging and replugging the same 
sensor into different hubs, often randomly and while some 
running programs had already begun recording from the sensor 
as part of a previous hub. The interplay between this behavior 
and system checks for unresponsive hardware caused data loss. 
This led to an important refinement of warning/offline rules and 
handling of changed sensor addresses. We also optimized the 
number of messages from simultaneous running programs, 
which we chose to synchronize both on the student’s display 
and on the server to avoid overflowing memory in both cases. 
In all of these scenarios, the ability of the software engineering 
team to remotely monitor what sensor and program values were 
produced was critical to correcting the issues in time to ensure 
successful class testing. 
Once software and hardware issues were addressed, students 
were able to conduct experiments and encounter challenges that 
mirror authentic practices of scientists and engineers. Students 
generated many datasets requiring them to name their files for 
later retrieval, distinguish previously run program versions 
from the editable program, conduct multiple trials through 
tinkering with the hardware setups, and troubleshoot a 
computational system. 

C. Results from Student Experiences and Interest Survey 
When asked if they agree with the statement “I like using the 
online software, Dataflow” on a five-point likert scale, 43% of 
the students said they agreed or agreed strongly compared to 
24% who disagreed or disagreed strongly (while 34% remained 
neutral). Similarly, students reported they liked making and 
running programs to collect data (44% agree; 23% disagree), as 
well as creating programs to turn on/off relays (45% agree; 23% 
disagree). Of most interest were student responses to learning 
about how data was created. This yielded the fewest 
disagreements (41% agree; 11% disagree). This is viewed as a 
favorable result by the teacher given that many of the students 
had difficulty engaging in school and in science class before 
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this activity was introduced. The teacher also commented that 
students who were typically disengaged in science class were 
participating more actively in the activities involving 
programming Dataflow and setting up experiments.  
Students elaborated their feedback with open-ended written 
responses that included 68 positive comments and 67 negative 
comments. The following student quotes are representative of 
the set of positive comments: 
• “I liked using the computers and electronics (CO2 and 

oxygen thing) to see when the CO2 levels became 
unhealthy.” 

• “I like hooking the sensors and see how they collect 
data.” 

• “Doing hands on experiments and working with my 
team.” 

• “Doing the lab where we used sensors to see the CO2 
levels in the classroom or in spinach.” 

• “I really enjoyed watching a program make data based on 
information the sensors recorded.” 

• “My favorite part of last week’s activities was designing 
our own way to make the CO2 levels stay stabilised.” 

 
The negative comments fell into broad categories with some 
common trends. Thirty-one percent of the comments were 
related to technology; 15% complained about the amount of 
writing needed with the packet of worksheets; 9% described 
feelings of boredom; 6% were about not liking group work; and 
39% were a wide range of general dislikes ranging from school 
to specific aspects of their labs. Some comments reflect some 
early issues with lag time and issues with relay devices. These 
are representative negative comments: 
• “I disliked all the writing we had to do.”  
• “The group work. I work better by myself.” 
• “The experiments have no interest for me.” 
• “I liked most of it but the thing that I liked least was 

probably when our computer program was laggy and we 
couldn't do anything about it.” 

• “I didn’t necessarily enjoy creating and running data sets 
especially with relays because they were more 
problematic and I didn’t feel I had enough class time to 
work through all the problems presented.” 

 
While not representative, some students expressed a desire to 
exercise more creativity in their experiments such as ways to 
generate more CO2 in the chambers by lighting a match to 
change conditions or wished for more time to explore things 
they noticed. For example, one student noted disappointment in 
“not [being] able to do something better like putting fire to see 
how much CO2 are we going to get.” Students and teacher both 
valued having more time to tinker and use the tools than the 
normal classroom period would allow.  

D. Results from Screencast Sampling 
Screencast data indicated that Dataflow supported students in 
engaging in computational data practices. Interrater agreement 
reached 85.7% between two independent coders across major 
categories (collecting, transforming, interpreting, controlling, 
organizing, visualizing) and 72.2% in subcategories while 
observing a sample of focal student screencasts (Table II). 

TABLE II 
PROPORTION OF COMPUTATIONAL DATA PRACTICES ENGAGED BY FOCAL 
STUDENTS USING DATAFLOW DURING A LESSON WITHIN THE CURRICULAR 

UNIT SAMPLE 
Major Categories Subcategories of data practices % 

Collecting data a. started a run 
b. made a data file 

76.4% 

Transforming data a. applied a logic or math function 
b changed shape of the data curve 

71.4% 

Interpreting data a. discussed their data 
b. asked a question 
c. puzzled about measurement 
d. sought an answer 

71.4% 

Controlling data a. used a relay node 
b. used program logic 
c. change conditions to control a 
relay 

61.9% 

Organizing data a. named experiment runs 
b. created custom name when saving 

57.4% 

Visualizing data a. viewed data graph on sensor node 
b. viewed data graph during data run 
c. retrieved data and inspected 
visually 
d. changed view type on a graph 

71.4% 

 
Consistent with the usage data, all student groups were 
successful in creating programs that collected data for their 
planned experiments at some point across the entire curricular 
unit, yet within the focal student sample data collection 
practices were taken up 76.6% of the time. Fewer student 
groups (71.4%) applied transformations (although this was not 
unexpected as students could have used external materials to 
manipulate data). There was a similar proportion of students 
who engaged in data interpretation with the data they produced; 
they discussed the data outputs, anomalies, and trends with their 
lab partners (71.4%). Using the features provided in the IoT 
Dataflow System, students also often visualized data during 
experiments (71.4%). Few students used the viewgraphs on the 
sensor nodes (28%), but instead chose to visualize data streams 
over a whole experiment. When students used a data storage 
node or started a new experiment, a majority provided custom 
names or names for experiments (57.4%) while the remainder 
of students simply used the automatic file naming feature. A 
majority of student groups used Dataflow’s features as designed 
to engage in computational data practices. 

VIII. DISCUSSION AND IMPLICATIONS FOR FUTURE WORK  
Our implementation of Dataflow balanced tradeoffs to 

develop a reliable, secure learning application for the high 
school classroom use with many pedagogical affordances for 
both science practices and computational data practices. The 
system exposes students to working with hardware and 
software control in a cost-effective manner as it allows as many 
students to acquire data streams from the same device. Students 
can perform open-ended experiments of an unrestricted and 
interleaved duration. Design iteration and student testing 
allowed us to refine a variety of sensor and system checks to 
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reliably record student data throughout multiple program runs, 
sessions, and time frames. Dataflow document and sensor 
authentication created a secure environment for sharing that can 
be scoped to the individual, group, or class, while still offering 
the future possibility of public sensors. The system protects 
student data privacy and allows users to make choices about 
how and with whom their data is shared. Student and teacher 
comments reflected positive reception of Dataflow to support 
lab activities. The data and programs produced reflected 
productive computational thinking. 
Teachers and students who tested the IoT Dataflow System 

using a design curriculum showed that such a system resulted 
in successful use of computational tools in science class, even 
if students interest in engaging with data varied. Students could 
reliably engage in computational data practices with a Dataflow 
interface that enabled them to create programs to collect, 
transform, interpret, organize, and visualize data. While 
students’ comments were mixed regarding their preferences for 
different aspects of the activities such as writing, working in 
groups, and the length of labs, the teacher and the students 
demonstrated they could use Dataflow’s features to complete 
the planned activities.  
Future research and implementation will continue to explore 

configurations to optimize program execution and data 
acquisition. We can explore running all programs in the cloud 
or with local hubs, and balancing program execution between 
these two modalities.  
While the Dataflow application was designed for the 

secondary classroom, future applications can broaden learning 
scenarios to include out-of-school environments. Future 
classrooms that engage in community science and global lab 
science investigations may need to handle over 100,000 
simultaneous users. Scalability of these kinds of citizen science 
activities would need reliable services with server redundancy. 
Students as community scientists can collectively monitor, 
view, and aggregate real-time data gathered from, for example, 
air quality, temperature and humidity across different 
environments and geographic locations [19]. These kinds of 
experiments emphasize both the benefits of working in 
distributed teams, and the importance of IoT technologies to 
enable them.  
The IoT hardware developed in the Dataflow System to date 

is a research prototype that will be further developed into an 
open-source hardware product. To ensure the design and 
robustness of the hardware, questions exist regarding the 
lifetime and durability of IoT hardware with long-term use in 
schools, the replacement rate, and the cost over a five-year 
period. Unresolved issues and future designs could examine 
ways to integrate and support existing off-the-shelf home 
automation devices like relays and smart bulbs. Slowly 
changing scientific phenomena such as indoor farms, 
decomposition, and closed chamber biospheres require 
controlled environmental conditions which can be instrumented 
with Dataflow actuated devices. These scenarios would allow 
students to participate in long-term environmental monitoring 
to learn additional computational concepts (e.g., stabilization, 
cycling, data control-feedback). Multiple data sources over long 
timescales periodically sampled (particularly, over an Internet 
connection) may reveal new discoveries in conceptual 
understanding of the system and the data made possible by 

timescales beyond a single class period afforded by IoT. Robust 
long-term operation will be key to these scenarios. To support 
such scenarios, expanding the use of IoT from a single 
classroom to multiple classrooms will need to further address 
and mitigate privacy concerns especially when actuated devices 
involve the use of cameras or other devices that control and 
cross social boundaries from private and public learning 
environments.  
STEM classrooms will be expected to promote ways for 

students to learn with large and messy datasets to solve 
problems and generate insights about the world. Being 
immersed in the “data deluge” within science classrooms 
should become an integral part of science learning. Data and 
their analysis are already part of the Next Generation Science 
Standards (NGSS) currently being adopted by many states. We 
need to examine the interactions of students with Dataflow to 
better understand how students can meaningfully learn to 
extract and analyze data in classes with other domains (e.g. 
physics, chemistry, Earth science). Bypassing manual or single-
source collection allows students to aggregate data from 
multiple sensors of the same type; the variation in sensor values 
even for sensors of the same type can become a data science 
teaching opportunity: a place to discuss calibration, accuracies 
and sensitivities of the sensors, sources of error, and the science 
of sampling statistics. Gracefully integrating these topics in 
science courses whose focus is not solely statistics will require 
careful orchestration.  
Additional research in software interface and curriculum is 

needed. We expect to expand the data analysis, annotation, and 
export facilities of the Dataflow software in future versions as 
we learn more about how students need to manipulate data to 
support their own experimental designs. 

ACKNOWLEDGMENTS 
We acknowledge Peter Sand at Manylabs for Sensaurus 

hardware kits and team members at the Concord Consortium 
who have contributed to the project: Scott Cytacki, Colin 
Dixon, Lisa Hardy, Thomas Farmer, Sam Fentress, Sarah 
Haavind, Christine Hart, Evangeline Ireland, Matthew 
Lewandowski, Kirk Swenson, Michael Tirenin, and Charles 
Xie. We also thank the teachers and students who participated 
in the formative testing and studies. We thank Cynthia 
McIntyre and Lisa Buoncuore for their editorial assistance. 

REFERENCES 
[1] R. F. Tinker and S. Papert, “Tools for science education,” in AETS 

Yearbook: Information Technology and Science Education, J. D. Ellis, 
Ed., Columbus, OH, USA: ERIC Clearinghouse for Science, 
Mathematics, and Environmental Education, 1988, pp. 1–24. [Online]. 
Available: https://files.eric.ed.gov/fulltext/ED307114.pdf 

[2] C. Staudt, “Curriculum design principles for using probeware in a 
project–based learning setting: Learning science in context,” in Portable 
Technologies: Science Learning in Context, R. F. Tinker and J. S. Krajcik, 
Eds., New York, NY, USA: Springer, 2001, ch. 4, pp. 87–102, doi: 
10.1007/978-94-010-0638-5_5. 

[3] R. Tinker and J. Krajcik, Eds. Portable Technologies: Science Learning 
in Context, New York, NY: Springer, 2001, doi: 10.1007/978-94-010-
0638-5. 

[4] D. Russell, K. Lucas, and C. McRobbie, “The role of the microcomputer-
based laboratory display in supporting the construction of new 
understandings in kinematics,” Res. Sci. Educ., vol. 33, no. 2, pp. 217–
243, Jun. 2003, doi: 10.1023/A:1025073410522. 



TLT-2020-03-0060.R2 11 

[5] S. J. Metcalf and R. F. Tinker, “Probeware and handhelds in elementary 
and middle school science,” J. Sci. Educ. & Technol., vol. 13, no. 1, pp. 
43–49, Mar. 2004, doi: 10.1023/B:JOST.0000019637.22473.02. 

[6] A. A. Zucker, R. Tinker, C. Staudt, A. Mansfield, and S. Metcalf, 
“Learning science in grades 3–8 using probeware and computers: 
Findings from the TEEMSSS II project,” J. Sci. Educ. & Technol., vol. 
17, no. 1, pp. 42–48, Feb. 2008, doi: 10.1007/s10956-007-9086-y. 

[7] J. R. Mokros and R. F. Tinker, “The impact of microcomputer-based labs 
on children's ability to interpret graphs,” J. Res. Sci. Teaching, vol. 24, 
no. 4, pp. 369–383, Apr. 1987. doi:10.1002/tea.3660240408. 

[8] J. L. Chiu, C. J. DeJaegher, and J. Chao, “The effects of augmented virtual 
science laboratories on middle school students’ understanding of gas 
properties,” Comput. & Educ., vol. 85, pp. 59–73, Jul. 2015, doi: 
10.1016/j.compedu.2015.02.007. 

[9] P. Blikstein, T. Fuhrmann, D. Greene, and S. Salehi, “Bifocal modeling: 
Mixing real and virtual labs for advanced science learning,” in Proc. 11th 
Int. Conf. Interaction Design and Children (IDC ’12), Bremen, Germany, 
Jun. 2012, pp. 296–299, doi: 10.1145/2307096.2307150. 

[10] National Research Council, Next Generation Science Standards: For 
States, By States. Washington, DC, USA: The National Academies Press, 
2013, doi: 10.17226/18290. 

[11] T. Erickson, M. Wilkerson, M., W. Finzer, and F. Reichsman, “Data 
moves,” Technol. Innov. Statist. Educ., vol. 12, no. 1, 2019. [Online]. 
Available: https://escholarship.org/uc/item/0mg8m7g6  

[12] R. Lehrer, M.-j. Kim, and L. Schauble, “Supporting the development of 
conceptions of statistics by engaging students in measuring and modeling 
variability,” Int. J. Comput. Math. Learn., vol. 12, no. 3, pp. 195–
216, Dec. 2007, doi: 10.1007/s10758-007-9122-2. 

[13] L. Hardy, C. Dixon, and S. Hsi, “From data collectors to data producers: 
Shifting students’ relationship to data,” J. Learn. Sci., vol. 29, no. 1, pp. 
104–126, Nov. 2019, doi: 10.1080/10508406.2019.1678164. 

[14] V. R. Lee and M. H. Wilkerson, “Data use by middle and secondary 
students in the digital age: A status report and future prospects,” 
commissioned paper for the National Academies of Sciences, 
Engineering, and Medicine, Board on Science Education, Committee on 
Science Investigations and Engineering Design for Grades 6–12, 
Washington, DC, USA, 2018. 

[15] A. G. Chakarov, Q. Biddy, J. Jacobs, M. Recker, and T. Sumner, 
“Opening the black box: Investigating student understanding of data 
displays using programmable sensor technology,” in Proc. ACM Conf. 
Int. Computing Education Research (ICER ’20), Virtual Event, New 
Zealand, Aug. 2020, pp. 291–301, doi: 10.114/3372782.3406268. 

[16] D. Weintrop et al., “Defining computational thinking for mathematics and 
science classrooms,” J. Sci. Educ. & Technol., vol. 25, no. 1, pp. 127–147, 
Feb. 2016, doi: 10.1007/S10956-015-9581-5. 

[17] V. R. Lee and M. DuMont, “An exploration into how physical activity 
data-recording devices could be used in computer-supported data 
investigations,” Int. J. Comput. Math. Learn., vol. 15, no. 3, pp. 167–189, 
Oct. 2010, doi: 10.1007/s10758-010-9172-8. 

[18] F. Martin et al., “iSENSE: A web environment and hardware platform for 
data sharing and citizen science,” paper presented at the AAAI Spring 
Symp. Series, Palo Alto, CA, USA, Mar. 22–24, 2010. [Online]. 
Available: 
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1099 

[19] E. Russell, D. Edelson, and A. Switzer, “National Geographic FieldScope: 
A collaboratory geospatial platform for citizen science,” in Proc. 7th 
IEEE Int. Conf. e-Science Workshops, Stockholm, Sweden, Dec. 2011, 
pp. 34–38, doi: 10.1109/eScienceW.2011.24. 

[20] B. Hug and K. L. McNeill, “Use of first‐hand and second‐hand data in 
science: Does data type influence classroom conversations?,” Int. J. Sci. 
Educ., vol. 30, no. 13, pp. 1725–1751, Oct. 2008, doi: 
10.1080/09500690701506945. 

[21] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things 
(IoT): A vision, architectural elements, and future directions,” Future 
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi: 
10.1016/j.future.2013.01.010. 

[22] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A 
survey on role of Internet of Things in education,” Int. J. Comput. Sci. & 
Netw. Secur., vol. 17, no. 5, pp. 159–165, May 2017. [Online]. Available: 
http://paper.ijcsns.org/07_book/201705/20170520.pdf 

[23] J. Gómez, J. F. Huete, O. Hoyosa, L. Perez, and D. Grigori, “Interaction 
system based on Internet of Things as support for education,” Procedia 
Comput. Sci., vol. 21, pp. 132–139, 2013, doi: 
10.1016/j.procs.2013.09.019. 

[24] P. Putjorn, P. Siriaraya, F. Deravi, and C. S. Ang. “Investigating the use 
of sensor-based IoET to facilitate learning for children in rural Thailand,” 
PLoS ONE, vol. 13, no. 8, Aug. 2018, Art. no. e0201875, doi: 
10.1371/journal.pone.0201875. 

[25] G. González, M. M. Organero, and C. D. Kloos, “Early infrastructure of 
an Internet of things in spaces for learning,” in Proc. 8th IEEE Int. Conf. 
Advanced Learning Technologies, Santander, Spain, Jul. 2008, pp. 381–
383, doi: 10.1109/icalt.2008.210. 

[26] NASA Earth Science & Remote Sensing Unit. “Earth science & remote 
sensing missions on ISS.” 
https://eol.jsc.nasa.gov/ESRS/ISS_Remote_Sensing_Systems/ (accessed 
Mar. 1, 2020).  

[27] L. Norooz, M. L. Mauriello, A. Jorgensen, B. McNally, and J. E. 
Froehlich, “BodyVis: A new approach to body learning through wearable 
sensing and visualization,” in Proc. 33rd Annu. ACM Conf. Human 
Factors in Computer Systems (CHI ’15), Seoul, South Korea, Apr. 2015, 
pp. 1025–1034, doi: 10.1145/2702123.2702299. 

[28] M. Wilkerson and V. Laina, “Middle school students’ reasoning about 
data and context through storytelling with repurposed local data,” ZDM— 
Math. Educ., vol. 50, no. 3, pp. 1223–1235, Jul. 2018, doi: 
10.1007/s11858-018-0974-9. 

[29] C. Xie, “National Science Foundation funds research and development of 
an IoT platform for smart schools,” Concord Consortium Blog, May 2017. 
[Online]. Available: 
http://molecularworkbench.blogspot.com/2017/05/national-science- 
foundation-funds.html 

[30] M. Resnick, F. Martin., R. Sargent, and B. Silverman, “Programmable 
bricks: Toys to think with,” IBM Syst. J., vol. 35, no. 3–4, pp. 443–452, 
1996, doi: 10.1147/sj.353.0443. 

[31] C. Dixon, L. Hardy, S. Hsi, and S. Van Doren, “Computational tinkering 
in science: Designing space for computational participation in high school 
biology,” in Proc. 14th Int. Conf. Learning Sciences (ICLS ’20), vol. 1, 
M. Gresalfi and I. S. Horn, Eds. Nashville, TN, USA, Jun. 2020, pp. 154–
161, doi: 10.22318/icls2020.154. 

[32] Next Generation Science Storylines. http://www.nextgenstorylines.org 
(accessed Oct. 12, 2020). 

[33] L. Hardy and M. Lewandowski, “Under the hood: Using Raspberry Pis 
and WiFis to do more with data,” @Concord, vol. 22, no. 2, p. 14, 
2018. [Online]. Available: https://concord.org/newsletter/2018-
fall/using-raspberry-pis-and-wifis-to-do-more-with-data/ 

[34] Computer Science Teachers Association, “CSTA K–12 CS Standards,” 
2017. [Online]. Available: http://www.csteachers.org/standards. 

[35] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow 
programming languages,” ACM Comput. Surv., vol. 36, no. 1, pp. 1–34, 
Mar. 2004, doi: 10.1145/1013208.1013209. 

[36] K. N. Whitley, L. R. Novick, and D. Fisher, “Evidence in favor of visual 
representation for the dataflow paradigm: An experiment testing 
LabVIEW’s comprehensibility,” Int. J. Human-Comput. Stud., vol. 64, 
no. 4, pp. 281–303, Apr. 2006, doi: 10.1016/j.ijhcs.2005.06.005. 

[37] E. Baroth and C. Hartsough, “Visual programming in the real world,” in 
Visual Object-Oriented Programming: Concepts and Environments, M. 
Burnett, A. Goldberg, and T. Lewis, Eds. Shelter Island, NY, USA: 
Manning, 1995, ch. 2, pp. 21–42. 

[38] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous 
data flow programming language LUSTRE,” in Proc. IEEE, vol. 79, no. 
9, pp. 1305–1320, Sep. 1991, doi: 10.1109/5.97300. 

[39] S. Gauvin, M. Paquet, and V. Freiman, “Vizwik—visual data flow 
programming and its educational implications,” in Proc. 2015 World 
Conf. Educational Media and Technology (EdMedia ’15), S. Carliner, C. 
Fulford, and N. Ostashewksi, Eds. Montréal, Canada, Jun. 2015, pp. 
1594–1600. [Online]. Available: 
https://www.learntechlib.org/primary/p/151435/ 

[40] Sensaurus. (2020). Manylabs. Accessed: Feb. 16, 2020. [Online]. 
Available: https://github.com/manylabs/sensaurus 

[41] Amazon Web Services. “AWS IoT core documentation.” 
https://docs.aws.amazon.com/iot/?id=docs_gateway (accessed Jan. 23, 
2020). 

[42] Dataflow. (2020). The Concord Consortium. Accessed: Feb. 16, 2020. 
[Online]. Available: https://github.com/concord-
consortium/collaborative-learning/tree/dataflow-production 

 



TLT-2020-03-0060.R2 12 

Leslie G. Bondaryk received her B.S. 
degree in electrical engineering from the 
Massachusetts Institute of Technology in 
1988 and M.S. degree in Electrical 
Engineering from the University of 
California, Santa Barbara in 1990.  
From 1992 to 2020 she has introduced 

new technologies to educational research 
and publishing projects across computer 

science, mathematics, engineering and sciences, including the 
first Web Calculus text, The Analytical Engine Online (PWS 
Publishing, 1998), and Schaum’s Interactive Outline Series 
(McGraw Hill, 1994-2000). She is the author of papers, articles 
and book chapters on technology adoption in traditional 
classrooms, citizen science, and more recently on collaborative 
technologies in STEM software. Her research interests include 
data visualization, collaborative learning technologies, and 
novel interfaces to communicate modeling concepts. She is 
currently the Director of Technology at the Concord 
Consortium, Concord, MA. 
 

 
 

Sherry Hsi received her B.S., M.S., and 
Ph.D. degrees in engineering science, 
mechanical engineering and science 
education in 1986, 1988, and 1997 from 
the University of California Berkeley.  
She has conducted design-based 

research, evaluation studies, and learning 
technology design for over 30 years 
working in science centers, out-of-school 

settings, and in middle and secondary school classrooms. She is 
co-author of Computers, Teachers, Peers: Science Learning 
Partners, and has served as an Associate Editor of the Journal 
of the Learning Sciences. She is currently a Principal Scientist 
at BSCS Science Learning, Colorado Springs, CO. 
Dr. Hsi is the principal investigator of several National 

Science Foundation-supported research projects with an 
interest in supporting inquiry-based STEM education, 
tinkering, and agentive learning among youth.  
 

 
 

 
Seth Van Doren received his B.A. degree 
in Chemistry from the University of 
California Berkeley in 2019.  
He has worked as a research assistant at 

Lawrence Berkeley National Laboratory 
and the Berkeley Cal Teach program, 
primarily studying the effects of 
undergraduate research experiences on 
STEM identity development. From 2019 to 

2020, he was a research associate at the Concord Consortium. 
He is currently a Research Assistant at at BSCS Science 
Learning, Colorado Springs, CO. His research interests include 
authentic STEM investigations in K–12 settings, social 
learning, and increasing student epistemic agency.  

 
 
 


