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Causal inference is a critical research topic across many domains, such as statistics, computer science, ed-

ucation, public policy, and economics, for decades. Nowadays, estimating causal effect from observational

data has become an appealing research direction owing to the large amount of available data and low bud-

get requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine

learning area, various causal effect estimation methods for observational data have sprung up. In this survey,

we provide a comprehensive review of causal inference methods under the potential outcome framework,

one of the well-known causal inference frameworks. The methods are divided into two categories depending

on whether they require all three assumptions of the potential outcome framework or not. For each category,

both the traditional statistical methods and the recent machine learning enhanced methods are discussed

and compared. The plausible applications of these methods are also presented, including the applications

in advertising, recommendation, medicine, and so on. Moreover, the commonly used benchmark datasets as

well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore,

evaluate and apply the causal inference methods.
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1 INTRODUCTION

In everyday language, correlation and causality are commonly used interchangeably, although
they have quite different interpretations. Correlation indicates a general relationship: two variables
are correlated when they display an increasing or decreasing trend [7]. Causality is also referred
to as cause and effect where the cause is partly responsible for the effect, and the effect is partly
dependent on the cause. Causal inference is the process of drawing a conclusion about a causal
connection based on the conditions of the occurrence of an effect. The main difference between
causal inference and inference of correlation is that the former analyzes the response of the effect
variable when the cause is changed [104, 150].

It is well known that “correlation does not imply causation.” For example, a study showed that
girls have breakfast normally have lightweight than the girls who don’t and thus concluded that
having breakfast can help to lose weight. But in fact, these two events may just have correlation
instead of causality. Maybe the girls who have breakfast every day have a better lifestyle, such
as exercise frequently, sleep regularly, and have a healthy diet, which finally makes them have
lightweight. In this case, having a better lifestyle is the common cause of both having breakfast
and lightweight, and thus we also can treat it as a confounder of the causality between having
breakfast and lightweight.

In many cases, it seems obvious that one action can cause another; however, there exists also
many cases that we cannot easily tease out and make sure the relationship. Therefore, learning
causality is one dauntingly challenging problem. The most effective way of inferring causality is
to conduct a randomized controlled trial, which randomly assigns participants into a treatment
group or a control group. As the randomized study is conducted, the only expected difference
between the control and treatment groups is the outcome variable being studied. However, in re-
ality, randomized controlled trials are always time-consuming and expensive, and thus the study
cannot involve many subjects, which may be not representative of the real-world population a
treatment/intervention would eventually target. Another issue is that the randomized controlled
trials only focus on the average of samples, and it does not explain the mechanism or pertain for
individual subjects. In addition, ethical issues also need to be considered in most of the random-
ized controlled trials, which largely limits its applications. Therefore, instead of the randomized
controlled trials, the observational data is a tempting shortcut. Observational data is obtained by
the researcher simply observing the subjects without any interfering. That means, the researchers
have no control over treatments and subjects, and they just observe the subjects and record data
based on their observations. From the observational data, we can find their actions, outcomes,
and information about what has occurred, but cannot figure out the mechanism why they took a
specific action. For the observational data, the core question is how to get the counterfactual out-
come. For example, we want to answer this question “would this patient have different results if he
received a different medication?” Answering such counterfactual questions is challenging due to
two reasons [135]: the first one is that we only observe the factual outcome and never the counter-
factual outcomes that would potentially have happened if they have chosen a different treatment
option. The second one is that treatments are typically not assigned at random in observational
data, which may lead the treated population differs significantly from the general population.

To solve these problems in causal inference from observational data, researchers develop
various frameworks, including the potential outcome framework [127, 149] and the structural

causal model (SCM) [102, 105, 107]. The potential outcome framework is also known as the
Neyman–Rubin Potential Outcomes or the Rubin Causal Model. In the example, we mentioned
above, a girl would have a particular weight if she had breakfast normally every day, whereas she
would have a different weight if she didn’t have breakfast normally. To measure the causal effect of
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having breakfast normally for a girl, we need to compare the outcomes for the same person under
both situations. Obviously, it is impossible to see both potential outcomes at the same time, and one
of the potential outcomes is always missing. The potential outcome framework aims to estimate
such potential outcomes and then calculate the treatment effect. Therefore, the treatment effect
estimation is one of the central problems in causal inference under the potential outcome frame-
work. Another influential framework in causal inference is the SCM, which includes the causal
graph and the structural equations. The SCM describes the causal mechanisms of a system where
a set of variables and the causal relationship among them are modeled by a set of simultaneous
structural equations. Another line of learning causality is causal structure learning, whose
objective is to reveal the causal relation by generating a causal graph. Representative methods can
be divided into three categories, including constraint-based models [147], score-based models [31,
114], and functional causal models [62, 176]. Different from causal effect estimation, causal
structure learning address a different class of problems, which is out of our survey’s scope;
see [148] for more information.

The causal inference has a close relationship with the machine learning area. In recent years, the
magnificent bloom of the machine learning area enhances the development of the causal inference
area. Powerful machine learning methods such as decision tree, ensemble methods, deep neural
network, are applied to estimate the potential outcome more accurately. In addition to the amelio-
ration of the outcome estimation model, machine learning methods also provide a new aspect to
handle the confounders. Benefitting from the recently deep representation learning methods, the
confounder variables are adjusted by learning the balanced representation for all covariates, so
that conditioning on the learned representation, the treatment assignment is independent of the
confounder variables. In machine learning, the more data the better. However, in causal inference,
more data alone is not yet enough. Having more data only helps to get more precise estimates, but
it cannot make sure these estimates are correct and unbiased. Machine learning methods enhance
the development of causal inference, meanwhile, causal inference also helps machine learning
methods. The simple pursuit of predictive accuracy is insufficient for modern machine learning
research, and correctness and interpretability are also the targets of machine learning methods.
Causal inference is starting to help to improve machine learning, such as recommender systems
or reinforcement learning.

In this article, we provide a comprehensive review of the causal inference methods under the po-
tential outcome framework. We first introduce the basic concepts of the potential outcome frame-
work as well as its three critical assumptions to identify the causal effect. After that, various causal
inference methods with these three assumptions are discussed in detail, including re-weighting
methods, stratification methods, matching based methods, tree-based methods, representation-
based methods, multi-task learning based methods, and meta-learning methods. Additionally,
causal effect estimation methods that relax the three assumptions are also described to fulfill the
needs in different settings. After introducing various causal effect estimation methods, the real-
world applications that the discussed methods have great potential to benefit are discussed, in-
cluding the advertisement area, recommendation area, medicine area, and reinforcement learning
area as the representative examples.

To the best of our knowledge, this is the first article that provides a comprehensive survey for
causal inference methods under the potential outcome framework. There also exist several surveys
that discuss one category of the causal effect estimation methods, such as the survey of matching
based methods [151], survey of tree-based and ensemble-based method [12], and the review of
dynamic treatment regimes [28]. For the SCM, it is suggested to refer to the survey [104] or the
book [103]. There is also a survey about learning causality from observational data [52] whose
content ranges from inferring the causal graph from observational data, SCM, potential outcome
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framework, and their connection to machine learning. Compared with the surveys mentioned
above, this survey article mainly focuses on the theoretical background of the potential outcome
framework, the representative methods across the statistic domain and machine learning domain,
and how this framework and the machine learning area enhance each other.

To summarize, our contributions to this survey are as follows:

—New taxonomy: We separate various causal inference methods into two major categories
based on whether they require the three assumptions of the potential outcome framework.
The category requiring three assumptions are further divided into seven sub-categories
based on the way to handle the confounder variables.

—Comprehensive review: We provide a comprehensive survey of the causal inference methods
under the potential outcome framework. In each category, the detailed descriptions of the
representative methods, the connection and comparison between the mentioned methods,
and the general summation are provided.

—Abundant resources: In this survey, we list the state-of-art methods, the benchmark datasets,
open-source codes, and representative applications.

The rest of the article is organized as follows. In Section 2, the background of the potential
outcome framework is introduced, including the basic definitions, the assumptions, and the fun-
damental problems with their general solutions. In Section 3, the methods under three assumptions
are presented. Then, in Section 4, we discuss the problem when some assumptions are not satisfied,
and describe the methods that relax those assumptions. Next, we provide experimental guidelines
in Section 5. Afterward, in Section 6, the typical applications of causal inference are illustrated.
After that, in Section 7, the future directions and open problems are discussed. Finally, Section 8
summarizes the article.

2 BASIC OF CAUSAL INFERENCE

In this section, we present the background knowledge of causal inference, including task descrip-
tion, mathematical notions, assumptions, challenges, and general solutions. We also give an illus-
trative example that will be used throughout this survey.

Generally speaking, the task of causal inference is to estimate the outcome changes if another
treatment had been applied. For example, suppose there are two treatments that can be applied to
patients: Medicine A and Medicine B. When applying Medicine A to the interested patient cohort,
the recovery rate is 70%, while applying Medicine B to the same cohort, the recovery rate is 90%.
The change of recovery rate is the effect that treatment (i.e., medicine in this example) asserts on
the recovery rate.

The above example describes an ideal situation to measure the treatment effect: applying differ-
ent treatments to the same cohort. In real-world scenarios, this ideal situation can only be approx-
imated by a randomized experiment, in which the treatment assignment is controlled, such as a
completely random assignment. In this way, the group receives a specific treatment can be viewed
as an approximation to the cohort we are interested in.

However, performing randomized experiments are expensive, time-consuming, and sometimes
even unethical. Therefore, estimating the treatment effect from observational data has attracted
growing attention due to the wide availability of observational data. Observational data usually
contains a group of individuals taken different treatments, their corresponding outcomes, and
possibly more information, but without direct access to the reason/mechanism why they took the
specific treatment. Such observational data enable researchers to investigate the fundamental
problem of learning the causal effect of a certain treatment without performing randomized
experiments. To better introduce various treatment effect estimation methods, the following
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section introduces several definitions, including unit, treatment, outcome, treatment effect, and
other information (pre- and post-treatment variables) provided by observational data.

2.1 Definitions

Here we define the notations under the potential outcome framework [127, 149], which is logically
equivalent to another framework, the SCM framework [72]. The foundation of the potential out-
come framework is that the causality is tied to treatment (or action, manipulation, intervention),
applied to a unit [69]. The treatment effect is obtained by comparing units’ potential outcomes of
treatments. In the following, we first introduce three essential concepts in causal inference: unit,
treatment, and outcome.

Definition 1 (Unit). A unit is the atomic research object in the treatment effect study.

A unit can be a physical object, a firm, a patient, an individual person, or a collection of objects
or persons, such as a classroom or a market, at a particular time point [69]. Under the potential
outcome framework, the atomic research objects at different time points are different units. One
unit in the dataset is a sample of the whole population, so in this survey, the term “sample” and
“unit” are used interchangeably.

Definition 2 (Treatment). Treatment refers to the action that applies (exposes, or subjects) to a
unit.

LetW (W ∈ {0, 1, 2, . . . ,NW }) denote the treatment, where NW + 1 is the total number of pos-
sible treatments. In the aforementioned medicine example, Medicine A is a treatment. Most of the
literatures consider the binary treatment, and in this case, the group of units applied with treat-
mentW = 1 is the treated group, and the group of units withW = 0 is the control group.

Definition 3 (Potential Outcome). For each unit-treatment pair, the outcome of that treatment
when applied on that unit is the potential outcome [69].

The potential outcome of treatment with value w is denoted as Y (W = w ).

Definition 4 (Observed Outcome). The observed outcome is the outcome of the treatment that is
actually applied.

The observed outcome is also called factual outcome, and we use Y F to denote it where F
stands for “factual.” The relation between the potential outcome and the observed outcome is:
Y F = Y (W = w ) where w is the treatment actually applied.

Definition 5 (Counterfactual Outcome). Counterfactual outcome is the outcome if the unit had
taken another treatment.

The counterfactual outcomes are the potential outcomes of the treatments except the one actu-
ally taken by the unit. Since a unit can only take one treatment, only one potential outcome can
be observed, and the remaining unobserved potential outcomes are the counterfactual outcome.

In the multiple treatment case, let YCF (W = w
′
) denote the counterfactual outcome of treatment

with value w
′
. In the binary treatment case, for notation simplicity, we use YCF to denote the

counterfactual outcome, andYCF = Y (W = 1 −w ), wherew is the treatment actually taken by the
unit.

In the observational data, besides the chosen treatments and the observed outcome, the units’
other information is also recorded, and they can be separated as pre-treatment variables and the
post-treatment variables.
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Definition 6 (Pre-treatment Variables). Pre-treatment variables are the variables that are not af-
fected by the treatment.

Pre-treatment variables are also named as background variables, and they can be patients’ de-
mographics, medical history, and and the like. Let X denote the pre-treatment variables.

Definition 7 (Post-treatment Variables). The post-treatment variables are the variables that are
affected by the treatment.

One example of post-treatment variables is the intermediate outcome, such as the lab test after
taking the medicine in the aforementioned medicine example.

In the following sections, the terminology variable refers to the pre-treatment variable unless
otherwise specified.

Treatment Effect. After introducing the observational data and the key terminologies, the
treatment effect can be quantitatively defined using the above definitions. The treatment effect
can be measured at the population, treated group, subgroup, and individual levels. To make these
definitions clear, here we define the treatment effect under binary treatment, and it can be extended
to multiple treatments by comparing their potential outcomes.

At the population level, the treatment effect is named as the Average Treatment Effect (ATE),
which is defined as:

ATE = E[Y(W = 1) − Y(W = 0)], (1)

where Y(W = 1) and Y(W = 0) are the potential treated and control outcome of the whole popu-
lation respectively.

For the treated group, the treatment effect is named as Average Treatment effect on the

Treated group (ATT), and it is defined as:

ATT = E[Y(W = 1) |W = 1] − E[Y(W = 0) |W = 1], (2)

where Y(W = 1) |W = 1 and Y(W = 0) |W = 1 are the potential treated and control outcome of the
treated group respectively.

At the subgroup level, the treatment effect is called Conditional Average Treatment Effect

(CATE), which is defined as:

CATE = E[Y(W = 1) |X = x] − E[Y(W = 0) |X = x], (3)

where Y(W = 1) |X = x and Y(W = 0) |X = x are the potential treated and control outcome of the
subgroup with X = x , respectively. CATE is a common treatment effect measurement under the
case where the treatment effect varies across different subgroups, which is also known as the
heterogeneous treatment effect.

At the individual level, the treatment effect is called Individual Treatment Effect (ITE), and
the ITE of unit i is defined as:

ITEi = Yi (W = 1) − Yi (W = 0), (4)

where Yi (W = 1) and Yi (W = 0) are the potential treated and control outcome of unit i , respec-
tively. In some literatures [70, 139], the ITE is viewed equivalent to the CATE.

Objective. For causal inference, our objective is to estimate the treatment effects from the ob-
servational data. Formally speaking, given the observational dataset, {Xi ,Wi ,Y

F
i }Ni=1, where N is

the total number of units in the datasets, the goal of the causal inference task is to estimate the
treatment effects defined above.
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2.2 An Illustrative Example

To better illustrate causal inference, we use the following example combined with the notations
defined above to give an overview. In this example, we want to evaluate the treatment effects of
several different medications for one disease, by exploiting the observational data (i.e., the elec-
tronic health records) that include demographic information of patients, the specific medication
with the specific dosage taken by patients, and the outcome of medical tests. Obviously, we can
only get one factual outcome for a specific patient from electronic health records, and thus the
core task is to predict what would have happened if a patient took another treatment (i.e., a differ-
ent medication or the same medication with a different dosage). Answering such counterfactual
questions is very challenging. Therefore, we want to use causal inference to predict all of the po-
tential outcomes for each patient over all of the medications with different dosages. Then, we can
reasonably and accurately evaluate and compare the treatment effect of different medications for
this disease.

One particular point to keep in mind is that for each medication, they may have different
dosages. For example, for medication A, the dosage range can be a continuous variable in the
range [a,b], while for medication B, the dosage can be a categorical variable that has several spe-
cific dosage regimens.

In the aforementioned example, the units are the patients with the studied disease. The treat-
ments refer to the different medications with specific dosages for this disease, and we use W
(W ∈ {0, 1, 2, . . . ,NW }) to denote these treatments. For example, Wi = 1 can represent the med-
icationA with a specific dosage is taken by the unit i , andWi = 2 represents the medication B with
a specific dosage is taken by the unit i . Y is the outcome, such as one type of blood test that can
measure the medication’s ability to destroy the disease and lead to the recovery of the patients. Let
Yi (W = 1) denote the potential outcome of medication A with a specific dosage on patient i . The
features of patients may include age, gender, clinical presentation, some other medical tests, and
the like. Among these features, age, gender, and other demographic information are pre-treatment
variables that cannot be affected by taking treatment. Some clinical presentations and medical
tests are affected by taking medications, and they are post-treatment variables. In this example,
our goal to estimate the treatment effects of different medications for this disease based on the
provided observational data.

In the following sections, we will continuously use this example to explain more concepts and
illustrate intuitions behind various causal inference methods.

2.3 Assumptions

In order to estimate the treatment effect, the following assumptions are commonly used in the
causal inference literature.

Assumption 2.1 [Stable Unit Treatment Value Assumption (SUTVA)]. The potential out-
comes for any unit do not vary with the treatment assigned to other units, and, for each unit, there
are no different forms or versions of each treatment level, which lead to different potential outcomes.

This assumption emphasizes two points: The first point is the independence of each unit, that
is, there are no interactions between units. In the context of the above illustrative example, one
patient’s outcome will not affect other patients’ outcomes.

The second point is the single version for each treatment. In the above example, Medicine A
with different dosages are different treatments under the SUTVA assumption.

Assumption 2.2 [Ignorability]. Given the background variable, X , treatment assignmentW is
independent to the potential outcomes, i.e.,W ⊥⊥ Y (W = 0),Y (W = 1) |X .
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In the context of the illustrative example, this ignorability assumption indicates two folds: first,
if two patients have the same background variable X , their potential outcomes should be the same
whatever the treatment assignment is, i.e., p (Yi (0),Yi (1) |X = x ,W =Wi ) = p (Yj (0),Yj (1) |X =
x ,W =Wj ). Analogously, if two patients have the same background variable value, their treatment
assignment mechanism should be same whatever the value of potential outcomes they have, i.e.,
p (W |X = x ,Yi (0),Yi (1)) = p (W |X = x ,Yj (0),Yj (1)). The ignorability assumption is also named as
unconfoundedness assumption. With this unconfoundedness assumption, for the units with the
same background variable X , their treatment assignment can be viewed as random.

Assumption 2.3 [Positivity]. For any value of X , treatment assignment is not deterministic:

P (W = w |X = x ) > 0, ∀w and x . (5)

If for some values of X , the treatment assignment is deterministic; then for these values, the
outcomes of at least one treatment could never be observed. In this case, it would be unable and
meaningless to estimate the treatment effect. To be more specific, suppose there are two treat-
ments: Medicine A and Medicine B. Let’s assume that patients with age greater than 60 are always
assigned with medicine A, then it will be unable and meaningless to study the outcome of medicine
B on those patients. In other words, the positivity assumption indicates the variability, which is
important for treatment effect estimation.

In [69], the ignorability and the positivity assumptions together are called Strong Ignorability or
Strongly Ignorable Treatment Assignment.

With these assumptions, the relationship between the observed outcome and the potential out-
come can be rewritten as:

E[Y (W = w ) |X = x] = E[Y (W = w ) |W = w,X = x] (Ignorability)

= E[Y F |W = w,X = x],
(6)

whereY F is the random variable of the observed outcome, andY (W = w ) is the random variable of
the potential outcome of treatmentw . If we are interested in the potential outcome of one specific
group (either the subgroup, the treated group, or the whole population), the potential outcome can
be obtained by taking expectation of the observed outcome over that group.

With the above equation, we can rewrite the treatment effect defined in Section 2.1 as follows:

ITEi =WiY
F
i −WiY

CF
i + (1 −Wi )YCF

i − (1 −Wi )Y F
i

ATE = EX

[
E[Y F |W = 1,X = x] − E[Y F |W = 0,X = x]

]
=

1

N

∑
i

(Yi (W = 1) − Yi (W = 0)) =
1

N

∑
i

ITEi

ATT = EXT

[
E[Y F |W = 1,X = x] − E[Y F |W = 0,X = x]

]
=

1

NT

∑
{i :Wi=1}

(Yi (W = 1) − Yi (W = 0)) =
1

NT

∑
{i :Wi=1}

ITEi

CATE = E[Y F |W = 1,X = x] − E[Y F |W = 0,X = x]

=
1

Nx

∑
{i :Xi=x }

(Yi (W = 1) − Yi (W = 0)) =
1

Nx

∑
{i :Xi=x }

ITEi

(7)

where Yi (W = 1) and Yi (W = 0) are the potential treated/control outcomes of unit i , N is the total
number of units in the whole population, NT is the number of units in the treated group, and
Nx is the number of units in the group with X = x . The second line in the ATE, ATT, and CATE
equations are their empirical estimations. Empirically, the ATE can be estimated as the average of
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Table 1. An Example to Show the Spurious Effect of Confounder Variable Age

Age

Recovery Rate Treatment
Treatment A Treatment B

Young 234/270 = 87% 81/87 = 92%
Older 55/80 = 69% 192/263 = 73%

Overall 289/350 = 83% 273/350 = 78%

ITE on the entire population. Similarly, ATT and CATE can be estimated as the average of ITE on
the treated group and specific subgroup separately.

However, due to the fact that the potential treated/control outcomes can never be observed si-
multaneously, the key point in the treatment effect estimation is how to estimate the counterfactual
outcome in ITE estimation or how to estimate the 1

N∗

∑
i Yi (W = 1) and 1

N∗

∑
i Yi (W = 0), where

N∗ denotes N , NT or Nx . In the following section, we will discuss the challenges in estimation
these terms and briefly introduce the general solutions.

2.4 Confounders and General Solutions

As mentioned above, how to estimate the average potential treated/control outcome over a spe-
cific group is the core of causal inference. Let’s take ATE as a case study: when estimating the
ATE, a natural idea is to directly use the average of observed treated/control outcomes, i.e.,

ˆATE = 1
NT

∑NT

i=1 Y
F
i −

1
NC

∑NC

i=1 Y
F
j , where NT and NC is the number of units in the treated and con-

trol group, respectively. However, due to the existence of confounders, there is a serious problem
in this estimation: this calculated ATE includes a spurious effect brought by the confounders.

Definition 8 (Confounders). Confounders are the variables that affect both the treatment assign-
ment and the outcome.

Confounders are some special pre-treatment variables, such as age in the medicine example.
When directly using the average of observed treated/control outcome, the calculated ATE includes
not only the effect of treatment on the outcome but also the effect of confounders on the outcome,
which leads to the spurious effect. For example, in the medicine example, age is a confounder. Age
affects the recovery rate: in general, young patients have a better chance to recover compared to
older patients. Age also affects the treatment choice: young patients may prefer to take medicine
A while older patients prefer medicine B, or for the same medicine, young patients have a differ-
ent dosage with elderly patients. The observational data is shown in Table 1, and let us estimate

ATE according to the above equation: ˆATE = 1
NA

∑NA

i=1 Y
F
i −

1
NB

∑NB

i=1 Y
F
j = 289/350 − 273/350 =

5%, where NA and NB is the number of patients taking Medicine A and B, respectively. How-
ever, we cannot conclude that Treatment A is more effective than Treatment B, because the high
average recovery rate of the group taking Treatment A may be caused by the fact that most pa-
tients of this group (270 out of 350) are young patients. Thus the effect of age on the recovery rate
is the spurious effect, as it is mistakenly counted into the effect of treatment on the outcome.

From Table 1, we can observe another interesting phenomenon, Simpson’s paradox (or Simpson’s
reversal, Yule–Simpson effect, amalgamation paradox, reversal paradox) [21, 50], brought by the
confounder. It can be observed that: in both Young and Older patient groups, Medicine B has a
higher recovery rate than Medicine A; but when combining these two groups, Medicine A is the
one with a higher recovery rate. This paradox is caused by the confounder variable: when compare
the recovery rate in the whole group, most of the people taking medicine A are young, and the
comparison shown in the table fails to eliminate the effect of age on the recovery rate.
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Fig. 1. An example to show the selection bias caused by confounder variable Age.

In addition to the spurious effect in treatment effect estimation, confounders also cause prob-
lems in counterfactual outcome estimation. As shown in Equation (7), counterfactual outcome
estimation is an alternative way to estimate the ATE. Confounder variables cause selection bias,
which makes the counterfactual outcome estimation more difficult.

Selection bias is the phenomenon that the distribution of the observed group is not represen-
tative to the group we are interested in, i.e., p (Xobs ) � p (X∗), where p (Xobs ) and p (X∗) are the
distributions of the variables in the observed group and the interested group, respectively. Con-
founder variables affect units’ treatment choices, which leads to selection bias. In the medicine
example, age is a confounder variable, so that people of different ages have different treatment
preferences. Figure 1 shows the age distribution of the observed treated/control group. Appar-
ently, the age distribution of the observed treated group is different from the age distribution of
the observed control group. This phenomenon exacerbates the difficulty of counterfactual outcome
estimation as we need to estimate the control outcome of units in the treated group based on the
observed control group, and similarly, estimate the treated outcome of units in the control group
based on the observed treated group. If we directly train the potential outcome estimation model

Ŷ (x ,w ) = fw (x ) on the data with W = w without handling the selection bias, the trained model
would work poorly in estimating the potential outcome ofW = w for the units in the other group.
This problem brought by the selection is also named as covariate shift in the Machine Learning
community.

Handing the problems caused by confounder variables is the essential part of causal inference,
and the procedure of handing confounder variables is called adjust confounders. The following
part of this section briefly discusses the general solutions to tackle the above two problems caused
by confounders under the ignorability assumption. The problem when there exists unobserved
confounders will be discussed in Section 4.2.

To solve the spurious effect problem, we should take the effect of confounder variables on out-
comes into consideration. A general approach along this direction first estimates the treatment
effect conditioning on the confounder variables and then conducts weighted averaging over the
confounder according to its distribution. To be more specific,

ˆATE =
∑

x p (x )E[Y F |X = x ,W = 1] −∑
x p (x )E[Y F |X = x ,W = 0]

=
∑
X∗ p (X ∈ X∗)

(
1

N{i :Xi ∈X∗,Wi =1}

∑
{i :Xi ∈X∗,Wi=1} Y

F
i

)

−∑
X∗ p (X ∈ X∗)

(
1

N{j :Xj ∈X∗,Wj=1}

∑
{j :X j ∈X∗,Wj=0} Y

F
j

)
,

(8)
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where X∗ is a set of X values, p (X ∈ X∗) is the probability of the background variables in X∗ over
the whole population, {i : xi ∈ X∗,Wi = w } is the subgroup of units whose background variable
values belong to X∗ and treatment is equal to w . Stratification, which will be discussed in details
later, is a representative method of this category.

For the selection bias problem, there are two general approaches to solve it. The first general
approach handles selection bias by creating a pseudo group which is approximately close to the
interested group. Possible methods include sample re-weighting, matching, tree-based methods,
confounder balancing, balanced representation learning methods, multi-task-based methods, and
the like. The created pseudo-group alleviates the negative influence of the selection bias, and bet-
ter counterfactual outcome estimations can be obtained. The other general approach first trains
the base potential outcome estimation models solely on the observed data, and then correct the
estimation bias caused by the selection bias. Meta-learning based methods belong to this category.

3 CAUSAL INFERENCE METHODS RELYING ON THREE ASSUMPTIONS

In this section, we introduce existing causal inference methods that rely on the three assumptions
introduced in Section 2. According to the way to control confounders, we divide these methods
into the following categories: (1) re-weighting methods; (2) stratification methods; (3) matching
methods; (4) tree-based methods; (5) representation based methods; (6) multi-task methods; and
(7) meta-learning methods.

3.1 Re-weighting Methods

Due to the existence of confounders, the covariate distributions of the treated group and control
group are different, which leads to the selection bias problem as described in Section 2.4. In other
words, the treatment assignment is correlated with covariates in the observational data. Sample re-
weighting is an effective approach to overcome selection bias. By assigning appropriate weight to
each unit in the observational data, a pseudo-population can be created on which the distributions
of the treated group and control group are similar.

In sample re-weighting methods, a key concept is balancing score. Balancing score b (x ) is a
general weighting score, which is the function of x satisfying: W ⊥⊥ |b (x ) [69], where W is the
treatment assignment and x is the background variables. There are various designs of the balancing
score, and apparently, the most trivial design of balancing score is b (x ) = x due to the ignorability
assumption. Besides, propensity score is also a special case of balancing score.

Definition 9 (Propensity Score). The propensity score is defined as the conditional probability of
treatment given background variables [122]:

e (x ) = Pr (W = 1|X = x ). (9)

In detail, a propensity score indicates the probability of a unit being assigned to a particular
treatment given a set of observed covariates. Balancing scores that incorporate propensity score
are the most common approach.

A summarization of the algorithms mentioned in this section is shown in Figure 2. The propen-
sity score based sample reweighting will be introduced in the next section, followed by methods
that weigh both samples and the covariates.

3.1.1 Propensity Score Based Sample Re-weighting. Propensity scores can be used to reduce
selection bias by equating groups based on these covariates. Inverse propensity weighting

(IPW) [121, 122], also named as inverse probability of treatment weighting, assigns a weight r
to each sample:

r = W
e (x ) +

1−W
1−e (x ) , (10)
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Fig. 2. Categorization of Reweighting Methods.

where W is the treatment assignment (W = 1 denotes being treated group; W = 0 denotes the
control group), and e (x ) is the propensity score defined in Equation (9).

After re-weighting, the IPW estimator of ATE is:

ˆATEI PW =
1

n

n∑
i=1

WiY
F
i

ê (xi )
− 1

n

n∑
i=1

(1 −Wi )Y F
i

1 − ê (xi )
, (11)

and its normalized version, which is preferred especially when the propensity scores are obtained
by estimation [68]:

ˆATEI PW =

n∑
i=1

WiY
F
i

ê (xi )

/ n∑
i=1

Wi

ê (xi )
−

n∑
i=1

(1 −Wi )Y F
i

1 − ê (xi )

/ n∑
i=1

(1 −Wi )

1 − ê (xi )
. (12)

Both large and small sample theory show that adjustment for the scalar propensity score is enough
to remove bias due to all observed covariates [122]. The propensity score can be used to balance
the covariates in the treatment and control groups and therefore reduce the bias through match-
ing, stratification (subclassification), regression adjustment, or some combination of all three. [37]
discusses the use of propensity score to reduce the bias, which also provides examples and detailed
discussions.

However, in practice, the correctness of the IPW estimator highly relies on the correctness of the
propensity score estimation, and slightly misspecification of propensity scores would cause ATE
estimation error dramatically [66]. To handle this dilemma, Doubly Robust (DR) estimator [119],
also named as Augmented IPW, is proposed. DR estimator combines the propensity score weight-
ing with the outcome regression, so that the estimator is robust even when one of the propensity
score or outcome regression is incorrect (but not both). In detail, the DR estimator is formalized
as:

ˆATEDR =
1

n

n∑
i=1

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎢⎣
WiY

F
i

ê (xi )
−Wi − ê (xi )

ê (xi )
m̂(1,xi )

⎤⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣

(1 −Wi )Y F
i

1 − ê (xi )
−Wi − ê (xi )

1 − ê (xi )
m̂(0,xi )

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭

=
1

n

n∑
i=1

⎧⎪⎨⎪⎩m̂(1,xi ) +
Wi (Y F

i − m̂(1,xi ))

ê (xi )
− m̂(0,xi ) −

(1 −Wi ) (Y F
i − m̂(0,xi ))

1 − ê (xi )

⎫⎪⎬⎪⎭ ,
(13)

where m̂(1,xi ) and m̂(0,xi ) are the regression model estimations of treated and control outcomes.
The DR estimator is consistent and therefore asymptotically unbiased, if either the propensity
score is correct or the model correctly reflects the true relationship among exposure and con-
founders with the outcome [46]. In reality, one definitely cannot guarantee whether one model
can accurately explain the relationship among variables. The combination of outcome regression
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with weighting by propensity score ensures that the estimators are robust to misspecification of
one of these models [14, 117, 119, 133].

The DR estimator consults outcomes to make the IPW estimator robust when propensity score
estimation is not correct. An alternative way is to improve the estimation of propensity scores.
In the IPW estimator, propensity score serves as both the probability of being treated and the
covariate balancing score, covariate balancing propensity score (CBPS) [66] is proposed to
exploit such dual characteristics. In particular, CBPS estimates propensity scores by solving the
following problem:

E

[
Wi x̃i

e (xi ; β )
− (1 −Wi )x̃i

1 − e (xi ; β )

]
= 0, (14)

where x̃i = f (xi ) is a predefined vector-valued measurable function of xi . By solving the above
problem, CBPS directly constructs the covariate balancing score from the estimated paramet-
ric propensity score, which increase the robustness to the misspecification of the propensity
score model. An extension of CBPS is the covariate balancing generalized propensity score

(CBGPS) [47], which enables to handle the treatment with continuous value. Due to the continu-
ous valued treatment, it’s hard to directly minimized the covariates distribution distance between
the control and treated group. CBGPS solves this problem by mitigating the definition of the bal-
ancing score. Based on the definition, the treatment assignment is conditionally independent of
the background variables, CBGPS directly minimize the correlation between the treatment assign-
ment and the covariates after weighting. In specific, the objective of CBGPS is to learn a propensity
score based weight so that the weighted correlation between the treatment assignment and the co-
variates are minimized:

E

(
p (t∗)

p (t∗ |x∗) t
∗x∗

)
=

∫ {∫
p (t∗)

p (t∗ |x∗) t
∗dP (t∗ |x∗)

}
x∗dP (x∗)

= E(t∗)E(x∗) = 0,

(15)

where p (t∗ |x∗) is the propensity score, and
p (t ∗ )

p (t ∗ |x ∗ ) is the balancing weight, t∗ and x∗ is the treat-

ment assignment and the background variables after centering and orthogonalizing (i.e., normal-
ization). In a nutshell, both CBPS and CBGPS learns the propensity score based sample weight
directly towards the covariate balancing goal, which can alleviates negative effect brought by
model misspecification of propensity score.

Another drawback of the original IPW estimator is that it might be unstable if the estimated
propensity scores are small. If the probability of either treatment assignment is small, the logistic
regression model can become unstable around the tails, causing the IPW to also be less stable. To
overcome this issue, trimming is routinely employed as a regularization strategy, which eliminates
the samples whose propensity scores are less than a pre-defined threshold [85]. However, this
approach is highly sensitive to the amount of trimming [94]. Also, theoretical results in [94] show
that the small probability of propensity scores and the trimming procedure may result in different
non-Gaussian asymptotic distribution of IPW estimator. Based on this observation, a two-way
robustness IPW estimation algorithm is proposed in [94]. This method combines subsampling
with a local polynomial regression based trimming bias corrector so that it is robust to both small
propensity score and the large scale of trimming threshold. An alternative approach to overcome
the instability of IPW under small propensity scores is to redesign the sample weight so that
the weight is bounded. In [87], the overlap weight is proposed, in which each unit’s weight is
proportional to the probability of that unit being assigned to the opposite group. In detail, the
overlap weight h(x ) is defined as h(x ) ∝ 1 − e (x ), where e (x ) is the propensity score. The overlap
weight is bounded within the interval [0, 0.5], and thus it is less sensitive to the extreme value of
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the propensity score. Recent theoretical results show that the overlap weight has the minimum
asymptotic variance among all balancing weights [87].

3.1.2 Confounder Balancing. The aforementioned sample re-weighting methods could achieve
balance in the sense that the observed variables are considered equally as confounders. How-
ever, in real cases, not all the observed variables are confounders. Some of the variables, named as
adjustment variables, are only predictive to the outcome, and some others might be irrelevant vari-
ables [80]. Adjusting on the adjustment variables by Lasso, although it cannot reduce the bias, helps
decrease the variance [20, 132]. While including the irrelevant variables would cause overfitting.

Based on the separateness assumption that the observed variables can be decomposed into con-
founders, adjusted variables and the irrelevant variables, in [80], the Data-Driven Variable De-

composition (D2VD) algorithm is proposed to distinguish the confounders and adjustment vari-
ables, and meanwhile, eliminate the irrelevant variables. In detail, the adjusted outcome is written
as:

Y ∗
D2VD

=
(
Y F − ϕ (z)

) W − p (x )

p (x ) (1 − p (x ))
, (16)

where z is the adjustment variables. Therefore, the ATE estimator of D2VD is:

ATED2VD = E

[(
Y F − ϕ (z)

) W − p (x )

p (x ) (1 − p (x ))

]
. (17)

To get ATED2VD, Y ∗
D2VD

is regressed on all observed variables with parameter α separating the
adjustment variables z from all observed variables and parameter β separating the confounders
from all observed variables, i.e., Y ∗

D2VD
= (Y F − Xα ) � R (β ), where R (β ) is the the weight and

R (β ) = W −e (X )
e (X )(1−e (X )) in which e (X ) is parameterized by β . The objective function is l2 loss between

Y ∗
D2VD

and ATE value estimated by the linear regression function on all observed variables param-
eterized by γ , along with sparse regularization to distinguish the confounder, adjusted variables,
and irrelevant variables. In detail, the objective function is defined as:

minimize | |(Y F − Xα ) � R (β ) − Xγ | |22 ,

s.t.

N∑
i=1

log(1 + exp(1 − 2Wi ) · Xiβ )) < τ ,

| |α | |1 ≤ λ, | |β | |1 ≤ δ , | |γ | |1 ≤ η, | |α � β | |22 = 0,

(18)

where R (w ) is the weight, τ , λ, δ , η is the hyper-parameter. The first condition represents the
propensity score estimation error and the next three conditions encourage the sparsity. The
last condition, the Hadamard product, ensures the separation of adjusted variables and the
confounders.

However, little prior knowledge about the interactions among observed variables is provided
in practice, and the data are usually high-dimensional and noisy. To solve this, Differentiated

Confounder Balancing (DCB) algorithm [79] is proposed to select and differentiate confounders
to balance the distributions. Overall, DCB balances the distributions by re-weighting both the
samples and confounders.

3.2 Stratification Methods

Stratification, also named as subclassification or blocking [69], is a representative method to adjust
the confounders. The idea of stratification is to adjust the bias that stems from the difference
between the treated group and the control group by splitting the entire group into homogeneous
subgroups (blocks). Ideally, in each subgroup, the treated group and the control group are similar
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under certain measurements over the covariates, therefore, the units in the same subgroup can be
viewed as sampled from the data under randomized controlled trials. Based on the homogeneity of
each subgroup, the treatment effect within each subgroup (i.e., CATE) can be calculated through
the method developed on Randomized Controlled Trials (RCTs) data. After having the CATE of
each subgroup, the treatment effect over the interested group can be obtained by combining the
CATEs of subgroups belonging to that group, as shown in Equation (8). In the following, we adopt
the calculation of ATE as an example. In detail, if we separate the whole dataset into J blocks, the
ATE is estimated as:

ATEstrat = τ̂
strat =

J∑
j=1

q(j )
[
Ȳt (j ) − Ȳc (j )

]
, (19)

where Ȳt (j ) and Ȳc (j ) are the average of the treated outcome and control outcome in the j-th block,

respectively. q(j ) = N (j )
N

is the portion of the units in the j-th block to the whole units.
Stratification effectively decreases the bias of ATE estimation compared with the difference-

estimator where ATE is estimated as: ATEdiff = τ̂
dif f = 1

Nt

∑
i :Wi=1 Y

F
i −

1
Nc

∑
i :Wi=0 Y

F
i . In particu-

lar, if we assume the outcome is linear with the covariates, i.e., E[Yi (w ) |Xi = x] = α + τ ∗w + β ∗
x . The bias of the difference-estimator is:

E[τ̂ diff − τ |X ,W ] = (X̄t − X̄c )β . (20)

While, the bias of the stratification estimator is the weighted average of the within-block bias:

E[τ̂ strat − τ |X ,W ] =
���

J∑
j=1

q(j )
(
X̄t (j ) − X̄c (j )

)��� β . (21)

Compared with the difference estimator, the stratification estimator reduces the bias per covariate
by the factor:

γk =

∑
j q(j )

(
X̄t,k (j ) − X̄c,k (j )

)
X̄t,k − X̄c,k

, (22)

where X̄t,k (j ) (X̄c,k (j )) is the average of k-th covariate of treated (control) group in j-th block, and
X̄t,k (X̄c,k ) is the average of k-th covariate in the whole treated (control) group.

The key component of stratification methods is how to create the blocks and how to combine
the created blocks. Equal frequency [122] is a common strategy to create blocks. The equal fre-
quency approach split the block by the appearance probability, such as the propensity score, so that
the covariates have the same appearance probability (i.e., the propensity score) in each subgroup
(block). The ATE is estimated by the weighted average of each block’s CATE, with the weight as
the fraction of the units in this block. However, this approach suffers from high variance due to
the insufficient overlap between treated and control groups in the blocks whose propensity score
is very high or low. To reduce the variance, in [64], the blocks, which are divided according to
the propensity score, are re-weighted by the inverse variance of the block-specific treatment ef-
fect. Although this method reduces the variance of the equal frequency method, it unavoidably
increases the estimation bias.

The stratification methods described above are all splitting the blocks according to the pre-
treatment variables. However, in some real-world applications, it is required to compare the out-
come conditioned on some post-treatment variables, denoted as S . For example, the “surrogate”
markers of disease progression (i.e., intermediate outcome) like CD4 count and measures of vi-
ral load in AIDS are the post-treatment variables [48]. In the studies comparing drugs for AIDS
patients, the researchers are interested in the effect of AIDS drugs on group with CD4 count
lower than 200 cell/mm3. However, directly comparing the observed outcomes on the group with
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Sobs < 200 is not the true effect because the compared two subgroups: {i : Wi = 1, Sobs < 200} and
{j : Wj = 0, Sobs < 20}, where Sobs is the observed post-treatment values, have great discrepency
if the treatment has effect on the intermediate results. To solve this, principle stratification [48]
constructs the subgroup based on the potential values of the pre-treatment variables. Analogous
to the potential outcome defined in Section 2.1, potential pre-treatment variables value, denoted
as S (W = w ), is the potential value of S under treatment with value w . With the nature assump-
tion that potential value of S is independent of the treatment assignment, the treatment effect
of subgroup can be obtained by comparing the outcomes of two sets: {Y obs

i : Wi = 1, Si (Wi =

1) = v1, Si (Wi = 0) = v2} and {Y obs
j :Wj = 0, S j (Wj = 1) = v1, S j (Wj = 0) = v2}, where v1 and v2

are two post-treatment values. The comparison based on the potential values of post-treatment
variables ensures that the compared two set are similar, so that the obtained treatment effect is the
true effect.

3.3 Matching Methods

As mentioned previously, missing counterfactuals and confounder bias are two major challenges
in treatment effect estimation. Matching based approaches provide a way to estimate the counter-
factual and, at the same time, reduce the estimation bias brought by the confounders. In general,
the potential outcomes of the i-th unit estimated by matching are [1]:

Ŷi (0) =

{
Yi ifWi = 0,

1
#J (i )

∑
l ∈J (i ) Yl ifWi = 1;

Ŷi (1) =
⎧⎪⎪⎨⎪⎪⎩

1
#J (i )

∑
l ∈J (i ) Yl ifWi = 0,

Yi ifWi = 1;
(23)

where Ŷi (0) and Ŷi (1) are the estimated control and treated outcome, J (i ) is the matched neigh-
bors of unit i in the opposite treatment group [13].

The analysis of the matched sample can mimic that of an RCT: one can directly compare out-
comes between the treated and control group within the matched sample. In the context of an
RCT, one expects that, on average, the distribution of covariates will be similar between treated
and control groups. Therefore, matching can be used to reduce or eliminate the effects of con-
founding when using observational data to estimate treatment effects [13].

3.3.1 Distance Metric. Various distances have been adopted to compare the closeness between
units [51], such as the widely used Euclidean distance [126] and Mahalanobis distance [129].
Meanwhile, many matching methods develop their own distance metrics, which can be abstracted
as: D (xi , xj ) = | | f (xi ) − f (xj ) | |2. The existing distance metrics mainly vary in how to design the
transformation function f (·).

Propensity score-based transformation. Original covariates of units can be represented by propen-
sity scores. As a result, the similarity between two units can be directly calculated as: D (xi , xj ) =
|ei − ej |, where ei , and ej are the propensity scores of xi and xj , respectively. Later, the lin-
ear propensity score based distance metric is also proposed, which is defined as D (xi , xj ) =
|logit(ei ) − logit(ej ) |. This improved version is recommended since it can effectively reduce the
bias [151]. Furthermore, the propensity score based distance metric can be combined with other
existing distance metrics, which provides a fine-grained comparison. In [129], when the difference
of two units’ propensity scores is within a certain range, they are further compared with other dis-
tances on some key covariates. Under this metric, the closeness of two units contains two criteria:
they are relatively close under propensity score measure, and they particularly similar under the
comparison of the key covariates [151].
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Other transformations. Propensity score only adopts the covariate information, while some other
distance metrics are learned by utilizing both the covariates and the outcome information so that
the transformed space can preserve more information. One representative metric is the prognosis
score [57], which is the estimated control outcome. The transformation function is represented as:

f (x ) = Ŷc . However, the performance of the prognosis score relies on modeling the relationship
between the covariates and control outcomes. Moreover, the prognosis score only takes the
control outcome into consideration and ignores the treated outcome. The Hilbert-Schmidt

Independence Criterion based nearest neighbor matching (HSIC-NNM) proposed in [29]
could overcome the drawbacks of prognosis score. HSIC-NNM learns two linear projections for
control outcome estimation task and treated outcome estimation task separately. To fully explore
the observed control/treated outcome information, the parameters of linear projection is learned
by maximizing the nonlinear dependency between the projected subspace and the outcome:
Mw = arg maxMw

HSIC(XwMw ,Y
F
w ) − R (Mw ), where w = 0, 1 represent the control group and

treated group, respectively. XwMw is the transformed subspace with the transformation function
as: f (x ) = xMw . Y F

w is the observed control/treated outcome, and R is the regularization to avoid
overfitting. The objective function ensures the learned transformation functions project the
original covariates to an information subspace where similar units will have similar outcomes.

Compared with propensity score based distance metric that focuses on balancing, prognosis
score and HSIC-NNM focus on embedding the relationship between the transformed space and
the observed outcome. These two lines of methods have different advantages, and some recent
work tries to integrate these advantages together. In [89], the balanced and nonlinear represen-
tation is proposed to project the covariates into a balanced low-dimensional space. In detail, the
parameters in the nonlinear transformation function are learned by jointly optimizing the follow-
ing two objectives: (1) maximizing the differences of noncontiguous-class scatter and within-class
scatter so that the units with the same outcome prediction shall have similar representations af-
ter transformation; and (2) minimizing the maximum mean discrepancy between the transformed
control and outcome group in order to get the balanced space after transformation. A series of
works that have similar objectives but vary in balancing regularization have been proposed, such
as using the conditional generative adversarial network to ensure the transformation function
blocks the treatment assignment information [86, 173].

The methods mentioned above adopt either one or two transformations for treated and control
groups separately. Different from the existing method, Randomized Nearest Neighbor Match-

ing (RNNM) [90] adopts a number of random linear projections as the transformation func-
tion, and the treatment effects are obtained as the median treatment effect by nearest-neighbor

matching (NNM) in each transformed subspace. The theoretical motivation of this approach is the
Johnson–Lindenstrauss (JL) lemma, which guarantees that the pairwise similarity information
of the points in the high-dimensional space can be preserved through random linear projection.
Powered by the JL lemma, RNNM ensembles the treatment effect estimation results of several
linear random transformations.

3.3.2 Choosing a Matching Algorithm. After defining the similarity metric, the next step is to
find the neighbors. In [26], existing matching algorithms are divided into four essential approaches,
including the NNM, caliper, stratification, and kernel, as shown in Figure 3. The most straight-
forward matching estimator is the NNM. In particular, a unit in the control group is chosen as
the matching partner for a treated unit, so that they are closest based on a similarity score (e.g.,
propensity score). The NNM has several variants like NNM with replacement and NNM with-
out replacement. Treated units are matched to one control, called pair matching or 1-1 matching,
or treated units are matched to two controls, called 1-2 matching, and so on. It is a trade-off to
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Fig. 3. Categorization of matching methods.

determine the number of neighbors, since a large number of neighbors may result in the treat-
ment effect estimator with high bias but low variance, while small number results in low bias but
high variance. It is known, however, that the optimal structure is a full matching in which a treated
unit may have one or several controls or one control may have one or several treated units [51].

NNM may have bad matches if the closest partner is far away. One can set a tolerance level on
the maximum propensity score distance (caliper) to avoid this problem. Hence, caliper matching
is one form of imposing a common support condition.

The stratification matching is to partition the common support of the propensity score into a
set of intervals and then to take the mean difference in outcomes between treated and control
observations in order to calculate the impact within each interval. This method is also known as
interval matching, blocking, and subclassification [124].

The matching algorithms discussed above have in common that only a few observations in the
control group are used to create the counterfactual outcome of a treatment observation. Kernel
matching and local linear matching are nonparametric matchings that use weighted averages of
observations in the control group to create the counterfactual outcome. Thus, one major advantage
of these approaches is the lower variance, because we use more information to create a counter-
factual outcome.

Here, we also want to introduce another matching method called Coarsened Exact Matching

(CEM) proposed in [65]. Because either the 1-k matching or the full matching fails to consider
the extrapolation region, where few or no reasonable matches exist in the other treatment group,
CEM was proposed to handle this problem. CEM first coarsen the selected important covariate, i.e.,
discretization, and then perform exact matching on the coarsened covariates. For example, if the
selected covariates are age (age > 50 is 1, and others are 0) and gender (female as 1, and male as 0).
A female patient with age 50 in the treated group is represented by the coarsen covariates as (1, 1).
She will only match the patients in the treated group with exactly the same coarsened covariates
value. After exact matching, the whole data is separated into two subsets. In one subset, every unit
has its exact matched neighbors and it is the opposite in the other subset which contains the units
in the extrapolation region. The outcomes of units in the extrapolation region are estimated by
the outcome prediction model trained on the matched subset. So far, the treatment effect on the
two subsets can be estimated separately, and the final step is to combine the treatment effect on
the two subsets by a weighted average.

We have provided several different matching algorithms, but the most important question is
how we should select a perfect matching method. Asymptotically all matching methods should
yield the same results as the sample size grows and they will become closer to comparing only
exact matches [145]. When we only have a small sample size, this choice will be important [60].
There is one trade-off between bias and variance.
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3.3.3 Variables to Include. The above two subsections illustrate the key steps in the matching
procedure, and in this subsection, we briefly discuss what kinds of variables should be included in
the matching, a.k.a feature selection, to improve the matching performance. Many literatures [49,
60, 128] suggest to include as many variables that are related to the treatment assignment
and the outcome as possible, in order to satisfy the strong ignorablity assumption. However,
post-treatment variables, which are the variables affected by the treatment assignment, should
be excluded in the matching procedure [123]. Moreover, besides the post-treatment variables,
researchers also suggest excluding the instrumental variables [106, 170], because they tend to
amplify the bias of treatment effect estimator.

3.4 Tree-based Methods

Another popular method in causal inference is based on decision tree learning, which is one of the
predictive modeling approaches. The decision tree is a nonparametric supervised learning method
used for classification and regression. The goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from data.

Tree models where the target variable is discrete are called classification trees with prediction
error measured based on misclassification cost. In these tree structures, leaves represent class la-
bels and branches represent conjunctions of features that lead to those class labels. Decision trees
where the target variable is continuous are called regression trees with prediction error measured
by the squared difference between the observed and predicted values. The term Classification

And Regression Tree (CART) analysis is an umbrella term used to refer to both of the above
procedures [24]. In CART model, the data space is partitioned and a simple prediction model for
each partitioned space is fitted, and therefore every partitioning can be represented graphically as
a decision tree [92].

For estimating heterogeneity in causal effects, a data-driven approach [11] based on CART is
provided to partition the data into subpopulations that differ in the magnitude of their treatment
effects. The valid confidence intervals can be created for treatment effects, even with many covari-
ates relative to the sample size, and without “sparsity” assumptions. This approach is different from
conventional CART in two aspects. First, it focuses on estimating conditional average treatment
effects instead of directly predicting outcomes as in the conventional CART. Second, different sam-
ples are used for constructing the partition and estimating the effects of each subpopulation, which
is referred to as an honest estimation. However, in the conventional CART, the same samples are
used for these two tasks.

In CART, a tree is built up until a splitting tolerance is reached. There is only one tree, and it is
grown and pruned as needed. However, BART is an ensemble of trees, so it is more comparable to
random forests. A Bayesian “sum-of-trees” model called Bayesian Additive Regression Trees

(BART) is developed in [33] [34]. Every tree in BART model is a weak learner, and it is constrained
by a regularization prior. Information can be extracted from the posterior by a Bayesian backfitting
MCMC algorithm. BART is a nonparametric Bayesian regression model, which uses dimensionally
adaptive random basis elements. LetW be a binary tree which has a set of interior node decision
rules and terminal nodes, and let M = {μ1, μ2, ..., μB } be parameters associated with each of the B
terminal nodes forW . We use д(x ;W ,M ) to assign a μb ∈ M to input vector x . The sum-of-trees
model can be expressed as:

Y = д(x ;W1,M1) + д(x ;W2,M2) + · · · + д(x ;Wm ,Mm ) + ε, (24)

ε ∼ N (0,σ 2). (25)

BART has a couple of advantages. It is very easy to implement and only needs to plug in the
outcome, treatment assignment, and confounding covariates. In addition, it does not require any
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information about how these variables are parametrically related so that it requires less guess
when fitting the model. Moreover, it can deal with a mass of predictors, yield coherent uncertainty
intervals, and handle continuous treatment variables and missing data [61].

BART is proposed to estimate the average causal effects. In fact, it can also be used to estimate
individual-level causal effects. BART not only can easily identify the heterogeneous treatment
effects, but also get more accurate estimates of average treatment effects compared to other
methods like propensity score matching, propensity score weighting, and regression adjustment
in the nonlinear simulation situations examined [61].

In most previous methods, the prior distribution over treatment effects is always induced indi-
rectly, which is difficult to be attained. A flexible sum of regression trees (i.e., a forest) can address
this issue by modeling a response variable as a function of a binary treatment indicator and a
vector of control variables [56]. This approach interpolates between two extremes: entirely and
separately modeling the conditional means of treatment and control, or only the treating treat-
ment assignment as another covariate.

Random forest is a classifier consisting of a combination of tree predictors, in which each tree
depends on a random vector that is independently sampled and has the identical distribution for all
trees [23]. This model can also be extended to estimate heterogeneous treatment effects based on
Breiman’s random forest algorithm [162]. Trees and forests can be considered as nearest neighbor
methods with an adaptive neighborhood metric. Tree-based methods seek to find training exam-
ples that are close to a point x , but now closeness is defined with respect to a decision tree. And
the closest points to x are those that fall in the same leaf as it. The advantage of using trees is that
their leaves can be narrower along with the directions where the signal is changing fast and wider
along with the other directions, potentially leading to a substantial increase in power when the
dimension of the feature space is even moderately large.

The tree-based framework also can be extended to uni- or multi-dimensional treatments [163].
Each dimension can be discrete or continuous. A tree structure is used to specify the relationship
between user characteristics and the corresponding treatment. This tree-based framework is robust
to model misspecification and highly flexible with minimal manual tuning.

3.5 Representation Learning Methods

Representation learning is learning the representations of input data typically by transforming the
original covariates or extracting features from the covariates space. Focusing specifically on deep
learning, the composition of multiple nonlinear transformations can yield more abstract and ulti-
mately more useful representations [17]. Compared with traditional machine learning approaches
in causal inference, deep representation learning models are capable of automatically searching
for features that are correlated and combine them together to enable more effective and more
accurate counterfactual estimation while in the traditional machine learning approach, features
need to be identified accurately by users. Meanwhile, there also exists some challenges that need
to be addressed in deep representation learning. For example, the amount of data needed for deep
representation learning is much higher than other machine learning methods; the “Black Boxes”
deep structure is less interpretable and it is very difficult to look inside of it to understand how it
works; overfitting problem always happens when an algorithm utilizes the deep structure to learn
the details and noise so well in the training data that it negatively impacts the performance of
the model in the whole population. Thus far, significant advances in deep representation learn-
ing based methods have been made to overcome the challenges in causal effect estimation with
observational data. We categorize the deep representation learning based methods into domain
adaptation based, matching based, and continual learning based methods.
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3.5.1 Domain Adaptation Based on Representation Learning. The most basic assumption used in
statistical learning theory is that training data and test data are drawn from the same distribution.
However, in most practical cases, the test data are drawn from a distribution that is only related, but
not identical, to the distribution of the training data. In causal inference, this is also a big challenge.
Unlike the randomized control trials, the mechanism of treatment assignment is not explicit in
observational data. Therefore, interventions of interest are not independent of the property of
the subjects. For example, in an observational study of the treatment effect of a medicine, the
medicine is assigned to individuals based on several factors, including the known confounders
and some unknown confounders. As a result, the counterfactual distribution will generally be
different from the factual distribution. Thus, it is necessary to predict counterfactual outcomes by
learning from the factual data, which converts the causal inference problem to a domain adaptation
problem.

Extracting effective feature representations is critical for domain adaptation. A model [16] with
a generalization bound is proposed to formalize this intuition theoretically, which can not only
explicitly minimize the difference between the source and target domains, but also maximize the
margin of the training set. Building on this work [16], the discrepancy distance between dis-
tributions is tailored to adaptation problems with arbitrary loss functions [95]. In the following
discussions, the discrepancy distance plays an important role in addressing the domain adaptation
problem in causal inference.

So far, we can see a clear connection between counterfactual inference and domain adaptation.
An intuitive idea is to enforce the similarity between the distributions of different treatment groups
in the representation space. The learned representations trade-off three objectives: (1) low-error
prediction over the factual representation; (2) low-error prediction over counterfactual outcomes
by taking into account relevant factual outcomes; and (3) the distance between the distribution of
treatment population and that of control population [70]. Following this motivation, [139] gives a
simple and intuitive generalization-error bound. It shows that the expected ITE estimation error
of representation is bounded by a sum of the standard generalization-error of that representation
and the distance between the treated and control distributions based on representation. Integral

probability metric (IPM) is used to measure the distances between distributions, and explicit
bounds are derived for the Wasserstein distance and Maximum Mean Discrepancy distance. The
goal is to find a representation Φ : X → R and hypothesis h : X × {0, 1} → Y that minimizes the
following objective function:

min
h,Φ

1

n

n∑
i=1

ri · L(h(Φ(xi ),Wi ),yi ) + λ · R (h) + α · IPMG ({Φ(xi )})i :Wi=0, {Φ(xi )})i :Wi=1), (26)

where ri =
Wi

2u
+

1−Wi

2(1−u ) , u = 1
n

∑n
i=1Wi , and the weight ri compensates for the difference in treat-

ment group size.R is a model complexity term. Given two probability density functionsp,q defined
over S ⊆ Rd , and a function family G of functions д : S → R, the IPM is defined as:

IPMG (p,q) := sup
д∈G
|
∫

S

д(s ) (p (s ) − q(s ))ds |. (27)

This model allows for learning complex nonlinear representations and hypotheses with large
flexibility. When the dimension of Φ is high, it risks losing the influence of t on h if the concatena-
tion of Φ andW is treated as input. To address this problem, one approach is to parameterize h1 (Φ)
and h0 (Φ) as two separate “heads” of the joint network. h1 (Φ) is used to estimate the outcome
under treatment and h0 (Φ) is for the control group. Each sample is used to update only the head
corresponding to the observed treatment. The advantage is that statistical power is shared in the
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common representation layers and the influence of treatment is retained in the separate heads
[139]. This model can also be extended to any number of treatments, as described in the
perfect match approach [136]. Following this idea, a few improved models have been proposed
and discussed. For example, [71] brings together shift-invariant representation learning and
re-weighting methods. [59] presents a new context-aware weighting scheme based on the
importance sampling technique, on top of representation learning, to alleviate the selection bias
problem in ITE estimation.

Existing ITE estimation methods mainly focus on balancing the distributions of control and
treated groups, but ignore the local similarity information that provides meaningful constraints
on the ITE estimation. In [171, 172], a local similarity preserved individual treatment ef-

fect (SITE) estimation method is proposed based on deep representation learning. SITE preserves
local similarity and balances data distributions simultaneously. The framework of SITE contains
five major components: representation network, triplet pairs selection, position-dependent deep

metric (PDDM), middle point distance minimization (MPDM), and the outcome prediction
network. To improve the model efficiency, SITE takes input units in a mini-batch fashion, and
triplet pairs could be selected from every mini-batch. The representation network learns latent
embeddings for the input units. With the selected triplet pairs, PDDM and MPDM can preserve
the local similarity information and meanwhile achieve the balanced distributions in the latent
space. Finally, the embeddings of mini-batch are fed forward to a dichotomous outcome predic-
tion network to get the potential outcomes. The loss function of SITE is as follows:

L = LF L + βLP DDM + γLMP DM + λ | |M | |2, (28)

where LF L is the factual loss between the estimated and observed factual outcomes. LP DDM and
LMP DM are the loss functions for PDDM and MPDM, respectively. The last term is L2 regularization
on model parameters M (except the bias term).

Most models focus on covariates with numerical values, while how to handle covariates with
textual information for treatment effect estimation is still an open question. One major challenge
is how to filter out the nearly instrumental variables which are the variables more predictive
to the treatment than the outcome. Conditioning on those variables to estimate the treatment
effect would amplify the estimation bias. To address this challenge, a conditional treatment-

adversarial learning based matching (CTAM) method is proposed in [173]. CTAM incorpo-
rates the treatment-adversarial learning to filter out the information related to nearly instrumental
variables when learning the representations, and then it performs matching among the learned
representations to estimate the treatment effects. The CTAM contains three major components:
text processing, representation learning, and conditional treatment discriminator. Through the
text processing component, the original text is transformed into vectorized representation S . Af-
ter that, S is concatenated with the non-textual covariates X to construct a unified feature vector,
which is then fed into the representation neural network to get the latent representation Z . After
learning the representation, Z , together with potential outcomes Y , are fed into the conditional
treatment discriminator. During the training procedures, the representation learner plays a min-
imax game with the conditional treatment discriminator: By preventing the discriminator from
assigning correct treatment, the representation learner can filter out the information related to
nearly instrumental variables. The final matching procedure is performed in the representation
space Z . The conditional treatment-adversarial learning helps reduce the bias of treatment effect
estimation.

3.5.2 Matching Based on Representation Learning. Compared to the above regression-based
methods after representation learning, matching methods based on representation learning are
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more interpretable, because any sample’s counterfactual outcome is directly set to be the factual
outcome of its nearest neighbor in the group receiving the opposite treatment. NNM sets the
counterfactual outcome of any treatment (control) sample to be equal to the factual outcome
of its nearest neighbor in the control (treatment) group. Although being simple, flexible, and
interpretable, most NNM approaches could be easily misled by variables that do not affect the
outcome. To address this challenge, matching can be performed on subspaces that are predictive
of the outcome variable for both the treatment group and the control group. Applying NNM in
the learned subspaces leads to a more accurate estimation of the counterfactual outcomes and
therefore the accurate estimation of treatment effects. For example, one work [29] estimates the
counterfactual outcomes of treatment samples by learning a projection matrix that maximizes the
nonlinear dependence between the subspace and outcome variable for control samples. Then it
directly applies the learned projection matrix to all the samples and finds every treatment sample’s
matched control sample in the subspace. In addition, another work [35] performs matching in the
selective and balanced representation space to estimate treatment effects. It seamlessly integrates
deep feature selection and deep representation learning for causal inference together. In the
feature selection and representation learning, that one-to-one feature selection layer at the input
level selects which variables are input into the neural network, which makes the deep neutral
network more interpretable.

3.5.3 Continual Learning Based on Representation Learning. Although significant advances
have been made to overcome the challenges in causal effect estimation with observational data, the
existing representation learning methods only focus on the source-specific and stationary observa-
tional data. Such learning strategies assume that all observational data are already available during
the training phase and from the only one source. This assumption is unsubstantial in practice due
to two reasons. The first one is based on the characteristics of observational data, which are incre-
mentally available from non-stationary data distributions. For instance, the number of electronic
medical records in one hospital is growing every day, or the electronic medical records for one
disease may be from different hospitals or even different countries. This characteristic implies that
one cannot have access to all observational data at one time point and from one single source. The
second reason is based on the realistic consideration of accessibility. For example, when the new
observational are available, if we want to refine the model previously trained by original data,
maybe the original training data are no longer accessible due to a variety of reasons, e.g., lost,
proprietary, too large to store, or privacy constraint. This practical concern of accessibility is ubiq-
uitous in various academic and industrial applications. A continual causal effect representation
learning method [8] is proposed for estimating causal effect with observational data, which are in-
crementally available from non-stationary data distributions. Instead of having access to all seen
observational data, it incorporates feature representation distillation to preserve the knowledge
learned from previous observational data. Besides, aiming at solving the selection bias between
treatment and control groups, it adopts one representation transformation function, which maps
partial original feature representations into new feature representation space and makes the global
feature representation space balanced with respect to treatment and control groups.

3.6 Multi-task Learning Methods

The treatment group and control group always share some common features except for their id-
iosyncratic characteristics. Naturally, causal inference can be conceptualized as a multi-task learn-
ing problem with a set of shared layers for the treated group and control group together, and a
set of specific layers for the treated group and control group separately. The impact of selection
bias in the multi-task learning problem can be alleviated via a propensity-dropout regularization
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scheme [5], in which the network is thinned for every training example via a dropout probability
that depends on the associated propensity score. The dropout probability is higher for subjects
with features that belong in a region of poor overlap in the feature space between the treatment
and control group.

The Bayesian method also can be extended under the multi-task model. A nonparametric
Bayesian method [4] uses a multi-task Gaussian process with a linear coregionalization kernel
as a prior over the vector-valued reproducing kernel Hilbert space. The Bayesian approach allows
computing individualized measures of confidence in our estimates via pointwise credible intervals,
which are crucial for realizing the full potential of precision medicine. The impact of selection bias
is alleviated via a risk-based empirical Bayes method for adapting the multi-task GP prior, which
jointly minimizes the empirical error in factual outcomes and the uncertainty in counterfactual
outcomes.

The multi-task model can be extended to multiple treatments even with continuous parameters
in each treatment. The dose response network (DRNet) architecture [135] with shared base
layers, NW intermediary treatment layers, and NW × E heads for the multiple treatment setting
with an associated dosage parameter s . The shared base layers are trained on all samples, and
the treatment layers are only trained on samples from their respective treatment category. Each
treatment layer is further subdivided into E head layers. Each head layer is assigned a dosage
stratum that subdivides the range of potential dosages [at ,bt ] into E partitions of equal width
b−a

E
.

3.7 Meta-Learning Methods

When designing the heterogeneous treatment effect estimation algorithms, two key factors should
be considered: (1) control the confounders, i.e., eliminate the spurious correlation between the
confounder and the outcome; and (2) give an accurate expression of the CATE estimation [99].
The methods mentioned in the previous sections seek to satisfy the two requirements simultane-
ously, while meta-learning based algorithms separate them into two steps. In general, the meta-
learning based algorithms have the following procedures: (1) estimate the conditional mean out-
come E[Y |X = x], and the prediction model learned in this step is the base learner. (2) Derive the
CATE estimator based on the difference of results obtained from step (1). Existing meta-learning
methods include T-learner [81], S-learner [81], X-learner [81], U-learner [99], and R-learner [99],
which are introduced in the following.

In detail, the T-learner [81] adopts two trees to estimate the conditional treated/control out-
comes, which are denoted as μ0 (x ) = E[Y (0) |X = x] and μ1 (x ) = E[Y (1) |X = x], respectively. Let
μ̂0 (x ) and μ̂0 (x ) denote the trained tree model on the control/treated group. Then the CATE
of T-learner estimation is obtained as: τ̂T (x ) = μ̂1 (x ) − μ̂0 (x ). T-learner trains two base models
for control and treated groups (the name “T” comes from two base model), while S-learner[81]
views the treatment assignment as one feature and estimate the combined outcome as: μ (x ,w ) =
E[Y F |X = x ,W = w] (The name “S” denotes single). μ (x ,w ) can be any base model, and we de-
note the trained model as μ̂ (x ,w ). The CATE estimator provided by S-learner is then given as:
τ̂S (x ) = μ̂ (x , 1) − μ̂ (x , 0).

However, T-learner and S-learner highly rely on the performance of the trained base models.
When the number of units in two groups are extremely unbalanced (i.e., the number of one group is
much larger than the other), the performance of the base model trained on the small group would
be poor. To overcome this problem, X-learner [81] is proposed, which adopts information from
the control group to give a better estimator on the treated group and vice versa. The cross-group
information usage is where X-learner comes from, and the X denotes “cross group.” In detail,
X-learner contains three key steps. The first step of X-learner is the same as T-learner, and the
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trained base learners are denoted as μ̂0 (x ) and μ̂1 (x ). In the second step, X-learner calculates the
difference between the observed outcome and the estimated outcome as the imputed treatment
effect: In the control group, the difference is the estimated treated outcome subtracts the observed

control outcome, denoted as D̂C
i = μ̂1 (x ) − Y F ; Similarly, in the treated group, the difference is

formulated as D̂T
i = Y

F − μ̂0 (x ). After the difference calculation, the dataset is transformed into

two groups with imputed treatment effect: control group: (XC , D̂
C ) and treated group: (XT , D̂

T ).
On two imputed datasets, the two base learners of treatment effect τ1 (x )(τ0 (x )) are trained with

XC (XT ) as the input and D̂C (D̂T ) as the output. The last step is to combine the two CATE estimators
by weighted average: τX (x ) = д(x )τ̂0 (x ) + (1 − д(x ))τ̂1 (x ), where д(x ) is the weighting function
ranging from 0 to 1. Overall, with the cross information usage and the weighted combination of
two CATE base estimator, X-learners can handle the case where the number of units in two groups
are unbalanced [81].

Different from the regular loss function adopted in X-learner, R-learner, proposed in [99] de-
signs the loss function for CATE estimator based on the Robinson transformation [120]. The char-
acter “R” in R-learner denotes the Robinson transformation. The Robinson transformation can be
derived by rewriting the observed outcome and the conditional outcome: Rewrite the observed
outcome as:

Yi (W = wi ) = μ̂0 (xi ) +wi ∗ τ (xi ) + ϵi (wi ), (29)

where μ̂0 is the already-trained control outcome estimator(base learner), τ (xi ) is the CATE esti-
mator, and E[ϵi (wi ) |xi ,wi ] = 0 (under ignorability). The conditional mean outcome can be also
rewritten as:

m̂(xi ) = E[Y |X ] = μ̂0 (xi ) + ê (xi ) ∗ τ (xi ), (30)

where ê (x ) is the already-trained propensity score estimator(base learner). Robinson transforma-
tion is obtained by subtracting Equations (29) and (30):

Y F
i − m̂(xi ) = (wi − ê (xi ))τ (xi ) + ϵ (wi ). (31)

Based on the Robinson transformation, a good CATE estimator should minimize the difference
between Y F

i − m̂(xi ) and (wi − ê (xi ))τ (xi ). Therefore, the objective function of R-learner is as
follows:

τ (·) = arg minτ

⎧⎪⎨⎪⎩ 1

n

n∑
i=1

(
(Y F

i − m̂(xi )) − (wi − ê (xi )) τ (xi )
)2
+ Λ(τ (·))

⎫⎪⎬⎪⎭ , (32)

where m̂(xi ) and ê (xi ) are pre-trained outcome estimator and propensity score estimator, and
Λ(τ (·)) is the regularization on τ (·).

4 METHODS RELAXING THREE ASSUMPTIONS

In Section 3, the causal inference methods based on three assumptions have been introduced in
detail, which are theSUTVA, ignorability assumption, and positivity assumption. However, in prac-
tice, for some specific applications like social media analysis, which involves dependent network
information, special data types (e.g., time series data), or particular conditions (e.g., the existence of
unobserved confounders), these three assumptions cannot always hold. In this section, the meth-
ods that try to relax certain assumptions will be discussed.

4.1 Relaxing Stable Unit Treatment Value Assumption

SUTVA states that the potential outcomes for any unit do not vary with the treatment assigned
to other units, and, for each unit, there are no different forms or versions of each treatment level,
which lead to different potential outcomes. This assumption mainly focuses on two aspects: (1)
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units are independent and identically distributed (i.i.d.); and (2) there only exists a single level
for each treatment. An extensive literature exists on making causal inferences under SUTVA, but
when considering many real-world situations, it may not always be the case. In the following,
SUTVA will be discussed from these two aspects.

The assumption of independent and identically distributed samples is ubiquitous in most causal
inference methods, but this assumption cannot hold in many research areas, such as social me-
dia analytics [54] [140], herd immunity, and signal processing [153, 161] ]. Causal inference
in non-i.i.d. contexts is challenging due to the presence of both unobserved confounding and
data dependence. For example, in social networks, subjects are connected and influenced by each
other.

For such network data, SUTVA cannot hold anymore. Under this situation, instances are in-
herently interconnected with each other through the network structure and hence their features
are not independent identically distributed samples drawn from a certain distribution. Applying
Graph Convolutional Networks into a causal inference model is an approach to handle the network
data [54]. In particular, the original features of subjects and the network structure are mapped to
a representation space to get the representation of confounders. Furthermore, the potential out-
comes could be inferred using treatment assignments and confounder representations.

The dependence on data often leads to interference because some subjects’ treatments can affect
others’ outcomes [63, 101]. This difficulty can impede the identification of causal parameters of
interest. Extensive work has been developed on the identification and estimation of causal param-
eters under interference [63, 101, 108, 157]. For this problem, a strategy proposed by [142] is to use
segregated graphs [144], a generalization of latent projection mixed graphs [160], to represent
causal models.

Modeling time series data is another important problem in causal inference, which does not
satisfy the independent and identically distributed assumption. Most of the existing methods use
regression models for this problem but the accuracy of inference depends greatly on whether
the model fits the data. Therefore, selecting a right and appropriate regression model is of crucial
importance, but in practice, it is not easy to find the perfect one. [32] proposes a supervised learning
framework that uses a classifier to replace regression models. It presents a feature representation
that employs the distance between the conditional distributions given past variable values and
shows experimentally that the feature representation provides sufficiently different feature vectors
for time series with different causal relationships. For the time series data, another issue that needs
to be considered is hidden confounders. A time series deconfounder [18] was developed, which
leverages the assignment of multiple treatments over time to enable the estimation of treatment
effects even in the presence of hidden confounders. This time series deconfounder uses a recurrent
neural network architecture with multi-task output to build a factor model over time and infer
substitute confounders, which render the assigned treatments conditionally independent. Then it
performs causal inference using the substitute confounders.

For the second direction in SUTVA assumption, it assumes that there only exists one version
for each treatment. However, if adding one continuous parameter into the treatment, this assump-
tion cannot hold anymore. For example, estimating individual dose-response curves for a couple
of treatments requires adding an associated dosage parameter (categorical or continuous) for each
treatment. Under this situation, for each treatment, it will have multiple versions for categorical
dosage parameters or infinite versions for continuous dosage parameters. One way to solve this
problem is to convert the continuous dosage into a categorical variable and then treat every med-
ication with a specific dosage as one new treatment, so that it will satisfy the SUTVA assumption
again [135].
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Another example that breaks the SUTVA is the dynamic treatment regime, which consists of a
sequence of decision rules, one per stage of intervention [27]. One useful application of dynamic
treatment is precision medication. It includes more individualization to adjust which type of treat-
ment should be used, or how many the dosage is best in response to the patient’s background
characteristics, the illness severity, and other heterogeneity, aiming to get the optimal treatment
strategy. These heterogeneities are called tailoring variables. To get a useful dynamic treatment
regime, [84] introduces one “biased coin adaptive within-subject” design. Then, [97] presents one
general framework of this type of design, which uses sequential multiple assignment randomized
trials for developing decision rules in that each individual may be randomized multiple times and
the multiple randomizations occur sequentially over time.

For estimating optimal dynamic decision rules from observational data, Q [166, 167] and A
[96, 118] learning are two main approaches for estimating the optimal dynamic treatment regime.
Q in Q-learning denotes “quality.” Q-learning is a model-free reinforcement learning algorithm,
which employs posited regression models for estimating outcome at each decision point given
units’ information. In advantage learning (A-learning), models are posited only for the part of the
regression including contrasts among treatments and for the probability of observed treatment as-
signment at each decision point, given units’ information. Both methods are implemented through
a backward recursive fitting procedure that is related to dynamic programming [15].

4.2 Relaxing Unconfoundedness Assumption

The ignorability assumption is also named as the unconfoundedness assumption. Given the back-
ground variable, X , the treatment assignment W is independent to the potential outcomes, i.e.,
W ⊥⊥ Y (W = 0),Y (W = 1) |X . With this unconfoundedness assumption, for the units with the same
background variable X , their treatment assignment can be viewed as random. Obviously, identi-
fying and collecting all of the background variables is impossible, and this assumption is very
difficult to satisfy. For example, in an observational study that tries to estimate the individual
treatment effect of a medicine, instead of randomized experiments, the medicine is assigned to
individuals based on a series of factors. Some factors (e.g., socioeconomic status) are challenging
to measure and therefore become hidden confounders. Existing work overwhelmingly relies on
the unconfoundedness assumption that all confounders can be measured. However, this assump-
tion might be untenable in practice. In the above example, units’ demographic attributes, such as
their home address, consumption ability, or employment status, may be the proxies for socioe-
conomic status. Leveraging big data, it is possible to find a proxy for the latent and unobserved
confounders.

Variational autoencoder has been used to infer the complex non-linear relationships between
the observed confounders and joint distribution of the latent confounders, treatment assignment,
and outcomes [93]. The joint distribution of the latent confounders and the observed confounders
can be approximately recovered from the observations. An alternative way is to capture their
patterns and control their influence by incorporating the underlying network information. Net-
work information is also a reasonable proxy for the unobserved confounding. [54] applies GCN on
network information to get the representation of hidden confounders. Moreover, in [53], graph
attention layers are used to map the observed features in networked observational data to the D-
dimensional space of partial latent confounders, by capturing the unknown edge weights in the
real-world networked observational data.

An interesting insight mentioned in [159] is that, even if the confounders are observed, it does
not mean all the information they contain is useful to infer the causal effect. Instead, requiring
the part of confounders actually used by the estimator is sufficient. Therefore, if a good predic-
tive model for the treatment can be built, one may only need to plug the outputs into a causal
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effect estimate directly, without any need to learn the whole true confounders. In [159], the main
idea is to reduce the causal estimation problem to a semi-supervised prediction of both the treat-
ments and outcomes. Networks admit high-quality embedding models that can be used for this
semi-supervised prediction. In addition, embedding methods can also offer an alternative to fully
specified generative models.

Only using observational data to solve the confoundings problem is always difficult. The alter-
native way is to combine the experimental data and observational data together. In [73], limited
experimental data is used to correct the hidden confounding in causal effect models trained on
larger observational data, even if the observational data do not fully overlap with the experimen-
tal data. This method makes strictly weaker assumptions than existing approaches.

For estimating treatment effects from longitudinal observational data, existing methods usually
assume that there are no hidden confounders. This assumption is not testable in practice and, if it
does not hold, leads to biased estimates. [18] infers substitute confounders that render the assigned
treatments conditionally independent. Then it performs causal inference using the substitute con-
founders. This method can help estimate treatment effects for time series data in the presence of
hidden confounders.

The above methods all aim to solve the problems about the observed and unobserved con-
founders. Are there any other ways to get around the unconfoundedness assumption and conduct
causal inference? One way is to use instrumental variables that only affect the treatment assign-
ment but not the outcome variable. Changes in the instrumental variables would lead to a different
assignment of treatment. [58] broke instrumental variables analysis into two supervised stages that
can each be targeted with deep networks. It models the conditional distribution of the treatment
variable given the instruments and covariates, and then employs a loss function involving integra-
tion over the conditional treatment distribution. The deep instrumental variables framework also
takes advantage of existing supervised learning techniques to estimate causal effects.

4.3 Relaxing Positivity Assumption

The positivity assumption, also known as covariate overlap or common support, is a necessary
assumption for the identification of treatment effect in the observational study. However, little
literature discusses the satisfaction of this assumption in the high dimensional datasets. [38] ar-
gues that the positivity assumption is a strong assumption and is more difficult to be satisfied in
the high-dimensional datasets. To support the claim, the implication of the strict overlap assump-
tion is explored, and it shows that strict overlap restricts the general discrepancies between the
control and treated covariates. Therefore, the positivity assumption is stronger than the inves-
tigator expected. Based on the above implication, methods that eliminate the information about
the treatment assignment while still hold the unconfounderness assumption are recommended,
such as trimming [36, 110, 122] that drops the records in the region without overlap, and instru-
mental variable adjustment methods [41, 98, 106] that eliminate the instrumental variables from
covariates.

5 GUIDELINE ABOUT EXPERIMENT

In this section, we provide the related experimental information, including the available datasets
that are commonly adopted in the experiments, and the open-source codes of the methods men-
tioned in the previous two sections.

5.1 Available Datasets

Because the counterfactual outcome can never be observed, it is hard to find the dataset that per-
fectly satisfies the requirements of the experiment that it is an observational dataset with the
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ground truth ATE (or ITE) available. The datasets used in the literature are often semi-synthetic
datasets. Some datasets, such as the IHDP dataset, are obtained from the randomized dataset by
generating their observed outcome according to a certain generation process and removing a bi-
ased subset to mimic the selection bias in the observational dataset. Some datasets, such as the
Jobs dataset, combine the randomized dataset and the observational control dataset together to
create the selection bias. The details and download links of the available benchmark datasets are
provided in Table 2.

IHDP. This dataset is a commonly adopted benchmark dataset. This dataset is generated based
on the randomized controlled experiment conducted by Infant Health and Development Pro-
gram [25], whose targets are low-birthweight and premature infants. The pre-treatment covariates
measure the aspects of the children and their mothers, such as birth weight, head circumference,
neonatal health index, prenatal care, mother’s age, education, drugs, and alcohol. In the treated
group, the infants are provided with both intensive high-quality childcare and specialist home vis-
its [61]. The outcome is the infants’ cognitive test score and can be simulated through the NPCI
package.1 Besides, a biased subset of the treated group is required to be removed to simulate the
selection bias. An example of the IHDP dataset whose outcome is simulated by the setting “A” of
NPCI package can be downloaded from http://www.mit.edu/∼fredrikj/files/ihdp_100.tar.gz.

Jobs. The jobs datasets used in the observational study [39, 40, 139] is the combination of
Lalonde experiment data and the PSID comparison group. Both Lalonde and PSID datasets can
be downloaded from NBER website.2 The pre-treatment covariates are eight variables such as
age, education, ethnicity, as well as earnings in 1974 and 1975. The people in the treated group
take part in the job training while in the control group are not. The outcome is employment
status.

Twins. Twins dataset is first introduced in [93] and is adopt by various observational stud-
ies [93, 171, 174]. Twins dataset is constructed on the data of twins birth in the USA between
1989 and 1991 [6].3 In [93], the twins whose gender is the same and weight is less than 2000д
are selected into records. For each twin pair, the pre-treatment covariates measure the pregnancy,
twins birth, and the parents, such as the number of gestation weeks before birth, the quality of
care during pregnancy, pregnancy risk factors (anemia, alcohol use, tobacco use, etc.), adequacy
of care, and residence. The outcome is 1-year mortality. The treatment is being the heavier one
in the twins, and the outcome is 1-year mortality. In the twins dataset, both treated (the heavier
one in the twin) and control (the lighter one in the twin) outcomes are observed. The treatment
assignment is usually defined by the users to simulate the selection bias. For example, in [93, 174],

the selection bias is created by the following procedure:Wi |Xi ∼ Bern(Siдmoid (w
′
Xi ) + n), where

w ∼ U (−0.1, 0.1)40×1 and n ∼ N(0, 0.1).
ACIC datasets. Starting from 2016, every year, the Atlantic Causal Inference Conference holds

the causal inference data analysis challenge, which provides some datasets targeting different
causal inference problems.

2016 Challenge: The goal of ACIC 2016 Challenge is to better understand which approaches to
causal inference perform well in particular observational study settings.4 The datasets contain 77
datasets with varying degrees of non-linearity, sparsity, correlation between treatment assignment
and outcome, non-linearity of treatment effect, and overlapping. The covariates are real-world data
from the Infant Health and Development Program dataset [25], which consists of 58 variables. The

1https://github.com/vdorie/npci.
2http://users.nber.org/∼rdehejia/data/nswdata2.html.
3www.nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html.
4https://jenniferhill7.wixsite.com/acic-2016/competition.
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Table 2. Summary of Available Datasets for Causal Inference

Dataset Source Data description Link

IHDP It is generated based on the
randomized controlled experiment
conducted by Infant Health and
Development Program [25].

747 units (139 treated, 608
control), 25 pre-treatment
variables and binary treatment

http://www.mit.edu/∼fredrikj/
files/ihdp_100.tar.gz

Jobs It is the combination of Lalonde
experiment data and the PSID
comparison group [39, 40, 139].

LaLonde experimental 722 units
(297 treated, 425 control), PSID
comparison group (2490
control). 8 pre-treatment and
binary treatment

http://users.nber.org/∼rdehejia/
data/nswdata2.html

Twins Twins dataset is constructed on the
data of twins birth in the USA
between 1989-1991 [6].

11,984 pairs of twins, 46
pre-treatment and binary
treatment

www.nber.org/data/linked-
birth-infant-death-data-vital-
statistics-data.html

ACIC 2016 The covariates are real-world data
from the Infant Health and
Development Program dataset [25].

77 datasets, 58 variables and
binary treatments

https://jenniferhill7.wixsite.com/
acic-2016/competition

ACIC 2017 The covariates are from Infant
Health and Development Program
dataset [25].

8,000 datasets
8 variables

https://www.niss.org/events/
2017-atlantic-causal-inference-
conference-acic

ACIC 2018 Linked Births and Infant Deaths
Database (LBIDD)

24 simulations with sizes from
1000 to 50000 and binary
treatments

https://www.synapse.org/
ACIC2018Challenge

ACIC 2019 There are 3200 low dimensional
datasets, and 3200 high-dimensional
datasets.

Several datasets with different
variables size and record size,
and the R code for data
generation is available.

https://sites.google.com/view/
acic2019datachallenge/data-
challenge?authuser=0

IBM causal
inference
data

This dataset is created in [143]. The
framework includes unlabeled data
for prediction, labeled data for
validation, and code for evaluation
of algorithm.

This dataset uses the cohort of
100K samples in Linked Births
and Infant Deaths Database
(LBIDD) as the fundamental set
of covariates.

https://github.com/IBM-HRL-
MLHLS/IBM-Causal-Inference-
Benchmarking-Framework

BlogCatalog
BlogCatalog is an online community
where users post blogs. BlogCatalog
dataset used in [54].

There are 5,196 users, 171,743
social relations, 8,189 features,
and 6 categories of blogs.

http://networkrepository.com/
soc-BlogCatalog.php

Flickr Flickr is an image sharing website
where users interact with each other
via photo sharing under predefined
categories [54].

There are 7,575 users, 12,047
features, 239,738 social relations,
and 9 classes.

https://snap.stanford.edu/data/
web-flickr.html

News The News benchmark includes
randomly sampled news articles
from the NY Times corpus.

5000 samples, Multiple
treatments (2, 4, 8, and 16)

https://polybox.ethz.ch/index.
php/s/fRQZREF528AfD5Z

MVICU The data is sourced from the
publicly available MIMIC III
database [130].

3 treatments https://mimic.physionet.org/

TCGA This dataset is generated by The
Cancer Genome Atlas Pan-Cancer
analysis project. [168].

Gene expression from different
cancers in 9,659 individuals.
3 available clinical treatments

https://polybox.ethz.ch/index.
php/s/OrwKOXHToZfxVyE

Yeast
dataset

It is a comprehensive catalog of
yeast genes [146].

A time series with the length 57
for 14 genes [32].

http://genome-www.stanford.
edu/cellcycle/

THE This is one part of The Tennessee
Student/Teacher Achievement Ratio
(STAR) experiment [2].

4,218 students (1,805 treated,
2,413 control), 7 covariates and
binary treatment [73]

https://dataverse.harvard.edu/
dataset.xhtml?persistentId=hdl:
1902.1/10766
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treatment, factual outcome, and counterfactual outcome are all generated by simulation, and the
selection bias is created by removing treated children with non-white moms. The summarization
of this year’s challenge is in [42]. It reports and analyzes the performances of various methods, and
concludes that methods flexibly model the response surface (i.e., the potential outcome) dominate
the methods that fail to do so in terms of performance.

2017 Challenge: ACIC 2017 challenge focused on the estimation and inference for CATEs in the
presence of targeted selection. Targeted selection means the likelihood that an individual receives
treatment is a function of the expected response of that individual if left untreated, which leads to
strong confounding [55].

2018 Challenge: The ACIC 2018 challenge has two different tasks focusing on two sub-
challenges: censoring and scaling. Censoring means some of the samples may not have observed
outcomes. Therefore, the dataset used by censoring challenges contains missing outcome values
for some of the samples.

2019 Challenge: This challenge focuses on estimating the ATE on the quasi real-world dataset
with low dimensional data and high dimensional data.5

IBM causal inference benchmark. This dataset is created in [143]. This dataset uses the
cohort of 100K samples in Linked Births and Infant Deaths Database6 as the fundamental set of
covariates. The treatment, factual outcome, and the counterfactual outcome are generated by
simulation.

BlogCatalog. This dataset is used for causal inference with networked observational data [54].
It is a social blogger network. A blogger is one observation. The bloggers are connected by some
social relationships in this dataset. The features are bag-of-words representations of keywords
in bloggers’ descriptions. The outcomes are the opinions of readers on each blogger. A blogger
belongs to the treated group (control group) if her blogs are read more on mobile devices (desktops).

Flickr. This dataset includes networked observational data in [54]. Flickr is a photo-sharing
platform and social network where users upload photos for others to see. In this dataset, the users
with Flickr account are observations, and the users are connected by some social relationships.
The features of each user are the tags of interest. The outcomes and treatment assignment are the
same as BlogCatalog.

News. The News benchmark includes 5,000 randomly sampled news articles from the NY Times
corpus. It contains the data on the opinion of media consumers on news items and was originally
introduced as a benchmark for counterfactual inference in the setting with two treatment options
[70]. It can be extended to multiple treatments with associated dosage parameters [135].

MVICU. The Mechanical Ventilation in the Intensive Care Unit (MVICU) benchmark is
used to estimate individual dose-response curves for a couple of treatments with an associated
dosage parameter [135]. This dataset includes patients’ responses to different configurations of
mechanical ventilation in the intensive care unit. The data was sourced from the publicly available
MIMIC III database which documents a diverse and very large population of ICU patient stays and
contains comprehensive and detailed clinical data. [130].

TCGA. The Cancer Genome Atlas (TCGA) is the world’s largest and richest collection
of genomic data. This dataset is used to estimate individual dose-response curves for a couple
of treatments with an associated dosage parameter [135]. The TCGA project collected gene
expression data from various types of cancers in 9,659 individuals [168]. The treatment options
are medication, chemotherapy, and surgery. The outcome is the risk of cancer recurrence after
receiving the treatment.

5https://sites.google.com/view/acic2019datachallenge/data-challenge?authuser=0.
6https://www.cdc.gov/nchs/nvss/linked-birth.htm.
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Table 3. Available Tool-boxes for Causal Inference

Tool-box Supporting methods Language Link

Dowhy [141] Propensity-based Stratification, Python https://github.com/microsoft/dowhy

PSM, IPW, Regression

Causal ML [30] Tree-based algorithms, Python https://github.com/uber/causalml

X/T/X/R-learner

EconML [116] Doubly Robust Learner, Python

Orthogonal Random Forests, https://github.com/microsoft/

Meta-Learners, EconML#blogs-and-publications

Deep Instrumental Variables

causalToolbox BART, Causal Forest, R https://github.com/soerenkuenzel

T/X/S-learner with /causalToolbox

BART/RF as base learner

Saccharomyces cerevisiae (yeast) cell cycle gene expression dataset. This is one time se-
ries dataset. A time series with the length T = 57 was created by combining four short time series
that were measured in different microarray experiments [32].

THE. The Tennessee Student/Teacher Achievement Ratio experiment is a 4-year longitudinal
class-size study funded by the Tennessee General Assembly and conducted by the State Depart-
ment of Education to measure the influence of class size (small class, regular class, and regular-
with-aide class) on student achievement tests and non-achievement measures [2]. Because this is
one randomized controlled experiment, CATE estimates are unbiased due to unconfoundedness.
Confounders are artificially introduced by selectively removing a biased subset of samples [73].

5.2 Codes/Packages

In this part, we summarize the available codes or tool-boxes for causal inference. The codes for
methods that mentioned in Section 3 are provided in Tables 3 and 4, where Table 3 lists the tool-
boxes with their supported methods and languages, and Table 4 lists the open-source code of one
specific method.

6 APPLICATIONS

Causal inference has a variety of applications in real-world scenarios. In general, the applications
of causal inference can be categorized into three directions:

(1) Decision evaluation. This is a natural application of treatment effect estimation as it is con-
sistent with the objective of treatment effect estimation.

(2) Counterfactual estimation. Counterfactual learning greatly helps the areas related to de-
cision making, as it can provide the potential outcomes of different decision choices (or
policies).

(3) Dealing with selection bias. In many real-world applications, the records appear in the col-
lected dataset are not representative of the whole population that is interested. Without
appropriately handling the selection bias, the generalization of the trained model would be
hurt.

In this section, we will discuss how causal inference benefits various real-world applications in
detail.
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Table 4. Available Codes of Methods in Section 3

Method Language Link

IPW R https://cran.r-project.org/web/packages/ipw/index.html

DR R
fastDR: https://github.com/gregridgeway/fastDR

DR for High dimension: https://github.com/gregridgeway/fastDR

Principal Stratification R https://cran.r-project.org/web/packages/sensitivityPStrat/index.html

Stratification R https://cran.r-project.org/web/packages/stratification/

PSM Python https://github.com/akelleh/causality

Perfect Match Python https://github.com/d909b/perfect_match

optimal matching R https://cran.r-project.org/web/packages/Matching/

CEM R https://cran.r-project.org/web/packages/cem/

TMLE R https://cran.r-project.org/web/packages/tmle/index.html

PSM

overlap weight Python https://cran.r-project.org/web/packages/PSW/

trapezoidal weight

Matching based Alg.:

R https://cran.r-project.org/web/packages/MatchIt/

exact matching,

full matching,

genetic matching,

nearest neighbor matching,

optimal matching,

subclassification

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/

CMGP [4] Python baa0aa33a6af3fe490484c9e11e3a158968ae56a/

alg/causal_multitask_gaussian_processes_ite/

BART
R https://cran.r-project.org/web/packages/BayesTree/index.html

Python https://github.com/JakeColtman/bartpy

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/

CMGP [4] Python 4fb84b06c83b7ed80b681c9b7d91e66c78495378/alg/

causal_multitask_gaussian_processes_ite/

GANITE [174] Python
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/

baa0aa33a6af3fe490484c9e11e3a158968ae56a/alg/ganite/

BNN [70],

CFR-MMD [139], Python https://github.com/clinicalml/cfrnet

CFR-WASS [139]

CEVAE [93] Python https://github.com/AMLab-Amsterdam/CEVAE

SITE [171] Python https://github.com/Osier-Yi/SITE

grf R https://cran.r-project.org/web/packages/grf/index.html

R-learner R https://github.com/xnie/rlearner/blob/master/R/xlearner.R

Residual Balancing R https://github.com/swager/balanceHD

CBPS R https://github.com/kosukeimai/CBPS

dragonnet Python github.com/claudiashi57/dragonnet

Entropy Balancing R https://cran.r-project.org/web/packages/ebal/

DRNets [135] Python https://github.com/d909b/drnet

(Continued)
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https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/4fb84b06c83b7ed80b681c9b7d91e66c78495378/alg/causal_multitask_gaussian_processes_ite/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/4fb84b06c83b7ed80b681c9b7d91e66c78495378/alg/causal_multitask_gaussian_processes_ite/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/baa0aa33a6af3fe490484c9e11e3a158968ae56a/alg/ganite/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/baa0aa33a6af3fe490484c9e11e3a158968ae56a/alg/ganite/
https://github.com/clinicalml/cfrnet
https://github.com/AMLab-Amsterdam/CEVAE
https://github.com/Osier-Yi/SITE
https://cran.r-project.org/web/packages/grf/index.html
https://github.com/xnie/rlearner/blob/master/R/xlearner.R
https://github.com/swager/balanceHD
https://github.com/kosukeimai/CBPS
github.com/claudiashi57/dragonnet
https://cran.r-project.org/web/packages/ebal/
https://github.com/d909b/drnet
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Table 4. Continued

Method Language Link

Network Deconfounder [54] Python https://github.com/rguo12/network-deconfounder-wsdm20

Network Embeddings [159] Python https://github.com/vveitch/causal-network-embeddings

RMSN [91] Python https://github.com/vveitch/causal-network-embeddings

TMLE [109] R https://github.com/joshuaschwab/ltmle

LCVA [113] Python https://github.com/rguo12/CIKM18-LCVA

6.1 Advertising

Properly measuring the effect of an advertising campaign can answer critical marketing questions
such as whether a new advertisement increases the clicks or whether a new campaign increases
sales. Since conducting randomized experiments is expensive and time-consuming, estimating the
advertisement effect from the observational data is attracting increasing attention in both industry
and research communities [152, 163]. In [90], the randomized NNM method is proposed to estimate
the treatment effect of digital marketing campaigns. In [47], the CBGPS, discussed in Section 3.1.1,
is applied to analyze the efficacy of political advertisements.

However, in the online advertisement area, it is often required to deal with complex adver-
tisement treatments, which could be a discrete or continuous, uni- or multi-dimensional treat-
ment [152]. One advertisement is set as the baseline treatment, and the treatment effect is obtained
by comparing the potential outcome of the treatment with different values and the baseline treat-
ment. To estimate the potential outcome of treatment with multi-dimensional values, tree-based
method [163] and sparse additive model based method [152] are proposed to enable the compari-
son between potential treatments and the baseline treatment.

In addition to purely observational data, in the real-world scenarios, it is often the case that
the dataset is comprised of large samples from control condition(i.e., the old treatment) and small
samples (possibility unrepresentative) from a randomized trial which contains both the control
condition and the new treatment. In [125], the small randomized trial dataset is connected with the
large control dataset using the minimal set of modeling assumptions, which implies the models to
predict the control and treated outcome to be similar. Under this assumption, the proposed method
jointly learns the control and treated outcome predictor and regularizes the difference between the
parameters of two predictors.

The above discussions show the potential applications of the treatment effect estimation in de-
cision evaluation: measuring the effect of the advertisement campaign. Another important appli-
cation is to handle the selection bias. Due to the existing selection mechanism in the advertising
systems, there is a distribution discrepancy between the displayed and non-displayed events [175].
Ignoring such bias would make the advertisement click prediction inaccurate, which would cause
a loss of revenue. To handle the selection bias, similar to the DR estimation mentioned in Sec-
tion 3.1.1, DR policy learning is proposed in [43]. It contains two sub-estimators: direct method
estimator obtained from the observed samples, and IPS estimator with the propensity score as the
sample weight.

Furthermore, some works notice the difficulty of propensity score estimation due to the deter-
ministic advertisement display policy in commercial advertisement systems. If the display policy
is stochastic, the advertisements with low propensity scores still have a chance to appear in the
observational dataset so that IPS can correct the selection bias. However, when the display policy is
deterministic, the advertisements with low propensity scores are always absent in the observation,
which makes propensity score estimation failed. This challenges motives the work of propensity-
free DR method proposed in [175] which improves the original DR method in two folds: (1) train
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the direct method on a small but unbiased data obtained under the uniform policy, which, to a
certain degree, prevents the selection bias from propagating to the non-displayed advertisements.
(2) Avoid the propensity score estimation by setting the propensity score of the observed items as
1 and combines IPS with the direct method. In a nutshell, this propensity score free method relies
on the direct method trained on a small unbiased dataset to give an unbiased prediction of the
advertisement click.

Apart from the applications discussed above, another important application is the advertisement
recommendation, which is merged into the next subsection.

6.2 Recommendation

The recommendation is highly correlated with the treatment effect estimation, as exposing the
user to an item in the recommendation system can be viewed as applying one specific treatment
to a unit [83, 134]. Similar to the dataset used in the treatment effect estimation, the dataset used
in the recommendation are usually biased due to the self-selection of the users. For example, in
the movie rate dataset, users tend to rate the movies that they like: the horrible movie ratings
are mostly made by horror movie fans and less by romantics movie fans. Another example is the
advertisement recommendation datasets. The recommendation system would only recommend
the advertisements to the users whom the system believes are interested in those advertisements.
In the above examples, the records in the datasets are not representative of the whole population,
which is the selection bias. The selection bias brings challenges to both recommendation model
training and evaluation. Re-weighting samples based on the propensity score is a powerful method
to solve the problems that stem from selection bias. The improved performance estimation after
propensity score weighting can be calculated as follows:

R̂IPS (Ŷ |P ) =
1

U · I
∑

(u,i ):Ou,i=1

δu,i (Y , Ŷ )

Pu,i
, (33)

where Ŷ is the value upon which to measure the quality of a recommendation system, U is the
number of users, and I is the number of items.Ou,i is a binary variable to indicates the interaction
of the u-th user with the i-th item in the observational data. δu,i (·, ·) can be any classical quality
measure of a recommendation, such as cumulative gain, discounted cumulative gain, and preci-
sion at k . P is the marginal probability matrix, whose entry is defined as Pu,i = P (Ou,i = 1). The

improved quality measure is an unbiased estimation to the real measurement R (Ŷ ) over the whole

population, which is defined as R (Ŷ ) = 1
U ·I

∑U
u=1

∑I
i=1 δu,i (Y , Ŷ ). Based on the unbiased quality

measurement, in [134], the propensity-score empirical risk minimization for recommendation is

proposed: Ŷ ∈ H is selected to optimize the following problem: Ŷ ERM = argminŶ ∈H {R̂IPS (Ŷ |P )},
where R̂IPS (Ŷ |P ) is defined in Equation (33). Later, various works are developed to drawbacks of
propensity score weighting, including estimation variance reduction [131, 155], handle data spar-
sity [131, 155], DR estimation [165, 177].

In addition to using IPS or DR estimation based method to overcome the selection bias, similar
to the advertisement domain, some works also adopt a small unbiased dataset to correct selection
bias. In this case, the dataset contains a large set of logged feedback records under control policy
and a small set of records under the randomized recommendation. CausalEmbed [22] is a repre-
sentative method in this direction, which proposed a new matrix factorization algorithm. In detail,
CausalEmbed jointly factorizes the matrix of those two datasets and links these two models by
regularizing the difference between treated and control representation.
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6.3 Medicine

Learning the optimal per-patient treatment rules is one of the promising goals of applying
treatment effect estimation methods in the medical domain. When the effect of different available
medicines can be estimated, doctors can give a better prescription accordingly. In [138], two
challenges are mentioned to fulfill such goal: the existence of confounders and the existence of
unobserved confounders. Although analyzing from the randomized experimental dataset is the
golden solution, it has the following limitations: (1) the goal of randomized experimental data
is to analyze the ATE instead of ITE, so the data size is often small, which limits the capacity
to derive personalized treatment rules. (2) As mentioned in Section 2, conducting randomized
trials is often expensive, time-consuming, and sometimes maybe unethical. Therefore, deriving
personalized treatment rules from the observational dataset or the combination of experimental
and observational data are two fruitful directions [138].

For the direction of utilizing an observational dataset, various methods derive the personalized
treatment rules guided by the estimated ITE under the unconfoundedness assumption, such as
deep-treat [9], tiered case-cohort design based method [77]. However, in this area, there are limited
works to handle the unobserved confounders, and methods discussed in Section 4.2 have great
potentials to explore.

6.4 Reinforcement Learning

From the perspective of reinforcement learning, ITE estimation can be viewed as a contextual
multi-armed bandit problem with the treatment as the action, the outcome as the reward, and the
background variables as the contextual information. Arm exploration and exploitation is similar
to randomized trials and observational data. Therefore, these two areas share some similar critical
challenges: (1) How to get an unbiased outcome/reward estimation? (2) How to handle either the
observed or unobserved confounders that affect both the treatment assignment/action choice and
the outcome/reward?

To obtain an unbiased reward estimation, importance sampling weighting [111] is the com-
mon method adopted in the offline policy evaluation. The weight is set as the probability between
the target policy and the logged (observed) policy, which is analogous to IPW mentioned in Sec-
tion 3.1.1. However, importance sampling proposed in [111] suffers from high variance and highly
relies on the assigned weights. To improve this, similar to the DR method in ATE estimation, a DR
policy evaluation is proposed in [43]. Later, various methods [10, 19, 74, 88, 154, 155, 158, 179] are
proposed to improve those two methods with different settings.

As mentioned above, the second challenge is how to deal with confounders. When all the con-
founders are observed, we can directly optimize the unbiased reward function mentioned in the
previous paragraph. However, when there exist unobserved confounders, it can lead to policies
that introduce harm rather than benefit, as is generally the case with observational data [75]. The
confounding-robust policy learning framework is proposed in [75], optimizing the policy over an
uncertain set for propensity weights so that the unobserved confounders can be controlled.

6.5 Natural Language Processing

Recently, researchers have paid increasing attention to enhance natural language processing tasks
with causal inference. De-confounded lexical feature learning [112] aims at learning the lexical
features that are predictive to a set of target variables yet uncorrelated to a set of confounding
variables. It has shown the importance for the linguistic analysis and the interpretation of the
downstream tasks. Moreover, a series of methods have been proposed [44, 156, 169, 173] to handle
the case when the treatment, confounder, or outcome contains textual data. A recent survey [76]
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reviews methods and applications with textual data as the confounder. Specifically, the survey
points out that textual data can serve as the confounder in two ways: one is that the text is
viewed as the surrogate for potential confounders; the other way is that the language of the text
itself, such as the linguistic content, could be a confounder. This survey also discusses several
open problems, including mitigating the approximating error, how to design meaningful text
representation, and so on.

6.6 Computer Vision

In computer vision, some emerging tasks that lie in the interaction between vision and language,
such as visual question answering (VQA) and image captioning, have become a fundamental
block for many frontier interactive AI systems [100]. Most of the existing works rely on the
correlation instead of the causal relevant evidence, and the spurious correlation in the data lead to
the model notoriously brittle to linguistic variations in the questions [115, 137]. To this end, a data
augmentation strategy is proposed in [3], which makes the model more robust against the spurious
correlation. In detail, when removing the objects irrelevant to answering the question, the model’s
prediction is expected to be unchanged, which prevents the model to rely on spurious correlation.
When editing the objects related to the question, such as change the number of the counted objects
in counting problem pairs, the model is expected to change the answer accordingly. Editing the
relevant objects encourages the model to make a prediction based on the causal relevant objects.
The generated complementary dataset, which includes the edited image & answering pair and
the original dataset, makes the model sticking to the causally related evidence. Another line to
handle the spurious correlation is to adopt the causal intervention into the model design. In [164],
the authors argue that the commonsense knowledge should be included in the visual feature, but
the commonsense might be confounded by the spurious observation bias. For example, the words
mouse and keyboard have high co-occurrence frequency due to the underlying commonsense that
they are both part of computer, but commonsense usually wrongly attributed to table because
of the observation bias. To reduce such observation bias, the Visual Commonsense R-CNN is
proposed which considers the object category as the confounder and directly maximizes the likeli-
hood after the intervention to learn the visual feature representation. By removing the observation
bias, the learned visual feature benefits the downstream tasks such as image captioning and VQA.

6.7 Other Applications

The applications of causal inference are not limited to the areas mentioned above, and areas related
to effectiveness measurement, decision making, or handling selection bias or confounders, are all
potential applications.

Education. In the education area, by comparing the outcome of different teaching methods on
the student population, a better teaching method can be decided. Moreover, ITE estimation can
enhance personalized learning by estimating the outcome of each student on different teaching
methods. For example, ITE estimation is developed to answer the questions “Would this partic-
ular student benefit more from the video hint or the text hint when this student cannot solve a
problem?”, so that an Intelligent Tutor System can decide which hint is more suitable for a specific
student [178].

Political decision. In the politics area, causal inference can provide decision support. For ex-
ample, various methods [70, 136, 139, 171, 174] have been developed on the jobs dataset aiming
to answer the question “who would benefit most from subsidized job training?”. Causal inference
can also help with political decisions, such as whether a policy should be promoted to a large
population size.
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Improving Machine learning methods. In addition to the decision support, various balanc-
ing methods that can handle the selection bias (mentioned in Section 3), can also be extended to
improve the stability of machine learning methods. In [78], the reweighting method is adopted to
improve the generalization ability of learned models for unknown environments (i.e., unknown
test data). To be specific, the weight of each sample is added to the prediction loss function as a

regularization, which is formulated as:
∑p

j=1 | |
ϕ (X T

.,−j
)(R�X ., j )

RT X ., j
− ϕ (X T

.,−j
)(R�(1−X ., j ))

RT (1−X ., j )
| |22 , where p is the

number of total features, ϕ (·) is the feature transformation function such as neural network, X ., j

is the j-th feature in X , X .,−j is the features in X except the j-th feature, R ∈ RN is the global sam-
ple weights with N as the number of total samples. This balancing regularizer extends the CBPS
method discussed in 3.1.1, by taking the j-th feature as the treatment and the remaining features
as the background variables, and then combining all the features to obtain the global balancing
weight.

7 FUTURE DIRECTIONS

As discussed in previous sections, existing work has made great contributions to the development
of causal inference. However, there still remain a lot of open problems regarding causal modeling
and theoretical study and applications and evaluations. In this section, we discuss future research
directions as well as potential applications.

For causal modeling and theoretical study, we introduce several open problems as follows.

—Adding or relaxing the assumptions in the causal model. For instance, most of the existing
approaches consider the binary treatment and the high-dimensional treatment, while the
more practical settings with multiple treatments at various levels are often ignored. High-
dimensional treatment is commonly observed in real life. Studying the causal interaction is
a trending topic of high-dimensional treatment, which aims to identify the combinations of
treatments that induce large additional effects beyond the sum of effects separately attrib-
utable to each treatment [45].

—Developing formal connections between different causal models. Although existing frame-
works are logically the same, they have their own advantages. Building connections
between different causal models benefits causal modeling from observational data. For
instance, the relevance between the potential outcome framework and graphical causal
models has been discussed in [67].

—“Machine learning for causal inference” and “Causal inference for machine learning”. Machine
learning and causal inference can enhance each other. Machine learning brings powerful al-
gorithms for causal effect estimation, which is the focus of this survey. How causal inference
can help improve the machine learning algorithm design, such as robustness, generaliza-
tion, and knowledge transfer, is still an open problem.

—Equip machine learning with causal reasoning capabilities. Most of the machine learning
algorithms model the correlation between variables but have very limited causal reason-
ing capabilities. Developing causality-aware machine learning models will help reveal the
underlying mechanisms in complex observational data, and therefore assist the causality-
aware predictive analysis and decision making.

—Causal inference in dynamic environment. Existing work mainly focuses on static observa-
tional data. In practice, data are often continuously collected from a dynamic environment.
Novel causal inference approaches are required to model the dynamic observational data,
leading to lifelong causal inference.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 74. Publication date: May 2021.



A Survey on Causal Inference 74:39

—Causality-assisted trustworthy learning, such as explainability, reliability, and fairness. In the
model explanation domain, the causal inference has a great potential to explore the effect of
the attributes to the model predicted labels. Moreover, in the fairness area, counterfactual
fairness [82] is a trending topic which targets a unit’s outcome in the real world and the
counterfactual world where he/she has different sensitive attribute values.

Along with the rapid development of causal modeling, it is equally important to explore novel
applications and build benchmarks for evaluations.

—Generalized interpretation of “treatment” and “potential outcome” in more domain applica-
tions. A successful example mentioned in the previous section is the recommendation sys-
tem, where exposing the user to one item is analogous to applying the treatment on the
unit. To expand the scope of causal inference applications, generalizing the interpretation
of “treatment” and “potential outcome” in more domains is a must.

— Integration of (partial) experimental study and observational study. In real-world applications,
sometimes, the experimental data are available, such as the A/B testing data in the web
development area. Integrating the experimental data, even small sample-sized experiment
data, is of great help for observational studies to overcome the unobserved confounders,
and to correct the biased causal effect estimation model.

—Extensible causal models for multi-modal data. Multi-modal data is common in real-world
applications. For instance, in the health-care domain, the doctors’ records are text data and
the fMRI data are images. Most of the existing treatment effect estimation models focus on
one type of data, which could not handle multi-modal data. Estimating treatment effects
based on multi-modal data is still an open problem.

8 CONCLUSION

The causal inference has been an attractive research topic for a long time as it provides an effective
way to uncover causal relationships in real-world problems. Nowadays, the flourishing of machine
learning brings new vitality into this area, and meanwhile, the incisive ideas in the causal inference
area promote the development of machine learning. In this survey, we provide a comprehensive
review of the methods under the well-known potential outcome framework. As the potential out-
come framework relies on the three assumptions, the methods are separated into two categories.
One category relies on those assumptions, while the other one relaxes some of the assumptions.
For each category, we provide thorough discussions, comparisons, and summarization of the re-
viewed methods. The available benchmark datasets and open-source codes of those methods are
also listed. Finally, some representative real-world applications of causal inference are introduced,
such as advertising, recommendation, medicine, and reinforcement learning.
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