Research Track Paper

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Adversarially Robust Submodular Maximization under
Knapsack Constraints’

Dmitrii Avdiukhin
davdyukh@iu.edu
Indiana University

Grigory Yaroslavtsev
gyarosla@iu.edu
Indiana University & The Alan Turing Institute

ABSTRACT

We propose the first adversarially robust algorithm for monotone
submodular maximization under single and multiple knapsack con-
straints with scalable implementations in distributed and streaming
settings. For a single knapsack constraint, our algorithm outputs a
robust summary of almost optimal (up to polylogarithmic factors)
size, from which a constant-factor approximation to the optimal
solution can be constructed. For multiple knapsack constraints,
our approximation is within a constant-factor of the best known
non-robust solution.

We evaluate the performance of our algorithms by comparison
to natural robustifications of existing non-robust algorithms under
two objectives: 1) dominating set for large social network graphs
from Facebook and Twitter collected by the Stanford Network Anal-
ysis Project (SNAP), 2) movie recommendations on a dataset from
MovieLens. Experimental results show that our algorithms give
the best objective for a majority of the inputs and show strong
performance even compared to offline algorithms that are given
the set of removals in advance.

CCS CONCEPTS

» Theory of computation — Streaming, sublinear and near
linear time algorithms; Distributed algorithms.

KEYWORDS

submodular maximization, streaming algorithms, distributed algo-
rithms

“Full version is available at [3]
TSupported by the Swiss NSF grant P2ELP2_181772 and MIT-IBM Watson Al Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330911

148

Slobodan MitroviéT
slobo@mit.edu
MIT

Samson Zhou
samsonzhou@gmail.com
Indiana University

ACM Reference Format:

Dmitrii Avdiukhin, Slobodan Mitrovi¢, Grigory Yaroslavtsev, and Samson
Zhou. 2019. Adversarially Robust Submodular Maximization under Knap-
sack Constraints. In The 25th ACM SIGKDD Conference on Knowledge Dis-
covery and DataMining (KDD ’19), August 4-8, 2019, Anchorage, AK, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330911

1 INTRODUCTION

Submodular maximization has a wide range of applications in data
science, machine learning and optimization, including data sum-
marization, personalized recommendation, feature selection and
clustering under various constraints, e.g. budget, diversity, fairness
and privacy among others. Constrained submodular optimization
has been studied since the seminal work of [33]. It has recently
attracted a lot of interest in various large-scale computation set-
tings, including distributed [12, 29], streaming [1, 4, 34], and adap-
tive [5, 6, 11, 14-16] due to its applications in recommendation
systems [13, 25], exemplar based clustering [17], and document
summarization [27, 36, 39]. For monotone functions, constrained
submodular optimization has been studied extensively under nu-
merous constraints such as cardinality [4, 7], knapsack [19], match-
ings [10], and matroids [9].

With the increase in volume of data, the task of designing low-
memory streaming and low-communication distributed algorithms
for monotone submodular maximization has received significant
attention. A series of results [1, 4, 34] culminated in a single pass
algorithm over random-order stream that achieves close to (1 —
1/e)-approximation of monotone submodular maximization un-
der cardinality constraint. This approximation almost matches
the guarantee of a celebrated result [33]. Also in the context of
streaming, [19, 24, 40] studied monotone submodular maximiza-
tion under d knapsack constraints, resulting in a single pass al-
gorithm that provides (1/(1 + 2d))-approximation. Another line
of work [12, 24, 29, 31] focused on submodular maximization in
distributed setting. In particular, [29] developed 2-round and (1/€)-
round MapReduce algorithms that provide 1/2 and 1 — 1/e — €
approximation, respectively, for monotone submodular maximiza-
tion under cardinality constraint.

In this paper, we focus on the robust version of this classic prob-
lem [21, 22, 32, 35]. Consider a situation where a set of recommenda-
tions (or advertisements) is constructed for a new user. It is standard
to model this as a monotone submodular maximization problem
under knapsack constraints, which allow incorporation of various

https://doi.org/10.1145/3292500.3330911
https://doi.org/10.1145/3292500.3330911

Research Track Paper

restrictions on available budget, screen space, user preferences,
privacy and fairness, etc. However, new users are likely to find
some of the recommended items familiar, annoying or otherwise
undesirable. Hence, it is advisable to build recommendations in
such a way that even if the user later decides to dismiss some of the
recommended items, one can quickly compute a new high-quality
set of recommended items without solving the entire problem from
scratch. We refer to this property as “adversarial robustness” since
the removals are allowed to be completely arbitrary (e.g. might
depend on the algorithm’s suggestions).

1.1 Adversarially Robust Monotone
Submodular Maximization

Let V be a finite domain consisting of elements ey, . . ., e|y|. For a set
function f: 2V — R we use f (e | S) to denote the marginal gain
of an element e givenaset S C V,ie., f(e|S) = f(SU{e})-f(S). A
set function f is submodular if for every S C T C V andeverye € V
it holds that f (e|T) < f (e|S). A set function f is monotone if for
every S C T C Vit holds that f(T) > f(S). Intuitively, elements in
the universe contribute non-negative utility, but have diminishing
gains as the cost of the set increases.

For a set S C V we use notation xg to denote the 0-1 indicator
vector of S. We use C € R¥IV| to denote a matrix with positive
entries and b € R? to denote a vector with positive entries. Here,
C and b should be interpreted as knapsack constraints, where set S
satisfies these constraints if and only if Cxg < b.

PROBLEM 1.1 (MSM UNDER KNAPSACK CONSTRAINTS). In the mono-
tone submodular maximization (MSM) problem subject to d knap-
sack constraints, we are given a monotone submodular set function
f: 2V — R20 and are required to output:

OPT (V)= argmax f(S).
SCV: Cxs<b

Since the constraints are scaling-invariant, one can rescale each
row C; by multiplying it (and the corresponding entry in b) by
b1/b; so that all entries in b are the same and equal to b;. One can
further rescale C and b by the smallest entry in C (or some lower
bound on it), so that min; ; C; ; > 1. We assume such rescaling
below and let K = b; for all i. In the case of one constraint (d = 1),
we further simplify the notation and set c(e;) = C1,; and K = b;
and refer to c(e;) simply as the cost of the i-th item.

An important role in our algorithms is played by the marginal
density of an item. Formally, for a set S C V, an element e and
a cost function ¢: V — R2% we define the marginal density of e
with respect to S under the cost function c as: p(e|S) = %. For
multiple dimensions, we will specifically define the cost function
c().

Motivated by applications to personalized recommendation sys-
tems, we consider the adversarially robust version of the above
problem. In the adversarially robust monotone submodular maxi-
mization (ARMSM) problem the goal is to produce a small “adversar-
ially robust” summary S C V. Here “adversarial robustness” means
that for any set E of cardinality at most m, which might be later
removed, one should be able to compute a good approximation
for the residual monotone submodular maximization problem over

149

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

V '\ E based only on S. In this paper, we propose a study of ARMSM
under knapsack constraints:

PROBLEM 1.2 (ARMSM UNDER KNAPSACK CONSTRAINTS). An algo-
rithm A solves the adversarially robust monotone submodular maxi-
mization problem ARMSM(m, K) subject to d knapsack constraints if
it produces a summary S C V such that:

OPT(V\E) = £

argmax
SCS\E: Cxs<b
for any set of removals E of cardinality at most m. A gives an a-

approximation if there exists a set Z C S with Cxz < b such that
f(2) 2 af (OPT(V\ E)).

The main goal of an adversarially robust algorithm is to mini-
mize the size of the resulting summary. We remark that the above
robustness model is very strong. In particular, the set of removals
E does not have to be fixed in advance and might depend on the
summary S produced by the algorithm. Hence, we choose to refer
to it as adversarial robustness in order to avoid confusion with other
notions of robustness known in the literature [2, 37].

1.2 Our Theoretical Results

Streaming algorithms. We first consider the ARMSM problem in
the streaming setting. A streaming algorithm is given the vector
b of knapsack budget bounds upfront. Then, the elements of the
ground set ey, . . ., ey arrive in an arbitrary order. When an ele-
ment e; arrives, the algorithm sees the corresponding column Ci ;,
which lists the d costs associated with this item. The algorithm
only sees each element once and is required to use only a small
amount of space throughout the stream. In the end of the stream,
an adversarially chosen set of removals E is revealed and the goal
is to solve ARMSM over V \ E. The key objective of the streaming
algorithm is to minimize the amount of space used while providing
a good approximation for ARMSM for any E.

Our first set of results gives adversarially robust algorithms for
the ARMSM problem under one knapsack constraint:

THEOREM 1.3 (ARMSM UNDER ONE KNAPSACK CONSTRAINT). For
the ARMSM(m, K) problem under one knapsack constraint, there ex-
ists an algorithm that gives a constant-factor approximation with a
summary consisting of O(K + m) elements of the ground set (Theo-
rem 3.1).

We also show that if the total cost of removed items is at most
M then there is an algorithm with summary size O(K + M) and
improved approximation guarantee. For ARMSM under a single
knapsack constraint, our bounds are tight up to polylogarithmic
factors, since an optimal solution may contain K items of unit cost,
and an adversary can remove up to m items of any set. Hence,
storing Q(K + m) elements is necessary to obtain a constant factor
approximation.

For the ARMSM problem under d knapsack constraints, we give
an algorithm with the following guarantee:

THEOREM 1.4 (ARMSM UNDER d KNAPSACK CONSTRAINTS). For
the ARMSM(m, K) problem under d knapsack constraints, there exists
an algorithm that gives an Q(%)-approximation with a summary of

size O(K + m) (Theorem 3.2).

Research Track Paper

Distributed algorithms. We also consider the ARMSM problem
in the distributed setting. Here, our aim is to collect a robust set S
of elements while distributing the work to a number of machines,
minimizing the memory requirement per machine and the number
of rounds in which the machines need to communicate with each
other. As in the case of streaming setting, a set of removals E is
revealed only after S is constructed. We obtain a 2-round algorithm
that matches our result for streaming, in terms of approximation
guarantees.

THEOREM 1.5 (DISTRIBUTED ARMSM). For the ARMSM(m, K)
problem on a dataset of size n under d knapsack constraints, there ex-
ists an algorithm that gives an Q(%)—approximation with a summary

of size O(K + m). If oracle access to f is given, this algorithm can be
implemented in two distributed rounds using O((m + K)~/n) words of
space per machine (Theorem 4.1).

1.3 Empirical Evaluations

We evaluate the performance of our algorithms on both single knap-
sack and multiple knapsack constraints by comparison to natural
generalizations of existing algorithms. We implement the algo-
rithms for the objective of dominating set for large social network
graphs from Facebook and Twitter collected by the Stanford Net-
work Analysis Project (SNAP), and for the objective of coverage
on a large dataset from MovieLens. We compare the objectives on
the sets output as well as the total number of elements collected by
each algorithm.

Our results show that our algorithms provide the best objective
for a majority of the inputs. In fact, our streaming algorithms per-
form just as well as the standard offline algorithms, even when the
offline algorithms know in advance which elements will be removed.
Our results also indicate that the number of elements collected by
our algorithms does not appear to correlate with the total number
of elements, which is an attractive property for streaming algo-
rithms. In fact, most of the baseline algorithms collect relatively
the same number of elements for the robust summary, ensuring
fair comparison. For more details, see Section 5.

1.4 Previous Work

The special case of ARMSM(m, K) with one constraint and equal
costs for all elements is referred to as robust submodular maxi-
mization under the cardinality constraint. If at most k elements
can be selected, we refer to this problem as ARMSM(m, k). The
study of this problem was initiated by Krause et al. [22]. The first
(non-streaming) constant-factor approximation for this problem
was given by Orlin et al. [35] for m = o(Vk). This was further ex-
tended by [8] who give algorithms for m = o(k). In these works,
the size of the summary is restricted to contain at most k elements
and hence by design only m < k removals can be handled.
Recently the focus has shifted to handling larger numbers of
removals and so there has been increased interest in studying
ARMSM(m, k) with summary of sizes greater than k. [30] solve
this problem with summary size O(k - m), which was improved
by [32] to O(m + k). Moreover, their algorithms are applicable to
arbitrary ordered streams. A different setup was considered by [21],
who assume that E is chosen independently of the choice of a robust

150

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

summary and give algorithms with summary size O(m + k), but
obtain better approximation guarantees than [32].

To the best of our knowledge, there is little known about the
general ARMSM(m, K) problem considered here which asks for
robustness under single or multiple knapsack constraints.

2 TECHNIQUES

Our general approach is to find a set S at the end of the stream, so
that when a set E of items is removed, we show that running an
offline algorithm, OFFLINE, on the set Z := S\ E produces a good
approximation to the value of the optimal solution of the entire
stream. Since OFFLINE on input Z is known to produce a good
approximation to the optimal solution of constrained submodular
maximization on input Z (see Theorem 2.1), then it suffices to show
that f(OPT (2)) is a good approximation to f(OPT), where we
use OPT to denote OPT (V \ E).

THEOREM 2.1. [23, 38] There exists an algorithm OFFLINE that
gives a (1 — 1/e)-approximation for the monotone submodular max-
imization problem subject to d knapsack constraints in polynomial
time.

We assume that we have a good guess for f(OP7") by making a
number of exponentially increasing guesses 7. Our algorithms start
with the partitions-and-buckets approach from [8, 32] for robust
submodular maximization under cardinality constraints. Specifi-
cally, our algorithms create a number of partitions and also create
a number of buckets for each partition, where the number of buck-
ets is chosen to be “robust” to the removal of items at the end of
the stream. An element in the stream is added to the first possible
bucket in which its marginal density exceeds a certain threshold,
which is governed by the partition. The thresholds are exponentially
decreasing across the partitions, so that the number of partitions is
logarithmic in K.

At ahigh level, our algorithms overcome several potential pitfalls.
The first challenge we face is the issue of buckets being populated
with items of small cost whose marginal density surpasses the
threshold. These small items prevent large items (such as cost K)
whose marginal density also surpasses the threshold from being
added to any bucket. If the optimal solution consists of a single large
item, then the approximation guarantee could potentially be as bad
as % Thus, we allow each bucket double the capacity and create an
additional partition level with a smaller threshold to compensate.

The second challenge we face is relating the items in various
partitions. Although we would like to argue that an item e in a
bucket in a certain partition i does not have overwhelmingly large
marginal gain, the most natural way to prove this would be to claim
that e would have been placed in a previous partition less than
i because the ratio is overwhelmingly large. However, this is no
longer true because items in partition i can have up to cost 2! and
any non-empty bucket in previous partitions does not have enough
capacity. Surprisingly, for the purposes of analysis, it suffices to
prohibit any item in a bucket from using more than a certain fraction
of the capacity. That is, any item added to a bucket B; j, which has
capacity 21*1 must have cost at most 2171,

Research Track Paper

2.1 Robustness to the Removal of m Items

We now describe ALcNum, which outputs a solution of cost K on a
single knapsack constraint and is robust against the removal of up
to m items. We would like to use an averaging arguments to show
that some “saturated” bucket B;» j in a partition cannot have too
much intersection with the elements E that are removed at the end
of the stream. However, the removal of up to m items at the end
of the stream may cause the removal of cost up to mK. But then
the averaging argument fails unless the number of buckets in each
partition also increases by a factor of K, which unfortunately gives
an additional multiple of K in the space of the algorithm.

Instead, the key idea is to dynamically allocate a number of new
buckets, depending on the total cost of the current items in the
buckets of a partition. The goal is to maintain enough buckets to
guarantee that a certain number of elements can be added to a
partition, regardless of their cost. Therefore, the number of total
buckets is not large unless the stored items have large cost, in
which case the number of items is relatively low anyway. To do
this, we maintain counters s; that allocate a new bucket to partition
i each time they exceed min{2!, K}. Each time an item e is added
to partition i, the counter s; is increased proportional to the cost of
the item, c(e). The creation of new buckets is allowed until a certain
number of items have been collected by the partition. Intuitively,
algorithms robust to the removal of m items, such as ALGNUM,
should strive to output at the end of the stream a set with a certain
number of items, whereas algorithms robust to the removal of items
with a certain cost M should strive to output a set with a certain
cost.

At the end, we run a procedure PRUNE to further bound the num-
ber of elements output by the algorithm. PRUNE simply reorders
the elements stored by ALGNUM by cost of the elements, and again
runs ALGNUM on the sorted set of elements as an input stream.
Since the items with smaller cost arrive first, this ensures that we
cannot have too many items of large cost.

3 STREAMING ALGORITHMS

We now warm-up by providing the first streaming algorithm for
the ARMSM(m, K) problem under a single knapsack constraint. We
later show how to build on these ideas to obtain robustness subject
to multiple knapsack constraints.

3.1 Single Knapsack Constraint

We describe our algorithm ArgNum, which is used to produce a
summary consisting of O(K + m) items. Recall that we use OP7 to
denote OPT (V \ E). In order to simplify presentation, we assume!
that we have a good estimate 7* for f(OPT), such that 7* <
FOPT) < (1+ e)r*. To simplify presentation, we further assume
that K is a power of two and hence let K = 2¢ (see Algorithm 1 for
how rounding is handled).

ALGNUM creates ¢ partitions By, . . ., Bp where the i-th partition
initially consists of n; = O([(% + 1)) buckets of capacity 2:*! each.
We refer to the j-th bucket in the i-th partition as B; ;. When pro-
cessing the stream, each element e is added to the first possible
bucket B; ; in the first possible partition i such that the bucket

1 This assumption can be removed using standard techniques (see e.g. Appendix E of
[32]) by maintaining é log K guesses to find such a 7*.

151

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

has enough capacity remaining and the marginal density p(e|B;, ;)
exceeds a certain threshold 7/2° for this partition. Note that the
thresholds exponentially decrease across the partitions while ca-
pacities of the buckets exponentially increase.

Our goal is to maintain enough buckets to guarantee that a
certain number of elements can be added to a partition, regardless
of their cost. To dynamically allocate a number of new buckets,
ALGNUM keeps counters s; that create a new bucket while they
exceed 2!, after which the value of the counter is lowered. The
counter s; is increased proportional to the cost of an item c(e)
each time an item e is added to partition i. This process continues
until a certain number of items are in the partition. Finally, we
run the procedure PRUNE to further bound the number of elements
output by the algorithm. See Figure 1 for an illustration of the data
structure.

Algorithm 1 ALgNumM: Picking elements with large marginal den-
sity.

Input: Parameters m, K, estimate 7* of f(OPT).

. 4m 2
1: £ — [logK],w « [7] T 32(1-)73

2: fori < 0to{do > Initialize parameters
3 n; <—W[K/2i-|+8€

4 si <0

5 for j < 1ton; do

6 Bi,j — 0

7: for each element e in the stream do

8: fori < 0to{do

9 if c(e) > 2i71 then continue

10: for j < 1ton; do

11 if p(e|B; ;) < 2% then continue
12: if ¢(Bj,jUe) < 2i+1 then

13: Bij « Bj,j U {e}

14: si « s; + 8tc(e)

15: if Zjnz’l |Bi,j| < 10w - 2! then
16: while s; > 2! do

17: Bin;+1 < 0

18: nj «<—n;+1

19: Sj «— Sj — 21

20: break: process next element e

21: return S; = {Bi,j}i,j

Algorithm 2 PrRUNE: Decreasing the size of the output set.

Input: Output set S from ALGNuUM.
1: Sort S by size so that c(s1) < ¢(s2) <
2. T < ALeNuUM with input stream sy, s2,
3: return T > ALGNUM can be replaced with ALGMULT.

By using PRUNE on the output of ALGNUM, we have the following
result.

THEOREM 3.1. There exists an algorithm that outputs a set S with
O(K + m) elements such that, for any set E of at most m removed

Research Track Paper

Threshold

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Partition 2: 7/4 8
Partition 1: 7/2 4 4 4 4
Partition 0: 7 P 2 2 2 2 2

Bo,i Bo,2 Bo,3 Boa

Figure 1: Partitions and buckets: By 1 and B, ; are partially occupied. By 3 (in red) has been dynamically created, since the

elements of By ; and By are large.

Algorithm 3 Robust maximum submodular with knapsack con-
straint.

Input: Output set T from PRUNE, set E removed by adversary.
1: return OFrLINE(T \ E)

items, one can compute from S a set Z C V \ E with cost at most K
and f(Z) is a constant factor approximation to f(OPT).

In fact, if the m items that are removed has total cost at most M,
we can provide a better guarantee in terms of both approximation
and number of elements stored (see the full version of the paper
at [3]).

3.2 d Knapsack Constraints

We now consider the ARMSM(m, K) problem under d knapsack
constraints. Recall that ALGNUM relies on guessing the correct
threshold and then using a streaming framework that adds elements
whose marginal gain surpasses the threshold. In the case where
there are d knapsack constraints, a natural approach would be to
have parallel instances that guess thresholds for each constraint,
and then pick the instance with the best set. This would certainly
work, but since there would be O (log K) guesses for each constraint,

the total number of parallel instances would be O (logd K) which

is unacceptable for large values of d and K. On the other hand, it
seems reasonable to believe that the space usage can be improved,
at the expense of the approximation guarantee, by maintaining a
smaller number of parallel instances. In that case, marginal gain to
cost ratio is not well-defined, since there is a separate cost for each
knapsack, so what would be the right quantity to consider?
Recall the standard normalization for multiple knapsack con-
straints discussed in Section 1.1. We define the largest cost of an
item to be the maximum cost of the item across all knapsacks, after
the normalization. It has been previously shown that the correct
quantity to consider for the streaming model is the marginal gain
of an item divided by its largest cost [40]. Namely, if the ratio of the
marginal gain to the largest cost of an item exceeds the correspond-
ing threshold, and the item fits into a bucket without violating any
of the knapsack constraints, then we choose to add the item to the
first such bucket. Since the threshold now compares the marginal
gain to the largest cost, a natural question to be asked is what

152

quantity should be used for the dynamic allocation of the buckets.
Recall that the previous goal of ALGNUM was to maintain a specific
number of items, so that it would be robust against the removal
of m items. Thus, we would like to allocate a new bucket for a
partition whenever the capacity of the bucket with respect to some
knapsack becomes saturated. Hence, ALGMULT maintains a series
of counters ; , for partition i and knapsack a, where 1 < a < d.
Whenever one of these counters exceeds K, we create a new bucket
entirely in partition i, and lower ; 4 accordingly.

Algorithm 4 ALcMuLT: Picking elements with large marginal gain
to cost ratio.

Input: Parameters d, m, K, estimate 7* of f(OPT).
1: £ — [logK],w « [4{%], T TT*

2: fori « 0to{do > Initialize parameters
3 n; <—W[K/2i-|+8€
4 Siia < 0
5 for j «— 1ton; do
6 Bi,j — 0
7: for each element e in the stream do
8: c(e) « max cq(e)
1<a<d
9: fori < 0to{do
10: if c(e) > 2i! then continue
11: for j < 1ton; do
12: if p(e|B; ;) < m then continue
13: if cq(Bij Ue) < 2i*1 forall 1 < a < d then
14: Bij « Bj,j U {e}

Si,q < Si,q +8lcq(e)foralll <a<d
16: while s; , > 2! for some 1 < a < d and
X 1Bl < 10w - 2! do

Bin+1 < 0

nj«<—n;+1

Si,q < max{0,s; 4 — 2i} foralll1 <a<d

break: process next element e

17:
18:
19:

20:
21: return Sy = {B; j}i ;

By using PRUNE on the output of ALGNUM, we have the following
result. As in Section 3.1, we do not attempt to optimize parameters

Research Track Paper

here, but observe that the number of elements stored is independent
ofd.

THEOREM 3.2. For the ARMSM(m, K) problem under d knapsack
constraints, there exists an algorithm that outputs a set S of size
O(K + m), from which one can compute a set Z C V \ E with cost at

most K and f(Z) isa Q (%)-approximation to f(OPT).

4 DISTRIBUTED ALGORITHM

In this section, we give a distributed algorithm for the ARMSM(m, K)
problem under d knapsack constraints (see Definition 1.2). We use
a variant of the MapReduce model of [20], in which we consider an
input set V of size n = |V| that is distributed across O((K + m)/n)
machines, one of which is designated the central machine that will
ultimately output a set of elements. For some parameters m and
K that are known across all machines, we permit each machine
to have O((K + m)y/n) memory. The machines communicate to
each other in a number of synchronous rounds to perform com-
putation. In each round, each machine receives some input of size
O((K + m)y/n), on which the machine performs some local com-
putation. The machine then communicates some output to other
machines at the start of the next round. We require that the total
input and output message size is O((K + m)+/n) per machine. We
assume that each machine has access to an oracle that computes f.
Then our main result in the distributed model is the following.

THEOREM 4.1. For the ARMSM(m, K) problem under d knapsack
constraints, there exists a two-round distributed algorithm that out-
puts a set S, from which one can compute a set Z C V \ E with cost

at most K and f(Z) is a Q (%)—factor approximation to f(OPT).
Moreover, each machine uses space 0 (n- %(K2 + mK)).

The analysis of our distributed algorithm is based on the analysis
for our streaming algorithms, along with a recent work by [29].
We generalize their result to obtain a distributed algorithm that
constructs a robust summary equivalent to that constructed by
ALGMULT.

In our algorithm and proofs, we use L to denote an upper bound
on the number of elements collected by ALGMULT. Let B be the data
structure of sets B;, j maintained by ALGMULT. We use ALGMULT g, 1/
to refer to the invocation of ALcMuLT with the following changes:

e The buckets B; ; are initialized by 8 and the loop on line 5
of ALGMuULT is ignored.
o In place of V, the ground set W is used.
Our distributed algorithm is explicitly given in Algorithm 6 and uses
subroutine PARTITIONANDSAMPLE, which is given in Algorithm 5.

Algorithm 5 PARTITIONANDSAMPLE

Input: Set of elements V.
1: F « sample each e € V with probability p = 44/L/n
2: Partition V randomly into sets Vi, Vs, ... Vr to the T machines
(one set per machine)
3: Send F to each machine and a central machine C

We prove Theorem 4.1 by first showing that the approximation
guarantee is the same as Theorem 3.2.

153

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Algorithm 6 A 2-round distributed algorithm for ARMSM under
knapsack constraints.

Input: Parameters d, m, K, estimate * of f(OPT).
Round 1:
1: F,Vi,...,Vr < PARTITIONANDSAMPLE(V)
2: for each machine M; (in parallel) do
3 T« f(OPT)
4 Let By be the data structure of sets B; ; maintained by
ALcMurty p(d, m, K, 1)

5 if |By| < L then

6: R; be the set of elements e € V; that are in B
7 else

8 Ri— 0

9: Send R; to a central machine C

Round 2 (only on C):
10: Compute By from F as in first round
11: R « U;R;
12: return S; < ALGMuLTg, r(d,m, K, 1)

LEMMA 4.2. There exists a distributed algorithm that outputs a set
Z so that f(Z) has the same approximation guarantee as stated by
Theorem 3.2.

We can also bound the total number of elements sent to the
central machine, using a proof similar to [29].

LEMMA 4.3. Let L be an upper bound on the number of elements
collected by ALGMuLT. With probability 1 — e~ L) the number of
elements sent to the central machine C is at most VnL.

5 EXPERIMENTS

In this section, we provide empirical evaluation of our algorithms
for ARMSM under both single knapsack and multiple knapsack
constraints. As no prior work exists in this setting we use the
most natural generalizations of standard non-robust algorithms for
comparison. We test our most general algorithm ALGMULT against
such algorithms while measuring the number of elements collected
and the quality of the resulting approximation. The aim of our
evaluations is to address the following points:

(1) How does ALGMULT compare to “robustified” generaliza-
tions of other submodular maximization algorithms?

(2) How well does ALGMULT perform on real datasets compared
to our theoretical worst-case guarantees?

(3) How many elements does ALGMULT collect?

(4) Does the performance of ALGMULT degrade as the number
of elements m removed at the end of the stream increases?

Implementation is available at https://github.com/
KDD2019SubmodularKnapsack/KDD2019SubmodularKnapsack.

Robustification. Although there are no existing ARMSM algo-
rithms for knapsack constraints, we propose the following modifi-
cation to existing algorithms to ensure a fair comparison. Given a
submodular maximization algorithm A, we consider its robustified
version by allowing the algorithm to collect extra elements to obtain
its own robust summary. To achieve this, we increase the knapsack
capacity by some multiplicative factor, which is selected in such

https://github.com/KDD2019SubmodularKnapsack/KDD2019SubmodularKnapsack
https://github.com/KDD2019SubmodularKnapsack/KDD2019SubmodularKnapsack

Research Track Paper

way that all algorithms collect approximately the same number of
elements.

5.1 Baselines

We compare ALGMULT to the following algorithms.

Robustified MARGINALRATIO. This algorithm corresponds to a
robustified version of Algorithm 2 from [19], which accepts any
element whose marginal density with respect to the stored ele-
ments exceeds a certain threshold. Note that while the algorithm
is for a single knapsack constraint, it can be trivially extended to
multiple knapsack constraints by checking that the thresholding
condition holds for all dimensions. This marginal density threshold-
ing algorithm is a natural generalization to knapsack constraints of
the streaming algorithm S1EVE [4] which gives the best theoretical
guarantee under the cardinality constraint.

Robustified offline GReDY. This algorithm builds its summary by
iteratively adding to it an element with the largest marginal density.
Observe that GREEDY is an offline algorithm, which is a more pow-
erful model. However, GREEDY is a single knapsack algorithm, so
we use it only as a baseline for single knapsack constraints. While
there exists a GREEDY algorithm [28] under multiple knapsack con-
straints, it requires O (n5) running time, which makes it infeasible
on large datasets.

Robustified MULTIDIMENSIONAL. This is a robustified version of
the streaming algorithm for submodular maximization with multi-
ple knapsack constraints from [40].

5.2 Objectives and Datasets

We evaluate the algorithms on two submodular objective functions:

Dominating set. We use graphs ego-Facebook (4K vertices, 81K
edges) and ego-Twitter (88K vertices, 1.8M edges) from the SNAP
database [26]. For a graph G(V,E) and Z C V, we let f(Z) =
%, where N(Z) is the set of all neighbors of Z. For each
knapsack constraint, the cost of each element is selected uniformly
at random from the uniform distribution 2(1, 3) and all knapsack
constraints are set to 10.

Movie recommendation. Modeling the scenario of movie recom-
mendations we analyze a dataset of movie ratings (in the range
[1,5]) assigned by users. For each movie x we use a vector vy of
normalized ratings: if user u did not rate movie x, then set vy, = 0,
otherwise set vx,y = r'v,u — Favg, Where rq0 g denotes the average
of all known ratings. Then, the similarity between two movies x;
and x can be defined as the dot product (vy,, vx,) of their vectors.

In the case of movie recommendation the goal is to select a
representative subset of movies. The domain of our objective is the
set of all movies.

For a subset of movies X we consider a parameterized objective
function fx:

x2) = ,;(r;lea%dvz, Ux),

where Z is a subset of movies. This captures how representative
is Z of the set X. In our experiments, we model the situation of
making recommendations to some user so we pick X to be a set of

154

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

movies rated by the user (we select the user uniformly at random).
Hence the maximizer of fx(Z) corresponds to a subset of movies
which represents well user’s rated set X.

We use the ml1-20 MovieLens dataset [18], containing 27 278
movies and 20 000 263 ratings. Knapsack constraints model limited
demand for movies of a certain type (e.g. not too many action
movies, not too many fantasy movies, etc). In the data each movie is
labeled by several genres and each knapsack constraint is described
by sets of “good” and “bad” genres. Movies with more “good” genres
and less “bad” genres have lower cost, allowing the algorithm to
choose more such movies. If there are at most ¢ genres describing
“good” and “bad” sets then we set the cost of a movie x to be linear
in the range [1,t + 1]:

c(x) =14 0.5 X (bad(x) — good(x) + t),

where good(x) and bad(x) are the numbers of good and bad genres
that movie x is labeled with.

For the experiments under one knapsack constraint, we define
the good set of movies as good = {Comedy, Horror}, and the bad
set of movies as bad = {Adventure, Action}. For experiments un-
der two knapsack constraints, we define the second constraint by
an additional set of good movies good = {Drama, Romance}, and
an additional set of bad movies bad = {Sci-Fi, Fantasy}. All knap-
sack constraint bounds are set to 10, limiting the total number of
recommended movies.

5.3 Experimental Evaluation and Results

We compare ALGMULT against the three baselines described in
Section 5.1. First, we obtain robust summaries for ALGMULT and
for each of the baselines. Second, we adversarially remove elements
from these summaries. Finally, we run OFFLINE on the remaining
elements in the summaries and compare the values of objective
functions on the resulting sets.

Adversarial removals. To ensure a fair comparison, we use the
same set of removed elements for all algorithms. This is done by
removing the union of sets recommended by all algorithms and then
continuing in a recursive fashion if more removals are required.

We define the removal process formally as follows. For an algo-
rithm A, let S# be the robust summary output by A. We let Ry =
U 4 OFFLINE(S 7), where the union is taken over all four algorithms
A tested. That is, R; is the union of the best elements selected us-
ing ALGMULT, GREEDY, MULTIDIMENSIONAL, and MARGINALRATIO.
This typically already gives a good choice of removals. If more re-
movals are required, we define Ry ,; = U#OFFLINE(S 7 \ U]leRi).
That is, we recursively remove the union of the elements in the
optimal sets across all the algorithms and we repeat this process
until R is empty.

Evaluation. For different numbers of removed elements, we com-
pare the values that are produced by the offline algorithm on robust
summaries, i.e. OFFLINE(S # \ U{F:l R;) generated by the four al-
gorithms. Since f(OP7") is NP-hard to compute, we compare the
performance of each algorithm with upper bounds on f(OPT) to
estimate the approximation given by the algorithms. For a single
knapsack constraint, the best known upper bound can be com-
puted from GREEDY and for multiple knapsack constraints from
MULTIDIMENSIONAL [40].

Research Track Paper

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Elements removed

(a) m1-20, 1 knapsack

Elements removed

(b) ego-Facebook, 1 knapsack

c c c
L L =)

oo/~ goo T | Bos i

E \ E £ LTS

X 0.4 \ X 0.4] < X0.4]~o el TINT
e \\ g \\~~ E “\N

Q - So o e, N ———— o S~
202 AT 202/ \'". 202 -~
© . Seo © \ c

F - F LT h

Q0.0 2 e Q0.0 . Q0.0

0% 200 400 o 0 200 400 0" 200 460

Elements removed

(c) ego-Twitter, 1 knapsack

5 ; 5

5 0.20 P‘(\/— 5 020 S SN 5020 —-—-;-*l——\——h

o N o \ - - N/ Ao\

€015 \ ~s €015 N €015 - Sal”

g . \\ 'g g -~
0.10 N 0.10 0.10

s \ . g |\ s

%0405 \ \ %0.05 \ %0,05

- ’ \ - . -

. 0.00 A Q. 0,00 & 0.00

o 0 200 400 o 0 200 400 o 0 200 400

Elements removed
(d) m1-20, 2 knapsacks
AlgMult

Elements removed
(e) ego-Facebook, 2 knapsacks

== == == MarginalRatio === == Multidimensional

Elements removed
(f) ego-Twitter, 2 knapsacks

EEEEE] Greedy

Figure 2: Approximation of f(OP7T) for different algorithms (K = 10). In most cases, ALGMULT outperforms the other algo-
rithms and achieves the best possible approximation factor (1 - % ~ 0.63 for one knapsack, 0.2 for two knapsacks).

ml-20, 1 knapsack fb, 1 knapsack

twitter, 1 knapsack ml-20, 2 knapsacks

fb, 2 knapsacks twitter, 2 knapsacks

ALGMuLT 641 378 401 1350 2745 4208

MARGINALRATIO 641 377 402 1350 2745 4209

MULTIDIMENSIONAL 87 18 435 72 22 4221
GREEDY 647 393 493 - - -

Table 1: Sizes of robust summaries produced by the algorithms (K = 10).

Results. The results of our experiments are shown in Figure 2. For
each algorithm, we plot the ratio of its objective to an upper bound
on the optimal solution, which is obtained as previously discussed.
Figures 2a, 2b, and 2c show experimental results for 1-knapsack
constraints using GREEDY as the offline algorithm with approxima-
tion factor 1 — e~¢(8)/K , where K is the knapsack constraint and
¢(S) is the cost of the resulting set. For many instances, ¢(S) is close
to K, so this value is close to 1 — % ~ 0.63. Figures 2d, 2e, and 2f
show experimental results for 2-knapsack constraints.

Our evaluations suggest that ALGMULT provides the best possible
approximation factor for a majority of inputs. Except for the first
iterations in Figure 2d, ALGMULT outperforms the other algorithms,
and achieves roughly the same approximation guarantee as the
offline algorithm that knows the items to be removed in advance. In
fact, the advantage of ALGMULT becomes more noticeable as larger
numbers of elements are removed.

Since the baseline algorithms, other than GREEDY, require an
estimate of f(OPT), we try several such estimations. The non-
monotone behavior of the ratio of MARGINALRATIO to f(OPT)
in Figure 2f occurs since MARGINALRATIO performs better when
estimation is close to the true objective. We emphasize the fact
that all algorithms, including ALGMULT, use the same f(OPT)
estimations. It is possible to obtain a more monotone behavior by
trying more estimations, but doing so will require collecting more
elements.

155

To evaluate memory consumption, we also report the number of
elements collected by each algorithm. These results are presented
in Table 1 and show that the algorithms for 2-knapsack constraints
collect noticeably more elements than those performing maximiza-
tion under a single knapsack constraint. The size of the robust
summary output by ALcMULT does not appear to correlate with
the total number of elements, and in the case of ego-Twitter, it
collects only 5% of the vertices.

Recall that we allow the baseline algorithms to collect extra
elements by increasing their knapsack capacity to ensure fair com-
parison. Hence, almost all the algorithms collect similar numbers
of elements for each setup, as shown in Table 1. Note that, however,
for some experimental setups MULTIDIMENSIONAL collects signifi-
cantly fewer elements than the other algorithms. This phenomenon
persists even if the knapsack capacity is unbounded.

In our empirical evaluations, the number of collected elements
did not seem to depend on the number of removed items m. One
possible reason for this phenomena is that the algorithms were
not executed with small guesses for the optimal objective. As a
result when the number of removed elements is large, the optimal
objective is below the threshold considered by the algorithm, and
therefore more elements are not collected because the threshold is
set to be too high. However, it is natural that with sufficiently bad
guesses for the optimal objective, any thresholding algorithm will
be forced to meaninglessly collect a large number of elements.

Research Track Paper

6

CONCLUSION

We have given the first streaming and distributed algorithms for
adversarially robust monotone submodular maximization subject
to single and multiple knapsack constraints. Our algorithms are
based on a novel data structure which dynamically allocates new
space depending on the elements stored so far and perform well
on large scale data sets, even compared to offline algorithms that
know in advance which elements will be removed.

For the future work, it is natural to ask whether our framework
can be scaled to larger datasets for specific classes of objectives,

eg.

, is it possible to ensure adversarial robustness with sketching

methods for coverage objectives [7]? It would be also interesting to
understand the limits on approximation that can be achieved with
adversarial robustness and summary size only O(K + m). Finally, an
interesting open question is whether it is possible to do adversarially
robust non-monotone submodular maximization.

REFERENCES

(1]
(2]

(3]

[10

[11]

[12

[13

[14]

[15]

[16

Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular secretary
problem with shortlists. arXiv preprint arXiv:1809.05082, 2018.

Nima Anari, Nika Haghtalab, Joseph Naor, Sebastian Pokutta, Mohit Singh, and
Alfredo Torrico. Robust submodular maximization: Offline and online algorithms.
CORR, abs/1710.04740, 2017.

Dmitrii Avdiukhin, Slobodan Mitrovi¢, Grigory Yaroslavtsev, and Samson Zhou.
Adversarially robust submodular maximization under knapsack constraints.
CoRR, abs/1905.02367, 2019.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-
dreas Krause. Streaming submodular maximization: Massive data summarization
on the fly. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 671-680. ACM, 2014.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in
parallel running time for submodular maximization without loss in approxima-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 283-302, 2019.

Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a
submodular function. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC, pages 1138-1151, 2018.

MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Optimal
distributed submodular optimization via sketching. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD, pages 1138-1147, 2018.

Ilija Bogunovic, Slobodan Mitrovi¢, Jonathan Scarlett, and Volkan Cevher. Robust
submodular maximization: A non-uniform partitioning approach. In Proceedings
of the 34th International Conference on Machine Learning, ICML, pages 508-516,
2017.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740-1766, 2011.

Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming:
Matchings, matroids, and more. In Integer Programming and Combinatorial
Optimization - 17th International Conference, IPCO. Proceedings, pages 210-221,
2014.

Chandra Chekuri and Kent Quanrud. Submodular function maximization in
parallel via the multilinear relaxation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 303-322, 2019.
Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A new
framework for distributed submodular maximization. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS, pages 645-654, 2016.

Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering rele-
vant scientific literature. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 439-447. ACM, 2011.
Alina Ene and Huy L. Nguyen. Submodular maximization with nearly-optimal
approximation and adaptivity in nearly-linear time. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 274-282,
2019.

Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Submod-
ular maximization with nearly optimal approximation, adaptivity and query
complexity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 255-273, 2019.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and
applications in active learning and stochastic optimization. Journal of Artificial

156

[17]

jpunpun
22,

[22

[23

[24]

[26

[27

[28

[29

@
=

[31

[32

®
&

[34

[35

[36

[37

[38

%
20,

[40

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Intelligence Research, 42:427-486, 2011.

Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data
streams. In ICML, pages 391-398, 2010.

GroupLens. https://grouplens.org/datasets/movielens. MovieLens Datasets.
Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida. Streaming al-
gorithms for maximizing monotone submodular functions under a knapsack
constraint. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 11:1-11:14, 2017.
Howard]. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of com-
putation for mapreduce. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 938-948, 2010.

Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-
robust submodular maximization: Data summarization with privacy and fairness
constraints. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML, pages 2549-2558, 2018.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta.
Robust submodular observation selection. Journal of Machine Learning Research,
9(Dec):2761-2801, 2008.

Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone
and nonmonotone submodular maximization with knapsack constraints. Math.
Oper. Res., 38(4):729-739, 2013.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast
greedy algorithms in mapreduce and streaming. ACM Transactions on Parallel
Computing (TOPC), 2(3):14, 2015.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 420-429. ACM, 2007.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

Hui Lin and Jeff Bilmes. A class of submodular functions for document sum-
marization. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1, pages 510—
520. Association for Computational Linguistics, 2011.

Hui Lin and Jeff A. Bilmes. Multi-document summarization via budgeted maxi-
mization of submodular functions. In Human Language Technologies: Conference
of the North American Chapter of the Association of Computational Linguistics,
Proceedings, pages 912-920, 2010.

Paul Liu and Jan Vondrak. Submodular optimization in the mapreduce model. In
2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, pages 18:1-18:10,
2019.

Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Deletion-robust
submodular maximization: Data summarization with “the right to be forgotten”.
In International Conference on Machine Learning, pages 2449-2458, 2017.
Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Dis-
tributed submodular maximization: Identifying representative elements in mas-
sive data. In Advances in Neural Information Processing Systems, pages 2049-2057,
2013.

Slobodan Mitrovi¢, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub Tarnawski,
and Volkan Cevher. Streaming robust submodular maximization: A partitioned
thresholding approach. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, pages 4560-4569,
2017.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis
of approximations for maximizing submodular set functions - I. Math. Program.,
14(1):265-294, 1978.

Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovi¢, Amir Zandieh, Aida
Mousavifar, and Ola Svensson. Beyond 1/2-approximation for submodular maxi-
mization on massive data streams. arXiv preprint arXiv:1808.01842, 2018.

James B Orlin, Andreas S Schulz, and Rajan Udwani. Robust monotone sub-
modular function maximization. Mathematical Programming, 172(1-2):505-537,
2018.

Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims.
Temporal corpus summarization using submodular word coverage. In Proceedings
of the 21st ACM international conference on Information and knowledge manage-
ment, pages 754-763. ACM, 2012.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust
submodular maximization. CoRR, abs/1802.05249, 2018.

Maxim Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett., 32(1):41-43, 2004.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Using document summa-
rization techniques for speech data subset selection. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 721-726, 2013.

Qilian Yu, Easton Li Xu, and Shuguang Cui. Streaming algorithms for news and
scientific literature recommendation: Monotone submodular maximization with
a d -knapsack constraint. IEEE Access, 6:53736-53747, 2018.

https://grouplens.org/datasets/movielens
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Adversarially Robust Monotone Submodular Maximization
	1.2 Our Theoretical Results
	1.3 Empirical Evaluations
	1.4 Previous Work

	2 Techniques
	2.1 Robustness to the Removal of m Items

	3 Streaming Algorithms
	3.1 Single Knapsack Constraint
	3.2 d Knapsack Constraints

	4 Distributed Algorithm
	5 Experiments
	5.1 Baselines
	5.2 Objectives and Datasets
	5.3 Experimental Evaluation and Results

	6 Conclusion
	References

