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ABSTRACT

We propose the first adversarially robust algorithm for monotone

submodular maximization under single and multiple knapsack con-

straints with scalable implementations in distributed and streaming

settings. For a single knapsack constraint, our algorithm outputs a

robust summary of almost optimal (up to polylogarithmic factors)

size, from which a constant-factor approximation to the optimal

solution can be constructed. For multiple knapsack constraints,

our approximation is within a constant-factor of the best known

non-robust solution.

We evaluate the performance of our algorithms by comparison

to natural robustifications of existing non-robust algorithms under

two objectives: 1) dominating set for large social network graphs

from Facebook and Twitter collected by the Stanford Network Anal-

ysis Project (SNAP), 2) movie recommendations on a dataset from

MovieLens. Experimental results show that our algorithms give

the best objective for a majority of the inputs and show strong

performance even compared to offline algorithms that are given

the set of removals in advance.
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• Theory of computation → Streaming, sublinear and near

linear time algorithms; Distributed algorithms.
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1 INTRODUCTION

Submodular maximization has a wide range of applications in data

science, machine learning and optimization, including data sum-

marization, personalized recommendation, feature selection and

clustering under various constraints, e.g. budget, diversity, fairness

and privacy among others. Constrained submodular optimization

has been studied since the seminal work of [33]. It has recently

attracted a lot of interest in various large-scale computation set-

tings, including distributed [12, 29], streaming [1, 4, 34], and adap-

tive [5, 6, 11, 14–16] due to its applications in recommendation

systems [13, 25], exemplar based clustering [17], and document

summarization [27, 36, 39]. For monotone functions, constrained

submodular optimization has been studied extensively under nu-

merous constraints such as cardinality [4, 7], knapsack [19], match-

ings [10], and matroids [9].

With the increase in volume of data, the task of designing low-

memory streaming and low-communication distributed algorithms

for monotone submodular maximization has received significant

attention. A series of results [1, 4, 34] culminated in a single pass

algorithm over random-order stream that achieves close to (1 −

1/e)-approximation of monotone submodular maximization un-

der cardinality constraint. This approximation almost matches

the guarantee of a celebrated result [33]. Also in the context of

streaming, [19, 24, 40] studied monotone submodular maximiza-

tion under d knapsack constraints, resulting in a single pass al-

gorithm that provides (1/(1 + 2d))-approximation. Another line

of work [12, 24, 29, 31] focused on submodular maximization in

distributed setting. In particular, [29] developed 2-round and (1/ϵ)-
round MapReduce algorithms that provide 1/2 and 1 − 1/e − ϵ
approximation, respectively, for monotone submodular maximiza-

tion under cardinality constraint.

In this paper, we focus on the robust version of this classic prob-

lem [21, 22, 32, 35]. Consider a situation where a set of recommenda-

tions (or advertisements) is constructed for a new user. It is standard

to model this as a monotone submodular maximization problem

under knapsack constraints, which allow incorporation of various
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restrictions on available budget, screen space, user preferences,

privacy and fairness, etc. However, new users are likely to find

some of the recommended items familiar, annoying or otherwise

undesirable. Hence, it is advisable to build recommendations in

such a way that even if the user later decides to dismiss some of the

recommended items, one can quickly compute a new high-quality

set of recommended items without solving the entire problem from

scratch. We refer to this property as “adversarial robustness” since

the removals are allowed to be completely arbitrary (e.g. might

depend on the algorithm’s suggestions).

1.1 Adversarially Robust Monotone

Submodular Maximization

LetV be a finite domain consisting of elements e1, . . . , e |V | . For a set

function f : 2V → R≥0, we use f (e | S) to denote themarginal gain

of an element e given a set S ⊆ V , i.e., f (e | S) = f (S∪{e})− f (S). A
set function f is submodular if for every S ⊆ T ⊆ V and every e ∈ V
it holds that f (e |T ) ≤ f (e | S). A set function f is monotone if for

every S ⊆ T ⊆ V it holds that f (T ) ≥ f (S). Intuitively, elements in

the universe contribute non-negative utility, but have diminishing

gains as the cost of the set increases.

For a set S ⊆ V we use notation xS to denote the 0-1 indicator

vector of S . We use C ∈ Rd×|V | to denote a matrix with positive

entries and b ∈ Rd to denote a vector with positive entries. Here,

C and b should be interpreted as knapsack constraints, where set S
satisfies these constraints if and only if CxS ≤ b.

Problem 1.1 (MSMunder knapsack constraints). In themono-

tone submodular maximization (MSM) problem subject to d knap-

sack constraints, we are given a monotone submodular set function

f : 2V → R≥0 and are required to output:

OPT(V ) = argmax

S ⊆V : CxS ≤b
f (S).

Since the constraints are scaling-invariant, one can rescale each

row Ci by multiplying it (and the corresponding entry in b) by

b1/bi so that all entries in b are the same and equal to b1. One can
further rescale C and b by the smallest entry in C (or some lower

bound on it), so that mini, j Ci, j ≥ 1. We assume such rescaling

below and let K = bi for all i . In the case of one constraint (d = 1),

we further simplify the notation and set c(ei ) = C1,i and K = b1
and refer to c(ei ) simply as the cost of the i-th item.

An important role in our algorithms is played by the marginal

density of an item. Formally, for a set S ⊆ V , an element e and

a cost function c : V → R≥0 we define the marginal density of e

with respect to S under the cost function c as: ρ(e |S) =
f (e | S )
c(e) . For

multiple dimensions, we will specifically define the cost function

c(·).
Motivated by applications to personalized recommendation sys-

tems, we consider the adversarially robust version of the above

problem. In the adversarially robust monotone submodular maxi-

mization (ARMSM) problem the goal is to produce a small “adversar-

ially robust” summary S ⊆ V . Here “adversarial robustness” means

that for any set E of cardinality at mostm, which might be later

removed, one should be able to compute a good approximation

for the residual monotone submodular maximization problem over

V \E based only on S. In this paper, we propose a study of ARMSM

under knapsack constraints:

Problem 1.2 (ARMSMunder knapsack constraints). An algo-

rithm A solves the adversarially robust monotone submodular maxi-

mization problem ARMSM(m,K) subject to d knapsack constraints if

it produces a summary S ⊆ V such that:

OPT(V \ E) = argmax

S ⊆S\E : CxS ≤b
f (S)

for any set of removals E of cardinality at most m. A gives an α-
approximation if there exists a set Z ⊆ S with CxZ ≤ b such that

f (Z ) ≥ α f (OPT(V \ E)).

The main goal of an adversarially robust algorithm is to mini-

mize the size of the resulting summary. We remark that the above

robustness model is very strong. In particular, the set of removals

E does not have to be fixed in advance and might depend on the

summary S produced by the algorithm. Hence, we choose to refer

to it as adversarial robustness in order to avoid confusion with other

notions of robustness known in the literature [2, 37].

1.2 Our Theoretical Results

Streaming algorithms. We first consider the ARMSM problem in

the streaming setting. A streaming algorithm is given the vector

b of knapsack budget bounds upfront. Then, the elements of the

ground set e1, . . . , e |V | arrive in an arbitrary order. When an ele-

ment ei arrives, the algorithm sees the corresponding column C∗,i ,

which lists the d costs associated with this item. The algorithm

only sees each element once and is required to use only a small

amount of space throughout the stream. In the end of the stream,

an adversarially chosen set of removals E is revealed and the goal

is to solve ARMSM over V \ E. The key objective of the streaming

algorithm is to minimize the amount of space used while providing

a good approximation for ARMSM for any E.
Our first set of results gives adversarially robust algorithms for

the ARMSM problem under one knapsack constraint:

Theorem 1.3 (ARMSM under one knapsack constraint). For

the ARMSM(m,K) problem under one knapsack constraint, there ex-

ists an algorithm that gives a constant-factor approximation with a

summary consisting of Õ(K +m) elements of the ground set (Theo-

rem 3.1).

We also show that if the total cost of removed items is at most

M then there is an algorithm with summary size Õ(K + M) and
improved approximation guarantee. For ARMSM under a single

knapsack constraint, our bounds are tight up to polylogarithmic

factors, since an optimal solution may contain K items of unit cost,

and an adversary can remove up to m items of any set. Hence,

storing Ω(K +m) elements is necessary to obtain a constant factor

approximation.

For the ARMSM problem under d knapsack constraints, we give

an algorithm with the following guarantee:

Theorem 1.4 (ARMSM under d knapsack constraints). For

the ARMSM(m,K) problem under d knapsack constraints, there exists

an algorithm that gives an Ω( 1d )-approximation with a summary of

size Õ(K +m) (Theorem 3.2).

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

149



Distributed algorithms. We also consider the ARMSM problem

in the distributed setting. Here, our aim is to collect a robust set S

of elements while distributing the work to a number of machines,

minimizing the memory requirement per machine and the number

of rounds in which the machines need to communicate with each

other. As in the case of streaming setting, a set of removals E is

revealed only after S is constructed. We obtain a 2-round algorithm

that matches our result for streaming, in terms of approximation

guarantees.

Theorem 1.5 (Distributed ARMSM). For the ARMSM(m,K)
problem on a dataset of size n under d knapsack constraints, there ex-

ists an algorithm that gives an Ω( 1d )-approximation with a summary

of size Õ(K +m). If oracle access to f is given, this algorithm can be

implemented in two distributed rounds using Õ((m +K)
√
n) words of

space per machine (Theorem 4.1).

1.3 Empirical Evaluations

We evaluate the performance of our algorithms on both single knap-

sack and multiple knapsack constraints by comparison to natural

generalizations of existing algorithms. We implement the algo-

rithms for the objective of dominating set for large social network

graphs from Facebook and Twitter collected by the Stanford Net-

work Analysis Project (SNAP), and for the objective of coverage

on a large dataset from MovieLens. We compare the objectives on

the sets output as well as the total number of elements collected by

each algorithm.

Our results show that our algorithms provide the best objective

for a majority of the inputs. In fact, our streaming algorithms per-

form just as well as the standard offline algorithms, even when the

offline algorithms know in advance which elements will be removed.

Our results also indicate that the number of elements collected by

our algorithms does not appear to correlate with the total number

of elements, which is an attractive property for streaming algo-

rithms. In fact, most of the baseline algorithms collect relatively

the same number of elements for the robust summary, ensuring

fair comparison. For more details, see Section 5.

1.4 Previous Work

The special case of ARMSM(m,K) with one constraint and equal

costs for all elements is referred to as robust submodular maxi-

mization under the cardinality constraint. If at most k elements

can be selected, we refer to this problem as ARMSM(m,k). The
study of this problem was initiated by Krause et al. [22]. The first

(non-streaming) constant-factor approximation for this problem

was given by Orlin et al. [35] form = o(
√
k). This was further ex-

tended by [8] who give algorithms form = o(k). In these works,

the size of the summary is restricted to contain at most k elements

and hence by design onlym < k removals can be handled.

Recently the focus has shifted to handling larger numbers of

removals and so there has been increased interest in studying

ARMSM(m,k) with summary of sizes greater than k . [30] solve
this problem with summary size O(k ·m), which was improved

by [32] to Õ(m + k). Moreover, their algorithms are applicable to

arbitrary ordered streams. A different setup was considered by [21],

who assume that E is chosen independently of the choice of a robust

summary and give algorithms with summary size Õ(m + k), but
obtain better approximation guarantees than [32].

To the best of our knowledge, there is little known about the

general ARMSM(m,K) problem considered here which asks for

robustness under single or multiple knapsack constraints.

2 TECHNIQUES

Our general approach is to find a set S at the end of the stream, so

that when a set E of items is removed, we show that running an

offline algorithm, Offline, on the set Z := S \ E produces a good

approximation to the value of the optimal solution of the entire

stream. Since Offline on input Z is known to produce a good

approximation to the optimal solution of constrained submodular

maximization on input Z (see Theorem 2.1), then it suffices to show

that f (OPT(Z )) is a good approximation to f (OPT), where we
use OPT to denote OPT(V \ E).

Theorem 2.1. [23, 38] There exists an algorithm Offline that

gives a (1 − 1/e)-approximation for the monotone submodular max-

imization problem subject to d knapsack constraints in polynomial

time.

We assume that we have a good guess for f (OPT) by making a

number of exponentially increasing guesses τ . Our algorithms start

with the partitions-and-buckets approach from [8, 32] for robust

submodular maximization under cardinality constraints. Specifi-

cally, our algorithms create a number of partitions and also create

a number of buckets for each partition, where the number of buck-

ets is chosen to be “robust” to the removal of items at the end of

the stream. An element in the stream is added to the first possible

bucket in which its marginal density exceeds a certain threshold,

which is governed by the partition. The thresholds are exponentially

decreasing across the partitions, so that the number of partitions is

logarithmic in K .
At a high level, our algorithms overcome several potential pitfalls.

The first challenge we face is the issue of buckets being populated

with items of small cost whose marginal density surpasses the

threshold. These small items prevent large items (such as cost K)
whose marginal density also surpasses the threshold from being

added to any bucket. If the optimal solution consists of a single large

item, then the approximation guarantee could potentially be as bad

as
1

K . Thus, we allow each bucket double the capacity and create an

additional partition level with a smaller threshold to compensate.

The second challenge we face is relating the items in various

partitions. Although we would like to argue that an item e in a

bucket in a certain partition i does not have overwhelmingly large

marginal gain, the most natural way to prove this would be to claim

that e would have been placed in a previous partition less than

i because the ratio is overwhelmingly large. However, this is no

longer true because items in partition i can have up to cost 2
i
and

any non-empty bucket in previous partitions does not have enough

capacity. Surprisingly, for the purposes of analysis, it suffices to

prohibit any item in a bucket from usingmore than a certain fraction

of the capacity. That is, any item added to a bucket Bi, j , which has

capacity 2
i+1

, must have cost at most 2
i−1

.
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2.1 Robustness to the Removal ofm Items

We now describe AlgNum, which outputs a solution of cost K on a

single knapsack constraint and is robust against the removal of up

tom items. We would like to use an averaging arguments to show

that some “saturated” bucket Bi∗, j in a partition cannot have too

much intersection with the elements E that are removed at the end

of the stream. However, the removal of up tom items at the end

of the stream may cause the removal of cost up tomK . But then
the averaging argument fails unless the number of buckets in each

partition also increases by a factor of K , which unfortunately gives

an additional multiple of K in the space of the algorithm.

Instead, the key idea is to dynamically allocate a number of new

buckets, depending on the total cost of the current items in the

buckets of a partition. The goal is to maintain enough buckets to

guarantee that a certain number of elements can be added to a

partition, regardless of their cost. Therefore, the number of total

buckets is not large unless the stored items have large cost, in

which case the number of items is relatively low anyway. To do

this, we maintain counters si that allocate a new bucket to partition

i each time they exceed min{2i ,K}. Each time an item e is added
to partition i , the counter si is increased proportional to the cost of

the item, c(e). The creation of new buckets is allowed until a certain

number of items have been collected by the partition. Intuitively,

algorithms robust to the removal of m items, such as AlgNum,

should strive to output at the end of the stream a set with a certain

number of items, whereas algorithms robust to the removal of items

with a certain cost M should strive to output a set with a certain

cost.

At the end, we run a procedure Prune to further bound the num-

ber of elements output by the algorithm. Prune simply reorders

the elements stored by AlgNum by cost of the elements, and again

runs AlgNum on the sorted set of elements as an input stream.

Since the items with smaller cost arrive first, this ensures that we

cannot have too many items of large cost.

3 STREAMING ALGORITHMS

We now warm-up by providing the first streaming algorithm for

the ARMSM(m,K) problem under a single knapsack constraint. We

later show how to build on these ideas to obtain robustness subject

to multiple knapsack constraints.

3.1 Single Knapsack Constraint

We describe our algorithm AlgNum, which is used to produce a

summary consisting of Õ(K +m) items. Recall that we use OPT to

denote OPT(V \ E). In order to simplify presentation, we assume
1

that we have a good estimate τ ∗ for f (OPT), such that τ ∗ ≤
f (OPT) ≤ (1 + ϵ)τ ∗. To simplify presentation, we further assume

that K is a power of two and hence let K = 2
ℓ
(see Algorithm 1 for

how rounding is handled).

AlgNum creates ℓ partitions B1, . . . ,Bℓ where the i-th partition

initially consists of ni = O(ℓ(
m
2
i + 1)) buckets of capacity 2

i+1
each.

We refer to the j-th bucket in the i-th partition as Bi, j . When pro-

cessing the stream, each element e is added to the first possible

bucket Bi, j in the first possible partition i such that the bucket

1
This assumption can be removed using standard techniques (see e.g. Appendix E of

[32]) by maintaining
1

ϵ logK guesses to find such a τ ∗ .

has enough capacity remaining and the marginal density ρ(e |Bi, j )

exceeds a certain threshold τ/2i for this partition. Note that the
thresholds exponentially decrease across the partitions while ca-

pacities of the buckets exponentially increase.

Our goal is to maintain enough buckets to guarantee that a

certain number of elements can be added to a partition, regardless

of their cost. To dynamically allocate a number of new buckets,

AlgNum keeps counters si that create a new bucket while they

exceed 2
i
, after which the value of the counter is lowered. The

counter si is increased proportional to the cost of an item c(e)
each time an item e is added to partition i . This process continues
until a certain number of items are in the partition. Finally, we

run the procedure Prune to further bound the number of elements

output by the algorithm. See Figure 1 for an illustration of the data

structure.

Algorithm 1 AlgNum: Picking elements with large marginal den-

sity.

Input: Parametersm,K , estimate τ ∗ of f (OPT).

1: ℓ ← ⌈logK⌉,w ←
⌈
4ℓm
K

⌉
, τ ← 2τ ∗

32(1− 1

2ℓ )+3

2: for i ← 0 to ℓ do ▷ Initialize parameters

3: ni ← w
⌈
K/2i

⌉
+ 8ℓ

4: si ← 0

5: for j ← 1 to ni do
6: Bi, j ← ∅

7: for each element e in the stream do

8: for i ← 0 to ℓ do

9: if c(e) > 2
i−1

then continue

10: for j ← 1 to ni do
11: if ρ(e |Bi, j ) <

τ
2
i then continue

12: if c(Bi, j ∪ e) ≤ 2
i+1

then

13: Bi, j ← Bi, j ∪ {e}
14: si ← si + 8ℓc(e)
15: if

∑ni
j=1 |Bi, j | < 10w · 2i then

16: while si ≥ 2
i
do

17: Bi,ni+1 ← ∅
18: ni ← ni + 1
19: si ← si − 2

i

20: break: process next element e

21: return Sτ = {Bi, j }i, j

Algorithm 2 Prune: Decreasing the size of the output set.

Input: Output set S from AlgNum.

1: Sort S by size so that c(s1) ≤ c(s2) ≤ . . ..
2: T ← AlgNum with input stream s1, s2, . . ..
3: return T ▷ AlgNum can be replaced with AlgMult.

By using Prune on the output of AlgNum, we have the following

result.

Theorem 3.1. There exists an algorithm that outputs a set S with

Õ(K +m) elements such that, for any set E of at most m removed
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Partition 0: τ 2 2 2 2 2 2 2 2

Partition 1: τ/2 4 4 4 4

Partition 2: τ/4 8 8 8

...
...

B0,1 B0,2 B0,3 B0,4

Threshold

Figure 1: Partitions and buckets: B1,1 and B2,2 are partially occupied. B2,3 (in red) has been dynamically created, since the

elements of B2,1 and B2,2 are large.

Algorithm 3 Robust maximum submodular with knapsack con-

straint.

Input: Output set T from Prune, set E removed by adversary.

1: return Offline(T \ E)

items, one can compute from S a set Z ⊆ V \ E with cost at most K
and f (Z ) is a constant factor approximation to f (OPT).

In fact, if them items that are removed has total cost at mostM ,

we can provide a better guarantee in terms of both approximation

and number of elements stored (see the full version of the paper

at [3]).

3.2 d Knapsack Constraints

We now consider the ARMSM(m,K) problem under d knapsack

constraints. Recall that AlgNum relies on guessing the correct

threshold and then using a streaming framework that adds elements

whose marginal gain surpasses the threshold. In the case where

there are d knapsack constraints, a natural approach would be to

have parallel instances that guess thresholds for each constraint,

and then pick the instance with the best set. This would certainly

work, but since there would beO (logK) guesses for each constraint,

the total number of parallel instances would be O
(
log

d K
)
, which

is unacceptable for large values of d and K . On the other hand, it

seems reasonable to believe that the space usage can be improved,

at the expense of the approximation guarantee, by maintaining a

smaller number of parallel instances. In that case, marginal gain to

cost ratio is not well-defined, since there is a separate cost for each

knapsack, so what would be the right quantity to consider?

Recall the standard normalization for multiple knapsack con-

straints discussed in Section 1.1. We define the largest cost of an

item to be the maximum cost of the item across all knapsacks, after

the normalization. It has been previously shown that the correct

quantity to consider for the streaming model is the marginal gain

of an item divided by its largest cost [40]. Namely, if the ratio of the

marginal gain to the largest cost of an item exceeds the correspond-

ing threshold, and the item fits into a bucket without violating any

of the knapsack constraints, then we choose to add the item to the

first such bucket. Since the threshold now compares the marginal

gain to the largest cost, a natural question to be asked is what

quantity should be used for the dynamic allocation of the buckets.

Recall that the previous goal of AlgNum was to maintain a specific

number of items, so that it would be robust against the removal

of m items. Thus, we would like to allocate a new bucket for a

partition whenever the capacity of the bucket with respect to some

knapsack becomes saturated. Hence, AlgMult maintains a series

of counters i,a for partition i and knapsack a, where 1 ≤ a ≤ d .
Whenever one of these counters exceeds K , we create a new bucket

entirely in partition i , and lower i,a accordingly.

Algorithm 4AlgMult: Picking elements with large marginal gain

to cost ratio.

Input: Parameters d,m,K , estimate τ ∗ of f (OPT).

1: ℓ ← ⌈logK⌉,w ←
⌈
4ℓm
K

⌉
, τ ← τ ∗

4

2: for i ← 0 to ℓ do ▷ Initialize parameters

3: ni ← w
⌈
K/2i

⌉
+ 8ℓ

4: si,a ← 0

5: for j ← 1 to ni do

6: Bi, j ← ∅

7: for each element e in the stream do

8: c(e) ← max

1≤a≤d
ca (e)

9: for i ← 0 to ℓ do

10: if c(e) > 2
i−1

then continue

11: for j ← 1 to ni do
12: if ρ(e |Bi, j ) <

τ
2
i (1+2d ) then continue

13: if ca (Bi, j ∪ e) < 2
i+1

for all 1 ≤ a ≤ d then

14: Bi, j ← Bi, j ∪ {e}
15: si,a ← si,a + 8ℓca (e) for all 1 ≤ a ≤ d
16: while si,a ≥ 2

i
for some 1 ≤ a ≤ d and∑ni

j=1 |Bi, j | < 10w · 2i do

17: Bi,ni+1 ← ∅
18: ni ← ni + 1
19: si,a ← max{0, si,a − 2

i } for all 1 ≤ a ≤ d

20: break: process next element e

21: return Sτ = {Bi, j }i, j

By using Prune on the output of AlgNum, we have the following

result. As in Section 3.1, we do not attempt to optimize parameters
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here, but observe that the number of elements stored is independent

of d .

Theorem 3.2. For the ARMSM(m,K) problem under d knapsack

constraints, there exists an algorithm that outputs a set S of size

Õ(K +m), from which one can compute a set Z ⊆ V \ E with cost at

most K and f (Z ) is a Ω
(
1

d

)
-approximation to f (OPT).

4 DISTRIBUTED ALGORITHM

In this section, we give a distributed algorithm for theARMSM(m,K)
problem under d knapsack constraints (see Definition 1.2). We use

a variant of the MapReduce model of [20], in which we consider an

input set V of size n = |V | that is distributed across Õ((K +m)
√
n)

machines, one of which is designated the central machine that will

ultimately output a set of elements. For some parametersm and

K that are known across all machines, we permit each machine

to have Õ((K + m)
√
n) memory. The machines communicate to

each other in a number of synchronous rounds to perform com-

putation. In each round, each machine receives some input of size

Õ((K +m)
√
n), on which the machine performs some local com-

putation. The machine then communicates some output to other

machines at the start of the next round. We require that the total

input and output message size is Õ((K +m)
√
n) per machine. We

assume that each machine has access to an oracle that computes f .
Then our main result in the distributed model is the following.

Theorem 4.1. For the ARMSM(m,K) problem under d knapsack

constraints, there exists a two-round distributed algorithm that out-

puts a set S, from which one can compute a set Z ⊆ V \ E with cost

at most K and f (Z ) is a Ω
(
1

d

)
-factor approximation to f (OPT).

Moreover, each machine uses space Õ

(√
n · 1ϵ (K

2 +mK)

)
.

The analysis of our distributed algorithm is based on the analysis

for our streaming algorithms, along with a recent work by [29].

We generalize their result to obtain a distributed algorithm that

constructs a robust summary equivalent to that constructed by

AlgMult.

In our algorithm and proofs, we use L to denote an upper bound

on the number of elements collected by AlgMult. LetB be the data

structure of setsBi, j maintained byAlgMult.We useAlgMultB,W
to refer to the invocation of AlgMult with the following changes:

• The buckets Bi, j are initialized by B and the loop on line 5

of AlgMult is ignored.

• In place of V , the ground setW is used.

Our distributed algorithm is explicitly given in Algorithm 6 and uses

subroutine PartitionAndSample, which is given in Algorithm 5.

Algorithm 5 PartitionAndSample

Input: Set of elements V .

1: F ← sample each e ∈ V with probability p = 4

√
L/n

2: Partition V randomly into sets V1,V2, . . .VT to the T machines

(one set per machine)

3: Send F to each machine and a central machine C

We prove Theorem 4.1 by first showing that the approximation

guarantee is the same as Theorem 3.2.

Algorithm 6 A 2-round distributed algorithm for ARMSM under

knapsack constraints.

Input: Parameters d,m,K , estimate τ ∗ of f (OPT).
Round 1:

1: F ,V1, . . . ,VT ← PartitionAndSample(V )
2: for each machineMi (in parallel) do

3: τ ← f (OPT)
4: Let B0 be the data structure of sets Bi, j maintained by

AlgMult∅,F (d,m,K ,τ )
5: if |B0 | < L then

6: Ri be the set of elements e ∈ Vi that are in B
7: else

8: Ri ← ∅

9: Send Ri to a central machine C

Round 2 (only on C):
10: Compute B0 from F as in first round

11: R ← ∪iRi
12: return Sτ ← AlgMultB0,R (d,m,K ,τ )

Lemma 4.2. There exists a distributed algorithm that outputs a set

Z so that f (Z ) has the same approximation guarantee as stated by

Theorem 3.2.

We can also bound the total number of elements sent to the

central machine, using a proof similar to [29].

Lemma 4.3. Let L be an upper bound on the number of elements

collected by AlgMult. With probability 1 − e−Ω(L), the number of

elements sent to the central machine C is at most

√
nL.

5 EXPERIMENTS

In this section, we provide empirical evaluation of our algorithms

for ARMSM under both single knapsack and multiple knapsack

constraints. As no prior work exists in this setting we use the

most natural generalizations of standard non-robust algorithms for

comparison. We test our most general algorithm AlgMult against

such algorithms while measuring the number of elements collected

and the quality of the resulting approximation. The aim of our

evaluations is to address the following points:

(1) How does AlgMult compare to “robustified” generaliza-

tions of other submodular maximization algorithms?

(2) How well does AlgMult perform on real datasets compared

to our theoretical worst-case guarantees?

(3) How many elements does AlgMult collect?

(4) Does the performance of AlgMult degrade as the number

of elementsm removed at the end of the stream increases?

Implementation is available at https://github.com/

KDD2019SubmodularKnapsack/KDD2019SubmodularKnapsack.

Robustification. Although there are no existing ARMSM algo-

rithms for knapsack constraints, we propose the following modifi-

cation to existing algorithms to ensure a fair comparison. Given a

submodular maximization algorithm A, we consider its robustified

version by allowing the algorithm to collect extra elements to obtain

its own robust summary. To achieve this, we increase the knapsack

capacity by some multiplicative factor, which is selected in such
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way that all algorithms collect approximately the same number of

elements.

5.1 Baselines

We compare AlgMult to the following algorithms.

Robustified MarginalRatio. This algorithm corresponds to a

robustified version of Algorithm 2 from [19], which accepts any

element whose marginal density with respect to the stored ele-

ments exceeds a certain threshold. Note that while the algorithm

is for a single knapsack constraint, it can be trivially extended to

multiple knapsack constraints by checking that the thresholding

condition holds for all dimensions. This marginal density threshold-

ing algorithm is a natural generalization to knapsack constraints of

the streaming algorithm Sieve [4] which gives the best theoretical

guarantee under the cardinality constraint.

Robustified offline Greedy. This algorithm builds its summary by

iteratively adding to it an element with the largest marginal density.

Observe that Greedy is an offline algorithm, which is a more pow-

erful model. However, Greedy is a single knapsack algorithm, so

we use it only as a baseline for single knapsack constraints. While

there exists a Greedy algorithm [28] under multiple knapsack con-

straints, it requires O
(
n5

)
running time, which makes it infeasible

on large datasets.

Robustified Multidimensional. This is a robustified version of

the streaming algorithm for submodular maximization with multi-

ple knapsack constraints from [40].

5.2 Objectives and Datasets

We evaluate the algorithms on two submodular objective functions:

Dominating set. We use graphs ego-Facebook (4K vertices, 81K

edges) and ego-Twitter (88K vertices, 1.8M edges) from the SNAP

database [26]. For a graph G(V ,E) and Z ⊆ V , we let f (Z ) =
|Z∪N (Z ) |
|V | , where N (Z ) is the set of all neighbors of Z . For each

knapsack constraint, the cost of each element is selected uniformly

at random from the uniform distributionU(1, 3) and all knapsack

constraints are set to 10.

Movie recommendation. Modeling the scenario of movie recom-

mendations we analyze a dataset of movie ratings (in the range

[1, 5]) assigned by users. For each movie x we use a vector vx of

normalized ratings: if user u did not rate movie x , then setvx,u = 0,

otherwise set vx,u = rx,u − ravд , where ravд denotes the average

of all known ratings. Then, the similarity between two movies x1
and x2 can be defined as the dot product ⟨vx1 ,vx2 ⟩ of their vectors.

In the case of movie recommendation the goal is to select a

representative subset of movies. The domain of our objective is the

set of all movies.

For a subset of movies X we consider a parameterized objective

function fX :

fX (Z ) =
∑
x ∈X

max

z∈Z
⟨vz ,vx ⟩,

where Z is a subset of movies. This captures how representative

is Z of the set X . In our experiments, we model the situation of

making recommendations to some user so we pick X to be a set of

movies rated by the user (we select the user uniformly at random).

Hence the maximizer of fX (Z ) corresponds to a subset of movies

which represents well user’s rated set X .

We use the ml-20 MovieLens dataset [18], containing 27 278

movies and 20 000 263 ratings. Knapsack constraints model limited

demand for movies of a certain type (e.g. not too many action

movies, not too many fantasy movies, etc). In the data each movie is

labeled by several genres and each knapsack constraint is described

by sets of “good” and “bad” genres. Movies with more “good” genres

and less “bad” genres have lower cost, allowing the algorithm to

choose more such movies. If there are at most t genres describing
“good” and “bad” sets then we set the cost of a movie x to be linear

in the range [1, t + 1]:

c(x) = 1 + 0.5 × (bad(x) − дood(x) + t),

where дood(x) and bad(x) are the numbers of good and bad genres

that movie x is labeled with.

For the experiments under one knapsack constraint, we define

the good set of movies as дood = {Comedy, Horror}, and the bad

set of movies as bad = {Adventure, Action}. For experiments un-

der two knapsack constraints, we define the second constraint by

an additional set of good movies дood = {Drama, Romance}, and

an additional set of bad movies bad = {Sci-Fi, Fantasy}. All knap-
sack constraint bounds are set to 10, limiting the total number of

recommended movies.

5.3 Experimental Evaluation and Results

We compare AlgMult against the three baselines described in

Section 5.1. First, we obtain robust summaries for AlgMult and

for each of the baselines. Second, we adversarially remove elements

from these summaries. Finally, we run Offline on the remaining

elements in the summaries and compare the values of objective

functions on the resulting sets.

Adversarial removals. To ensure a fair comparison, we use the

same set of removed elements for all algorithms. This is done by

removing the union of sets recommended by all algorithms and then

continuing in a recursive fashion if more removals are required.

We define the removal process formally as follows. For an algo-

rithm A, let SA be the robust summary output by A. We let R1 =
∪AOffline(SA ), where the union is taken over all four algorithms

A tested. That is, R1 is the union of the best elements selected us-

ing AlgMult, Greedy, Multidimensional, and MarginalRatio.

This typically already gives a good choice of removals. If more re-

movals are required, we define Rk+1 = ∪AOffline(SA \ ∪
k
i=1Ri ).

That is, we recursively remove the union of the elements in the

optimal sets across all the algorithms and we repeat this process

until Rk is empty.

Evaluation. For different numbers of removed elements, we com-

pare the values that are produced by the offline algorithm on robust

summaries, i.e. Offline(SA \
⋃k
i=1 Ri ) generated by the four al-

gorithms. Since f (OPT) is NP-hard to compute, we compare the

performance of each algorithm with upper bounds on f (OPT) to
estimate the approximation given by the algorithms. For a single

knapsack constraint, the best known upper bound can be com-

puted from Greedy and for multiple knapsack constraints from

Multidimensional [40].
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(a) ml-20, 1 knapsack (b) ego-Facebook, 1 knapsack (c) ego-Twitter, 1 knapsack

(d) ml-20, 2 knapsacks (e) ego-Facebook, 2 knapsacks (f) ego-Twitter, 2 knapsacks

Figure 2: Approximation of f (OPT) for different algorithms (K = 10). In most cases, AlgMult outperforms the other algo-

rithms and achieves the best possible approximation factor (1 − 1

e ≈ 0.63 for one knapsack, 0.2 for two knapsacks).

ml-20, 1 knapsack fb, 1 knapsack twitter, 1 knapsack ml-20, 2 knapsacks fb, 2 knapsacks twitter, 2 knapsacks

AlgMult 641 378 401 1350 2745 4208

MarginalRatio 641 377 402 1350 2745 4209

Multidimensional 87 18 435 72 22 4221

Greedy 647 393 493 - - -

Table 1: Sizes of robust summaries produced by the algorithms (K = 10).

Results. The results of our experiments are shown in Figure 2. For

each algorithm, we plot the ratio of its objective to an upper bound

on the optimal solution, which is obtained as previously discussed.

Figures 2a, 2b, and 2c show experimental results for 1-knapsack

constraints using Greedy as the offline algorithm with approxima-

tion factor 1 − e−c(s)/K , where K is the knapsack constraint and

c(S) is the cost of the resulting set. For many instances, c(S) is close
to K , so this value is close to 1 − 1

e ≈ 0.63. Figures 2d, 2e, and 2f

show experimental results for 2-knapsack constraints.

Our evaluations suggest that AlgMult provides the best possible

approximation factor for a majority of inputs. Except for the first

iterations in Figure 2d, AlgMult outperforms the other algorithms,

and achieves roughly the same approximation guarantee as the

offline algorithm that knows the items to be removed in advance. In

fact, the advantage of AlgMult becomes more noticeable as larger

numbers of elements are removed.

Since the baseline algorithms, other than Greedy, require an

estimate of f (OPT), we try several such estimations. The non-

monotone behavior of the ratio of MarginalRatio to f (OPT)
in Figure 2f occurs since MarginalRatio performs better when

estimation is close to the true objective. We emphasize the fact

that all algorithms, including AlgMult, use the same f (OPT)
estimations. It is possible to obtain a more monotone behavior by

trying more estimations, but doing so will require collecting more

elements.

To evaluate memory consumption, we also report the number of

elements collected by each algorithm. These results are presented

in Table 1 and show that the algorithms for 2-knapsack constraints

collect noticeably more elements than those performing maximiza-

tion under a single knapsack constraint. The size of the robust

summary output by AlgMult does not appear to correlate with

the total number of elements, and in the case of ego-Twitter, it
collects only 5% of the vertices.

Recall that we allow the baseline algorithms to collect extra

elements by increasing their knapsack capacity to ensure fair com-

parison. Hence, almost all the algorithms collect similar numbers

of elements for each setup, as shown in Table 1. Note that, however,

for some experimental setups Multidimensional collects signifi-

cantly fewer elements than the other algorithms. This phenomenon

persists even if the knapsack capacity is unbounded.

In our empirical evaluations, the number of collected elements

did not seem to depend on the number of removed itemsm. One

possible reason for this phenomena is that the algorithms were

not executed with small guesses for the optimal objective. As a

result when the number of removed elements is large, the optimal

objective is below the threshold considered by the algorithm, and

therefore more elements are not collected because the threshold is

set to be too high. However, it is natural that with sufficiently bad

guesses for the optimal objective, any thresholding algorithm will

be forced to meaninglessly collect a large number of elements.
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6 CONCLUSION

We have given the first streaming and distributed algorithms for

adversarially robust monotone submodular maximization subject

to single and multiple knapsack constraints. Our algorithms are

based on a novel data structure which dynamically allocates new

space depending on the elements stored so far and perform well

on large scale data sets, even compared to offline algorithms that

know in advance which elements will be removed.

For the future work, it is natural to ask whether our framework

can be scaled to larger datasets for specific classes of objectives,

e.g., is it possible to ensure adversarial robustness with sketching

methods for coverage objectives [7]? It would be also interesting to

understand the limits on approximation that can be achieved with

adversarial robustness and summary size only Õ(K +m). Finally, an
interesting open question is whether it is possible to do adversarially

robust non-monotone submodular maximization.
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