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Abstract

In the theoretical modelling of a physical system a crucial step consists in the

identification of those degrees of freedom that enable a synthetic, yet informative rep-

resentation of it. While in some cases this selection can be carried out on the basis

of intuition and experience, a straightforward discrimination of the important fea-

tures from the negligible ones is difficult for many complex systems, most notably

heteropolymers and large biomolecules. We here present a thermodynamics-based the-

oretical framework to gauge the effectiveness of a given simplified representation by

measuring its information content. We employ this method to identify those reduced

descriptions of proteins, in terms of a subset of their atoms, that retain the largest

amount of information from the original model; we show that these highly informative

representations share common features that are intrinsically related to the biological
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properties of the proteins under examination, thereby establishing a bridge between

protein structure, energetics, and function.

1 Introduction

The quantitative investigation of a physical system relies on the formulation of a model of

it, that is, an abstract representation of its constituents and the interactions among them

in terms of mathematical constructs. In the realisation of the simplest model that entails

all the relevant features of the system under investigation, one of the most crucial aspects is

the determination of its level of detail. The latter can vary depending on the properties and

processes of interest: the quantum mechanical nature of matter is explicitly incorporated

in ab initio methods,1 while effective classical interactions are commonly employed in the

the all-atom force fields used in all-atom (AA) molecular dynamics (MD) simulations.2,3

Representations of a molecular system whose resolution level is lower than the atomistic one

are commonly dubbed coarse-grained (CG) models:4–8 in this case, the fundamental degrees

of freedom, or effective interaction centroids, are representatives of groups of atoms, and the

interactions among these CG sites are parametrised so as to reproduce equilibrium properties

of the reference system.

An important distinction should be made between reproducing a given property, and

describing it. For example, it is evident that the explicit incorporation of the electronic

degrees of freedom in the model of a molecule is necessary to reproduce, with qualitative

and quantitative accuracy, its vibrational spectrum; on the other hand, the latter can be

measured and described from the knowledge of the nuclear coordinates alone, i.e. from the

inspection of a subset of the system’s degrees of freedom. This is a general feature, in that

the understanding of a complex system’s properties and behaviour can typically be achieved

in terms of a reduced set of variables: statistical mechanics provides some of the most

recognisable examples of this, such as the description of systems composed of an Avogadro
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number of atoms or molecules in terms of a handful of thermodynamical parameters.

In computer-aided studies, and particularly in the fields of computational biophysics

and biochemistry, recent technological advancements–most notably massive parallelisation,9

GPU computing,10 and tailor-made machines such as ANTON11–have extended the range

of applicability of atomistic simulations to molecular complexes composed of millions of

atoms;12–14 even in absence of such impressive resources, it is now common practice to

perform microseconds-long simulations of relatively large systems, up to hundred thousands

atoms. However, a process of filtering, dimensionality reduction, or feature selection is

anyhow required in order to distill the physically and biologically relevant information from

the immense amount of data it is buried in.

The problem is thus to identify the most synthetic picture of the system that entails

all and only its important properties: an optimal balance is sought between parsimony and

informativeness. This objective can be pursued making use of the language and techniques

of bottom-up coarse-grained modelling;5,15 in this context, in fact, one defines a mapping

operator M that performs a transformation from a high-resolution configuration ri, i =

1, ..., n of the system described in large detail to a simpler, coarser configuration RI , I =

1, ..., N < n at lower resolution:

MI(r) = RI =
n

∑

i=1

cIiri, (1)

where n and N are the number of atoms in the system and the number of CG sites cho-

sen, respectively. The linear coefficients cIi in Eq. 1 are constant, positive and subject to

the normalisation condition
∑

i cIi = 1 to preserve translational invariance. Furthermore,

coefficients are generally taken to be specific to each site,15 that is, an atom i taking part

to the definition of CG site I will not be involved in the construction of another site J

(cJi = 0 ∀ J 6= I).

Once the mapping M is chosen, the interactions among CG sites must be determined. In

this respect, several methodologies have been devised in the past decades to parametrise such
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CG potentials.4–8 Some approaches aim at reproducing as accurately as possible the exact

effective potential obtained through the integration of the microscopic degrees of freedom of

the system, that is, the multi-body potential of mean force (MB-PMF); this is achieved in

practice by tuning the CG interactions so as to reproduce specific, low-resolution structural

properties of the reference systems.16,17 Recently, other methods have been proposed that

target not only the structure, but also the energetics.18,19

In this work we do not tackle the issue of parametrising approximate CG potentials,

but rather focus on the consequences of the simplification of the system’s description even

if the underlying physics is the same, i.e. configurations are sampled with the reference,

all-atom probability. In other words, we focus purely on the effect of projecting the all-atom

conformational ensemble onto a coarse-grained configurational space using the mapping as

a filter.

Inevitably, in fact, a CG representation loses information about the high-resolution ref-

erence,5,20 and the amount of information lost depends only on the number and selection

of the retained degrees of freedom. In coarse-grained modelling, the mapping is commonly

chosen based on general and intuitive criteria: for example, it is rather natural to represent

a protein in terms of one single centroid per amino acid (usually the choice falls on the α

carbon of the backbone).21 However, it is by no means assured that a given representation

that is natural and intuitive to the human eye is also the one that allows the CG model to

retain the largest amount of information about the original, higher-resolution system.22,23

A quantitative criterion to assess how much detail is lost upon structural coarsening is thus

needed in order to perform a sensible choice.

In the past few years, various methods have been developed that target the problem

of the automated construction of a simplified protein’s representation at a resolution level

lower than atomistic. In a pioneering work Gohlke and Thorpe proposed to partition a

protein in few, size-wise diverse blocks, distributing the amino acids among the different

domains so as to minimise the degree of internal flexibility of the latter.24 This picture of
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a protein subdivided in quasi-rigid domains, which has been further developed by several

other authors,25–31 is founded on the notion of a simplified model where groups of atoms

are not assigned to coarse-grained sites according to their chemistry (e.g., one residue - one

site), but rather based on the local properties of the specific molecule under examination.

These partitioning methods, however, only employ structural information, in that they aim

at minimising each block’s internal strain, while the energetics of the system is neglected.

Some approaches systematically reduce the number of atoms in a system’s representation

by grouping them according to graph-theoretical procedures. For example, De Pablo and

coworkers map the static structure on a graph and hierarchically decimate it by clustering

together the “leaves”;32 alternative methods lump residues in effective sites based on a

spectral analysis of the graph Laplacian.33 More recently, Li et al.34 developed a graph

neural network-based method to match a dataset of manually annotated CG mappings.

Alternatively, it was proposed to retain only those atoms that guarantee the set of new

interactions to quantitatively reproduce the MB-PMF.22,35 These methods, though, are based

on linearised elastic network models36–41 that have the remarkable advantage of being exactly

solvable, thus allowing a direct comparison between CG potential and MB-PMF, but cannot

be taken as significant representations of the system’s highly nonlinear interactions.

It follows that all these pioneering approaches rely either on purely geometrical/topological

information obtained from a single, static structure; or on an ensemble of structures, ne-

glecting energetics and thermodynamics; or on extremely simplified representations of both

structure and interactions, that do not guarantee general applicability to systems of great

complexity.

Here we tackle the issue of the automated, unsupervised construction of the most infor-

mative simplified representation of biological macromolecules in purely statistical mechanical

terms, that is, in the language that is most naturally employed to investigate such systems.

Specifically, we search for the mapping operator that, for a given number of atoms retained

from the original all-atom model, provides a description whose information content is as close

5



as possible to the reference. In this context, then, the term “coarse-grained representation”

should not be interpreted as a system with effective interactions whose scope is to reproduce

a certain property, phenomenon, or behaviour; rather, the representations we discuss here

are simpler pictures of the reference system evolving according to the reference microscopic

Hamiltonian, but looked at in terms of fewer degrees of freedom. Our objective is thus the

identification of the most informative simplified picture among those possible.

To this end, we make use of the concept of mapping entropy, Smap,
17,42–44 a quantity that

measures the quality of a CG representation in terms of the “distance” between probability

distributions—the Boltzmann distribution of the reference, all-atom system, and the equiva-

lent distribution when the AA probabilities are projected into the CG coordinate space. The

mapping entropy is ignorant of the parametrisation of the effective interactions of the simpli-

fied model: Smap effectively compares the reference system, described through all its degrees

of freedom, to the same system in which configurations are viewed through “coarse-graining

lenses”. The difference between these two representations only lies in the resolution, not in

the microscopic physics.

Recently, the introduction of a mapping entropy-related metric proved to be a powerful

instrument for determining the optimal CG’ing resolution level for a biological system.44

Applied to a set of model proteins, this method was capable of identifying the number of

sites that need to be employed in the simplified CG picture to preserve the maximum amount

of thermodynamic information about the microscopic reference. However, such analysis was

carried out at a fixed CG resolution distribution, with a homogeneous placement of sites

along the protein sequence. Moreover, calculations were performed relying on an exactly

solvable, yet very crude approximation to the system’s microscopic interactions, namely a

Gaussian Network Model.

In the following we take the moves from these results to develop a computationally ef-

fective protocol that enables the approximate calculation of the mapping entropy for an

arbitrarily complex system. We employ this novel scheme to explore the space of the sys-
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tem’s possible CG representations, varying the resolution level as well as distribution, with

the objective of identifying the ones featuring the lowest mapping entropy—that is, allow-

ing for the smallest amount of information loss upon resolution reduction. The method is

applied to three proteins of substantially different size, conformational variability, and bi-

ological activity. We show that the choice of retained degrees of freedom, guided by the

objective of preserving the largest amount of information while reducing the complexity of

the system, highlights biologically meaningful and a priori unknown structural features of the

proteins under examination, whose identification would otherwise require computationally

more intensive calculations or even wet lab experiments.

2 Results

In this section we report the main findings of our work. Specifically, (i) we outline the

theoretical and computational framework that constitutes the basis for the calculation of the

mapping entropy; (ii) we illustrate the biological systems on which we apply the method;

and (iii) we describe the results of the mapping entropy minimisation for these systems and

the properties of the associated mappings.

2.1 Theory

The concept of mapping entropy as a measure of the loss of information inherently generated

by performing a CG’ing procedure on a system was first introduced by one of us in the

framework of the relative entropy method,17 and subsequently expanded in Refs.42–44 For

the sake of brevity, we here omit the formal derivation connecting relative entropy and

mapping entropy as well as a discussion of the former. A brief summary of the relevant

theoretical results presented in Refs.17,42–44 is provided in Appendix A.

In the following we restrict our analysis to the case of decimation mappings M, in which

a subset of N < n atoms of the original system is retained while the remaining ones are
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integrated out, so that

MI(r) = σiri, σi = 1 for one I, 0 otherwise, (2)
n

∑

i=1

σi = N.

In this case, the mapping entropy Smap reads (see Appendix A)42

Smap = kB ×DKL(pr(r)||p̄r(r))

= kB

∫

dr pr(r) ln

[

pr(r)

p̄r(r)

]

, (3)

that is, a Kullback-Leibler (KL) divergence DKL
45 between the probability distribution pr(r)

of the high-resolution system and the distribution obtained by observing the latter through

“coarse-graining glasses”, p̄r(r). Following the notation of Ref.,42 p̄r(r) is defined as

p̄r(r) = pR(M(r))/Ω1(M(r)), (4)

where pR(R) is the probability of the CG macrostate R, given by

pR(R) =

∫

dr pr(r)δ(M(r)−R)

=
1

Z

∫

dr e−βu(r)δ(M(r)−R),

Z =

∫

dr e−βu(r), (5)

while Ω1(R) is defined as

Ω1(R) =

∫

dr δ(M(r)−R), (6)

which is the degeneracy of the macrostate—how many microstates map onto the CG config-

uration R. In Eq. 5 β = 1/kBT , u(r) is the microscopic potential energy of the system, and

Z its canonical partition function.
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The calculation of Smap in Eq. 3 thus amounts at determining the distance (in the KL

sense) between two, although both microscopic, conceptually very different distributions. In

contrast to pr(r), Eq. 4 displays that p̄r(r) associates, to all configurations that map onto

the same CG macrostate R, the same probability; the latter is given by the average of the

original probabilities of these microstates. Importantly, p̄r(r) represents the high-resolution

description of the system that would be accessible only starting from its low-resolution

one—i.e., pR(R). Grouping together configurations into a CG macrostate has the effect of

flattening the detail of their original probabilistic weights. An attempt to revert the CG’ing

procedure and restore an atomistic resolution by reintroducing the mapping operator M in

pR(R) can only result in microscopic configurations that are uniformly distributed within

each macrostate.

Due to the smearing in probabilities, the CG’ing transformations constitute a semi-

group.46 This irreversible character highlights a fundamental consequence of CG’ing strate-

gies: a loss of information about the system. The definition, based on the KL divergence,

presented in Eq. 3 is useful for practical purposes. A more direct understanding of this

information loss and how it is encoded in the mapping entropy, however, can be obtained by

considering the non-ideal configurational entropies of the original and CG representation,

sr = −kB

∫

dr pr(r) ln(V
npr(r)) (7)

sR = −kB

∫

dR pR(R) ln(V NpR(R)) (8)

respectively quantifying the information contained in the associated probability distributions,

pr(r) and pR(R):47 the higher the entropy, the more uniform the distribution, which we

associate to a smaller amount of information content. By virtue of Gibbs’ inequality, from

Eq. 3 one has Smap ≥ 0. Furthermore, see Appendix A

sR − sr = Smap ≥ 0, (9)
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so that the entropy of the CG representation is always larger than the reference, microscopic

one, implying that a loss of information occurs in decreasing the level of resolution.42,44

Critically, the difference between the two information contents is precisely the mapping

entropy.

The information that is lost in the CG’ing process through Smap only depends on the

mapping operator M—in our case, on the choice of the retained sites. This paves the

way for the possibility of assessing the quality of a CG mapping based on the amount of

information it is able to retain about the original system, a qualitative advancement with

respect to the more common a priori selection of CG representations.21 Unfortunately, Eq. 3

or 9 do not allow—except in very simple microscopic models, see Ref. 44—a straightforward

computational estimate of Smap for a system arising from a choice of its CG mapping, as the

observables to be averaged involve logarithms of high-dimensional probability distributions,

and ultimately configuration-dependent free energies. However, having introduced the loss

of information per macrostate Smap(R) defined by the relation42,44

Smap =

∫

dR pR(R)Smap(R), (10)

in Appendix B we show that this problem can be overcome by further subdividing micro-

scopic configurations that map to a given macrostate according to their potential energy.

Let us define the conditional probability Pβ(U |R) for the system, thermalised at inverse

temperature β, to have energy U provided that is in macrostate R as

Pβ(U |R) =
pR(U,R)

pR(R)

=
1

pR(R)

∫

drpr(r)δ(M(r)−R)δ(u(r)− U), (11)
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so that Smap(R) can be exactly rewritten as (see Appendix B):

Smap(R) = kB ln

[
∫

dU ′Pβ(U
′|R) eβ(U

′−〈U〉β|R)

]

, (12)

where 〈U〉β|R is the average of the potential energy restricted to the CG macrostate R,

〈U〉β|R =

∫

dUPβ(U |R)U. (13)

This derivation enables a direct estimate of the mapping entropy Smap from configurations

sampled according to the microscopic probability distribution pr(r). For a given mapping,

the histogram of these configurations with respect to CG coordinates R and energy U ap-

proximates the conditional probability Pβ(U |R) and, consequently, Smap(R), see Eq. 12; the

total mapping entropy can thus be obtained as a weighted sum of the latter over all CG

macrostates, Eq. 10.

The only remaining difficulty consists in obtaining accurate estimates of the exponen-

tial average in Eq. 12, which are prone to numerical errors. As often in these cases—see

e.g. free-energy calculations through Jarzynski’s equality or the free-energy perturbation

method48,49—it is possible to rely on a cumulant expansion of Eq. 12, which truncated at

second order provides

Smap(R) ≃ kB
β2

2
〈(U − 〈U〉β|R)

2〉β|R. (14)

Inserting Eq. 14 in Eq. 10 results in a total mapping entropy given by:

Smap ≃ kB
β2

2

∫

dRpR(R)〈(U − 〈U〉β|R)
2〉β|R. (15)

For a CG representations to exhibit an exactly zero mapping entropy, it is required

that all microstates r that map onto a given macrostate R = M(r) have the same energy

in the reference system. Indeed, in this case one has Pβ(U |R) = δ(U − ūR) in Eq. 12,

with ūR being the potential energy common to all microstates within macrostate R, and

11



consequently Smap(R) = 0. Eq. 14 highlights that deviations from this condition result in

a loss of information associated to a particular CG macrostate that is proportional to the

variance of the potential energy of all the atomistic configurations that map to R. The

overall mapping entropy is an average of these energy variances over all macrostates, each

one weighted with the corresponding probability.

In the numerical implementation we thus seek to identify those mappings that cluster

together atomistic configurations having the same, or at least very close energy, so as to

minimise the information loss arising from CG’ing. With respect to Eq. 15, we further

approximate Smap to its discretised counterpart (see Methods),

S̃map = kB
β2

2

Ncl
∑

i=1

pR(Ri)〈(U − 〈U〉β|Ri
)2〉β|Ri

(16)

where we identify Ncl discrete CG macrostates Ri, each of which contributes to S̃map with

its own probability pR(Ri) taken as the relative population of the cluster. We then employ

an algorithmic procedure to estimate and efficiently minimise, over the possible mappings,

a cost function (Eq. 25 of the Methods section)

Σ ≡ 〈S̃map〉 (17)

defined as an average of values of S̃map computed over different CG configuration sets, each

of these being associated to a given number of conformational clusters Ncl.

Finally, it is interesting to note that the mapping entropy in the form presented in Eq. 15

appears in the dual-potential approach recently developed by Lebold and Noid.18,19 In these

works, the authors obtain an approximate CG energy function E(R) able to accurately

reproduce the exact energetics of the low resolution system—i.e. the average energy 〈U〉β|R

in macrostate R, see Eq. 13. This is achieved by minimising the functional

χ2[E] = 〈|E(M(r))− u(r)|2〉 (18)
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with respect to the force-field parameters contained in E, the average in Eq. 18 being per-

formed over the microscopic model. By expressing 〈U〉β|R as a function of r through the

mapping M, χ2[E] can be decomposed as18,19

χ2[E] = 〈|〈U〉β|R(M(r))− u(r)|2〉+ 〈|E(M(r))− 〈U〉β|R(M(r))|2〉. (19)

Minimising χ2[E] on E(R) for a given, fixed mapping as in Refs. 18,19 is tantamount to

minimising the second term of Eq. 19, with the objective of reducing the error introduced

by approximating 〈U〉β|R through E(R).

However, a comparison of Eqs. 15 and 19 displays that Smap coincides with the first term

of Eq. 19. Critically, the latter depends only on the mapping M and would be nonzero also

in the case of an exact parametrisation of E, if E(R) ≡ 〈U〉β|R. The approach illustrated in

the present work goes in a direction complementary to that of Refs. 18,19, as we concentrate

on identifying those mappings that minimise the one contribution to χ2[E] that is due to,

and depends only on, the CG representation M.

2.2 Biological structures

It is worth stressing that the results of the previous section are completely general and

independent of the specific features of the underlying system. Of course, characteristics of the

input such as the force field quality, the simulation duration, the number of conformational

basins explored etc. will impact the outcome of the analysis, as it is necessarily the case

in any computer-aided investigation; nonetheless, the applicability of the method is not

prevented or limited by these features or other system properties, e.g. the specific molecule

under examination, its complexity, its size, or its underlying all-atom modelling.

To illustrate the method in its generality, we here focus our attention on three proteins

we chose to constitute a small yet representative set of case studies. These molecules cover
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a size range spanning from ∼ 30 to ∼ 400 residues and a similarly broad spectrum of

conformational variability and biological function, and can be taken as examples of several

classes of enzymatic as well as non-enzymatic proteins.

Each protein is simulated for 200 ns in the NVT ensemble with physiological ion con-

centration. Out of 200 ns, snapshots every 20 ps are extracted from each trajectory, for a

total 104 AA configurations per protein employed throughout the analysis. Details about the

simulation parameters, a quantitative inspection of MD trajectories, characteristic features

of each protein’s results, as well as the validation of the latter with respect to the duration of

the MD trajectory employed, can be found in the Supplemental Material. Hereafter we pro-

vide a description of each molecule, along with a brief summary of its behaviour as observed

along MD simulations.

[TAM] A recently released50 31-residue tamapin mutant (PDB code 6D93). Tamapin is the

toxin produced by the Indian red scorpion. It features a remarkable selectivity towards a pe-

culiar calcium-activated potassium channel (SK2), whose potential use in the pharmaceutical

context has made it a preferred object of study during the past decade.51,52 Throughout our

simulation almost every residue is highly solvent-exposed. Side chains fluctuate substantially,

thus giving rise to an extreme structural variability.

[AKE] Adenylate Kinase (PDB code 4AKE). It is a 214 residue-long phosphotransferase en-

zyme that catalyses the interconversion between adenine diphosphate (ADP) and monophos-

phate (AMP) and their energetically rich complex, Adenine triphosphate (ATP).53 It can

be subdivided in three structural domains, CORE, LID, and NMP.54 The CORE domain is

stable, while the other two undergo large conformational changes.55 Its central biochemical

role in the regulation of the energetic balance of the cell and relatively small size, combined

with the possibility to observe conformational transitions over timescales easily accessible

by plain MD,56 make it the ideal candidate to test and validate novel computational meth-

ods.22,57,58 In our MD simulation the protein displays many rearrangements in the two motile

domains, which occur to be quite close at many points. Nevertheless, the protein does not
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undergo a full open ↔ closed conformational transition.

[AAT] α−1 antitrypsin (PDB code 1QLP). With 5934 atoms (372 residues), this protein is

almost two times bigger than adenylate kinase. α − 1 antytripsin is a globular biomolecule

and it is well known to exhibit a conformational rearrangement over the timescales of the

minutes.59–61 During our simulated trajectory the molecule experiences fluctuations partic-

ularly localised in correspondence of the most solvent-exposed residues. The protein bulk

appears to be very rigid, and there is no sign of a conformational rearrangement.

2.3 Minimisation of the mapping entropy and characterisation of

the solution space

The algorithmic procedure described in the Methods section and Appendix B enables one

to quantify the information loss experienced by a system as a consequence of a specific

decimation of its degrees of freedom. This quantification, which is achieved through the ap-

proximate calculation of the associated mapping entropy, opens the possibility of minimising

such measure in the space of CG representations, so as to identify the mapping that, for a

given number of CG sites N , is able to preserve as much information as possible about the

AA reference.

In the following we allow CG sites to be located only on heavy atoms, thus reducing the

maximum number of possible sites to Nheavy. We then investigate the properties of various

kinds of CG mappings having different numbers of retained sites N . Specifically, we consider

three chemically-intuitive values of N for each biomolecule: (i) Nα, i.e., the number of Cα

atoms of the structure (equal to the number of amino acids); (ii) Nαβ, the number of Cα

and Cβ atoms; and (iii) Nbkb, which results from counting all the heavy atoms belonging to

the main chain of the protein. The values of N for mappings (i)-(iii) in the case of TAM,

AKE and AAT are listed in Tab. 1, together with the corresponding Nheavy.

Even restricting N to Nα, Nαβ and Nbkb, the combinatorial dependence of the number

of possible decimation mappings on the amount of retained sites and Nheavy makes their
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exhaustive exploration unfeasible in practice (see Methods). To identify the CG representa-

tions that minimise the information loss we thus rely on a Monte Carlo simulated annealing

approach (SA, see Methods).62,63 For each analysed protein and value of N , we perform

48 independent optimisation runs, i.e., minimisations of the mapping entropy with respect

to the CG site selection; we then store the CG representation characterised by the lowest

value of Σ in each run, thus resulting in a pool of optimised solutions. In order to assess

their statistical significance and properties, we also generate a set of random mappings and

calculate the associated Σ’s, which constitute our reference values.

Fig. 1 displays, for each value of N considered, the distribution of mapping entropies

obtained from a random choice of the CG representation of TAM, AKE, and AAT together

with each protein’s optimised counterpart. For N = Nbkb and N = Nα in Fig. 1 we also

report the values of Σ associated to physically-intuitive choices of the CG mapping that are

commonly employed in the literature: the backbone mapping (N = Nbkb), which neglects all

atoms belonging to the side chains; and the Cα mapping (N = Nα), in which we only retain

the Cα atoms of the structures. The first is representative of united-atom CG models, while

the second is a ubiquitous and rather intuitive choice to represent a protein in terms of a

single bead per amino acid.21

Table 1: Values of Nα, Nαβ, Nbkb and Nheavy (see text) for each analysed protein.

Protein Nα Nαβ Nbkb Nheavy

Tamapin (TAM) 31 59 124 230
Adenylate Kinase

(AKE)
214 408 856 1656

α− 1 antytripsin
(AAT)

372 723 1488 2956

The optimality of a given mapping with respect to a random choice of the CG sites can

be quantified in terms of the Z-score

Z =
Σopt − µ

σ
, (20)
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where µ and σ represent mean and standard deviation of the distribution of Σ over randomly

sampled mappings, respectively. Table 2 summarises the values of Z found for each N for

the proteins under examination, including Z[backbone] and Z[Cα], which are computed with

respect to the random distribution generated with N = Nbkb and N = Nα respectively.

Table 2: Table of Z scores of each analysed protein. We report the mean and standard
deviation of the distribution of Z values of the optimised solutions, Z, for all values of N
investigated. Results for the standard mappings—Z[backbone] for backbone atoms only and
Z[Cα] for Cα atoms only—are also included.

N TAM AKE AAT

Z[Nα] −2.22±
0.06

−7.85±1.14 −6.96±
1.03

Z[Nαβ] −2.38±
0.08

−6.09±0.79 −6.64±
0.84

Z[Nbkb] −2.65±
0.09

−5.55±0.62 −7.24±
0.85

Z[backbone] 4.37 5.65 4.31
Z[Cα] 0.87 3.36 3.28

As for the physically intuitive CG representations, Fig. 1 shows that the value of Σ

associated to the backbone mapping is very high for all structures. For TAM in particular,

the amount of information retained is so low that the mapping entropy falls 4.37 standard

deviations higher than the reference distribution of random mappings, see Table 2. This

suggests that neglecting the side chains in a CG representation of a protein is detrimental,

at least as far as the structural resolution is concerned. In fact, the backbone of the protein

undergoes relatively minor structural rearrangements when exploring the neighbourhood of

the native conformation, thereby inducing negligible energetic fluctuations; for side chains,

on the other hand, the opposite is true, with comparatively larger structural variability and

a similarly broader energy range associated to it. Removing side chains from the mapping

induces the clustering of atomistically different structures with different energies onto the

same coarse-grained configuration, the latter being solely determined by the backbone. The

corresponding mapping entropy is thus large—worse than a random choice of the retained

atoms—since it is related to the variance of the energy in the macrostate.
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Calculations employing the Cα mapping for the three structures show that this provides

Σ values that are very close to the ones we find with the backbone mapping, thus suggesting

that Cα atoms retain about the same amount of information that is encoded in the backbone.

This is reasonable, given the rather limited conformational variability of the atoms along the

peptide chain. However, a comparison of the random case distributions for a number Nα

and Nbkb of retained atoms in Fig. 1 reveals that the former generally has a broader spread

than the latter, due to the lower number of CG sites; consequently, the Σ of the Cα atoms

mapping is closer to the bulk of the distribution of the random case than that of the backbone

mapping.

We now discuss the case of optimised mappings, that is, CG representations retaining the

maximum amount of information about the AA reference. Each of the 48 minimisation runs,

which have been carried out for each protein in the set and value of N considered, provided

an optimal solution—a deep local minimum in the space of CG mappings; the corresponding

Σ’s spread over a compact range of values that are systematically lower than, and do not

overlap with, those of the random case distributions (Fig. 1).

Optimal solutions for AKE and AAT span a wide interval of values of Σ; when N = Nα in

particular, the support of this set and of the corresponding random reference have comparable

sizes. A quantitative measure of this broadness is displayed in the distributions of Z scores of

optimal solutions presented in Table 2. In both proteins, we observe that the Σ’s associated to

optimal mappings increase with the degree of CG’ing N ; this is a consequence of keeping the

number of CG configurations of each system (conformational clusters, see Sec. 4.2) constant

across different resolutions. As N increases, the available CG conformational clusters are

populated by more energetically diverse conformations, thereby incrementing the associated

energy fluctuations. On the other hand, TAM shows narrowly peaked distributions of optimal

values of Σ, whose position does not vary with the amount of retained sites. Both effects can

be ascribed to the fact that most of the energy fluctuations in TAM—and consequently the

mapping entropy—are due to a subset of atoms that are almost always maintained in each
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optimal mapping (see Sec. 2.4) in contrast to a random choice of the CG representation. At

the same time, the associated Z scores are lower than the ones of the bigger proteins for all

values of N under examination, as TAM conformations generally feature a lower variability

in energy than the other molecules.

Figure 1: Distributions of the values of mapping entropy Σ [kJ/mol/K] in Eq. 17 for
random mappings (light blue histograms) and optimised solutions (green histograms). Dark
blue dashed lines show the best fit with normal distributions over the random cases. Each
column corresponds to an analysed protein, each row to a given number N of retained atoms.
In the first and last rows, corresponding to numbers of CG sites equal to the number of Cα

atoms and of backbone atoms, Nα and Nbkb respectively, the values of the mapping entropy
associated to the physically-intuitive choice of the CG sites (see text) is indicated by vertical
lines (red for N = Nα, purple for N = Nbkb). Note that the Smap ranges have the same width
in all plots.

For all the investigated proteins, the absence of an overlap between the distributions

of Σ associated to random and optimised mappings raises some relevant questions. First,

one might wonder what kind of structure the solution space has, that is, if the identified
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solutions lie at the bottom of a rather flat vessel or, on the contrary, each of them is located

in a narrow well, neatly separated one form the other. Second, it is reasonable to ask whether

some degree of similarity exists between these quasi-degenerate solutions of the optimisation

problems and, in case, what significance this has.

In order to answer these questions, for each structure we select four pairs of mapping

operators Mopt that result in the lowest values of Σ. We then perform 100 independent tran-

sitions between these solutions, constructing intermediate mappings by randomly swapping

two non-overlapping atoms from the two solutions at each step and calculating the associated

mapping entropy. Fig. 2 shows the results of this analysis for the pair of mappings with the

lowest Σ, all the other transitions being reported in Fig. S2 of the Supplemental Material.

It is interesting to notice that the endpoints (that is, the optimised mappings) correspond

to the lowest values of Σ along each transition path; by increasing the size of the proteins,

the values of Σ for intermediate mappings get closer to the average of Σrandom. We cannot

rule out, by this analysis, the absence of lower minima over all the possible paths, although

it seems quite unlikely given the available sampling.

Finally, it is interesting to observe the pairwise correlations of the site conservation

probability within a pool of solutions, as it is informative of the existence of atom pairs that

are, in general, simultaneously present, simultaneously absent, or mutually exclusive. As

reported in detail in the Supplemental Material (Figs. S6-S7), no clear evidence is available

that conserving a given atom can increase or decrease in a statistically relevant manner the

conservation probability of another: this behaviour supports the idea that the organisation

internal to a given optimal mapping is determined in a nontrivial manner by the intrinsically

multi-body nature of the problem at hand.

These analyses thus address the first question by showing that at least the deepest so-

lutions of the optimisation procedure are distinct from each other. It is not possible to

(quasi)continuously transform an optimal mapping into another through a series of steps

keeping the value of the mapping entropy low. Each of the inspected solutions is a small
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Figure 2: Values of the mapping entropy Σ [kJ/mol/K] of mappings connecting two optimal
solutions. In each plot, one per protein under examination, the two lowest-Σ mappings are
taken as initial and final endpoints (black dots) for paths constructed by swapping pairs of
atoms between them (blue dots). For each protein, 100 independent paths at given N = Nαβ

are constructed and the mapping entropy of each intermediate point is computed. In each
plot, horizontal lines represent the mean (red) and minimum (green) Smap obtained from the
corresponding distribution of random mappings presented in Fig. 1.

town surrounded by high mountains in each direction, isolated from the others with no valley

connecting them.

The second question, namely what similarity, if any, exists among these disconnected

solutions, is tackled in the following section.

2.4 Biological Significance

The degree of similarity between the optimal mappings can be assessed by a simple average,

returning the frequency with which a given atom is retained in the 48 solutions of the

optimisation problem.

Fig. 3 shows the probability Pcons of conserving each heavy atom, separately for each

analysed protein and degree of coarse-graining N investigated, computed as the fraction

of times it appears in the corresponding pool of optimised solutions. One can notice the

presence of regions that appear to be more or less conserved. Quantitative differences can

be observed between the three cases under examination: while the heat map of TAM shows

narrow and pronounced peaks of conservation probability, optimal solutions for AKE feature

a more uniform distribution, where the maxima and minima of Pcons extend over secondary
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Figure 3: Probability Pcons that a given atom is retained in the optimal mapping at various
numbers N of CG sites and for each analysed protein, expressed as a function of the atom
index. Atoms are ordered according to their number in the PDB file. The secondary structure
of the proteins is depicted using Biotite:64 green waves represent alpha helices and orange
arrows correspond to beta strands.

22



structure fragments rather than small sets of atoms. The distribution gets even more blurred

for AAT.

As index proximity does not imply spatial proximity in a protein structure, we mapped

the aforementioned probabilities to the three-dimensional configurations. Results for TAM

are shown in Fig. 4, while the corresponding ones for AKE and AAT are provided in the

Supplemental Material (Fig. S3). From the distribution of Pcons at different number of

retained sites N it is possible to infer some relevant properties of optimal mappings.

For what concerns TAM (Fig. 4), it seems that, at the highest degree of CG (N =

Nα), only two sites are always conserved, namely two nitrogen atoms belonging to ARG6

and ARG13 residues (Pcons(NH1,ARG6) = 0.92, Pcons(NH2,ARG13) = 0.96). The atoms

that constitute the only other arginine residue, ARG7, are well conserved but with lower

probability. By increasing the resolution (N = Nαβ), i.e., employing more CG sites, we see

that the atoms in the side chain of LYS27 appear to be retained more than average together

with atoms of GLU24 (Pcons(NZ,LYS27) = 0.65, Pcons(OE2,GLU24) = 0.75). At N = 124

the distribution becomes more uniform, but still sharply peaked around terminal atoms of

ARG6 and ARG13.

Interestingly, ARG6 and ARG13 have been identified to be the main actors involved in

the TAM-SK2 channel interaction:65–67 Andreotti et al.65 suggested that these two residues

strongly interact with the channel through electrostatics and hydrogen bonding. Further-

more, Ramı́rez-Cordero et al.67 showed that mutating one of the three arginines of TAM

dramatically decreases its selectivity towards the SK2 channel.

It thus appears that the mapping entropy minimisation protocol was capable of singling

out the two residues that are crucial for a complex biological process. The rationale for

this can be found in the fact that such atoms strongly interact with the remainder of the

protein, so that small variations of their relative coordinates have a large impact on the

value of the overall system’s energy. Retaining these atoms, and fixing their position in the

coarse-grained conformation, thus enables the model to discriminate effectively a macrostate
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from another.

We note that this result was achieved solely relying on data obtained in standard MD

simulations. This aspect is particularly relevant as the simulation was performed in ab-

sence of the channel, whose size is substantially larger than that of TAM. Consequently, we

stress that valuable biological information, otherwise obtained via large-scale, multi-complex

simulations, bioinformatic approaches, or experiments, can be retrieved by means of straight-

forward simulations of the molecule of interest in absence of its substrate.

1

0.5

N = 124 N = 59 N = 31

0

ARG6
ARG13

Figure 4: Structure of tamapin (one bead per atom) coloured according to the probability
Pcons for each atom to be retained in the pool of optimal mappings. Each structure cor-
responds to a different number N of retained CG sites. Residues presenting the highest
retainment probability across N (ARG6 and ARG13) are highlighted.

For the AKE (Fig. S3 in the Supplemental Material) we have that when N = Nα the

external, solvent-exposed part of the LID domain is heavily coarse-grained, while its inter-

nal region is more conserved. The CORE region of the protein is always largely retained,

without noteworthy peaks in probability. Such peaks, on the contrary, appear in correspon-

dence of some terminal nitrogens of ARG36, LYS57 and ARG88 (Pcons(NH2,ARG36) = 0.52,

Pcons(NZ,LYS57) = 0.48, Pcons(NH2,ARG88) = 0.58). The two arginine amino acids are lo-

cated in the internal region of the NMP arm, at the interface with the LID domain. ARG88

is known to be the most important residue for catalytic activity,68,69 being central in the

process of phosphoryl transfer.70 Phenylglyoxal,71 a drug that mutates ARG88 to a glycine,

has been shown to substantially hamper the catalytic capacity of the enzyme.70 ARG36 is

also bound to phosphate atoms.69 Finally, LYS57 is on the external part of NMP and has

been identified to play a pivotal role in collaboration with ARG88 to block the release of
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adenine from the hydrophobic pocket of the protein.72 More generally, this amino acid is

crucial for stabilising the closed conformation of the kinase,73,74 which was never observed

throughout the simulation. The overall probability pattern persists as N increases, even

though less pronounced.

As for AAT, Fig. S3 shows that the associated optimisations heavily coarse-grain the

reactive center loop of the protein. On the other hand, two of the most conserved residues

in the pool of optimised mappings, MET358 and ARG101, are central to the biological role

of this serpin. MET358 (Pcons(CE,MET358) = 0.31) constitutes the reactive site of the

protein.75 Being extremely inhibitor-specific, mutations or oxidation of this amino acid lead

to severe diseases. In particular, heavy oxidation of MET358 is one of the main causes

of emphysema.76 The AAT Pittsburgh variant shows MET358–ARG mutation, which leads

to diminished anti-elastase activity but markedly increased antithrombin activity.59,75,77 In

turn, ARG101 (Pcons(CZ,ARG101) = Pcons(NH1,ARG101) = Pcons(NH2,ARG101) = 0.35)

has a crucial role is due to its connection to mutations that lead to severe AAT deficiency.60,61

In summary we observe that, in all the proteins investigated, the presented approach

identifies biologically relevant residues. Most notably, these residues, which are known to

be biologically active in presence of other compounds, are singled out from substrate-free

MD simulations. With the exception of MET358 of AAT, the most probably retained atoms

belong to amino acids that are charged and highly solvent-exposed. To quantify the statis-

tical significance of the selection operated by the algorithm, we note that the latter detects

those fragments out of a pool of 8, 69 and 100 charged residues for TAM, AKE and AAT,

respectively. If we account for solvent exposition, these numbers reduce to 7, 32 and 40

considering amino acids with solvent accessible surface area (SASA) higher than 1 nm2.

Another aspect worth mentioning is the fact that several atoms pinpointed as highly

conserved in optimal mappings are located in the side chains of relatively large residues,

such as arginine, lysine and methionine. It is thus legitimate to wonder whether a correlation

might exist between an amino acid size and the probability of one or more of its atoms to
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be present in a low Smap reduced representation. An inspection of the RMSF values of the

three proteins’ atoms vs. their conservation probability (see Fig. S4 in the Supplemental

Material) shows no significant correlation for low or intermediate values of Pcons; highly

conserved atoms, on the other hand, tend to be located on highly mobile residues because

a relatively large conformational variability is a prerequisite for an atom to be determinant

in the mapping. In conclusion, highly mobile residues are not necessarily highly conserved,

while the opposite is more likely.

3 Discussion and Conclusions

In this work we have addressed the question of identifying the subset of atoms of a macro-

molecule, specifically a protein, that entails the largest amount of information about its

conformational distribution while employing a reduced number of degrees of freedom with

respect to the reference. The motivation behind this objective is to provide a synthetic yet

informative representation of a complex system, simulated in high resolution but observed

in low resolution, thus rationalising its properties and behaviour in terms of relatively few

important variables–namely the positions of the retained atoms.

This goal was pursued making use of tools and concepts largely borrowed from the field of

coarse-grained modelling, in particular bottom-up coarse-graining. The latter term identifies

a class of theoretical and computational strategies employed to construct a simplified model

of a system that, if treated in terms of a high-resolution description, would otherwise be too

onerous to simulate. Coarse-graining methods make use of the configurational landscape of

the reference high-resolution model to construct a simplified representation that retains its

large-scale properties. The interactions among effective sites are parametrised by directly

integrating out (in an exact or approximate manner) the higher-resolution degrees of freedom,

and imposing the equality of the probability distributions of the coarse-grained degrees of

freedom in the two representations.5
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These approaches have a long and successful history in the field of statistical mechanics

and condensed matter, the most prominent, pioneering example probably being Kadanoff’s

spin block transformations of ferromagnetic systems.78 This process, which lies at the heart

of real-space renormalisation group (RG) theory, allows the relevant variables of the system

to naturally emerge out of a (potentially infinite) pool of fundamental interactions, thus

linking microscopic physics to macroscopic behaviour.79,80

The generality of the concepts of renormalisation group and coarse-graining has natu-

rally taken them outside of their native environment,81–83 the whole field of coarse-grained

modelling of soft matter being one of the most fruitful offsprings of this cross-fertilisation.5

However, a straightforward application of RG methods in this latter context is severely re-

stricted by fundamental differences between the objects of study. Most notably, the crucial

assumptions of self-similarity and scale invariance, which justify the whole process of renor-

malisation at the critical point, clearly do not apply to, say, a protein, in that the latter

does certainly not resemble itself upon resolution reduction. Furthermore, scaling laws can-

not be applied to a system such as a biomolecule that is intrinsically finite, for which the

thermodynamic limit is not defined.

Additionally, one of the key consequences of self-similarity at the critical point is that the

filtering process put forward by the renormalisation group turns out to be largely indepen-

dent of the specific coarse-graining prescription: the set of relevant macroscopic variables

emerges as such for almost whatever choice of mapping operator is taken to bridge the

system across different length scales.84 In the case of biological matter, where the organ-

isation of degrees of freedom is not fractal, rather hierarchical—from atoms, to residues,

to secondary structure elements, and so on—the mapping operator acquires instead a cen-

tral role in the “renormalisation” process. The choice of a particular transformation rule,

projecting an atomistic conformation of a molecule to its coarse-grained counterpart, more

severely implies an external—i.e. not emergent—selection of which variables are relevant in

the description of the system, and which others are redundant. In this way, what should
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be the main outcome of a genuine coarse-graining procedure is demeaned to be one of its

ingredients.

It is only recently that the central importance of the resolution distribution, i.e., the

definition of the CG representation, has gradually percolated in the field of biomolecular

modelling.22,44 Moving away from an a priori selection of the effective interaction sites,21

few different strategies have been developed that rather aim at the automatic identification

of CG mappings. These techniques rely on specific properties of the system under examina-

tion: examples include quasi-rigid domain decomposition,24–31 or graph theory–based model

construction methods that attempt at creating CG representations of chemical compounds

based only on their static graph structure;32,33,85 other approaches aim at selecting those

representations that closely match the high resolution model’s energetics.22,35 Finally, more

recent strategies rooted in the field of machine learning generate discrete CG variables by

means of variational autoencoders.86 All these methods take into account the system struc-

ture, or its conformational variability, or its energy, but none of them integrates these com-

plementary properties in a consistent framework embracing topology, structure, dynamics,

and thermodynamics.

In this context, information-theoretical measures, such as the mapping entropy,17,42–44

can bring novel and potentially very fruitful features.87 In fact, this quantity associates

structural and thermodynamical properties, so that both the conformational variability of

the system and its energetics are accurately taken into account. Making use of the advan-

tages offered by the mapping entropy, we developed a protocol to identify, in an automated,

unsupervised manner, the low-resolution representation of a molecular system that maxi-

mally preserves the amount of thermodynamical information contained in the corresponding

higher-resolution model.

The results presented here suggest that the method may be capable of identifying not

only thermodynamically consistent, but also biologically informative mappings. Indeed, a

central result we reported is that those atoms consistently retained with high probability
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across various lowest-Smap mappings at different CG site numbers tend to be located in

amino acids that play a relevant role in the function of the three proteins under exami-

nation. Most importantly, these key residues, whose biological activity consists in binding

with other molecules, have been singled out on the basis of plain MD simulations of the

substrate-free molecules in explicit solvent. In general, the vast majority of available tech-

niques for the identification of putative binding or allosteric sites in proteins rely, explicitly

or implicitly, on the analysis of the interaction between the molecule of interest and its

partner—be that a small ligand, another protein, or else.88–93 This is the case, for example,

of binding site prediction servers,94,95 which perform a structural comparison between the

target protein and those archived in a precompiled, annotated database; other bioinformatic

tools make use of machine learning methods96–99—with all pros and cons that come with

the training over a possibly vast, but certainly finite dataset of known cases.100 To the best

of our knowledge, the remaining alternative methods perform a structural analysis of the

protein in search of binding pockets based on purely geometrical criteria.101,102 The results

obtained in the present work, on the contrary, suggest that a significant fraction of biolog-

ically relevant residues, whose function is intrinsically related to the interaction with other

molecules, might be identified as such from the analysis of simulations in absence of the

substrate. This observation would imply that a substantial amount of information about

functional residues, even those that exploit their activity through the interaction with a

partner molecule, is entailed in the protein’s own structure and energetics. In the past few

decades, the successful application of extremely simplified representations of proteins such

as elastic network models has shown that the key features of a protein’s large-scale dynamics

are encoded in its native structure;27,36–41,103–107 in analogy with this, we hypothesise that

the mapping entropy minimisation protocol is capable of bringing to light those relational

properties of proteins—namely the interaction with a substrate—from the thermodynamics

of the single molecule, in absence of its partner.

The mapping entropy minimisation protocol establishes a quantitative bridge between
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a molecule’s representation—and hence its information content—on the one side, and the

structure-dynamics-function relationship on the other. This method might represent a novel

and useful tool in various fields of applications, e.g. for the identification of important regions

of proteins, such as druggable sites and allosteric pockets, relying on simple, substrate-

free MD simulations, and efficient analysis tools. In this study, a first exploration of the

method’s capabilities, limitations, and potential developments has been carried out, and

several perspectives lie ahead that deserve further exploration. Among the most pressing

and interesting ones we mention the investigation of how the optimised mappings depend

on the conformational space sampling; the relation of the mapping entropy minimisation

with more established schemes such as the maximum entropy method; and the viability of

a machine learning-based implementation of the protocol, e.g. making use of deep learning

tools that have proven to be strictly related to coarse-graining, dimensionality reduction,

and feature extraction. All these avenues are the object of ongoing study.

In conclusion, it is our opinion that the proposed automated selection of coarse-grained

sites entails a great potential for further development, being at the nexus between molecular

mechanics, statistical mechanics, information theory, and biology.

4 Methods

In this section we describe the technical preliminaries and the details of the algorithm we

employ to obtain the CG representation M, see Eq. 2, that minimises the loss of information

inherently generated by a CG’ing procedure—that is, the mapping entropy.

Eq. 15 provides us with a way of measuring the mapping entropy of a biomolecular system

associated to any particular choice of decimation of its atomistic degrees of freedom. One

can visualise a decimation mapping (Eq. 2) as an array of bits, where 0 and 1 correspond to

not retained and retained atoms, respectively. Order matters: swapping two bits produces

a different mapping operator. Applying this procedure, one finds that the total number
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of possible CG representations of a biomolecule, irrespectively of how many atoms N are

selected out of n, is
n

∑

N=0

n!

N ! (n−N)!
= 2n, (21)

which is astronomical even for the smallest proteins. In this work we restrict the set of

possibly retained sites to the Nheavy heavy atoms of the compound—excluding hydrogens—

thus significantly reducing the cardinality of the space of mappings. Nonetheless, finding

the global minimum of Eq. 15 for a reasonably large molecule would be computationally

intractable whenever N is different from 1, 2 and Nheavy − 1, Nheavy − 2. As an example,

there are 2.4× 1038 CG representations of tamapin with 31 sites (N = Nα) and 9.6× 10887

for antitrypsin with 1488 sites (N = Nbkb).

Hence, it is necessary to perform the minimisation of the mapping entropy through a

Monte Carlo-based optimisation procedure, and we specifically rely on the simulated an-

nealing (SA) protocol.62,63 As it is typically the case with this method, the computational

bottleneck consists in the calculation of the observable (the mapping entropy) at each SA

step.

We develop an approximate method that is able to obtain the mapping entropy of a

biomolecule by analysing a MD trajectory that can contain up to tens of thousands of frames.

At each SA step, that is, for each putative mapping, the algorithm calculates a similarity

matrix among all the generated configurations. The entries of this matrix are given by the

root mean square deviation (RMSD) between structure pairs, the latter being defined only

in terms of the retained sites associated to the CG mapping, and aligned accordingly; we

then identify CG macrostates by clustering frames based on the distance matrix, making use

of bottom-up hierarchical clustering (UPGMA108). Finally, we determine the observable of

interest from the variances of the atomistic intramolecular potential energy of the protein

corresponding to the frames that map onto the same CG conformational cluster, see Eq. 16.

The protocol is initiated with the generation of a mapping such that the overall number of

retained sites is equal to N . Then, at each SA step, the following operations are performed:
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Figure 5: Schematic representation of the algorithmic procedure described in the text that
we employ to minimise the mapping entropy, the latter being calculated by means of Eq.
25. The full similarity matrix is computed once every TK steps, while in the intermediate
steps we resort to the approximation given by Eq. 23. TK depends both on the protein and
on N . TMAX is the number of simulated annealing steps, TMAX = 2× 104.

1. swap a retained site (σi = 1) and a removed site (σj = 0) in the mapping;

2. compute a similarity matrix among CG configurations using the RMSD;

3. apply a clustering algorithm on the RMSDmatrix in order to identify the CGmacrostates

R;

4. compute S̃map using Eq. 16.

Once the new value of S̃map is obtained, the move is accepted/rejected using a Metropolis-

like rule. The overall workflow of the algorithm is schematically illustrated in Fig. 5.

For the sake of the accuracy of the optimisation, the more exhaustive the sampling the

better, hence the number of sampled atomistic configurations should be at least of the order

of the tens of thousands. However, in that case step 2 would require to align a huge number of

structure pairs for each proposed CG mapping, which in turn would dramatically slow down

the entire process. This problem is circumvented performing a reasonable approximation in
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the calculation of the CG RMSD matrix.

4.1 RMSD matrix calculation

The RMSD between two superimposed structures x and y is given by

RMSD(x,y) =

√

√

√

√

1

n

n
∑

i=1

(xi − yi)2, (22)

where n is the number of sites in the system, being they atomistic or CG, and xi,

yi represent the cartesian coordinates of the i-th element in the two sets. According to

Kabsch109,110 it is possible to find the superimposition that minimises this quantity, namely

the rotation matrix U that has to be applied to x for a given y in order to reach the minimum

of the RMSD.

The aforementioned procedure is not computationally heavy per se; in our case, however,

we would have to repeat this alignment for all configuration pairs in the MD trajectory every

time a new CG mapping is proposed along the Monte Carlo process, thus making the overall

workflow inctractable in terms of computational investment.

The simplest solution to this problem is to discard the differences in the Kabsch align-

ment between two CG structures differing by a pair of swapped atoms. This assumption is

particularly appealing from the point of view of speed and memory, since the expensive and

relatively slow alignment procedure produces a result (a rotation matrix) that can be stored

with negligible use of resources. In order to take advantage of this simplification without

losing accuracy, for each structure and degree of CG we select an interval of Simulated An-

nealing steps TK in which we consider rotation matrices constant. After these steps, the full

Kabsch alignment is applied again.

This approximation results in a substantial reduction of the number of operations that

we have to execute at each Monte Carlo step. At first, given the initial random mapping

operator M, we build the sets of coordinates that have been conserved by the mapping
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operator Γ(M) = M(r). Then we compute the overall RMSD matrix between every pair

of aligned structures Γα and Γβ, RMSD(Γα(M),Γβ(M)), where α and β run over the MD

configurations. For all moves M → M′ within a block of TK Monte Carlo steps, M and M′

only differing in a pair of swapped atoms, this quantity is then updated with the simple rule

MSD(Γα(M
′),Γβ(M

′)) = MSD(Γα(M),Γβ(M))−

1

N
MSD(Γα(s),Γβ(s)) +

1

N
MSD(Γα(a),Γβ(a)), (23)

where s and a are the removed (substituted) and added atom, respectively, and MSD is the

Mean Squared Deviation.

This approach clearly represents an approximation to the correct procedure; it has to

be emphasised, however, that the impact of such approximation is increasingly perturbative

as the size of the system grows. Furthermore, the computational gain that the described

procedure enables is sufficient to counterbalance the fact that the exact protocol would be so

inefficient to make the optimisation impossible. For example, choosing TK = 1000 for AAT

with N = Nbkb our approximation gives a speed-up factor of the order of 103.

4.2 Hierarchical Clustering of Coarse Grained configurations

Several clustering algorithms exist that have been applied to group molecular structures

based on RMSD similarity matrices.111,112 Many such algorithms have been developed and

incorporated in the most common libraries for data science. Among the various available

methods we choose to resort on the agglomerative bottom-up hierarchical clustering with av-

erage linkage (UPGMA algorithm108). We here briefly recapitulate the basics underpinnings

of this procedure.

1. At the first step, the minimum of the similarity matrix is found and the two corre-

sponding entries x, y (leaves) are merged together in a new cluster k;

2. k is placed in the middle of its two constituents. The distance matrix is updated to
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take into account the presence of the new cluster in place of the two close structures:

d(k, z) = (d(x, z) + d(y, z))/2;

3. Steps 1. and 2. are iterated until one root is found. The distance among clusters k

and w is generalised as follows:

d(k, w) =
∑

i∈k

∑

j∈w

d(k[i], w[j])

|k| × |w|
(24)

where |k| and |w| are the populations of the clusters and k[i] and w[j] their elements;

4. The actual division in clusters can be performed by cutting the tree (dendrogram) using

a threshold value on the inter-clusters distance or taking the first value of distance that

gives rise to a certain number of clusters Ncl. In both cases it is necessary to introduce

a hyperparameter. In our case the latter is a more viable choice to reduce the impact

of roundoff errors. Indeed, the first criterion would push the optimisation to create

as many clusters as possible, in order to minimise the energy variance inside them (a

cluster with one sample has zero variance in energy).

This algorithm, whose implementation113,114 is available in Python Scipy,115 is simple,

relatively fast (O(n2 log n)), and completely deterministic: given the distance matrix, the

output dendrogram is unique.

Although this algorithm scales well with the size of the dataset, it may not be robust

with respect to small variations along the optimisation trajectory. In fact, even the slightest

modifications of the dendrogram may lead to abrupt changes in S̃map. This is perfectly

understandable from an algorithmic point of view, but it is deleterious for the stability

of the optimisation procedure. Furthermore, the aforementioned choice of Ncl is somehow

arbitrary. Hence, we perform the following analysis in order to enhance the robustness of

S̃map at each MC move and to provide a quantitative criterion to set the hyperparameter:

1. Compute the RMSD similarity matrix between all the heavy atoms of the biological
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system under consideration;

2. Apply UPGMA algorithm to this object, retrieving the all-atom dendrogram;

3. Impose lower and upper bounds (see Table 3) on the inter-clusters distance depending

on the conformational variability of the structure;

4. Visualise the cut dendrogram to identify the number of different clusters available at

each of the two values of the threshold (N+
cl and N−

cl ) (Table 3);

5. Build a list CL of five integers selecting three (intermediate) values between N−
cl and

N+
cl ;

6. Define the observable as the average over the values of S̃map (see Eq. 16) computed

choosing different Ncl:

Σ =
1

|CL|

∑

Ncl∈CL

S̃map(Ncl) (25)

where |CL| is the cardinality of the list we chose.

Table 3: Bounds on inter-clusters distance and correspondent number of clusters.

Protein Upper
bound
(nm)

Lower
bound
(nm)

N+
cl N−

cl

Tamapin 0.20 0.18 91 34
Adenylate
Kinase

0.25 0.20 147 29

α− 1
antytripsin

0.20 0.15 96 7

The overall procedure amounts at identifying many different sets of CG macrostates R

on which S̃map can be computed, assuming that the average of this quantities can be used

effectively as driving observable inside the optimisation. This trivial assumption allows to

increase the robustness of the SA optimisation and to keep in memory all the values of S̃map

calculated at different distances from the root of the dendrogram.
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4.3 Simulated Annealing

We use Monte Carlo simulated annealing to stochastically explore the space of the possible

decimation mappings associated to each degree of CG’ing. We here briefly describe the main

features of our implementation of the SA algorithm, referring the reader to a few excellent

reviews for a comprehensive description of the techniques that can be employed in the choice

of temperature decay and parameter estimation.116,117

We run the optimisation for 2× 103 MC epochs, each of which is composed by 10 steps.

This amounts at keeping the temperature constant for 10 steps and then decreasing it ac-

cording to an exponential law. For the i-th epoch we have that T (i) = T0 e−i/ν .

The hyperparameters T0 and ν are crucial for a well-behaved MC optimisation. We choose

ν = 300 so that the temperature at i = 2000 is approximately T0/1000. In order to feed our

algorithm with reasonable values of T0, for each of 100 random mappings we perform 10 MC

stochastic moves, measuring ∆Σ, namely the difference between the observables computed

at two consecutive steps. Then we estimate T0 so that a move that leads to an increment of

the observable equal to the average of ∆Σ would possess an acceptance probability of 0.75

at the first step.

4.4 Data available

For each analysed protein, the raw data about all the CG representations investigated in this

work including random, optimised and transition mappings are freely available on the Zenodo

repository https://zenodo.org/record/3776293 together with the associated mapping en-

tropies. We further provide all the scripts we employed to analyse such data and construct

all the figures presented in this work.
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• an analysis of the relation between the size and mobility of residues and the conserva-

tion probability of their atoms

• an assessment of the results’ stability with respect to the duration of the MD trajectory.

This information is available free of charge via the Internet at http://pubs.acs.org

A Relative and mapping entropy

Bottom-up coarse-graining approaches aim at constructing effective, low-resolution repre-

sentations of a system that reproduce as accurately as possible the equilibrium statistical

mechanical properties of the underlying, high-resolution reference. In particular, this prob-

lem is phrased in terms of the parametrisation of a CG potential that approximates the
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reference system’s multi-body potential of mean force (PMF) U0,

U0 = −kBT ln(V NpR(R)) + const, (26)

where pR(R) is the probability for the atomistic model to sample a specific CG configuration

R. In the canonical ensemble, one has

pR(R) =

∫

dr pr(r)δ(M(r)−R)

=
1

Z

∫

dr e−βu(r)δ(M(r)−R), (27)

where β = 1/kBT , u(r) is the microscopic potential energy of the system, pr(r) ∝ exp(−βu(r))

is the Boltzmann distribution and Z the associated configurational partition function.

From Eqs. 26 and 27 it follows that a computer simulation of the low-resolution system

performed with the potential U0 (more precisely, a free energy) would allow the CG sites

to sample their configurational space with the same probability as they would do in the
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reference system. Unfortunately, the intrinsically multi-body nature of U0 is such that its

exact determination is largely unfeasible in practice.118 Considerable effort has thus been de-

voted to devise increasingly accurate methods to approximate the PMF with a CG potential

U ;16,17,119,120 however, the latter is in general defined in terms of a necessarily incomplete set

of basis functions.4–7 It is thus natural to look for quantitative measures of a CG model’s

quality with respect to U0.

In this respect, one of the most notable examples of such metrics is the relative en-

tropy,17,42–44

Srel = kB ×DKL(pr(r)||Pr(r|U))

= kB

∫

dr pr(r) ln

[

pr(r)

Pr(r|U)

]

, (28)

where DKL(·||·) denotes the Kullback-Leibler divergence between two probability distribu-

tions,45 with Srel ≥ 0 by virtue of Gibbs’ inequality. In Eq. 28, pr(r) is the atomistic

probability distribution of the system, see Eq. 27, while Pr(r|U) is defined as a product of

probabilities over CG and AA configurational spaces,42,44

Pr(r|U) =
pr(r)

pR(M(r))
PR(M(r)|U). (29)

The term PR(R|U) ∝ exp(−βU(R)) in Eq. 29 runs over CG configurations, and de-

scribes the probability that a CG model with approximate potential U(R) samples the CG

configuration R. Then, to obtain Pr(r|U) it is sufficient to multiply PR(R|U) by the atom-

istic probability pr(r) of sampling r, normalised by the Boltzmann weight pR(R) of the CG

configuration R (see Eq. 27).

KL divergences quantify the information loss between probability distributions; specifi-

cally, DKL(s(r)||t(r)) represents the information that is lost by representing a system origi-

nally described by a probability distribution s(r) through a distribution t(r).45 Given a CG

mapping M, the relative entropy Srel in Eq. 28 implicitly measures the loss that arises as a
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consequence of approximating the exact CG potential of mean force U0 of a system by an ef-

fective potential U , that is, the error introduced by using incorrect interactions to describe the

low-resolution system. By replacing Eq 29 in Eq. 28 and introducing 1 =
∫

dR δ(M(r)−R),

one indeed obtains

Srel = kB

∫

dR pR(R) ln

[

pR(R)

PR(R|U)

]

, (30)

a KL divergence DKL(pR(R)||PR(R|U)) between the exact and approximate probability

distributions in the CG configuration space, with no explicit connection to the underlying

microscopic reference. As such, Srel is a measure of an approximate CG model’s quality.

However, it is possible to expand Srel as a difference between two information losses (the one

due to U and the one due to U0) calculated with respect to the atomistic system,

Srel = kB ×DKL(pr(r)||V
N−nPR(M(r)|U))

− kB ×DKL(pr(r)||V
N−npR(M(r)))

= kB

∫

dr pr(r) ln

[

V n

V N

pr(r)

PR(M(r)|U)

]

− kB

∫

dr pr(r) ln

[

V n

V N

pr(r)

pR(M(r))

]

, (31)

where n and N denote the number of atomistic and CG sites, respectively.

Both KL divergences in Eq. 31 are positive defined due to Gibbs’ inequality, with

DKL(pr(r)||V
N−nPR(M(r)|U)) ≥ DKL(pr(r)||V

N−npR(M(r))) as Srel ≥ 0; the second one is

called mapping entropy 1 Smap,
17,42,44

Smap = kB

∫

dr pr(r) ln

[

V n

V N

pr(r)

pR(M(r))

]

≥ 0, (32)

1In this work we employ a different sign convention for the mapping entropy Smap with respect to

Refs.,42,44 and consistent with the one in Ref.17 On one hand, this enables the mapping entropy to be directly

related to a loss of information in the KL sense—a positive KL divergence implies a loss of information. On

the other hand, it allows the relative entropy in Refs.42,44 to be considered a difference of information losses—

those of U and U0, see Eq. 31—calculated with respect to the atomistic system, so that the vanishing of Srel

for U = U0 in Refs.42,44 effectively amounts at recalibrating the zero of the relative entropy as originally

defined in Ref.17
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which noteworthy does not depend on the approximate CG force field U but only on the

mapping operator M.

In multi-scale modelling applications, one seeks to minimise the relative entropy with

respect to coefficients in terms of which the coarse-grained potential U(R) is parametrised, for

a given mapping.17,42–44 The aim is to generate CG configurations that sample the atomistic

conformational space with the same microscopic probability pr(r), see Eq. 28. However,

since the model can only generate configurations in the CG space, minimising Eq. 28 is

tantamount to minimise Eq. 30, that is, the “error” introduced by approximating U0 with

U ; furthermore, in the minimisation with respect to U the contribution of the mapping

entropy vanishes, because the latter does not depend on the coarse-grained potential. In this

context, then, Smap only represents a constant shift of the KL distance between the all-atom

and the coarse-grained models, and a minimisation of the first term of Eq. 31 is equivalent

to that of Eq. 28.

When taken per se, on the other hand, the mapping entropy provides substantial in-

formation about the modelling of the system. In fact, this quantity represents the loss of

information that would be inherently generated by reducing the resolution of a system even

in the case of an exact CG’ing procedure, in which U = U0 and Srel = 0.42 In the calculation

of Smap, the reference AA density is compared to a distribution in which probabilities are

smeared out and redistributed equally to all the microscopic configurations r inside each CG

macrostate.

Starting from Eq. 32, Rudzinski et al. further divide Smap into a sum of two terms,42

Smap = −kB

∫

dr pr(r) ln

[

V N

V n
Ω1(M(r))

]

+ kB

∫

dr pr(r) ln

[

pr(r)

p̄r(r)

]

, (33)

where the first one is purely geometrical while the second one accounts for the smearing in

probability generated by the CG’ing procedure. In Eq. 33, Ω1(M(r)) =
∫

drδ(M(r)−R) is
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the degeneracy of the CG macrostate R—i.e., how many microstates map onto a given CG

configuration—and

p̄r(r) = pR(M(r))/Ω1(M(r)) (34)

is the average probability of all microstates that map to the macrostate R = M(r).

The geometric term in Eq. 33 does not vanish in general.42 However, if the mapping takes

the form of a decimation, see Eq. 2, one has

Ω1(M(r)) = V n−N , (35)

and the first logarithm in Eq. 33 is identically zero, so that

Smap = kB

∫

dr pr(r) ln

[

pr(r)

p̄r(r)

]

. (36)

In the case of decimation mappings, moreover, a direct relation holds between the map-

ping entropy Smap as expressed in Eq. 36 and the non-ideal configurational entropies of the

original and CG systems,42,44

sr = −kB

∫

dr pr(r) ln(V
npr(r)), (37)

sR = −kB

∫

dR pR(R) ln(V NpR(R)). (38)

Indeed, by introducing Eq. 27 in Eq. 38 sR can be rewritten as

sR = −kB

∫

dR

[
∫

dr pr(r)δ(M(r)−R))

]

ln(V NpR(R))

= −kB

∫

dr pr(r) ln(V
NpR(M(r))). (39)

Subtracting Eq. 37 and 39 results in

sR − sr = kB

∫

dr pr(r) ln

(

V n−Npr(r)

pR(M(r))

)

, (40)
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and by virtue of Eq. 34 and 35, one finally obtains

sR − sr = Smap, (41)

further highlighting that the mapping entropy represents the difference in information con-

tent between the distribution obtained by reducing the level of resolution at which the system

is observed, pR(R), and the original, microscopic reference, pr(r).

B Explicit calculation of the mapping entropy

We here provide full detail of our derivation of the mapping entropy, as in Eqs. 10-12, and

its cumulant expansion approximation, Eq. 15, starting from Eq. 36.

In the case of CG representations obtained by decimating the number of original degrees

of freedom of the system, the mapping entropy Smap in Eq. 36 vanishes if the probabilities

of the microscopic configurations that map onto the same CG one are the same.42,44 In

the canonical ensemble, the requirement is that those configurations must possess the same

energy. This can be directly inferred by writing the negative of the average in Eq 36 as

〈

ln

[

p̄r(r)

pr(r)

]〉

=

∫

dr pr(r)× (42)

ln

[
∫

dr′ exp[−β(u(r′)− u(r))]δ(M(r′)−M(r))
∫

dr′δ(M(r′)−M(r))

]

,

so that if u(r′) = u(r) ∀ r′ s.t. M(r′) = M(r), the argument of the logarithm is unity and

the right-hand side of Eq. 42 vanishes.

Importantly, this implies that no information on the system is lost along the coarse-

graining procedure if CG macrostates are generated by grouping together microscopic con-

figurations characterised by having the same energy. In our case, this translates into the

search for isoenergetic mappings.
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By introducing 1 =
∫

dR δ(M(r)−R) in Eq. 42, one obtains

Smap = −kB

∫

dR

∫

dr pr(r)δ(M(r)−R)× (43)

ln

[
∫

dr′ exp[−β(u(r′)− u(r))]δ(M(r′)−R)
∫

dr′δ(M(r′)−R)

]

=

∫

dR pR(R)Smap(R), (44)

so that the overall mapping entropy is decomposed as a weighted average over the CG

configuration space of the mapping entropy Smap(R) of a single CG macrostate,

Smap(R) = −
kB

pR(R)

∫

dr pr(r)δ(M(r)−R)× (45)

ln

[
∫

dr′ exp[−β(u(r′)− u(r))]δ(M(r′)−R)
∫

dr′δ(M(r′)−R)

]

.

Eq. 45 shows that determining Smap(R) for a given macrostate R involves a comparison

of the energies of all pairs of microscopic configurations that map onto it. A further identity

1 =
∫

dU ′δ(u(r′)− U ′) fixing the energy of configuration r′ can be inserted in the logarithm

of Eq. 45 to switch from a configurational to an energetic integral. This provides:

ln

[
∫

dr′ exp[−β(u(r′)− u(r))]δ(M(r′)−R)
∫

dr′δ(M(r′)−R)

]

=

ln

∫

dU ′P (U ′|R) exp[−β(U ′ − u(r))], (46)

where

P (U ′|R) =

∫

dr′δ(M(r′)−R)δ(u(r′)− U ′)
∫

dr′δ(M(r′)−R)
(47)

is the microcanonical (unweighted) conditional probability of possessing energy U ′ given

that the CG macrostate is R. It is possible to write it as Ω1(U
′,R)/Ω1(R), that is, the

multiplicity of AA configurations such that M(r) = R and u(r′) = U ′ normalised by the

multiplicity of configurations that map to R.
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A second identity 1 =
∫

dUδ(u(r)−U) on the energies provides the following expression

for Smap(R):

Smap(R) = −kB

∫

dr
pr(r)

pR(R)
δ(M(r)−R)×

ln

[
∫

dU ′P (U ′|R) exp[−β(U ′ − u(r))]

]

= −kB

∫

dU ln

[
∫

dU ′P (U ′|R) exp[−β(U ′ − U)]

]

×

∫

dr
pr(r)

pR(R)
δ(M(r)−R)δ(u(r)− U). (48)

The last integral in Eq 48, which we dub Pβ(U |R),

Pβ(U |R) =

∫

dr
pr(r)

pR(R)
δ(M(r)−R)δ(u(r)− U) (49)

is now the canonical—i.e., Boltzmann-weighted—conditional probability of possessing energy

U provided that M(r) = R, namely pR(U,R)/pR(R). One thus obtains:

Smap(R) = −kB

∫

dUPβ(U |R)× (50)

ln

[
∫

dU ′P (U ′|R) exp[−β(U ′ − U)]

]

= −kB ln

[
∫

dU ′P (U ′|R) exp[−β(U ′ − 〈U〉β|R)]

]

,

where

〈U〉β|R =

∫

dUPβ(U |R)U (51)

is the canonical average of the microscopic potential energy over the CG macrostate R.

A direct calculation of Smap(R) starting from the last line of Eq. 50 requires to perform

an average over the microcanonical distribution P (U ′|R), which is not straightforwardly

accessible in NVT simulations. However, there is a connection between P (U |R) in Eq. 47

and Pβ(U |R) in Eq. 49: if one writes pR(R) as
∫

dU ′ exp[−β(U ′)]Ω1(U
′,R) and pR(U,R) as
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exp[−β(U)]Ω1(U,R), standard reweighing provides

P (U |R) =
Pβ(U |R) exp[βU ]

∫

dU ′Pβ(U ′|R) exp[βU ′]
. (52)

Eq. 52 enables one to convert the microcanonical average in Eq. 50 to a canonical one, so

that

Smap(R) = kB ln

[
∫

dU ′Pβ(U
′|R) eβ(U

′−〈U〉β|R)

]

. (53)

Finally, by means of a second order cumulant expansion of Eq. 12 one obtains

Smap(R) ≃ kB
β2

2
〈(U − 〈U〉β|R)

2〉β|R, (54)

that inserted in Eq. 44 results in a total mapping entropy given by Eq. 15.
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(13) Bock, L. V.; Blau, C.; Schröder, G. F.; Davydov, I. I.; Fischer, N.; Stark, H.; Rod-

nina, M. V.; Vaiana, A. C.; Grubmüller, H. Energy barriers and driving forces in tRNA

translocation through the ribosome. Nat Struct Mol Biol 2013, 20, 1390 – 1396.

(14) others,, et al. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy

Metabolism. Cell 2019, 179, 1098–1111.

48



(15) Noid, W. G. Biomolecular Simulations ; Springer, 2013; pp 487–531.

(16) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das, A.;

Andersen, H. C. The multiscale coarse-graining method. I. A rigorous bridge between

atomistic and coarse-grained models. The Journal of chemical physics 2008, 128,

244114.

(17) Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermody-

namic problems. J. Chem. Phys. 2008, 129, 144108.

(18) Lebold, K. M.; Noid, W. G. Dual approach for effective potentials that accurately

model structure and energetics. The Journal of Chemical Physics 2019, 150, 234107.

(19) Lebold, K. M.; Noid, W. Dual-potential approach for coarse-grained implicit solvent

models with accurate, internally consistent energetics and predictive transferability.

The Journal of Chemical Physics 2019, 151, 164113.

(20) Jin, J.; Pak, A. J.; Voth, G. A. Understanding Missing Entropy in Coarse-Grained

Systems: Addressing Issues of Representability and Transferability. The Journal of

Physical Chemistry Letters 2019, 10, 4549–4557.

(21) Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. Coarse-

grained protein models and their applications. Chemical reviews 2016, 116, 7898–7936.

(22) Diggins IV, P.; Liu, C.; Deserno, M.; Potestio, R. Optimal coarse-grained site selection

in elastic network models of biomolecules. Journal of chemical theory and computation

2018, 15, 648–664.

(23) Khot, A.; Shiring, S. B.; Savoie, B. M. Evidence of information limitations in coarse-

grained models. The Journal of Chemical Physics 2019, 151, 244105.

(24) Golhlke, H.; Thorpe, M. F. A natural coarse graining for simulating large biomolecular

motion. Biophysical Journal 2006, 91, 2115–2120.

49



(25) Zhang, Z.; Lu, L.; Noid, W. G.; Krishna, V.; Pfaendtner, J.; Voth, G. A. A Systematic

Methodology for Defining Coarse-Grained Sites in Large Biomolecules. Biophysical

Journal 2008, 95, 5073 – 5083.

(26) Zhang, Z.; Pfaendtner, J.; Grafmller, A.; Voth, G. A. Defining Coarse-Grained Repre-

sentations of Large Biomolecules and Biomolecular Complexes from Elastic Network

Models. Biophysical Journal 2009, 97, 2327 – 2337.

(27) Potestio, R.; Pontiggia, F.; Micheletti, C. Coarse-grained description of proteins’ inter-

nal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys

J 2009, 96, 4993–5002.

(28) Aleksiev, T.; Potestio, R.; Pontiggia, F.; Cozzini, S.; Micheletti, C. PiSQRD: a web

server for decomposing proteins into quasi-rigid dynamical domains. Bioinformatics

2009, 25, 2743–2744.

(29) Zhang, Z.; Voth, G. A. Coarse-Grained Representations of Large Biomolecular Com-

plexes from Low-Resolution Structural Data. Journal of Chemical Theory and Com-

putation 2010, 6, 2990–3002.

(30) Sinitskiy, A. V.; Saunders, M. G.; Voth, G. A. Optimal number of coarse-grained sites

in different components of large biomolecular complexes. The Journal of Physical

Chemistry B 2012, 116, 8363–8374.

(31) Polles, G.; Indelicato, G.; Potestio, R.; Cermelli, P.; Twarock, R.; Micheletti, C.

Mechanical and assembly units of viral capsids identified via quasi-rigid domain de-

composition. PLoS computational biology 2013, 9, 1–13.

(32) Webb, M. A.; Delannoy, J.-Y.; de Pablo, J. J. Graph-Based Approach to Systematic

Molecular Coarse-Graining. Journal of Chemical Theory and Computation 2019, 15,

1199–1208.

50



(33) Ponzoni, L.; Polles, G.; Carnevale, V.; Micheletti, C. SPECTRUS: A Dimensionality

Reduction Approach for Identifying Dynamical Domains in Protein Complexes from

Limited Structural Datasets. Structure 2015, 23, 1516 – 1525.

(34) Li, Z.; Wellawatte, G. P.; Chakraborty, M.; Gandhi, H. A.; Xu, C.; White, A. D. Graph

neural network based coarse-grained mapping prediction. Chemical Science 2020,

(35) Koehl, P.; Poitevin, F.; Navaza, R.; Delarue, M. The renormalization group and its

applications to generating coarse-grained models of large biological molecular systems.

Journal of chemical theory and computation 2017, 13, 1424–1438.

(36) Tirion, M. M. Large Amplitude Elastic Motions in Proteins from a Single-Paramter

Atomic Analysis. Phys. Rev. Lett. 1996, 77, 1905–1908.

(37) Bahar, I.; Atilgan, A. R.; Erman, B. Direct evaluation of thermal fluctuations in

proteins using a single-parameter harmonic potential. Fold. Des. 1997, 2, 173–181.

(38) Hinsen, K. Analysis of domain motions by approximate normal mode calculations.

Proteins 1998, 33, 417–429.

(39) Atilgan, A. R.; Durell, S. R.; Jernigan, R. L.; Demirel, M. C.; Keskin, O.; Bahar, I.

Anistropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Bio-

phys. J. 2001, 80, 505–515.

(40) Delarue, M.; Sanejouand, Y. H. Simplified normal mode analysis of conformational

transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol

2002, 320, 1011–1024.

(41) Micheletti, C.; Carloni, P.; Maritan, A. Accurate and efficient description of protein

vibrational dynamics: comparing molecular dynamics and Gaussian models. Proteins:

Structure, Function, and Bioinformatics 2004, 55, 635–645.

51



(42) Rudzinski, J. F.; Noid, W. G. Coarse-graining entropy, forces, and structures. The

Journal of Chemical Physics 2011, 135, 214101.

(43) Shell, M. S. Systematic coarse-graining of potential energy landscapes and dynamics

in liquids. J. Chem. Phys. 2012, 137, 084503.

(44) Foley, T. T.; Shell, M. S.; Noid, W. G. The impact of resolution upon entropy and

information in coarse-grained models. The Journal of chemical physics 2015, 143,

243104.

(45) Kullback, S.; Leibler, R. A. On information and sufficiency. The annals of mathematical

statistics 1951, 22, 79–86.

(46) Fisher, M. E. Renormalization group theory: Its basis and formulation in statistical

physics. Reviews of Modern Physics 1998, 70, 653.

(47) Shannon, C. E. A mathematical theory of communication. Bell system technical jour-

nal 1948, 27, 379–423.

(48) Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K. Free energy calculation

from steered molecular dynamics simulations using Jarzynskis equality. The Journal

of chemical physics 2003, 119, 3559–3566.

(49) Chipot, C.; Pohorille, A. Free energy calculations ; Springer, 2007.

(50) Mayorga-Flores, M.; Chantôme, A.; Melchor-Meneses, C. M.; Domingo, I.; Titaux-

Delgado, G. A.; Galindo-Murillo, R.; Vandier, C.; del Ŕıo-Portilla, F. Novel blocker of
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(81) Schäfer, L. Excluded volume effects in polymer solutions: as explained by the renor-

malization group; Springer Science & Business Media, 2012.

(82) Cavagna, A.; Di Carlo, L.; Giardina, I.; Grandinetti, L.; Grigera, T. S.; Pisegna, G.

Dynamical Renormalization Group Approach to the Collective Behavior of Swarms.

Physical Review Letters 2019, 123, 268001.

(83) Antonov, N. V.; Kakin, P. I. Scaling in landscape erosion: Renormalization group anal-

ysis of a model with infinitely many couplings. Theoretical and Mathematical Physics

2017, 190, 193–203.

(84) Van Enter, A. C.; Fernández, R.; Sokal, A. D. Regularity properties and patholo-

gies of position-space renormalization-group transformations: Scope and limitations

of Gibbsian theory. Journal of Statistical Physics 1993, 72, 879–1167.

56



(85) Chakraborty, M.; Xu, C.; White, A. D. Encoding and selecting coarse-grain map-

ping operators with hierarchical graphs. The Journal of Chemical Physics 2018, 149,

134106.
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