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It is shown that the infinite tower of tree-level plus-helicity soft graviton symmetries in asymptotically
flat 4D quantum gravity can be organized into a single chiral 2D Kac-Moody symmetry based on the wedge
algebra of wy ., which naturally acts on the celestial sphere at null infinity. The infinite towers of soft
photon or gluon symmetries also transform irreducibly under w, ...
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Introduction.—A central problem in physics is to find all
the fundamental nontrivial symmetries of nature implied by
all the experimentally verified physical laws. By this we
mean symmetries associated via Noether’s theorem to
conservation laws with observable consequences. A hun-
dred years ago the answer to this question would have been
a short list including Poincare symmetries, (which lead to
energy-angular momentum conservation) plus a few more.
(We do not consider here the rich variety of emergent
symmetries also observable in nature.)

In the 1960s BMS [1,2] showed that the answer cannot
be so simple because there is no sense in which the
diffeomorphism group of general relativity (GR) in asymp-
totically flat spacetimes can be reduced to the Poincare
group. They did not however (due to then uncertainties
about the structure of asymptotic infinity) either identify an
alternate larger asymptotic symmetry group of the full past
and future spacetime or associate any observable conser-
vation laws. Recently this problem has been translated into
the language of quantum field theory and Feynman dia-
grams where it becomes equivalent to identifying soft
theorems. A soft theorem is a linear relation between
scattering amplitudes (in asymptotically past and future
flat spacetimes) in which one particle becomes “soft” in
that its energy is taken to zero. Such theorems can always
be recast as a conservation-law-implying symmetry[3-5].
Completing the program of BMS, an infinite number of
exact conservation laws were thereby discovered which
relate arbitrary moments of ingoing and outgoing energy-
momentum fluxes to measurable gravitational memory
effects [6].
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These developments were satisfying but far from the end
of the story. Soft theorems abound in both gauge theory and
gravity, with more being discovered only recently, and each
associated with an infinite number of symmetries and
measurable conservation laws. Moreover, the known sym-
metries do not close under commutation, implying an
infinite tower of soft theorems [7-10].

Hence despite all the progress, finding all the symmetries
and conservation laws implied by the standard model plus
GR remains an outstanding open problem.

In this Letter we solve the problem in the limited context
of the tree-level approximation with vanishing cosmologi-
cal constant. Moreover we make the significant restriction
to symmetries associated with plus-helicity soft particles
only. Under these conditions we show that the soft
symmetries can be succinctly described by a certain
well-known infinite-dimensional w-symmetry group.

We rely heavily on recent progress made in Ref. [11] for
tree-level gravity and gauge theory. In this work plus-
helicity soft symmetries were compactly represented by 2D
(higher-spin) currents in the celestial conformal field theory
(CCFT) (This Letter employs a bottom-up approach in
which the CCFT is simply defined by a Mellin transform of
gauge and gravity scattering amplitudes whose conformal
properties are deduced from soft theorems. This differs
from the top-down approach usually employed in the
AdS/CFT correspondence, where the boundary CFT can
be constructed from first principles using string theory. A
top down approach is not available here as we strive to
describe the real world for which the complete microscopic
fundamental laws are unknown.) living on the celestial
sphere at null infinity. An infinite tower of such currents
and their algebra were derived at tree level using positive-
helicity soft theorems and the celestial operator product
expansion (OPE).

The somewhat lengthy results of Ref. [11] were dis-
played in a basis with manifest covariance under the global
Lorentz-conformal group of the celestial sphere. The
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currents include an “SL(2,R),, ~ Kac-Moody algebra
arising from the subleading soft graviton theorem. In this
Letter we find dramatic simplifications by reorganizing the
generators according to representations of this SL(2, R),,,
which is accomplished with a version of the light ray
transform [12]. The entire tower of currents is assembled
into a chiral Kac-Moody symmetry of the wedge algebra of
Wi ! This same Kac-Moody algebra has appeared pre-
viously including in the Penrose twistor construction [13],
in discrete states of the ¢ = 1 string [14] and w, ,, gravity
[15]. Moreover we find, unlike in Ref. [11], in the
SL(2,R),, covariant presentation only positive half-inte-
gral weights appear.

In the next section we present explicitly the algebraic
transformation from the conventional to the SL(2,R),,
covariant basis, and show that the entire algebra is the Kac-
Moody symmetry of the wedge algebra of w, .. In
section 3 the infinite tower of soft symmetries for gauge
theory are written in SL(2,R),, covariant form and again
found to dramatically simplify. Again only positive
SL(2,R),, weights appear. These results suggest that
Wi —Or perhaps its quantization W o, [15]—provides
an organizing principle for CCFT. We conclude with
speculations on this role.

Gravity.—Let us recap the basic results and notation of
Ref. [11] for gravity. Let G4 (z,Z) denote the positive-
helicity conformal-primary graviton operator with 2D
conformal weight A which crosses the celestial sphere at
a point (z, 7). Define a discrete family of conformally soft
(The conformally soft gravitons defined here differ from
the usual energetically soft gravitons in that the conformal
weight, rather than the energy, is taken to a limiting value.
Nevertheless they obey soft theorems which mirror their
energetically defined counterparts [16].) positive-helicity
gravitons

szlggeGZ+s, k=2,1,0,—-1,..., (1)
with weights
|

- k+2 k-2
wm = (52532 @)
and a consistently truncated antiholomorphic mode expan-
sion (Outside the specified range of n, the SL(2,R),-
invariant norm vanishes. Such operators may still have
contact interactions but in this Letter operators are always
at distinct points.)

ez = 3 D) o

Bach HX(z) is a 2D symmetry-generating conserved
current whose Ward identity is a soft theorem. The factor
of € in (1) cancels the soft poles, allowing a finite OPE.
Throughout this Letter z and Z are treated as independent,
which amounts to continuing (3,1) Minkowski space to
(2,2) Klein space, the celestial sphere to the celestial torus
[17] and Lorentz-SL(2,C) to SL(2,R); ® SL(2,R)g. The
n index in Eq. (3) then transforms in the 3 — k dimensional
representation of the SL(2,R),. The simplest example of
the k=1 term generates supertranslations. Expanding
Hli%(z) =5 Hli%qmz‘m*/ 2, the four modes H i—“zv 4
generate the four global translations. &k = 0 is related to
superrotations and includes Lorentz transformations.
Defining the commutator for holomorphic objects (Note
that this is a 2D celestial commutator on a 1D circle, not to
be mistaken for a 4D commutator on a 3D slice [18].)

mmwzé@%www, 4)
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the soft current algebra found in Ref. [11] for gravity is (We
note that the (2,0) current H3(z) commutes with all other
generators and is a central term in the supertranslation
algebra. It has been taken to vanish in most applications but
is natural to include here.)

G-m+EH -1+ m+EH +n-1) Kl

[H Y] = = In(2 = k) = m(2 = 1]

To write the algebra (5) in a simpler form we define
1
wh=—(p—n—-D!(p+n—-1)H>">"" " (6
K

This is essentially the light transform or right shadow [12]
in one dimension adapted to finite SL(2,R) representa-
tions, and p is essentially the right-shadowed weight.
Equation (5) then becomes

G =m)(F —n)!

G+ m)E+n)! Hoen- )

whowi] = [m(q —1) = n(p - DwhiE= (7)
Since the index k on H¥, runs over k =2, 1,0, ...., p runs
over the positive half integral values
3 5
pzl,E,Z,E,.... (8)

The restriction [(k—2)/2] <m <[(2—k)/2] becomes
[For example, for the p =2 Virasoro case this restricts
to the SL(2,R) current subalgebra.]
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l-p<m<p-1 9)

This is one of our main results.

The commutators (7) were first written down by Bakas in
1989 [19]. In this work m is an arbitrary integer and the
resulting algebra is now referred to as wy . The closed
p = 2 subalgebra of wy,, is the ¢ = 0 Virasoro algebra.
This algebra in Eq. (7) is a subgroup of w,, with m
restricted according to Eq. (9). The resulting restricted
algebra is known as the wedge subalgebra of wy ,, and can
also be rewritten as GL(o0, R) [15].

Moreover, each wh,(z) acts as a current on the celestial
sphere. Hence we have a GL(o0, R) Kac-Moody algebra.
The modes of the Kac-Moody currents act on the states of
the 2D CCFT associated by the state-operator correspon-
dence to operator insertions in the celestial sphere [18]. In
fact, precisely this Kac-Moody algebra has been studied
previously both as the symmetry group of ¢ =1 string
theory [14] and 2D w_, gravity [20]. (Here we take the
classical limit W, — w;., of the quantum symmetry
Wi.e-) A review of this and other fascinating aspects of
W algebras can be found in Ref. [21]. We return to this
connection at the end of the Letter.

The closed subgroup generated by

L, =w2, m=-1,0,1 (10)
is an SL(2,R),, current algebra implied by the subleading
soft graviton theorem. It is related to the original generators
in Eq. (5) by

1 2
L0:;H8’ Ly, :;H(j:l' (11)

wi transforms under this SL(2,R),, as
L wi] = [m(g = 1) = n]wj,y,. (12)

like the modes of an SL(2,R), primary operator of
SL(2,R),, weight g. Since ¢ > 1 here, these are all
positive. However, unlike the HX, they do not transform
canonically under the original SL(2,R); because of the
mode-dependent relation between the two. Indeed the
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normalization of the HX modes was chosen so that they
transform canonically under the original SL(2,R); con-
formal generators with weights 7 = [(k —2)/2].

Evidently SL(2,R); and SL(2,R),, are not quite the
same thing. w}, on the left-hand side of (6) lies in a positive
weight h,, = p representation of SL(2, R),,, while H P
on the right-hand side lies in a 2p + 1 dimensional,
negative weight 7 = 1 — p representation of SL(2,R).
Equation (6) is the relation between them. Both represen-
tations are 2p + 1 dimensional, because finite weight &
SL(2,R) representations are 2i — 1 dimensional for posi-
tive half integral # and —2/# — 1 dimensional for negative
half integral A.

Significantly, the SL(2,R), representations which
appear here are all positive weight.

Gauge theory.—Now we turn to non-Abelian gauge
theory. Let O (z,z) denote a positive helicity, conformal
weight k gluon operator with adjoint group index a at the
point (z, Z) on the celestial sphere. Mode expanding in Z on
the right

ot - 0¢, (2)
Oit(z2) =) Z]:*% : (13)

n

conformally soft currents are defined by

RE(2) : _hmgo"+ (z), k=1,0-1,-2,...,

k+e.n

k-1 1-k
<n< .
7 <n< 5 (14)

This has SL(2,R), ® SL(2,R), weights

(h.h) = <%%) (15)

These values of conformal weights A = k include all the

conformally soft poles encountered in the OPE [22,23].

The factor of ¢ incorporated in Eq. (14) is needed to cancel

these poles, leading to finite OPEs for the rescaled R,
The soft current algebra for gauge theory is [11]

[Rﬁa Rl b}

Let us define

St =(qg=m=1)g+m-

where ¢ = 1,2,2,.... One then finds the simple algebra

727

[Sz,u s SS/’b] -

-n+
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R+l lc. 16
_+n>!(%+n). n+n' ( )

1)!1Ry, 2, (17)
—ifab ST (18)
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Moreover using [11]

G -m+S-n-)CEFE+m+ S +n-1

_f[

[HY,. Ry’ = 5 (2= k) =m(1 =1)]

one finds the irreducible representation

Wh. S4] = [m(q — 1) = n(p — 1)]SHEE7>. (20)

m-+n

The SL(2,R),, transformation of Sy,

[Lm’ sta] = [m(q - 1) - n]S;IV;in‘ (21)
is that of a primary of weight g. Again we find only positive
weights.

Speculations.—The appearance of W algebras in the 2D
celestial symmetry group connects celestial holography to
several other research areas. We find it irresistible to
speculate on what might lie ahead as these connections
unfold.

W1, has anatural deformation to W_ ., a significantly
more complicated algebra. This deformation can be under-
stood as arising from quantization. In the context of specific
classical 2D realizations of w, ,,, anomalies encountered
in quantization deform the classical w, ., algebra to the
quantum W, ., [24]. While currently not well understood,
the tree-level soft algebra of 4D quantum gravity also gets
deformed on quantization, as implied among other things
by one-loop corrections to the soft theorems. So it is natural
to speculate that the action of w;, ,, on this soft algebra is
deformed to W, in the 4D quantum theory of gravity.

One might have expected a Virasoro algebra rather than
an SL(2,R),, current algebra among the symmetries.
However the two are closely related in many similar con-
texts. For example, the Chern-Simon formulation of AdS;
gravity, at first sight gives an SL(2,R), ® SL(2,R),
current algebra on the boundary. However, the AdS;
boundary conditions implement a Hamiltonian reduction
to Viry ® Viry, [25,26]. (A similar reduction could perhaps
be operative here from constraints related to IR divergen-
ces.) The Virasoro generators are field-dependent SL(2, R)
transformations which lie in the enveloping algebra of the
SL(2,R)z ® SL(2,R), current algebra. In another exam-
ple, 2D gravity in light cone gauge exhibits an SL(2,R)g
current algebra [27], but the same theory in conformal
gauge exhibits a Virasoro symmetry [28], again indicating a
relation between the two symmetry actions.

This type of relation has an infinite-dimensional uplift to
the present context. SL(2,R) is the wedge algebra of
Virasoro, just as GL(o0, R) is the wedge algebra of w;_
[15]. Just as Virasoro lies in the enveloping algebra of
SL(2,R) Kac-Moody, w o (or W at the quantum
level) lies in the enveloping algebra of GL(o0, R) Kac-
Moody [20]. So it is natural to speculate that Wy, , is a
celestial symmetry of 4D quantum gravity.

(= m(5 )]

S om0

Wi also appears as the symmetry group of classical
self-dual gravity in (2,2) signature Klein space [29], whose
sole degree of freedom is given by the Kahler potential. The
self-duality suggests that the dual CCFT should be chiral,
and acted on (at bulk tree level) by w, . This is a natural
context in which to study celestial holography, because the
complicated interactions of opposite chirality sectors and
double soft-limit ambiguities are absent. The N = 2 string
describes the quantization of this theory [30], where Wy,
is potentially deformed to W . Perhaps the holographic
CCFT dual of N = 2 string theory in 4D Klein space is
given by a 2D quantum W, -gravity theory on the
celestial torus.

We leave these thoughts to future explorations.
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