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Generalized hydrodynamics in strongly interacting
1D Bose gases
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The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult
to simulate. A recently proposed theory called generalized hydrodynamics (GHD) promises to efficiently
accomplish such simulations for nearly integrable systems. We test GHD with bundles of ultracold
one-dimensional (1D) Bose gases by performing large trap quenches in both the strong and intermediate
coupling regimes. We find that theory and experiment agree well over dozens of trap oscillations, for
average dimensionless coupling strengths that range from 0.3 to 9.3. Our results show that GHD
can accurately describe the quantum dynamics of a 1D nearly integrable experimental system even when
particle numbers are low and density changes are large and fast.

I
n interactingmany-body quantumsystems,
such as electrons in ametal, the low-energy
properties can often be described to a good
approximation in terms of quasiparticles
that travel almost freely and have a finite

lifetime. In integrable systems, quasiparticles
provide an exact description and live forever.
They allow the efficient computation of the
entire energy spectrum (1) and simplify the
study of quantum dynamics (2). When there is
weak integrability breaking, the quasiparticle
picture remains useful at all energies. Inmany sit-
uations, a theory called generalized hydrodynam-
ics (GHD) (3, 4) drastically simplifies the study of
dynamics by focusing on the evolution of the
momenta of the quasiparticles, the rapidities (5).
GHD consists of coupled hydrodynamic equa-

tions that are based on two assumptions (3, 6).
First, the system is viewed as a continuum of
fluid cells, each of which is spatially homoge-
neous, integrable, and contains many particles.
Second, the time variation of local quantities
is slow enough that each fluid cell is locally
equilibrated to a generalized Gibbs ensem-
ble (GGE) parameterized by its distribution
of rapidities (7). Experimentally testing GHD
is tantamount to determining how robust
these two assumptions are in real quantum
dynamical systems. GHDwas recently tested
experimentally for relatively hot, weakly inter-
acting atoms (8). In this study, we use ultracold
strongly and intermediately coupled atoms to
study the quantum regime, which is character-
ized by strong entanglement and complex corre-
lations among particles. We show that GHD
describes the experimental results even when
there are few particles (~10) and when there are
rapid changes in the nature of the quasiparticles.
In our experiments and GHD simulations,

we suddenly ramp up the axial trapping po-
tential around a bundle of ultracold one-

dimensional (1D) Bose gases and follow the
evolution of the rapidity distribution as the
gases successively collapse into the trap cen-
ter and rebound (Fig. 1A). Our 1D Bose gases
are initially close to their ground states, so
they can each be described as a Fermi sea for
quasiparticles (9). For a short time after the
trap quench, they remain locally close to a zero-
temperature Fermi-sea state. Such a situation
could have been described before the advent of
GHD using a hydrodynamic approach (10, 11).
However, GHD predicts (12, 13) the eventual
local formation of states with multiple Fermi
seas (14), illustrated in Fig. 1, B and C, which
shows an example of phase space evolution
in the first two cycles after one of our trap
quenches. Such local states cannot bemodeled
with the hydrodynamic methods that pre-

ceded GHD. The quantum dynamics consid-
ered here are extremely challenging for any
other computational approach, except when
dealing with few particles and short times or
in the limiting cases of veryweak or very strong
interactions (11, 15).
To create a bundle of ultracold 1D gases

froma 87RbBose-Einstein condensate confined
by a 55-mm beam waist red-detuned crossed di-
pole trap, we slowly turn on a 2D blue-detuned
optical lattice until it is 40Er deep, where Er =
ħ2k2/(2m) = 2.55 ×10−30 J is the recoil energy
defined by the lattice light wavevector, k = 2p/
(772 nm), ħ is the reduced Planck’s constant,
and m is the atom mass (16). We use two dif-
ferent initial conditions to study gases that are
initially either intermediately or strongly 1D
coupled, as characterized by the dimensionless
parameter g = 4.44/ n1D, where n1D is the local
1D density in units of inversemicrometers (17).
To start with an intermediate (strong) weighted
average of g,�g0 = 1.4 (9.3), we use ~3 × 105 (~1 ×
105) atoms in a 9.4Er (0.56Er) crossed dipole
trap, so the 2D distribution of 1D gases ex-
tends across a 17-mm (22-mm) radius (figs. S2
and S3). These radii are much smaller than
the 2D lattice beam waists of 420 mm, so the
transverse confinement for each 1D gas is about
the same. The axial trap depths, however,
vary across the 1D gases by up to 14% (27%).
We measure rapidity distributions by first

shutting off the axial trapping only and letting
the atoms expand in 1D in a nearly flat axial
potential until the momentum distributions
have evolved into the rapidity distributions
(5, 17). Then we turn off the 2D lattice and
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Fig. 1. GHD theory after a 100-fold trap quench. (A) Spatial evolution of the initially strongly coupled central
1D gas. At time t = 0, the trap depth, U, is increased by a factor of 100 (from the dot-dashed to the solid red lines).
The colored curves are the calculated atomic density distributions at various times as the cloud collapses and
expands twice. (B) The evolution in position (z)–rapidity (q) space. The colors correspond to the curves in (A), with
the solid lines showing the first cycle and the dashed lines showing the second cycle. (C) A spatially magnified
view of the half-period curve in (B) (see also fig. S1). The two segments of the dashed line inside the contour depict
two Fermi seas, the smaller one of which develops during the time evolution. Once a second Fermi sea forms, no
existing hydrodynamic theory other than GHD can model the evolution.
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measure the rapidity distributions via time of
flight. Our previous dynamical fermionization
measurement (5) validated this momentum-to-
rapiditymappingwith parameters very close to
our �g0 = 9.3 initial condition. Because all the
other initial cloud lengths are smaller, which
allows for relatively more expansion in the flat
potential, the mappings in this work are at
least as good. We also measure momentum
distributions by first suddenly turning off all
the light traps. As the atoms rapidly expand
transversely, atom interactions decrease rap-
idly and substantially (5). The integrated axial
spatial distributions after a time of flight
reflect the 1D momentum distribution at the
shutoff time. We adjust the times of flight for
different measurements to maximize sensi-

tivity and rescale the spatial distributions by
the time of flight to obtain the momentum
distributions.
Figure 2A shows the evolution of the ra-

pidity distribution starting from�g0 = 1.4 after a
quench to a ten-times-deeper trap.Ourquenches
are small enough to ensure that two atoms never
have enough energy to get transversely excited
in a collision, so the system remains 1D through-
out (18). The weighted average total energy of
the quenched state is 1.9 times the weighted
average ground-state energy in the deeper trap.
Over the first two cycles, the shapes of all the
distributions are self-similar (Fig. 2B, insets).
Figure 2B shows the evolution of the integrated
energy associated with the rapidities, which
is the total energy minus the trap potential

energy (17). The squares are for the experiment
(fig. S4), the dashed line shows the theory for
an average number of atoms, and the circles
show the theory using the measured number
of atoms at each point (17). After the quench,
the calculated average cloud size drops from
14 mm to 3 mm, and �g drops from 1.4 to 0.3 (fig.
S5, A to J). Figure 2 clearly shows that GHD
accurately describes these experiments, where
the weighted average (maximum) number of
atoms per 1D gas is 60 (140) and the nature of
the quasiparticles changes gradually during
the collapse. The onset of multiple Fermi seas
for this setup occurs in the third cycle. By the
11th cycle, we experimentally observe a loss of
self-similarity that is consistent with our the-
oretical calculations. However, by that time, an
~20% atom loss complicates the theory be-
yond the scope of this work (19) (fig. S6).
With �g0 = 9.3 we can measure dozens of

cycles without appreciable loss and can quench
to a 100-times-deeper trap. In this case, the
weighted average total energy of the quenched
state is 7.3 times theweighted average ground-
state energy in the deeper trap. Figure 3A
shows the rapidity evolution over the first two
cycles. The shapes are no longer self-similar by
the end of the first cycle (Fig. 3B, insets). The
GHD theory agrees well with the experiment
throughout. A secondFermi sea (Fig. 1C) emerges
during the first collapse; GHD is essential
past that point. Figure S5K shows theoretical
calculations of the evolution of cloud sizes;
averaged over all 1D gases, the full width at
half the central density decreases by a factor
of 35, from 17.5 mm to 0.5 mm. Although the
cloud size of the central 1D gases remains sim-
ilar to the average, sharp features appear that
are suppressed by averaging. Similar sharp
features appear in the rapidity distributions of
single 1D gases, and these also tend to be sup-
pressed by averaging (figs. S7 and S8).
The squares, the dashed line, and the circles

in Fig. 3B show the integrated rapidity energy
as a function of time for, respectively, the ex-
periment (fig. S4), the theory with the average
atom number, and the theory with the mea-
sured atom numbers (fig. S9). The squares in
Fig. 3C show the integrated kinetic energy as a
function of time, determined from the mea-
sured momentum distributions. The momen-
tum measurement near peak compression is
somewhat compromised by the large interac-
tion energy, some of which gets converted to
kinetic energy early in the time of flight. There
is no corresponding complication in the rapidity
measurement. We extract the theoretical ki-
netic energy from GHD by using the Lieb-
Liniger model in each GHD spatial cell to
determine the interaction energy, integrating
it and subtracting it from the total integrated
rapidity energy (17). We adjust the axial trap
depth in the theory to account for day-to-day
experimental drifts (<4%). The dashed line in
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Fig. 2. Intermediate coupling (10-fold) trap quench. (A) Time evolution of the rapidity distribution after
the trap is suddenly made 10 times deeper for 1D gases with �g0 = 1.4. The red curves show the experimental
rapidity distributions over the course of the first two collapse cycles. The blue curves are the associated
GHD theory, taking into account the measured atom number at each point (fig. S2, A and B). The slight
difference in color for the two cycles denotes a 2.7% change in the trap depth associated with the slow
experimental drift (17). (B) Time evolution of the rapidity energy, E, after the quench. The red squares are
extracted from experimental distributions like those in (A) (17). The blue circles are for the associated GHD
theory. The dashed line is the GHD theory for the average atom number. The two insets show the rescaled (to
the same height and area) experimental rapidity distributions (f̃ versus q̃, with arbitrary units) for points
throughout the first and second cycles, respectively (0, p/4, p/2, 3p/4, and p phase points are black, orange,
blue, green, and red, respectively). The curves are shape invariant.
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Fig. 3C shows the result for the average atom
number; the circles use the measured atom
numbers. Figure 3D shows the difference be-
tween the rapidity and kinetic energies as a
function of time, both experimentally and the-
oretically (withmeasured atomnumbers), and
the inset shows the theory for a fixed atom
number and trap depth.
The data in Fig. 3 test the range of validity of

GHD in two distinct ways. First, the weighted
average (maximum) occupancy in the 1D gases
is 11 (25), challenging the continuum approx-
imation. To gain confidence in this surpris-
ing result, we have compared GHD in the
infinite g limit with exact theory, which is
only available in that regime (17). There are
short wavelength features (Friedel-like oscil-
lations) in the exact calculations for single 1D
gases. For our distribution of 1D gases with
different atom numbers, these features are
smoothed out and the GHD theory overlaps
the exact one (fig. S7). Second, during the com-
pression, �g drops from 9.3 to 0.4 (fig. S5M),
with the final factor-of-8 decrease occurring in
the final 0.2 ms (right after the kinetic energy
maximum). During this time, the ratio of
interaction energy to kinetic energy increases
from 0.076 to 4.2, as illustrated by the first
peak in Fig. 3D. The momentum distributions
in this final stage of compression change shape
from fermionic to bosonic, as was shown in (5)
using a less drastic quench. Our results vali-
date the GHD description even in the face of
rapid variations in the nature of the quasipar-
ticles, suggesting that the system remains locally
equilibrated to the GGE throughout.
We next study rapidity distributions during

the sixth oscillation cycle (Fig. 4, A to F, and
fig. S8). The theoretical distributionsnowchange
more noticeably during the cycle. Their dis-
tinctive shapes match the experimental curves
reasonably well, except for slight experimental
asymmetries caused by drifts in the gravity-
canceling vertical magnetic field gradient,
which lead to initial displacements of atoms
from the light trap center by up to 100 nm, or
0.006 of the full width of their distribution
(17). By the 11th cycle, finer features appear
in the theory that are smeared out in the
experiment (fig. S10, A to D), presumably on
account of the initial atom cloud displace-
ments and perhaps light trap asymmetry. In
Fig. 4G, we show the integrated rapidity en-
ergies for cycles up to the 21st for the experi-
ment and theory, with the period adjusted to
account for small trap depth drifts (see fig. S10,
E to I, for the corresponding rapidity distribu-
tions). The theory shows that there is ≲20%
loss of contrast in individual 1D gases, with
the additional contrast loss coming from the
inhomogeneity of axial trap depths. An ex-
tensive quantity, the rapidity energy is less
sensitive to minor experimental imperfections.
GHD is accurate enough to describe these
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Fig. 3. Strong coupling (100-fold) trap quench. (A) Time evolution of the rapidity distribution after the
trap is suddenly made 100 times deeper for 1D gases with �g0 = 9.3. The red curves show the experimental
rapidity distributions over the course of the first two collapse cycles. The blue curves are the associated
GHD theory, accounting for the measured atom number at each point (fig. S2, C and D). The slight difference
in color for the two cycles denotes a 1% change in the trap depth due to the slow experimental drift (17).
(B) Time evolution of the rapidity energy, E, after the quench. The red squares are extracted from
experimental distributions like those in (A) (17). The blue circles are for the associated GHD theory. The
dashed line is the GHD theory using the average atom number. The two insets show the rescaled (to the
same height and area) experimental rapidity distributions for points throughout the first and second cycles,
respectively (points near 0, p/4, p/2, 3p/4, and p phases are shown in black, orange, blue, green, and
red, respectively). By the second cycle, the distributions are no longer self-similar. (C) Time evolution of the
kinetic energy, K, after the quench, measured from the momentum distribution just as the rapidity energy
is measured from the rapidity distribution. The labeling is the same as for (B), but the trap depths are
slightly (<4%) different (see fig. S2, E and F, for the associated atom numbers). (D) Time evolution of the
interaction energy after the quench. The experimental and GHD theory points are obtained from (B) and (C) by
subtracting K from E at each time. The inset shows GHD theory for a constant atom number and trap depth.
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experiments for the available measurement
times.
We have shown that GHD accurately de-

scribes the dynamics of nearly integrable 1D
Bose gases, with strong and intermediate cou-
pling, after a trap quench. We experimentally
challenged GHD’s two underlying assump-
tions, the continuum and local GGE approx-
imations, and we did so for long evolution
times. A natural next step would be to study
arrays of identical 1D gases or to further study
single 1D gases, where it might be possible to
observe finer features in rapidity distribu-
tions and to see direct evidence of the pres-
ence of multiple Fermi seas. One could also

explore GHD in spin chains (20) and per-
form similar tests on systems that are further
from integrable (21), for example, because of
dipolar interactions in 1D gases (22) or di-
mensional crossover from 1D to 3D, a regime
for which extensions to GHD have been re-
cently explored (23). Looking ahead, GHD and
its extensions promise to become a standard
tool in the description of strongly interacting
1D quantum dynamics close to integrable
points. Such points describe a wide range of
experiments involving 1D ultracold gases of
bosons (24) and fermions (25), as demonstrated
in experiments in continuum (26–28) and lattice
(29–31) systems.
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Fig. 4. Strong coupling (100-fold) trap quench at long times. (A to F) Experimental and GHD theory
rapidity distributions during the sixth cycle after the 100-fold quench. The red curves show the
experiment, the blue curves the associated theory. (G) The rapidity energy during the 6th, 11th, and
21st oscillations after the quench. For all the theory curves in this figure, we use the average number
of atoms for each cycle, and the trap depth has been adjusted for each cycle so that the theory is in
phase with the experiment.
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Monitoring quantum dynamics
Reducing the dimensionality of a quantum system of interacting particles can simplify its physics. Such reduction is
possible in ultracold atomic gases, where a lattice of one-dimensional (1D) gases can be generated using optical
potentials. Malvania et al. studied the dynamics of 1D rubidium-87 atomic gases after a sudden increase in the axial
trapping potential. Normally, these dynamics would be difficult to describe theoretically, but the researchers found that
a theory called generalized hydrodynamics captured the behavior of their 1D system over a long time evolution. —JS
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