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It is shown that the infinite tower of tree-level plus-helicity soft graviton symmetries in asymptotically
flat 4D quantum gravity can be organized into a single chiral 2D Kac-Moody symmetry based on the wedge
algebra of w1þ∞, which naturally acts on the celestial sphere at null infinity. The infinite towers of soft
photon or gluon symmetries also transform irreducibly under w1þ∞.
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Introduction.—A central problem in physics is to find all
the fundamental nontrivial symmetries of nature implied by
all the experimentally verified physical laws. By this we
mean symmetries associated via Noether’s theorem to
conservation laws with observable consequences. A hun-
dred years ago the answer to this question would have been
a short list including Poincare symmetries, (which lead to
energy-angular momentum conservation) plus a few more.
(We do not consider here the rich variety of emergent
symmetries also observable in nature.)
In the 1960s BMS [1,2] showed that the answer cannot

be so simple because there is no sense in which the
diffeomorphism group of general relativity (GR) in asymp-
totically flat spacetimes can be reduced to the Poincare
group. They did not however (due to then uncertainties
about the structure of asymptotic infinity) either identify an
alternate larger asymptotic symmetry group of the full past
and future spacetime or associate any observable conser-
vation laws. Recently this problem has been translated into
the language of quantum field theory and Feynman dia-
grams where it becomes equivalent to identifying soft
theorems. A soft theorem is a linear relation between
scattering amplitudes (in asymptotically past and future
flat spacetimes) in which one particle becomes “soft” in
that its energy is taken to zero. Such theorems can always
be recast as a conservation-law-implying symmetry[3–5].
Completing the program of BMS, an infinite number of
exact conservation laws were thereby discovered which
relate arbitrary moments of ingoing and outgoing energy-
momentum fluxes to measurable gravitational memory
effects [6].

These developments were satisfying but far from the end
of the story. Soft theorems abound in both gauge theory and
gravity, with more being discovered only recently, and each
associated with an infinite number of symmetries and
measurable conservation laws. Moreover, the known sym-
metries do not close under commutation, implying an
infinite tower of soft theorems [7–10].
Hence despite all the progress, finding all the symmetries

and conservation laws implied by the standard model plus
GR remains an outstanding open problem.
In this Letter we solve the problem in the limited context

of the tree-level approximation with vanishing cosmologi-
cal constant. Moreover we make the significant restriction
to symmetries associated with plus-helicity soft particles
only. Under these conditions we show that the soft
symmetries can be succinctly described by a certain
well-known infinite-dimensional w-symmetry group.
We rely heavily on recent progress made in Ref. [11] for

tree-level gravity and gauge theory. In this work plus-
helicity soft symmetries were compactly represented by 2D
(higher-spin) currents in the celestial conformal field theory
(CCFT) (This Letter employs a bottom-up approach in
which the CCFT is simply defined by a Mellin transform of
gauge and gravity scattering amplitudes whose conformal
properties are deduced from soft theorems. This differs
from the top-down approach usually employed in the
AdS=CFT correspondence, where the boundary CFT can
be constructed from first principles using string theory. A
top down approach is not available here as we strive to
describe the real world for which the complete microscopic
fundamental laws are unknown.) living on the celestial
sphere at null infinity. An infinite tower of such currents
and their algebra were derived at tree level using positive-
helicity soft theorems and the celestial operator product
expansion (OPE).
The somewhat lengthy results of Ref. [11] were dis-

played in a basis with manifest covariance under the global
Lorentz-conformal group of the celestial sphere. The
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currents include an “SLð2;RÞw ” Kac-Moody algebra
arising from the subleading soft graviton theorem. In this
Letter we find dramatic simplifications by reorganizing the
generators according to representations of this SLð2;RÞw,
which is accomplished with a version of the light ray
transform [12]. The entire tower of currents is assembled
into a chiral Kac-Moody symmetry of the wedge algebra of
w1þ∞! This same Kac-Moody algebra has appeared pre-
viously including in the Penrose twistor construction [13],
in discrete states of the c ¼ 1 string [14] and w1þ∞ gravity
[15]. Moreover we find, unlike in Ref. [11], in the
SLð2;RÞw covariant presentation only positive half-inte-
gral weights appear.
In the next section we present explicitly the algebraic

transformation from the conventional to the SLð2;RÞw
covariant basis, and show that the entire algebra is the Kac-
Moody symmetry of the wedge algebra of w1þ∞. In
section 3 the infinite tower of soft symmetries for gauge
theory are written in SLð2;RÞw covariant form and again
found to dramatically simplify. Again only positive
SLð2;RÞw weights appear. These results suggest that
w1þ∞—or perhaps its quantization W1þ∞ [15]—provides
an organizing principle for CCFT. We conclude with
speculations on this role.
Gravity.—Let us recap the basic results and notation of

Ref. [11] for gravity. Let Gþ
Δðz; z̄Þ denote the positive-

helicity conformal-primary graviton operator with 2D
conformal weight Δ which crosses the celestial sphere at
a point ðz; z̄Þ. Define a discrete family of conformally soft
(The conformally soft gravitons defined here differ from
the usual energetically soft gravitons in that the conformal
weight, rather than the energy, is taken to a limiting value.
Nevertheless they obey soft theorems which mirror their
energetically defined counterparts [16].) positive-helicity
gravitons

Hk ¼ lim
ε→0

εGþ
kþε; k ¼ 2; 1; 0;−1;…; ð1Þ

with weights

ðh; h̄Þ ¼
�
kþ 2

2
;
k − 2

2

�
; ð2Þ

and a consistently truncated antiholomorphic mode expan-
sion (Outside the specified range of n, the SLð2;RÞR-
invariant norm vanishes. Such operators may still have
contact interactions but in this Letter operators are always
at distinct points.)

Hkðz; z̄Þ ¼
X2−k2
n¼k−2

2

Hk
nðzÞ

z̄nþ
k−2
2

: ð3Þ

Each Hk
nðzÞ is a 2D symmetry-generating conserved

current whose Ward identity is a soft theorem. The factor
of ε in (1) cancels the soft poles, allowing a finite OPE.
Throughout this Letter z and z̄ are treated as independent,
which amounts to continuing (3,1) Minkowski space to
(2,2) Klein space, the celestial sphere to the celestial torus
[17] and Lorentz-SLð2;CÞ to SLð2;RÞL ⊗ SLð2;RÞR. The
n index in Eq. (3) then transforms in the 3 − k dimensional
representation of the SLð2;RÞR. The simplest example of
the k ¼ 1 term generates supertranslations. Expanding
H1

�1
2

ðzÞ ¼ P
m H1

�1
2
;m
z−m−3=2, the four modes H1

�1
2
;�1

2

generate the four global translations. k ¼ 0 is related to
superrotations and includes Lorentz transformations.
Defining the commutator for holomorphic objects (Note
that this is a 2D celestial commutator on a 1D circle, not to
be mistaken for a 4D commutator on a 3D slice [18].)

½A;B�ðzÞ ¼
I
z

dw
2πi

AðwÞBðzÞ; ð4Þ

the soft current algebra found in Ref. [11] for gravity is (We
note that the (2,0) current H2

0ðzÞ commutes with all other
generators and is a central term in the supertranslation
algebra. It has been taken to vanish in most applications but
is natural to include here.)

½Hk
m;Hl

n� ¼ −
κ

2
½nð2 − kÞ −mð2 − lÞ� ð

2−k
2
−mþ 2−l

2
− n − 1Þ!

ð2−k
2
−mÞ!ð2−l

2
− nÞ!

ð2−k
2
þmþ 2−l

2
þ n − 1Þ!

ð2−k
2
þmÞ!ð2−l

2
þ nÞ! Hkþl

mþn: ð5Þ

To write the algebra (5) in a simpler form we define

wp
n ¼ 1

κ
ðp − n − 1Þ!ðpþ n − 1Þ!H−2pþ4

n : ð6Þ

This is essentially the light transform or right shadow [12]
in one dimension adapted to finite SLð2;RÞ representa-
tions, and p is essentially the right-shadowed weight.
Equation (5) then becomes

½wp
m; w

q
n� ¼ ½mðq − 1Þ − nðp − 1Þ�wpþq−2

mþn : ð7Þ
Since the index k on Hk

m runs over k ¼ 2; 1; 0;…:; p runs
over the positive half integral values

p ¼ 1;
3

2
; 2;

5

2
;…: ð8Þ

The restriction ½ðk − 2Þ=2� ≤ m ≤ ½ð2 − kÞ=2� becomes
[For example, for the p ¼ 2 Virasoro case this restricts
to the SLð2;RÞ current subalgebra.]
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1 − p ≤ m ≤ p − 1: ð9Þ

This is one of our main results.
The commutators (7) were first written down by Bakas in

1989 [19]. In this work m is an arbitrary integer and the
resulting algebra is now referred to as w1þ∞. The closed
p ¼ 2 subalgebra of w1þ∞ is the c ¼ 0 Virasoro algebra.
This algebra in Eq. (7) is a subgroup of w1þ∞ with m
restricted according to Eq. (9). The resulting restricted
algebra is known as the wedge subalgebra of w1þ∞, and can
also be rewritten as GLð∞;RÞ [15].
Moreover, each wp

mðzÞ acts as a current on the celestial
sphere. Hence we have a GLð∞;RÞ Kac-Moody algebra.
The modes of the Kac-Moody currents act on the states of
the 2D CCFT associated by the state-operator correspon-
dence to operator insertions in the celestial sphere [18]. In
fact, precisely this Kac-Moody algebra has been studied
previously both as the symmetry group of c ¼ 1 string
theory [14] and 2D w1þ∞ gravity [20]. (Here we take the
classical limit W1þ∞ → w1þ∞ of the quantum symmetry
W1þ∞.) A review of this and other fascinating aspects of
W algebras can be found in Ref. [21]. We return to this
connection at the end of the Letter.
The closed subgroup generated by

Lm ≡ w2
m; m ¼ −1; 0; 1 ð10Þ

is an SLð2;RÞw current algebra implied by the subleading
soft graviton theorem. It is related to the original generators
in Eq. (5) by

L0 ¼
1

κ
H0

0; L�1 ¼
2

κ
H0

�1: ð11Þ

wq
n transforms under this SLð2;RÞw as

½Lm; w
q
n� ¼ ½mðq − 1Þ − n�wq

mþn; ð12Þ

like the modes of an SLð2;RÞw primary operator of
SLð2;RÞw weight q. Since q ≥ 1 here, these are all
positive. However, unlike the Hk

n, they do not transform
canonically under the original SLð2;RÞR because of the
mode-dependent relation between the two. Indeed the

normalization of the Hk
n modes was chosen so that they

transform canonically under the original SLð2;RÞR con-
formal generators with weights h̄ ¼ ½ðk − 2Þ=2�.
Evidently SLð2;RÞR and SLð2;RÞw are not quite the

same thing. wp
n on the left-hand side of (6) lies in a positive

weight hw ¼ p representation of SLð2;RÞw, while H−2pþ4
n

on the right-hand side lies in a 2pþ 1 dimensional,
negative weight h̄ ¼ 1 − p representation of SLð2;RÞR.
Equation (6) is the relation between them. Both represen-
tations are 2pþ 1 dimensional, because finite weight h
SLð2;RÞ representations are 2h − 1 dimensional for posi-
tive half integral h and −2h − 1 dimensional for negative
half integral h.
Significantly, the SLð2;RÞw representations which

appear here are all positive weight.
Gauge theory.—Now we turn to non-Abelian gauge

theory. Let Oa;þ
k ðz; z̄Þ denote a positive helicity, conformal

weight k gluon operator with adjoint group index a at the
point ðz; z̄Þ on the celestial sphere. Mode expanding in z̄ on
the right

Oa;þ
k ðz; z̄Þ ¼

X
n

Oa;þ
k;n ðzÞ
z̄nþ

k−1
2

; ð13Þ

conformally soft currents are defined by

Rk;a
n ðzÞ ≔ lim

ε→0
εOa;þ

kþε;nðzÞ; k ¼ 1; 0;−1;−2;…;

k − 1

2
≤ n ≤

1 − k
2

: ð14Þ

This has SLð2;RÞL ⊗ SLð2;RÞR weights

ðh; h̄Þ ¼
�
kþ 1

2
;
k − 1

2

�
: ð15Þ

These values of conformal weights Δ ¼ k include all the
conformally soft poles encountered in the OPE [22,23].
The factor of ε incorporated in Eq. (14) is needed to cancel
these poles, leading to finite OPEs for the rescaled Rk;a.
The soft current algebra for gauge theory is [11]

½Rk;a
n ; Rl;b

n0 � ¼ −ifabc
ð1−k

2
− nþ 1−l

2
− n0Þ!

ð1−k
2
− nÞ!ð1−l

2
− n0Þ!

ð1−k
2
þ nþ 1−l

2
þ n0Þ!

ð1−k
2
þ nÞ!ð1−l

2
þ n0Þ! R

kþl−1;c
nþn0 : ð16Þ

Let us define

Sq;am ¼ ðq −m − 1Þ!ðqþm − 1Þ!R3−2q;a
m ; ð17Þ

where q ¼ 1; 3
2
; 2;…. One then finds the simple algebra

½Sq;an ; Sp;bn0 � ¼ −ifabcS
qþp−1;c
nþn0 : ð18Þ
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Moreover using [11]

½Hk
m; R

l;a
n � ¼ −

κ

2
½nð2 − kÞ −mð1 − lÞ� ð

2−k
2
−mþ 1−l

2
− n − 1Þ!

ð2−k
2
−mÞ!ð1−l

2
− nÞ!

ð2−k
2
þmþ 1−l

2
þ n − 1Þ!

ð2−k
2
þmÞ!ð1−l

2
þ nÞ! Rkþl;a

mþn ; ð19Þ

one finds the irreducible representation

½wp
m; S

q;a
n � ¼ ½mðq − 1Þ − nðp − 1Þ�Spþq−2;a

mþn : ð20Þ

The SLð2;RÞw transformation of Sqm

½Lm; S
q;a
n � ¼ ½mðq − 1Þ − n�Sq;amþn: ð21Þ

is that of a primary of weight q. Again we find only positive
weights.
Speculations.—The appearance of W algebras in the 2D

celestial symmetry group connects celestial holography to
several other research areas. We find it irresistible to
speculate on what might lie ahead as these connections
unfold.
w1þ∞ has a natural deformation to W1þ∞, a significantly

more complicated algebra. This deformation can be under-
stood as arising from quantization. In the context of specific
classical 2D realizations of w1þ∞, anomalies encountered
in quantization deform the classical w1þ∞ algebra to the
quantum W1þ∞ [24]. While currently not well understood,
the tree-level soft algebra of 4D quantum gravity also gets
deformed on quantization, as implied among other things
by one-loop corrections to the soft theorems. So it is natural
to speculate that the action of w1þ∞ on this soft algebra is
deformed to W1þ∞ in the 4D quantum theory of gravity.
One might have expected a Virasoro algebra rather than

an SLð2;RÞw current algebra among the symmetries.
However the two are closely related in many similar con-
texts. For example, the Chern-Simon formulation of AdS3
gravity, at first sight gives an SLð2;RÞR ⊗ SLð2;RÞL
current algebra on the boundary. However, the AdS3
boundary conditions implement a Hamiltonian reduction
to VirR ⊗ VirL [25,26]. (A similar reduction could perhaps
be operative here from constraints related to IR divergen-
ces.) The Virasoro generators are field-dependent SLð2;RÞ
transformations which lie in the enveloping algebra of the
SLð2;RÞR ⊗ SLð2;RÞL current algebra. In another exam-
ple, 2D gravity in light cone gauge exhibits an SLð2;RÞR
current algebra [27], but the same theory in conformal
gauge exhibits a Virasoro symmetry [28], again indicating a
relation between the two symmetry actions.
This type of relation has an infinite-dimensional uplift to

the present context. SLð2;RÞ is the wedge algebra of
Virasoro, just as GLð∞;RÞ is the wedge algebra of w1þ∞
[15]. Just as Virasoro lies in the enveloping algebra of
SLð2;RÞ Kac-Moody, w1þ∞ (or W1þ∞ at the quantum
level) lies in the enveloping algebra of GLð∞;RÞ Kac-
Moody [20]. So it is natural to speculate that W1þ∞ is a
celestial symmetry of 4D quantum gravity.

w1þ∞ also appears as the symmetry group of classical
self-dual gravity in (2,2) signature Klein space [29], whose
sole degree of freedom is given by the Kahler potential. The
self-duality suggests that the dual CCFT should be chiral,
and acted on (at bulk tree level) by w1þ∞. This is a natural
context in which to study celestial holography, because the
complicated interactions of opposite chirality sectors and
double soft-limit ambiguities are absent. The N ¼ 2 string
describes the quantization of this theory [30], where w1þ∞
is potentially deformed to W1þ∞. Perhaps the holographic
CCFT dual of N ¼ 2 string theory in 4D Klein space is
given by a 2D quantum W1þ∞ -gravity theory on the
celestial torus.

We leave these thoughts to future explorations.
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