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The Unique Games Conjecture (UGC) has pinned down the approximability of all constraint satisfaction problems (CSPs),

showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP.

This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness

inherent in the UGC.

This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances

of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable

instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover which we call “V

Label Cover.” Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we

prove the following implications:

• There is an absolute constant 𝑐0 such that for 𝑘 ≥ 3, given a satisfiable instance of Boolean 𝑘-CSP, it is hard to find

an assignment satisfying more than 𝑐0𝑘
2/2𝑘 fraction of the constraints.

• Given a 𝑘-uniform hypergraph, 𝑘 ≥ 2, for all 𝜖 > 0, it is hard to tell if it is 𝑞-strongly colorable or has no independent

set with an 𝜖 fraction of vertices, where 𝑞 = ⌈𝑘 +
√
𝑘 − 1

2
⌉.

• Given a 𝑘-uniform hypergraph, 𝑘 ≥ 3, for all 𝜖 > 0, it is hard to tell if it is (𝑘 − 1)-rainbow colorable or has no

independent set with an 𝜖 fraction of vertices.
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1 INTRODUCTION

The sustained progress on approximation algorithms and inapproximability results for optimization problems

since the early 1990s has been nothing short of extraordinary. This has led to a sharp understanding of the

approximability threshold of many fundamental problems, alongside the development of a rich body of techniques

on the algorithmic, hardness, and mathematical programming aspects of approximate optimization. Yet there

also remain many problems which have resisted resolution and for some there are in fact large gaps between

the known algorithmic and hardness results. Examples include vertex cover, graph coloring, max-cut, feedback

vertex set, undirected multicut, densest subgraph, and so on.

The Unique Games Conjecture of Khot [44] postulates a strong inapproximability result for a particular class

of arity two constraint satisfaction problems. This single assumption has a remarkable array of consequences, and

implies tight inapproximability results for numerous problems including Vertex Cover [48], max-cut and indeed

all constraint satisfaction problems (CSPs) [45, 56, 60], maximum acyclic subgraph and all ordering CSPs [25],

scheduling problems [3, 4], graph pricing [51], and cut problems like directed multicut [52], to name a few.

Furthermore, for CSPs, the UGC implies that a standard semidefinite programming relaxation gives the best

approximation ratio [11, 60, 61].

While the UGC has identified a common barrier against progress on a host of approximation problems,

there are still several situations it does not apply to. Crucially, imperfect completeness, where Yes instances are

only almost satisfiable, is inherent in the UGC, and this feature is inherited by the problems it reduces to. In

particular, the UGC does not say anything about problems with perfect completeness, where Yes instances have a
perfect solution obeying all the constraints. Important classes of such problems include satisfiable instances of

CSPs (which have a perfect satisfying assignment and the goal is maximize the number of satisfied constraints)

and coloring graphs/hypergraphs with approximately optimal number of colors.

Our understanding of approximating satisfiable instances of CSPs still has many gaps. Håstad’s tight hardness

result for approximating Max 3-SAT on satisfiable instances was much harder to prove than the analogous result

for near-satisfiable instances, and was an early sign of the subtleties of ensuring perfect completeness; albeit

this proof was later simplified by Saket [64]. The approximability of satisfiable CSPs corresponds via a direct

translation to the power of probabilistically checkable proof (PCP) systems with perfect completeness — the

best soundness error one can achieve with a 𝑘 query (non-adaptive) PCP is equal to the best inapproximability

factor one can prove for a satisfiable arity 𝑘 CSP. For 𝑘 = 3, the best soundness is 5/8 + 𝜖 for any 𝜖 > 0, and

this was established only recently via an intricate proof of the approximation resistance of satisfiable NTW (the

arity 3 No-Two predicate which stipulates the number of true literals must be either 0, 1 or 3) [41]. As a basic

open question that still remains wide open, we do not know the approximability of satisfiable Max NAE-3-SAT

(not-all-equal 3-SAT) under any plausible (or even not so plausible!) conjecture.

The above-mentioned Unique Games hardness results consist of two components: (i) a dictatorship test that

gives a way to test if a function is a dictator or is far from a dictator (e.g., has no influential coordinates), using

constraints corresponding to the problem at hand (for NAE-3-SAT this would be checking if certain triples of

function values are not all equal), and (ii) a reduction from Unique Games via the dictatorship test that establishes

inapproximability under the UGC. The second step is standard, and it gives a “free pass” from the world of

combinatorics/analysis of Boolean functions to the complexity world. When we require perfect completeness, no

such conjectured off-the-shelf compiler from dictatorship tests to hardness is known (and such a passage even

appears unlikely). For instance, dictatorship tests with perfect completeness and optimal soundness are known

for Max 𝑘-CSP [68] (which was improved by [7]) and Max NAE-3-SAT (folklore, and this has connections to

robust forms of Arrow’s theorem from social choice theory, as established using Fourier analysis [42] and [57, Sec.

4]). However, in both cases we do not have matching inapproximability results under any plausible conjecture.
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The closest to a UGC surrogate in the literature is the 𝑑-to-1 conjecture also made in [44]. The Unique

Games problem is an arity 2 CSP whose constraints are bijections; the 𝑑-to-1 Label Cover is an arity 2 CSP

whose constraints are 𝑑-to-1 functions. When 𝑑 ≥ 2, deciding satisfiability of a 𝑑-to-1 Label Cover instance is

NP-complete, unlike Unique Games whose satisfiability is trivial to ascertain. Khot’s 𝑑-to-1 conjecture states that

𝑑-to-1 Label Cover is also hard to approximate within any constant factor, even on satisfiable instances. Note that

the UGC and 𝑑-to-1 conjecture are incomparable in strength; the UGC has simpler bijective constraints but the

𝑑-to-1 conjecture asserts perfect completeness which the UGC cannot. Recently, the 2-to-1 conjecture without

perfect completeness has been shown to be true [5, 16, 17, 46, 47], which gives further evidence that 2-to-1 with

perfect completeness is likely to be true.

The 𝑑-to-1 conjecture has been used to show some strong inapproximability results. Such applications are,

however, sporadic and also typically do not yield tight results. Some of these results are conditioned specifically on

the 2-to-1 conjecture, such as a

√
2 − 𝜖 inapproximability for vertex cover (mentioned in [44] and explicit in [46]),

which is now an NP-hardness due to the proof of the conjecture with imperfect completeness. Other implications

of the 2-to-1 conjecture which are still open include max 𝑘-coloring with perfect completeness [33] and coloring

4-colorable graphs [18]. The𝑑-to-1 conjecture, for any fixed𝑑 , has been used to show the approximation resistance

of NTW [59] and a similar result for larger arity [38],
1
and finding independent sets in 2-colorable 3-uniform

hypergraphs [50]. Yet, the implications of the 𝑑-to-1 conjecture are limited, and it has become apparent that it is

not a versatile starting point for hardness results with perfect completeness.

1.1 Our contributions

Given the above context, our work is motivated by the quest for a better starting point than 2-to-1 Label Cover

for inapproximability results with perfect completeness, and which might be able to give striking consequences

similar to the UGC.

Aggressive Unique Games variant. One version of Label Cover that is most similar to Unique Games, which

we call (𝐿, 𝑠)-nearly unique Label Cover, has constraint relations in
2 [𝐿] × [𝐿] consisting of a matching and

𝑠 additional edges, for a small 𝑠 that is a constant independent of 𝐿. For this version, it is NP-hard to decide

satisfiability, and in fact one can give strong reductions matching the performance of dictatorship tests from

it. However, this nearly unique form of Label Cover has a constant factor approximation algorithm with ratio

depending only on 𝑠 . We prove this result in Section 3.

V label cover. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover

which we call “V label cover.” This is a hypergraph variant
3
of 2-to-1 Label Cover. In 2-to-1 Label Cover, the

constraint predicates are 2-to-1 maps from [2𝐿] to [𝐿], whose relation graph can be visualized as 𝐿 disjoint “V’s.”

In V label cover of arity 𝑘 , we have “longer V’s” where the two branches involve 𝑘 variables which coincide in

single variable.
4
This is best illustrated by Figure 1 in Section 4. We put forth the V label cover conjecture, which

asserts a strong inapproximability result for this problem. For completeness, we want an assignment where for

every constraint, the 𝑘 variables involved get values in a single “V-branch.” For soundness, we insist that no

assignment even weakly satisfies more than a tiny fraction of constraints, where a constraint is weakly satisfied if

1
These were later improved to NP-hardness in [41] and [72].

2
We denote [𝐿] = {1, . . . , 𝐿}.

3
That said, the “graph” variant of V label cover is not quite the same as 2-to-1 Label Cover. In particular, the arity of both sides of the predicate

is the same, so there are an equal number of V’s and Λ’s in the relation graph.

4
We should mention that our path to the formulation of V label cover was more circuitous, and has its origins in attempts to define hypergraph

versions of the “𝛼 Label Cover” problem of [18].
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1:4 • Brakensiek and Guruswami

two of its 𝑘 variables get values in some V-branch.
5
For this to make sense, the “junction” of the V’s cannot all

be on the same variable (as in 2-to-1 Label Cover), as in that case we will have a Unique Label Cover constraint

between the other (𝑘 − 1) variables, which we can perfectly satisfy. Therefore, in our V label cover constraints,

we have V’s with junctions at all the 𝑘 variables involved in the constraint. At a high level, this is similar to the

correlation-breaking constraints of Chan [13].

Near-optimal inapproximability for Max 𝑘-CSP with perfect completeness. Assuming the V label cover

conjecture, we prove a near-tight inapproximability result for approximating satisfiable Max 𝑘-CSP over any

fixed domain.

Theorem 1.1. Assume the V label cover conjecture. There is an absolute constant 𝑐0 such that for 𝑘 ≥ 3, given a
satisfiable instance of Boolean 𝑘-CSP, it is hard to find an assignment satisfying more than 𝑐0𝑘2/2𝑘 fraction of the
constraints. For CSP over domain size 𝑞 ≥ 3, where 𝑞 is a prime power, it is hard to satisfy more than 𝑐0𝑘3𝑞3/𝑞𝑘 of
the constraints.

The approximability of Max 𝑘-CSP has been the subject of many papers in the past two decades since the

advent of Håstad’s optimal inapproximability results [35]; a partial list includes [2, 13, 21, 22, 30, 36, 39, 65–67]

on the hardness side, and [14, 30, 34, 53, 69, 70] on the algorithmic side.

The best known approximation guarantee for Max 𝑘-CSP over domain size 𝑞 is Ω(𝑘𝑞/𝑞𝑘 ) (for 𝑘 ≥ Ω(log𝑞),
and 0.62𝑘/2𝑘 for the Boolean case [53]. This tight up to constant factors, due to Chan’s inapproximability factor

of 𝑂 (𝑘𝑞/𝑞𝑘 ) [13]. However, this hardness does not apply for satisfiable instances. For satisfiable instances, the

best hardness factor is 2
𝑂 (𝑘1/3)/2𝑘 for Boolean Max 𝑘-CSP [39], and 𝑞𝑂 (

√
𝑘)/𝑞𝑘 for Max 𝑘-CSP over domain size

a prime 𝑞 [36]. Note that our improved hardness factors (conditioned on the V label cover conjecture) from

Theorem 1.1 are the first to get poly(𝑘, 𝑞)/𝑞𝑘 type hardness for satisfiable instances (albeit only for prime powers)

and are close to optimal. We note that satisfiable instances can be easier to approximate — Trevisan gave an

elegant linear-algebra based factor (𝑘 + 1)/2𝑘 approximation algorithm for satisfiable Boolean Max 𝑘-CSP [70]

long before Hast’s Ω(𝑘/2𝑘 ) algorithm for the general case [34].

Inapproximability for strong and rainbow colorable hypergraphs. Our other application of the V label

cover conjecture is to hypergraph coloring, another fundamental problem where perfect completeness is crucial.

We say a hypergraph is 𝑐-colorable if there is a coloring of its vertices with 𝑐 colors so that no hyperedge is

monochromatic. Given a 2-colorable 𝑘-uniform hypergraph for 𝑘 ≥ 3, strong inapproximability results that show

the NP-hardness of coloring with any fixed ℓ number of colors are known [19, 26], and recent developments show

hardness (for 𝑘 ≥ 8) even for ℓ = exp((log𝑛)Ω (1) ) where 𝑛 is the number of vertices [40, 49, 71]. However, these

results do not apply when the hypergraph has some form of balanced coloring that is stronger than just being

2-colorable. Specifically, we consider the notions of strong and rainbow colorability in this work. A hypergraph

is 𝑞-strongly colorable, 𝑞 ≥ 𝑘 (resp. 𝑞-rainbow colorable, 𝑞 ≤ 𝑘) if it can be colored with 𝑞 colors so that in

every hyperedge, all vertices get distinct colors (resp. all 𝑞 colors are represented). We refer the reader to the

recent work [8, 9, 29, 32] for further context on these notions. When 𝑘 = 𝑞, so that there is a perfectly balanced

𝑘-coloring where each hyperedge has exactly one vertex of each of the 𝑘 colors, one can in polynomial time find

a 2-coloring without any monochromatic hyperedge [54]. Here we prove a strong hardness result for coloring

hypergraphs (in fact for finding sizable independent sets), when this perfect balance condition is relaxed even

slightly (specifically, 𝑞 = 𝑘 − 1 for rainbow coloring, and 𝑞 = 𝑘 + 𝑜 (𝑘) for strong coloring).

A 𝑞-strong coloring of a hypergraph is also a legal 𝑞-coloring of the graph obtained by converting each

of its hyperedges into a clique. For this reason, our hardness result for strongly colorable hypergraphs also

5
This stronger requirement in soundness is common in hypergraph versions of Label Cover. For general Label Cover the stronger soundness

guarantee can be ensured with a minor loss in parameters, but for V label cover we do not know such a reduction.
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implies hardness results in the more elementary setting of approximate graph coloring. There are several “pure”
NP-hardness results known for graph coloring (e.g., the best known results in different regimes are [9, 27, 40, 43]),

but there is a gigantic gap between these results and the known algorithms. [18] establishes much improved

results, assuming variants of both the 2–to–1 conjecture as well as a new variant known as alpha label cover.
Their main result is that for all 𝜖 > 0, given a 3–colorable graph 𝐺 , under these assumptions, it is NP–hard to

locate an independent set with |𝐺 |𝜖 vertices. In this work, assuming the V label cover–conjecture, we give a

substantial generalization of this hardness.

Theorem 1.2. Assume the V label cover conjecture.6

• Given a 𝑘-uniform hypergraph, 𝑘 ≥ 2, for all 𝜖 > 0, it is hard to tell if it is 𝑞-strongly colorable or has no
independent set with an 𝜖 fraction of vertices, where 𝑞 = ⌈𝑘 +

√
𝑘 − 1

2
⌉.

• Given a 𝑘-uniform hypergraph, 𝑘 ≥ 3, for all 𝜖 > 0, it is hard to tell if it is (𝑘 − 1)-rainbow colorable or has
no independent set with an 𝜖 fraction of vertices.

The authors of [29] showed that for any 𝜖 > 0, it is NP-hard to distinguish if a 𝑘-uniform hypergraph (𝑘

even) is a 𝑘/2-rainbow colorable or does not have a independent set with 𝜖 fraction of the vertices. The results of

[9] give results for strong coloring, but they only apply when 𝑘 = 2 or when the weak coloring has only two

colors. Thus, modulo the V label cover–conjecture, our results improve on those in the literature.

1.2 Proof overview

We now briefly describe the steps needed to prove Theorem 1.1 and Theorem 1.2.

In each case, we reduce from a V label cover instance to a constraint satisfaction problem (with weighted

constraints). In Section 4.3, we detail this reduction. The structure of the reduction has the same standard form as

many other inapproximability results. Each vertex of the V label cover instance is replaced by a constellation

of variables, known as a long code. Each hyperedge of the V label cover instance is replaced by a probability

distribution of constraints between the variables in the correspond long codes. This is done carefully as to ensure

that perfectly strongly satisfiable V label cover instances map to perfectly satisfiable CSPs.

For each problem type (Max-𝑘-CSP, strong coloring, rainbow coloring), we craft a probability distribution

which exploits its underlying structure. The probability distributions need to have a special correlation structure

in order to be compatible with the V label cover constraints. We abstract a general notion termed V label cover–
compatibility (Definition 4.1) which captures the properties common to these distributions. For example, we

dictate that each vertex of each long code is sampled uniformly at random. Then, for each application, we outline

the additional properties of our probability distributions in order for the reductions to have the proper soundness

(Definitions 5.1 and 6.4).

For the soundness analysis, given a good approximation to the resulting CSP, we seek to find an approximate

weak labeling of the original V label cover instance. To do that, we attempt to decode each long code by finding

one (or many) low-degree influential coordinates; these coordinates can be viewed as candidate labels for the

associated vertex. We then argue that for a sizable fraction of constraints, two of the decoded labels will belong

to the a single V-branch in the constraint. We can then label our V label cover instance by assigning each vertex

a label selected at random from among its decoded labels, which in expectation finds a good approximate weak

labeling.

In order to guarantee these influential coordinates, we invoke a couple of invariance principles. For Max-𝑘-

CSP, we directly invoke a result due to Mossel (Theorem 2.5) on pairwise independent probability distributions.

6
Technically, we need an “induced” version of the V label cover conjecture for this result.
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1:6 • Brakensiek and Guruswami

This version guarantees a common influential coordinate between three functions that belongs to a common “V.”

A pigeonhole principle then implies that two of these labels must be in the same branch. For the hypergraph

coloring problems, where we do not have pairwise independence of the distributions, we generalize the invariance

principles of Mossel (see Theorem 2.6) and [18, Thm. 3.11] to yield a common influential coordinate for two

functions that further lie on the same V-branch. This result, Theorem 2.7, is a key technical component of our

reduction, which we hope will find other uses in the future.

1.3 A path to NP-hardness results?

In several cases, the UGC conditioned hardness results were later replaced by NP-hardness results. Examples

include some geometric inapproximability results [31], hardness of Unique Coverage [28], inapproximability

results for agnostic learning [23], tight hardness results for scheduling [63], Chan’s breakthrough showing

an asymptotically tight inapproximability result for (near-satisfiable) Max 𝑘-CSP [13], etc. In addition, the

very recent breakthrough on 2-to-1 games without perfect completeness has led to a number of implications

[5, 6, 16, 17, 46, 47], including approximating vertex cover and bounded-degree independence set.

We hope that establishing a similar body of conditional results for perfect completeness, based on the V

label cover conjecture or related variants, will point to strong inapproximability results and spur unconditional

results in this domain.

The recent proof of the 2-to-1 conjecture without perfect completeness, and the accompanying implicit con-

struction of strong SDP gaps (for the sum-of-squares hierarchy) for 2-to-1 Label Cover with perfect completeness,

raise similar questions about V Label Cover. Such a quest could be a good intermediate goal toward establishing

hardness results or gaps for Unique Games.

1.4 Organization

In Section 2, we outline the necessary background on CSPs and probability spaces. In Section 3, we show that

(𝐿, 𝑠)-nearly unique Label cover has a polynomial-time approximation algorithm. In Section 4, we motivate and

detail the V label cover–conjecture. In Section 5, we apply V label cover to the Max-𝑘-CSP problem. In Section 6,

we apply V label cover to the strong and rainbow hypergraph coloring problems. In Appendix A, we prove

Theorem 2.7.

2 PRELIMINARIES

2.1 Probability distributions

As is now commonplace in hardness of approximation reductions (e.g., [2, 13, 18, 55]), we utilize the following

results on correlated probability spaces.

Definition 2.1 ([24, 37, 62]
7
). Let 𝑋 × 𝑌 be a finite joint probability space with a probability measure 𝜇. The

correlation between 𝑋 and 𝑌 , denoted 𝜌 (𝑋,𝑌 ) is defined to be

𝜌 (𝑋,𝑌 ) = sup

𝑓 :𝑋→R,𝑔:𝑌→R
E[𝑓 ]=E[𝑔]=0, Var[𝑓 ]=Var[𝑔]=1

[
E

(𝑥,𝑦)∼𝜇
[𝑓 (𝑥)𝑔(𝑦)]

]
.

This is then easily extended to the correlation of 𝑛 ≥ 3 spaces.

7
See [1] for a history of this definition.
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Definition 2.2 (Definition 1.9 of [55]). Let 𝑋1 × 𝑋2 × · · · × 𝑋𝑛 be a finite joint probability space. Let 𝑍𝑖 =

𝑋1 × 𝑋2 × · · · × 𝑋𝑖−1 × 𝑋𝑖+1 × · · · × 𝑋𝑛 . Then we define the correlation of 𝑋1, . . . , 𝑋𝑛 to be

𝜌 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = max

1≤𝑖≤𝑛
𝜌 (𝑋𝑖 , 𝑍𝑖 ).

When a probability space can be decomposed into the product of independent subspaces, then the correlation

behaves elegantly.

Lemma 2.1 (Theorem 1 of [73]). For all 𝑖 ∈ [𝑛]:= {1, 2, . . . , 𝑛}, let 𝑋𝑖 × 𝑌𝑖 be a probability space with measure 𝜇𝑖 .
Assume that 𝜇1, . . . , 𝜇𝑛 are independent. Then,

𝜌 (𝑋1 × 𝑋2 × · · · × 𝑋𝑛, 𝑌1 × 𝑌2 × · · · × 𝑌𝑛) = max

1≤𝑖≤𝑛
𝜌 (𝑋𝑖 , 𝑌𝑖 ).

Often it can be difficult to bound the correlation of a distribution away from 1. The following result is key

in reducing these complex correlation problems into rather elementary graph connectivity problems.

Lemma 2.2 (Lemma 2.9 of [55]). Let 𝑋 ×𝑌 be a finite joint probability space with measure 𝜇. Let𝐺 be the bipartite
graph on 𝑋 ∪ 𝑌 such that (𝑥,𝑦) ∈ 𝑋 × 𝑌 is an edge iff Pr[𝑥,𝑦] > 0 with respect to 𝜇. Assume that 𝐺 is connected,
and let 𝛿 be the minimum nonzero probability in the joint distribution. Then, we have that

𝜌 (𝑋,𝑌 ) ≤ 1 − 𝛿2/2.

2.2 Influences

Recall the influence of a function over a probability space.

Definition 2.3. Let 𝑋1, . . . , 𝑋𝑛 be finite independent probability spaces, and let 𝑓 : 𝑋1 × · · · × 𝑋𝑛 → R be a

function. Let 𝑌𝑖 = 𝑋1 × · · · × 𝑋𝑖−1 × 𝑋𝑖+1 × · · · × 𝑋𝑛 . The influence is

Inf𝑖 (𝑓 ) = E
𝑥 ∈𝑌𝑖

[Var𝑧∈𝑋𝑖
𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, . . . , 𝑥𝑛)] .

Likewise, we need the notion of low-degree influences. We use the multilinear-polynomial definition used

many times previously (e.g., [18, 55, 56]).

Definition 2.4 (e.g., Definition 3.4, 3.7 of [56]). Let 𝑋1, . . . , 𝑋𝑛 be finite independent probability spaces, and

let 𝑓 : 𝑋1 × · · · × 𝑋𝑛 → R be a function. For each 𝑖 ∈ [𝑛], let 𝑞𝑖 be the cardinality of the support of 𝑋𝑖 . Let

𝛼
(𝑖)
1
, . . . , 𝛼

(𝑖)
𝑞𝑖 : 𝑋𝑖 → R be an orthonormal basis of functions such that 𝛼

(𝑖)
1

≡ 1. Let Σ = [𝑞1] × · · · [𝑞𝑛]. Now, 𝑓
can be uniquely expressed as

𝑓 =
∑
𝜎 ∈Σ

𝑐𝜎

𝑛∏
𝑖=1

𝛼
(𝑖)
𝜎𝑖 .

for 𝑐𝜎 ∈ R, which we call the Fourier coefficients. For 𝜎 ∈ 𝑄 , let |𝜎 | = |{𝑖 ∈ [𝑛] | 𝜎𝑖 ≠ 1}|. The low-degree
influence for 𝑑 ∈ [𝑛] is

Inf
≤𝑑
𝑖 𝑓 =

∑
𝜎 ∈Σ, |𝜎 | ≤𝑑,𝜎𝑖≠1

𝑐2𝜎 .

The following is a key elementary fact concerning influences.

Lemma 2.3 (e.g., Proposition 3.8 [56]). Consider 𝑓 : 𝑋1 × · · · × 𝑋𝑛 → R. For all integers 𝑑 ≥ 1,
𝑛∑
𝑖=1

Inf
≤𝑑
𝑖 𝑓 ≤ 𝑑 Var 𝑓 .

In particular, for all 𝜏 > 0, |{𝑖 ∈ [𝑛] | Inf ≤𝑑𝑖 𝑓 ≥ 𝜏}| ≤ 𝑑 Var 𝑓

𝜏
.
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1:8 • Brakensiek and Guruswami

Sometimes, we look at 𝑓 from the perspective of different marginal distributions. Consider 𝑓 : 𝑋1× · · ·𝑋𝑛 →
R where the 𝑋𝑖 ’s are independent. Furthermore, assume that each 𝑋𝑖 can be written as 𝑋𝑖 = 𝑌𝑖,1 × · · ·𝑌𝑖,ℓ𝑖 , where
these 𝑌𝑖, 𝑗 ’s are independent. Then, we let Inf

≤𝑑
𝑋𝑖

𝑓 denote the low-degree influence of 𝑓 in the 𝑖th coordinate with

respect to the 𝑋𝑖 ’s. Likewise, we let Inf
≤𝑑
𝑌𝑖,𝑗

𝑓 be the influence of the (𝑖, 𝑗)th coordinate when viewed from the

perspective of 𝑓 : 𝑌1,1 × · · · × 𝑌𝑛,ℓ𝑛 → R.
For each (𝑖, 𝑗), let 𝛽 (𝑖, 𝑗)

1
, . . . , 𝛽

(𝑖, 𝑗)
𝑞𝑖,𝑗 : 𝑌𝑖, 𝑗 → R be an orthonormal basis of functions such that 𝛽

(𝑖, 𝑗)
1

≡ 1. Note

that𝑞𝑖 =
∏ℓ𝑖

𝑗=1
𝑞𝑖, 𝑗 . Let Σ

′ = [𝑞1,1]×· · · [𝑞𝑛,ℓ𝑛 ]. Then, we have that there exist 𝑐𝜎 ’s such that 𝑓 =
∑

𝜎 ∈Σ′ 𝑐
′
𝜎

∏𝑛
𝑖=1 𝛼

(𝑖)
𝜎𝑖 .

If ℓ𝑖 ≤ 𝐷 for all 𝑖 , then we have the following result

Lemma 2.4 (e.g., Claim 2.7 [18]). If ℓ𝑖 ≤ 𝐷 for all 𝑖 ∈ [𝑛], then we have for all 𝑖, 𝑑 ∈ [𝑛] that

Inf
≤𝑑
𝑋𝑖

𝑓 ≤
ℓ𝑖∑

𝑘=1

Inf
≤𝐷𝑑
𝑌𝑖,𝑘

𝑓 .

Thus, there exists 𝑘 ∈ [ℓ𝑖 ] such that
1

𝐷
Inf

≤𝑑
𝑋𝑖

𝑓 ≤ Inf
≤𝐷𝑑
𝑌𝑖,𝑘

𝑓 .

Proof. The proof is a straightforward adaptation of the proof of Claim 2.7 in [18]. □

For our applications, we only need the case 𝐷 = 2.

2.3 Invariance principles

Like [2], we use the following result on pairwise independent probability spaces.

Theorem 2.5 (Lemmas 6.6, 6.9 [55]). Fix 𝑘 ≥ 3. For 1 ≤ 𝑖 ≤ 𝑛, let Ω𝑖 = 𝑋
(1)
𝑖

× · · · × 𝑋
(𝑘)
𝑖

be finite pairwise
independent probability spaces with probability measure 𝜇𝑖 such that the probability measures corresponding to
𝜇1, . . . , 𝜇𝑛 are independent. Let 𝛿 be the minimum positive probability among all the 𝜇𝑖 . Let

𝜌 = max

1≤𝑖≤𝑛
𝜌 (𝑋 (1)

𝑖
, . . . , 𝑋

(𝑘)
𝑖

)

and assume that 𝜌 < 1. For every 𝜖 > 0, there exists 𝜏 (𝛿, 𝜖, 𝜌), 𝑑 (𝛿, 𝜖, 𝜌) > 0 such that for any functions 𝑓1, . . . , 𝑓𝑘
where 𝑓𝑖 : 𝑋

(𝑖)
1

× · · · × 𝑋
(𝑖)
𝑛 → [0, 1] if

∀ℓ ∈ [𝑛], |{𝑖 | Inf ≤𝑑
𝑋

(𝑖 )
ℓ

𝑓𝑖 > 𝜏}| ≤ 2

then ����� 𝑘∏
𝑖=1

E[𝑓𝑖 ] − E
[

𝑘∏
𝑖=1

𝑓𝑖

] ����� ≤ 𝜖.

In other words, if the product of the expected values and the expected value of the product significantly

differ, then there must exist three functions with a common high low-degree influence coordinate. Note that the

number “three” is crucially used in our reduction in Section 5.

As we cannot always obtain pairwise independent probability distributions (such as with our reduction to

hypergraph coloring), we also need the following result on correlated probability spaces.
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Theorem 2.6 (Theorem 1.14 [55]). Fix 𝑘 ≥ 2. For 1 ≤ 𝑖 ≤ 𝑛, let Ω𝑖 = 𝑋
(1)
𝑖

× · · · × 𝑋
(𝑘)
𝑖

be a finite probability
spaces with measures 𝜇𝑖 such that 𝜇1, . . . , 𝜇𝑛 are independent. Let 𝛿 be the minimum positive probability among all
the 𝜇𝑖 . Let

𝜌 = max

 max

1≤𝑖≤𝑛
𝜌 (𝑋 (1)

𝑖
, . . . , 𝑋

(𝑘)
𝑖

), max

1≤𝑖≤𝑛
1≤ 𝑗<𝑘

𝜌

(
𝑗∏

ℓ=1

𝑋
(𝑖)
ℓ
,

𝑘∏
ℓ=𝑗+1

𝑋
(𝑖)
ℓ

) .

and assume that 𝜌 < 1. For every 𝜖 > 0, there exists 𝜖 ′(𝛿, 𝜖, 𝜌), 𝜏 (𝛿, 𝜖, 𝜌) > 0 such that for any functions 𝑓1, . . . , 𝑓𝑘
where 𝑓𝑖 : 𝑋

(𝑖)
1

× · · · × 𝑋
(𝑖)
𝑛 → [0, 1] and E[𝑓𝑖 ] ≥ 𝜖 if

∀ℓ ∈ [𝑛],∀𝑖 ∈ [𝑘], Inf
𝑋

(𝑖 )
ℓ

𝑓𝑖 < 𝜏

then

E

[
𝑘∏
𝑖=1

𝑓𝑖

]
≥ 𝜖 ′.

We need a stronger version of this theorem for our applications. We prove Theorem 2.7 in Appendix A.

Theorem 2.7. Fix 𝑘 ≥ 2. For 1 ≤ ℓ ≤ 𝑛, let Ωℓ = 𝑋
(1)
ℓ

× · · · × 𝑋
(𝑘)
ℓ

be a finite probability space with distributions

𝜇ℓ such that the 𝜇ℓ ’s are independent. Also, assume that for each ℓ ∈ [𝑛] and 𝑖 ∈ [𝑘], 𝑋 (𝑖)
ℓ

=
∏𝑠

(𝑖 )
ℓ

𝑠=1
𝑌

(𝑖)
ℓ,𝑠

, where the

product is of otherwise independent distributions and 𝑠 (𝑖)
ℓ

≤ 2 for all 𝑖 ∈ [𝑘] and ℓ ∈ [𝑛]. Assume we also have the
following key property

• If for distinct 𝑖1, 𝑖2 ∈ [𝑘] we have that 𝑠 (𝑖1)
ℓ

= 𝑠
(𝑖2)
ℓ

= 2, then 𝑌
(𝑖1)
ℓ,1

is independent of 𝑌 (𝑖2)
ℓ,2

(and 𝑌
(𝑖2)
ℓ,2

is

independent of 𝑌 (𝑖1)
ℓ,1

by symmetry).

For convenience of notation, if 𝑠 (𝑖)
ℓ

= 1, let 𝑌 (𝑖)
ℓ,2

:= 𝑌
(𝑖)
ℓ,1

. Let 𝛿 be the minimum positive probability among all the 𝜇ℓ ’s,
ℓ ∈ [𝑛]. Let

𝜌 = max

 max

1≤ℓ≤𝑛
𝜌 (𝑋 (1)

ℓ
, . . . , 𝑋

(𝑘)
ℓ

), max

1≤ℓ≤𝑛
1≤ 𝑗<𝑘

𝜌

(
𝑗∏

ℓ=1

𝑋
(𝑖)
ℓ
,

𝑘∏
ℓ=𝑗+1

𝑋
(𝑖)
ℓ

) .

and assume that 𝜌 < 1. For every 𝜖 > 0, there exists 𝜖 ′(𝛿, 𝜖, 𝜌), 𝜏 (𝛿, 𝜖, 𝜌), 𝑑 (𝛿, 𝜖, 𝜌) > 0 such that for any functions
𝑓1, . . . , 𝑓𝑘 where 𝑓𝑖 : 𝑋

(𝑖)
1

× · · · × 𝑋
(𝑖)
𝑛 → [0, 1] and E[𝑓𝑖 ] ≥ 𝜖 if

∀ℓ ∈ [𝑛],∀𝑠 ∈ {1, 2}, |{𝑖 | Inf ≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 ≥ 𝜏}| ≤ 1

then

E

[
𝑘∏
𝑖=1

𝑓𝑖

]
≥ 𝜖 ′.
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1:10 • Brakensiek and Guruswami

3 (𝐿, 𝑠)-NEARLY 1–TO–1 LABEL COVER

Consider the following variant of the classic Label Cover problem.

Definition 3.1. Let 𝐿 be a positive integer and 𝑠 ∈ {0, . . . , 𝐿2}. An instance of (𝐿, 𝑠)-nearly 1-to-1 Label Cover
consists of Ψ = (𝑉 , 𝐸, {𝑆𝑒 }𝑒∈𝐸, {𝜋𝑒,𝑢}𝑒∈𝐸,𝑢∈𝑒 ), where (𝑉 , 𝐸) is a regular graph,8, the 𝑆𝑒 ⊆ [𝐿] × [𝐿] have size 𝑠 ,9
and the maps 𝜋𝑒,𝑢 : [𝐿] → [𝐿] are permutations. A labeling is a function 𝜎 : 𝑉 → [𝐿]. An edge 𝑒 ∈ 𝐸 is satisfied

if (𝜋𝑒,𝑢 (𝜎 (𝑢)), 𝜋𝑒,𝑣 (𝜎 (𝑣))) ∈ {(ℓ, ℓ) : ℓ ∈ [𝐿]} ∪ 𝑆𝑒 .

Assume 𝑠 ≥ 1 (as the case 𝑠 = 0 is unique games with perfect completeness). We show that when 𝑠 is a

constant relative to 𝐿, the (𝐿, 𝑠)-nearly 1-to-1 Label Cover problem is efficiently approximable.

Theorem 3.1. There exists a function 𝜂 : N → (0, 1] (presumably decreasing) such that there is a randomized
polynomial time algorithm which with high probability distinguishes the following two types of instances Ψ =

(𝑉 , 𝐸, {𝜋𝑒,𝑢}𝑒∈𝐸,𝑢∈𝑒 ) of (𝐿, 𝑠)-nearly 1-to-1 Label Cover.

• Accept: Ψ is perfectly satisfiable.
• Reject: every labeling of Ψ satisfies strictly less than 𝜂 (𝑠) fraction of the edges.

In fact, one may take 𝜂 (𝑠) = 1

1024𝑠2
.

For each 𝑒 ∈ 𝐸, let 𝑇𝑒 = {𝑥 : (𝑥,𝑦) ∈ 𝑆𝑒 } ∪ {𝑦 : (𝑥,𝑦) ∈ 𝑆𝑒 }. Note that |𝑇𝑒 | ≤ 2𝑠 .

Assume that a perfect labeling exists for Ψ and let Σ : 𝑉 → [𝐿] be such a labeling. We show that we can

efficiently construct a labeling 𝜎 : 𝑉 → [𝐿] which satisfies at least 𝜂 (𝑠) fraction of the edges. Such an algorithm

will suffice to distinguish the two cases specified in the theorem statement.

For each 𝑒 ∈ 𝐸, we say that a satisfied edge 𝑒 = (𝑢, 𝑣) is type-1-satisfied by Σ if 𝜋𝑒,𝑢 (Σ(𝑢)) ∉ 𝑇𝑒 and

𝜋𝑒,𝑣 (Σ(𝑣)) ∉ 𝑇𝑒 . Otherwise, we say that a satisfied edge 𝑒 is type-2-satisfied by Σ. Let 𝐸1 ⊆ 𝐸 be the type-1-satisfied

edges, and let 𝐸2 be the type-2 satisfied. Let 𝐷 be the degree of each vertex of (𝑉 , 𝐸). Let 𝑑𝑖 (𝑣) be the number of

edges incident to vertex 𝑣 which are type-𝑖 satisfied by 𝜎 .

First, we use a standard DFS algorithm to construct partial, but perfect labelings of Ψ.

Lemma 3.2. Given 𝑣0 ∈ 𝑉 and ℓ ∈ 𝐿 there is a polynomial time algorithm which outputs a subset𝑊 ⊆ 𝑉 and a
partial labeling 𝜎 :𝑊 → [𝐿] with the following properties.

• 𝑣0 ∈𝑊 and 𝜎 (𝑣0) = ℓ .
• Every 𝑒 ∈ 𝐸 ∩𝑊 ×𝑊 is satisfied by 𝜎 .
• For every 𝜎 ′

: 𝑉 → [𝐿] which extends 𝜎 (i.e., 𝜎 ′(𝑣) = 𝜎 (𝑣) for all 𝑣 ∈𝑊 ) which perfectly satisfies Ψ, every
edge in the cut 𝐸 ∩𝑊 × (𝑉 \𝑊 ) must be type-2-satisfied.

If there is no satisfying assignment 𝜎 : 𝑉 → [𝐿] to Ψ with 𝜎 (𝑣0) = ℓ , then the algorithm returns ⊥.

Informally, the last condition means that the partial labeling cannot be extended any further by type-1

satisfying edges.

Proof. Consider the DFS/BFS-like Algorithm 1.

We claim that calling Partial-Type-1-Labeling(Ψ, {𝑣0}, 𝑣0 ↦→ ℓ)10 is the correct procedure. To prove

efficiency, it is easy to see that during each recursive call,𝑊 will grow by at least one element or the procedure

8
We assume that (𝑉 , 𝐸) is a regular graph for simplicity of presentation. The authors believe the same result should hold for general graphs.

9
If 𝑆𝑒 is not symmetric, then the edge 𝑒 is technically directed, but it is fine to assume that (𝑉 , 𝐸) is undirected for most of our analysis.

10𝑣0 ↦→ ℓ is shorthand for the function 𝜎 : {𝑣0 } → [𝐿] such that 𝜎 (𝑣0) = ℓ .
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Function Partial-Type-1-Labeling(Ψ,𝑊 , 𝜎) do
Data: (𝐿, 𝑠)-nearly 1-to-1 Label Cover instance Ψ = (𝑉 , 𝐸, {𝑆𝑒 }𝑒∈𝐸, {𝜋𝑒,𝑢}𝑒∈𝐸,𝑢∈𝑒 ),𝑊 ⊆ 𝑉 , 𝜎 :𝑊 → [𝐿]
Result: Either ⊥ or a pair (𝑊 ′, 𝜎 ′) where𝑊 ′ ⊆ 𝑉 and 𝜎 ′

: 𝑉 → [𝐿].
for 𝑣 ∈𝑊 do

for 𝑒 ∈ 𝐸 where 𝑣 ∈ 𝑒 do
Set 𝑢 to other vertex of 𝑒

if 𝑢 ∈𝑊 then
if 𝜎 does not satisfy 𝑒 then return ⊥

end
else if 𝜋𝑒,𝑣 (𝜎 (𝑣)) ∉ 𝑇𝑒 then

Set𝑊 ′ =𝑊 ∪ {𝑢}
Set 𝜎 ′ ↾𝑊 = 𝜎

Set 𝜎 ′(𝑢) = (𝜋−1
𝑒,𝑢 ◦ 𝜋𝑒,𝑣) (𝜎 (𝑣))

return Partial-Type-1-Labeling(Ψ,𝑊 ′, 𝜎 ′)
end

end
end
return (𝑊,𝜎)

end
Algorithm 1: Finding a partial solution using type-1-satisfied edges.

will terminate. Hence there can be at most |𝑉 | recursive calls (including the initial call). Furthermore, within one

recursive call only a polynomial amount of work is done. Thus, the procedure runs in polynomial time.

To prove correctness, note that the final recursive call will verify that every edge inside the vertices of𝑊 is

correctly labeled and every edge between𝑊 and 𝑉 \𝑊 must be type-2 satisfied. Thus, if the algorithm outputs

(𝑊,𝜎), we know that𝑊 and 𝜎 will have the required properties. Furthermore, observe that the algorithm adds a

new vertex to𝑊 only when the label of that vertex is forced. Thus, any contradiction found is proof that there is

no fully satisfiable way to extend the initial choice that 𝜎 (𝑣0) = ℓ .

Thus, the algorithm is correct and efficient. □

Note that the above algorithm will do quite well when Σ type-1-satisfies most of the edges. The following

algorithm deals with the case in which most of the edges are type-2-satisfied. Let 𝛿 = |𝐸2 |/|𝐸 |.
Lemma 3.3. Assume Ψ is satisfiable and 𝛿 ≥ 1/2. Then there is a randomized polynomial-time algorithm which
finds a labeling 𝜎 : 𝑉 → [𝐿] which satisfies at least 𝑓 (𝑠) = 1

1024𝑠2
of the constraints of Ψ with probability 1− 1

2
poly( |𝑉 |) .

Remark. We set 𝜂 (𝑠) = 𝑓 (𝑠).

Proof. Consider Algorithm 2. Clearly the algorithm runs in polynomial time. It suffices to show that the

above algorithm succeeds in finding an 𝜂 (𝑠) approximation with constant probability, as one may repeat the

subroutine polynomially many times and take the best solution. The first step of our analysis is the following

simple claim.

Claim 3.4. For each 𝑣 ∈ 𝑉 , with probability at least 𝑑2 (𝑣)
2𝑠𝐷

, 𝜎 (𝑣) = Σ(𝑣).

Proof. With probability
𝑑2 (𝑣)
𝐷

we pick an edge 𝑒 which is type-2 satisfied by Σ. With probability
1

|𝑇𝑒 | ≥
1

2𝑠

we then subsequently pick Σ(𝑣) since 𝜋𝑒,𝑣 (Σ(𝑣)) ∈ 𝑇𝑒 . □
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Function Approx-Type-2-Labeling(Ψ) do
Data: (𝐿, 𝑠)-nearly 1-to-1 Label Cover instance Ψ = (𝑉 , 𝐸, {𝑆𝑒 }𝑒∈𝐸, {𝜋𝑒,𝑢}𝑒∈𝐸,𝑢∈𝑒 )
Result: An approximately satisfying labeling 𝜎 : 𝑉 → [𝐿].
for 𝑣 ∈ 𝑉 do

Pick 𝑒 ∈ 𝐸 uniformly at random such that 𝑣 ∈ 𝑒 .

Pick ℓ ∈ 𝑇𝑒 uniformly at random.

Set 𝜎 (𝑣) = 𝜋−1
𝑒,𝑣 (ℓ)

end
return 𝜎

end
Algorithm 2: Finding a good approximate solution when there are many type-2 edges.

Define a vertex 𝑣 ∈ 𝑉 to be good if 𝑑2 (𝑣) ≥ |𝐷 |/4. Let 𝑉 ′ ⊆ 𝑉 be the set of good vertices. By Markov’s

inequality and the fact that𝑉 is regular, |𝑉 ′ | ≥ |𝑉 |/4. Define an edge (𝑢, 𝑣) ∈ 𝐸 to be good if 𝑢, 𝑣 ∈ 𝑉 ′
. Let 𝐸 ′ ⊆ 𝐸

be the set of good edges.

Claim 3.5. At least 1/8 fraction of the edges are good.

Proof. Let 𝜆 = |𝐸 ′ |/|𝐸2 |. Pick a uniformly random edge 𝑒 ∈ 𝐸2 and pick a uniformly random vertex 𝑢 of 𝑒 .

The probability that 𝑢 is not good is at least (1 − 𝜆)/2. Note that the probability that any particular 𝑢 is picked is

𝑑2 (𝑢)
2 |𝐸2 | . Thus,

1 − 𝜆

2

≤
∑

𝑣∈𝑉 \𝑉 ′

𝑑2 (𝑢)
2|𝐸2 |

≤ |𝑉 \𝑉 ′ | 𝐷

8|𝐸2 |

≤ 3|𝑉 |𝐷
32|𝐸2 |

=
3|𝐸 |
16|𝐸2 |

≤ 3

8

.

Thus, 𝜆 ≥ 1

4
, so |𝐸 ′ |/|𝐸 | ≥ 𝜆𝛿 ≥ 1

8
. □

The expected fraction of edges satisfied is then

E

[
1

|𝐸 |
∑
𝑒∈𝐸

1[𝜎 satisfies 𝑒]
]
≥ 1

|𝐸 |
∑

(𝑢,𝑣) ∈𝐸
E[1[(𝜎 (𝑢), 𝜎 (𝑣)) = (Σ(𝑢), Σ(𝑣))]]

≥ 1

|𝐸 |
∑

(𝑢,𝑣) ∈𝐸

𝑑2 (𝑢)𝑑2 (𝑣)
(2𝑠)2𝐷2

(Claim 3.4 and independence).

≥ 1

(2𝑠)2 |𝐸 |
∑

(𝑢,𝑣) ∈𝐸′

𝑑2 (𝑢)𝑑2 (𝑣)
𝐷2

.

≥ |𝐸 ′ |
64𝑠2 |𝐸 |
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≥ 1

512𝑠2
(Claim 3.5).

Thus, by Markov’s inequality, the above algorithm will find a solution satisfying at least
1

1024𝑠2
fraction of the

edges with probability at least
1

1024𝑠2
. □

Consider the case 𝛿 ≤ 1/2, Thus, most of the edges of 𝐸 are type-1 satisfied by 𝜎 . Assume that (𝑉 , 𝐸1) has 𝑘
connected components 𝑉1 ∪ · · · ∪𝑉𝑘 = 𝑉 . We would like to show that one of these sets 𝑉1, . . . ,𝑉𝑘 has small edge
expansion. First, recall the definition of edge expansion.

Definition 3.2. The edge expansion of a subset 𝑉 ′ ⊆ 𝑉 of an undirected 𝐷-regular graph (𝑉 , 𝐸) is

Φ(𝑉 ′) = |𝐸 ∩ (𝑉 ′ × (𝑉 \𝑉 ′)) |
𝐷 |𝑉 ′ | .

Intuitively, if we can perfectly label the induced edges of a connected component𝑉𝑖 with poor edge expansion,

we have made good progress toward a labeling satisfying a constant fraction of the edges, as we can recursively

apply our algorithm to find an approximate labeling of 𝑉 \𝑉𝑖 and union it with our labeling of 𝑉𝑖 . The following

lemma shows that such a 𝑉𝑖 always exists.

Lemma 3.6. Let (𝑉 , 𝐸) be an undirected 𝐷-regular graph, and let 𝑉1, . . . ,𝑉𝑘 be a partition of the vertices. Assume
that at most 𝛿 fraction of the edges of 𝐸 are between different 𝑉𝑖 . Then there exists an 𝑖 ∈ [𝑘] such that Φ(𝑉𝑖 ) ≤ 𝛿 .

Proof. Let 𝐸 ′
be the set of edges between the 𝑉1,𝑉2, . . . ,𝑉𝑘 . Note that

2|𝐸 ′ | =
∑
𝑖∈[𝑘 ]

|𝐸 ∩ (𝑉𝑖 × (𝑉 \𝑉𝑖 )) | (each edge of 𝐸 ′
is between two of the 𝑉𝑖 ’s)

=
∑
𝑖∈[𝑘 ]

𝐷 |𝑉𝑖 |Φ(𝑉𝑖 )

≥ 𝐷 |𝑉 |min

𝑖
Φ(𝑉𝑖 ).

Since 2|𝐸 ′ | = 𝛿 (2|𝐸 |) = 𝐷 |𝑉 |𝛿 , we have that 𝛿 ≥ min𝑖 Φ(𝑉𝑖 ). □

With this lemma proven, we may now state the final algorithm (3).

Proof of Theorem 3.1. We prove the algorithm works by strong induction on |𝑉 |.
Assume Ψ is perfectly satisfiable. If 𝛿 = |𝐸 ′

2
|/|𝐸 | ≥ 1/2, then Lemma 3.3 guarantees that we will find an 𝜂 (𝑠)

approximation with high probability. Otherwise, if 𝛿 ≤ 1/2, we know by Lemma 3.6 there exists𝑊 ⊆ 𝑉 and a

perfect partial labeling 𝜎 ′
2
:𝑊 → [𝐿] such that𝑊 is connected by edges type-1-satisfied by 𝜎 and Φ(𝑊 ) ≤ 1/2.

By Lemma 3.2, the above for loop will succeed in finding some (𝑊,𝜎 ′
2
) with these properties in polynomial time.

By the strong induction hypothesis, we can with high probability find a 𝜂 (𝑠)-approximate labeling 𝜎3 to the

instance Ψ′
induced by 𝑉 \𝑊 . Thus, the labeling 𝜎 ′

2
∪ 𝜎3 satisfies at least 1/2 fraction of the edges incident with

at least one vertex of𝑊 (since Φ(𝑊 ) ≤ 1/2 and the edges inside of𝑊 are perfectly satisfied) and at least 𝜂 (𝑠) of
the edges not incident with𝑊 . Thus, we have efficiently found a min(1/2, 𝜂 (𝑠)) = 𝜂 (𝑠) approximation for Ψ. If
the algorithm does not succeed, then Ψ is not perfectly satisfiable. □

4 V LABEL COVER

In this section, we propose a variant of hypergraph label cover which seems to plausibly have perfect completeness

while also allowing for new hardness reductions. It can be thought of as a generalization of 2-to-1 label cover.
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Function Approximate-Labeling(Ψ) do
Data: (𝐿, 𝑠)-nearly 1-to-1 Label Cover instance Ψ = (𝑉 , 𝐸, {𝜋𝑒,𝑢}𝑒∈𝐸,𝑢∈𝑒 )
Result: Either ⊥ or an approximately-satisfying labeling 𝜎 : 𝑉 → [𝐿].
Set 𝜎1 = Approx-Type-2-Labeling (Ψ)

if 𝜎1 satisfies 𝜂 (𝑠) fraction of the edges of Ψ then
return 𝜎1

end
for 𝑣 ∈ 𝑉 , ℓ ∈ [𝐿] do

Set 𝜎2 (𝑣) = ℓ .

Set 𝜏 = Partial-Type-1-Labeling(Ψ, 𝑣, 𝜎2)
if 𝜏 = (𝑊,𝜎 ′

2
) and Φ(𝑊 ) ≤ 1/2 then

Set 𝑉 ′ = 𝑉 \𝑊
Set 𝐸 ′ = 𝐸 ∩ (𝑉 ′)2
Set Ψ′ = (𝑉 ′, 𝐸 ′, {𝜋𝑒,𝑢}𝑒∈𝐸′,𝑢∈𝑒 )
Set 𝜎3 = Approximate-Labeling(Ψ′)
if 𝜎3 ≠⊥ then return 𝜎 ′

2
∪ 𝜎3

end
end
return ⊥

end
Algorithm 3: The full algorithm.

𝑢1

𝑢2

𝑢3

𝑢4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. A schematic diagram of the branches for an edge 𝑒 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) of V label cover instance Ψ with parameters 𝑘 = 4

and 𝐿 = 2. The 𝑖th row represents 𝜋 (𝑒)
𝑖

and the 𝑗th column represents the input 𝑗 . The dashed and dotted lines are to indicated
the two different branches with the same values with respect to 𝜋 (𝑒) . For example, we may deduce from this diagram that
(10, 10, 10, 10) and (9, 10, 11, 11) are two branches of 𝑒 . In particular, we have that 𝜋 (𝑒)

1
(9) = 𝜋

(𝑒)
2

(10) = 𝜋
(𝑒)
3

(11) = 𝜋
(𝑒)
4

(11).
Note that𝜓 (𝑒)

𝑖
( 𝑗) =⊥ exactly when the node of the 𝑖th row and 𝑗th column is at the intersection of two branches. Compare

with Figure 1 of [18].
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4.1 Definition

Let 𝑘 ≥ 2 and 𝐿 ≥ 1 be positive integers. An instance of 𝑘-uniform 𝑉 -label cover is a 𝑘-uniform hypergraph

on vertex set 𝑈 . The constraints are on 𝑘-tuples 𝐸 ⊆ 𝑈 𝑘
. Each edge 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) also has projection maps

𝜋
(𝑒)
1

, . . . , 𝜋
(𝑒)
𝑘

: [(2𝑘 − 1)𝐿] → [𝑘𝐿] with the following special property.

• The maps are surjective, in particular for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑘𝐿],

| (𝜋 (𝑒)
𝑖

)−1 ( 𝑗) | =
{
1 𝑖 ≡ 𝑗 mod 𝑘

2 otherwise

In addition we would like to be able to distinguish between the two labels which map to a common value.

To do this, we supplement the projection maps with distinguishing functions 𝜓1, . . . ,𝜓𝑘 : [(2𝑘 − 1)𝐿] → {0, 1,⊥}
such that for all 𝑖 ∈ [𝑘], the map 𝑥 ↦→ (𝜋 (𝑒)

𝑖
(𝑥),𝜓 (𝑒)

𝑖
(𝑥)) is injective. Furthermore, if | (𝜋 (𝑒)

𝑖
)−1 (𝜋 (𝑒)

𝑖
(𝑥)) | = 1, then

we define𝜓
(𝑒)
𝑖

(𝑥) =⊥, and otherwise𝜓
(𝑒)
𝑖

(𝑥) ∈ {0, 1}. We say that (𝑡1, . . . , 𝑡𝑘 ) ∈ [(2𝑘 − 1)𝐿]𝑘 is a branch of 𝑒 if

there is ℓ ∈ [𝑘𝐿] and 𝑏 ∈ {0, 1} such that for all 𝑖 , (𝜋 (𝑒)
𝑖

(𝑡𝑖 ),𝜓 (𝑒)
𝑖

(𝑡𝑖 )) equals (ℓ, 𝑏) or (ℓ,⊥). Note that for each
branch, there is exactly one 𝑗 ∈ [𝑘] such that𝜓

(𝑒)
𝑗

(𝑡 𝑗 ) =⊥. In fact such an index satisfies 𝑗 ≡ 𝜋
(𝑒)
𝑖

(𝑡𝑖 ) mod 𝑘 for

all 𝑖 . We say that 𝑗 is the junction of the branch. To better understand the setup, see Figure 1.

The goal of𝑉 -label cover is to produce a labeling of the vertices 𝜎 : 𝑈 → [(2𝑘−1)𝐿]. We say that a hyperedge

𝑒 = (𝑢1, . . . , 𝑢𝑘 ) is strongly satisfied if (𝜎 (𝑢1), . . . , 𝜎 (𝑢𝑘 )) is a branch. In other words, for all 𝑖, 𝑗 ∈ [𝑘], 𝜋 (𝑒)
𝑖

(𝜎 (𝑢𝑖 )) =
𝜋
(𝑒)
𝑗

(𝜎 (𝑢 𝑗 )) and either 𝜓
(𝑒)
𝑖

(𝜎 (𝑢𝑖 )) = 𝜓
(𝑒)
𝑗

(𝜎 (𝑢 𝑗 )) ≠ ⊥ or exactly one of 𝜓
(𝑒)
𝑖

(𝜎 (𝑢𝑖 )),𝜓 (𝑒)
𝑗

(𝜎 (𝑢 𝑗 )) is ⊥. Another
way to express this is that (𝜋 (𝑒)

𝑖
(𝜎 (𝑢𝑖 )),𝜓 (𝑒)

𝑖
(𝜎 (𝑢𝑖 ))) is uniform except for one 𝑖 for which𝜓

(𝑒)
𝑖

(𝜎 (𝑢𝑖 )) =⊥ (the

meeting point in the ‘V’ of the two branches).

We say the hyperedge is weakly satisfied if for some distinct 𝑖, 𝑗 ∈ [𝑘], 𝜋 (𝑒)
𝑖

(𝜎 (𝑢𝑖 )) = 𝜋
(𝑒)
𝑗

(𝜎 (𝑢 𝑗 )) and 𝜎 (𝑢𝑖 )
and 𝜎 (𝑢 𝑗 ) are in the same branch.

We now formally state our conjectured intractability of approximating V label cover. Below we state an

“induced” version where in the soundness guarantee, for every labeling, most of the hyperedges within any subset

of vertices of density 𝜖 fail to be weakly satisfied. The induced version is needed for our reduction to hypergraph

coloring (this is similar to the 𝛼 conjecture of [18] which was also defined in an induced form). For our Max

𝑘-CSP result, it suffices to assume the soundness condition that at most 𝜖 fraction of edges are weakly satisfiable.

For simplicity, we only state the stronger induced version below.

Conjecture 4.1 (V label cover–conjecture, induced version). For all 𝑘 ≥ 2 and 𝜖 > 0, there exists an 𝐿 ≥ 1 such
that for any 𝑘-uniform V label cover instance Ψ on label set 𝐿 and vertex set𝑈 and hyperedge set 𝐸, it is NP-hard to
distinguish between

• YES: There exists a labeling for which every hyperedge is strongly satisfied.
• NO: For every labeling and every subset 𝑈 ′ ⊂ 𝑈 with |𝑈 ′ | ≥ |𝑈 |𝜖 , less than 𝜖 fraction of the edges in
(𝑈 ′)𝑘 ∩ 𝐸 are weakly satisfied by the labeling.

4.2 Compatibility

Consider a domain size 𝑞 ≥ 2, an arity 𝑘 ≥ 2, and a predicate 𝑃 ⊆ [𝑞]𝑘 . In order to understand the “V label

cover–hardness” of this predicate 𝑃 , for each edge 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) of our V label cover instance we seek to

construct probability distributions on [𝑞]𝑘×(2𝑘−1)𝐿 such that the marginal distribution of each branch of 𝑒 is

supported by 𝑃 . We define the notion of V label cover–compatibility in order to capture exactly what we need.
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Definition 4.1. For a predicate 𝑃 ⊆ [𝑞]𝑘 , consider 𝜇1, . . . , 𝜇𝑘 supported on 𝑃2
. For 𝑖, 𝑗 ∈ [𝑘], let 𝑋𝑖, 𝑗 ∼ [𝑞]2 be

the marginal distribution of 𝜇𝑖 on the 𝑗th coordinates. That is, for all (𝑎, 𝑏) ∈ [𝑞]2,
Pr

(𝑥 ′,𝑦′)∼𝑋𝑖,𝑗

[(𝑥 ′, 𝑦 ′) = (𝑎, 𝑏)] = Pr

(𝑥,𝑦)∼𝜇𝑖
[(𝑥 𝑗 , 𝑦 𝑗 ) = (𝑎, 𝑏)] .

We call the distributions 𝜇1, . . . , 𝜇𝑘 a V label cover–compatible family if they satisfy the following properties.

(1) For all 𝑖 ∈ [𝑘], 𝑋𝑖,𝑖 is uniform on {(𝑎, 𝑎) | 𝑎 ∈ [𝑞]}.
(2) For all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 and 𝑋𝑖, 𝑗 is uniform on [𝑞]2.
(3) For all 𝑖 ∈ [𝑘], 𝜌 (𝜇𝑖 ) < 1, which we define to be

𝜌 (𝜇𝑖 ) := 𝜌 (𝑋𝑖,1, . . . , 𝑋𝑖,𝑘 ).

We say that 𝑃 is V label cover–compatible if a V label cover–compatible family 𝜇1, . . . , 𝜇𝑘 exists.

The reason we have 𝑘 different distributions is because the two connected branches can intersect in 𝑘

different rows (see Figure 1).

Property (3) of Definition 4.1 precludes any algebraic structure in our predicate that would permit a

polynomial-time algorithm. For example, the uniform distribution on the predicate {𝑥 ∈ Z𝑛
2
| 𝑥1 + · · · + 𝑥𝑛 = 0}

has correlation 1 and allows for Gaussian-elimination to solve exactly.

4.3 Reduction from V label cover to 𝑃-CSP

Let 𝑃 ⊆ [𝑞]𝑘 be a predicate for 𝑞, 𝑘 ≥ 2 which is V label cover–compatible with distributions 𝜇1, . . . , 𝜇𝑘 . In this

section, we show how to reduce an arbitrary instance of V label cover into an instance of 𝑃-CSP, the constraint

satisfaction problem where all clauses are of the form (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) ∈ 𝑃 . Furthermore, we assign weights to the

clauses of this CSP, in which the weights are determined by these distributions 𝜇𝑖 . This reduction is the starting

point for showing the conditional NP-hardness results in Sections 5 and 6.

Let Ψ = (𝑈 , 𝐸, 𝐿, {𝜋 (𝑒)
𝑖

}𝑒∈𝐸,𝑖∈[𝑘 ], {𝜓 (𝑒)
𝑖

}𝑒∈𝐸,𝑖∈[𝑘 ]) be our instance of 𝑘-uniform V label cover. For each 𝑢 ∈ 𝑈 ,

we construct 𝑞 (2𝑘−1)𝐿
variables 𝑥

(𝑢)
𝑠 , where 𝑠 ∈ [𝑞] (2𝑘−1)𝐿 . Now, for every edge 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) ∈ 𝐸 and every

𝑠 (1) , . . . , 𝑠 (𝑘) ∈ [𝑞] (2𝑘−1)𝐿 with the following property

• For any 𝑡1, . . . , 𝑡𝑘 ∈ [(2𝑘 − 1)𝐿] such that (𝑡1, . . . , 𝑡𝑘 ) is a branch of 𝑒 , we have (𝑠 (1)𝑡1
, . . . , 𝑠

(𝑘)
𝑡𝑘

) ∈ 𝑃 ,

we add the constraint (𝑥 (𝑢1)
𝑠 (1)

, . . . , 𝑥
(𝑢𝑘 )
𝑠 (𝑘 )

) ∈ 𝑃 . Looking back at Figure 1, we have that any assignment of values

from [𝑞] to the nodes of the schematic such that each branch is an element of 𝑃 corresponds to some choice

(𝑠 (1) , . . . , 𝑠 (𝑘) ).
Let Φ be the resulting instance. Although we have described the clauses, we have not yet determined the

relative weights of the clauses.

Claim 4.2. If Ψ has a labeling 𝜎 : 𝑈 → [(2𝑘 − 1)𝐿] which strongly satisfies every hyperedge, then we have that Φ
has a perfect satisfying assignment. In other words, this reduction has perfect completeness.

Proof. For each 𝑢 ∈ 𝑈 , and 𝑠 ∈ [𝑞] (2𝑘−1)𝐿 , we let 𝑥 (𝑢)
𝑠 = 𝑠𝜎 (𝑢) . One can verify this assignment satisfies

Φ. □

Now, fix 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) ∈ 𝐸. For each ℓ ∈ [𝑘𝐿], let (𝑎1, . . . , 𝑎𝑘 ), (𝑏1, . . . , 𝑏𝑘 ) be the two branches of 𝑒 such

that 𝜋
(𝑒)
𝑖

(𝑎𝑖 ) = 𝜋
(𝑒)
𝑖

(𝑏𝑖 ) = ℓ for all 𝑖 . Let 𝑗 ∈ [𝑘] be the unique index for which 𝑎 𝑗 = 𝑏 𝑗 , (i.e., 𝑗 is the junction).

Let 𝐼 be the index set 𝐼 := {(𝑖, 𝑎𝑖 ) | 𝑖 ∈ [𝑘]} ∪ {(𝑖, 𝑏𝑖 ) | 𝑖 ∈ [𝑘]}; note that |𝐼 | = 2𝑘 − 1. Let Ω (𝑒)
ℓ

∼ [𝑞]𝐼 be the

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.



TheQuest for Strong Inapprox. Results • 1:17

probability distribution isomorphic to 𝜇 𝑗 such that the marginals 𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑘 of 𝜇 𝑗 correspond to the

marginals indexed by (1, 𝑎1), . . . , (𝑘, 𝑎𝑘 ), (1, 𝑏1), . . . , (𝑘,𝑏𝑘 ) of Ω (𝑒)
ℓ

.

Let

𝜈 (𝑒) :=
∏

ℓ∈[𝑘𝐿]
Ω (𝑒)
ℓ

,

where the product is over independent distributions. Note that the support of 𝜈 (𝑒) can be identified with

[𝑞] [𝑘 ]×[(2𝑘−1)𝐿] since each (𝑖, 𝑎𝑖 ) ∈ [𝑘] × [(2𝑘 − 1)𝐿] is accounted for in some branch. We let 𝑌
(𝑒,𝑖)
𝑗

be the

marginal distribution of coordinate (𝑖, 𝑗) ∈ [𝑘] × [(2𝑘 − 1)𝐿] of 𝜈 (𝑒) . For any 𝑖 ∈ [𝑘] and ℓ ∈ [𝑘𝐿], we let 𝑋 (𝑒)
𝑖,ℓ

be

the marginal distribution on the indices {(𝑖, 𝑡) | 𝜋 (𝑒)
𝑖

(𝑡) = ℓ}. In particular, if 𝑖 is a junction, the meeting point of

the branches, then 𝑌
(𝑒,𝑖)
𝑡 = 𝑋

(𝑒)
𝑖,ℓ

. Otherwise, 𝑋
(𝑒)
𝑖,ℓ

is the product of two 𝑌 ’s:

𝑋
(𝑒)
𝑖,ℓ

=
∏

𝑡 ∈(𝜋 (𝑒 )
𝑖

)−1 (ℓ)

𝑌
(𝑒,𝑖)
𝑡 .

This distribution 𝜈 (𝑒) specifies the probability distribution of the clauses corresponding to a particular edge of

the label cover instance. These probabilities are the relative weights of the clauses in the instance.

5 PERFECT-COMPLETENESS APPROXIMATION RESISTANCE AND MAX-𝑘-CSP𝑞
A natural question to ask concerning V label cover is if it reduces to natural families of predicates which are hard

to approximate, even when guaranteed perfect completeness. In the case of imperfect completeness, Austrin and

Mossel [2] showed assuming the Unique Games Conjecture that if a predicate 𝑃 ⊆ [𝑞]𝑘 , for some finite domain

size 𝑞, supports a balanced pairwise independent distribution, then 𝑃 is approximation resistant. That is, for all
𝜖 > 0, it is NP-hard to distinguish between 1 − 𝜖-satisfiable and

|𝑃 |
𝑞𝑘

+ 𝜖-satisfiable 𝑃-CSPs. Only a few years later,

in a breakthrough by Chan [12], unconditional approximation resistance was shown for any 𝑃 which supports

a balanced pairwise independent subgroup. We hope that establishing a similar conditional results for perfect

completeness will spur unconditional results in this domain.

In order to reduce from V label cover, we need a more stringent criteria than merely supporting a balanced

pairwise independent distribution. We call these more structured distributions pairwise-independent V label
cover-compatible.

Definition 5.1. Let 𝑞 ≥ 2, 𝑘 ≥ 3 be parameters. Let 𝑃 ⊆ [𝑞]𝑘 be a predicate. We say that 𝑃 is pairwise–
independent V label cover–compatible if there exists a V label cover–compatible family 𝜇1, . . . , 𝜇𝑘 supported on 𝑃2

(with marginals 𝑋𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑘]) with the additional property that

4. For all 𝑖 ∈ [𝑘] and 𝑗 ≠ 𝑗 ′ ∈ [𝑘], we have that 𝑋𝑖, 𝑗 and 𝑋𝑖, 𝑗 ′ are pairwise independent.

To motivate the definition, one way to view property (4), when combined with properties (1) and (2) of

Definition 4.1, is that 𝑃 does not just support a pairwise independent distribution, but that the distribution can

preserve pairwise independence even when conditioning on the value of a coordinate.
11
Assuming the V label

cover-conjecture, this property suffices to establish perfect-completeness approximation resistance if we allow

what are known as folded predicates.
12
Assume that [𝑞] has a + operator (e.g., addition modulo 𝑞). We specify

11
The definition permits a slightly broader class of 𝑃 (i.e., the distribution can change depending on which coordinate is conditioned on), but

our applications will construct 𝑃 of the type specified in the motivation.

12
This is a standard assumption in the CSP literature, e.g., [2].
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that we may use folded versions of our predicate 𝑃 to be the predicates

𝑎 ∈ [𝑞]𝑘 , 𝑃 (𝑎)
:= {(𝑥1 + 𝑎1, . . . , 𝑥𝑘 + 𝑎𝑘 ) | (𝑥1, . . . , 𝑥𝑘 ) ∈ 𝑃}.

Each 𝑃 (𝑎)
has the same cardinality, so incorporating these extra predicates can only increase the severity of the

hardness of approximation because a lower bound argument can choose to ignore these additional predicates.

Thus, more precisely we say that the family of predicates {𝑃 (𝑎) | 𝑎 ∈ [𝑞]𝑘 } is perfect-completeness approximation

resistant. That is, for every 𝜖 > 0, it isNP-hard to distinguish whether a CSPwith predicates from {𝑃 (𝑎) | 𝑎 ∈ [𝑞]𝑘 }
is perfectly satisfiable or is

|𝑃 |
𝑞𝑘

+ 𝜖 satisfiable.

Theorem 5.1. Let 𝑃 ⊆ [𝑞]𝑘 be a predicate which supports a pairwise-independent V label cover–compatible
distribution. Then, assuming the V label cover–conjecture, we have that the collection of predicates {𝑃 (𝑎) | 𝑎 ∈ [𝑞]𝑘 }
is perfect-completeness approximation resistant.

Proof. The high-level structure of our proof is analogous to that of Austrin and Mossel [2]. The proof

proceeds in a couple of stages. First, we describe the reduction from a V label cover instance to an instance of

𝑃-CSP, and note that such a reduction preserves perfect completeness. Second, we analyze the soundness of

our reduction using Theorem 2.5 to show that if our 𝑃-CSP can be well-approximated, then our original V label

cover instance also admits an approximation.

Reduction. Let Ψ = (𝑈 , 𝐸, 𝐿, {𝜋 (𝑒)
𝑖

}𝑒∈𝐸,𝑖∈[𝑘 ], {𝜓 (𝑒)
𝑖

}𝑒∈𝐸,𝑖∈[𝑘 ]) be our instance of 𝑘-uniform V label cover.

Let Φ be the instance of 𝑃-CSP guaranteed by the construction in Section 4.3. Let 𝜈 (𝑒) ∈ [𝑞] [𝑘 ]×[(2𝑘−1)𝐿] be the
weighting distributions on the clauses corresponding to the hyperedges. Let Ω (𝑒)

ℓ
, 𝑋

(𝑒)
𝑖, 𝑗

, 𝑌
(𝑒,𝑖)
𝑗

be the marginal

distributions described in Section 4.3. By Claim 4.2, our reduction has perfect completeness.

We now modify the CSP Φ into a new CSP Φ′
which incorporates folding. For each constraint

(𝑥 (𝑢1)
𝑠 (1)

, . . . , 𝑥
(𝑢𝑘 )
𝑠 (𝑘 )

) ∈ 𝑃

and for each 𝑖 ∈ [𝑘], let (𝑠 (𝑖) ) ′ = 𝑠 (𝑖) − 𝑠
(𝑖)
1

(i.e., subtract 𝑠
(𝑖)
1

from every coordinate). Then, we specify that

(𝑥 (𝑢1)
(𝑠 (1) )′, . . . , 𝑥

(𝑢𝑘 )
(𝑠 (𝑘 ) )′) ∈ 𝑃 (𝑠 (1)

1
,...,𝑠

(𝑘 )
1

) .

One may check that this modification preserves perfect completeness.

Soundness. We view an assignment to Φ′
as a collection of functions F = {𝑓𝑢 : [𝑞] (2𝑘−1)𝐿 → [𝑞] | 𝑢 ∈ 𝑈 },

where 𝑓𝑢 (𝑠) is the assigned value for 𝑥𝑢𝑠 . Because of our modification to the CSP, we only specify constraints for

𝑓𝑢 (𝑠) when 𝑠1 = 𝑞. Thus, we may assume that each 𝑓𝑢 is folded. That is, 𝑓𝑢 (𝑠) + 𝑎 ≡ 𝑓𝑢 (𝑠 + (𝑎, . . . , 𝑎)) mod 𝑞 for

all 𝑎 ∈ [𝑞]. One may check that the 𝑓𝑢 ’s satisfy a clause in Φ′
if and only if they satisfy the corresponding clause

in Φ. Thus, it is equivalent to focus on the 𝑓𝑢 ’s satisfaction of Φ.

For 𝑎 ∈ [𝑞], we let

𝑓
(𝑎)
𝑢 (𝑥) =

{
1 𝑓𝑢 (𝑥) = 𝑎

0 otherwise

We define the influences and low-degree influences (Definitions 2.3 and 2.4) of the 𝑓
(𝑎)
𝑢 ’s to be with respect to the

uniform distribution.

Let Φ(F ) be the fraction of constraints of Φ satisfied by F , using the weights specified by the 𝜈 (𝑒) distribu-

tions. We seek to show for any 𝜖 > 0 if there exists a F such that Φ(F ) > |𝑃 |
𝑞𝑘

+ 𝜖 , then there exists 𝛿 > 0 and

𝜎 : 𝑈 → [(2𝑘 − 1)𝐿] such that 𝜎 weakly satisfies 𝛿 fraction of the constraints of Ψ.
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It is evident from the construction, that a group of constraints are associated with each 𝑒 ∈ 𝐸. Let 𝑒 (F )
be the fraction of constraints corresponding to 𝜙 satisfied by F (that is the measure with respect to 𝜈 (𝑒) of the
clauses satisfied by F ). We have that

Φ(F ) = 1

|𝐸 |
∑
𝑒∈𝐸

𝑒 (F ).

Thus, if Φ(F ) > |𝑃 |
𝑞𝑘

+ 𝜖 , there exists a subset 𝐸 ′ ⊆ 𝐸 such that |𝐸 ′ | > (𝜖/2) |𝐸 | and 𝑒 (F ) ≥ |𝑃 |
𝑞𝑘

+ 𝜖/2 for all 𝑒 ∈ 𝐸 ′
;

as otherwise, Φ(F ) ≤ 𝜖/2 · 1 + (1 − 𝜖/2) ·
(
|𝑃 |
𝑞𝑘

+ 𝜖/2
)
<

|𝑃 |
𝑞𝑘

+ 𝜖 .

Fix, 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) ∈ 𝐸 ′
. Note that

𝑒 (F ) = E
(𝑠1,...,𝑠𝑘 )∼𝜈 (𝑒 )

[(𝑓(𝑢1) (𝑠1), . . . , 𝑓(𝑢𝑘 ) (𝑠𝑘 )) ∈ 𝑃]

=
∑
𝑟 ∈𝑃

E
(𝑠1,...,𝑠𝑘 )∼𝜈 (𝑒 )

[𝑓 (𝑟1)
𝑢1

(𝑠1) · · · 𝑓 𝑟𝑘𝑢𝑘 (𝑠𝑘 )] .

Thus, for some 𝑟 ∈ 𝑃 , we have that

E
(𝑠1,...,𝑠𝑘 )∼𝜈 (𝑒 )

[𝑓 (𝑟1)
𝑢1

(𝑠1) · · · 𝑓 𝑟𝑘𝑢𝑘 (𝑠𝑘 )] >
1

𝑞𝑘
+ 𝜖

2|𝑃 | .

Let 𝜖 ′ = 𝜖/(2|𝑃 |) > 0. Also, for all 𝑖 ∈ [𝑘], let Π (𝑒)
𝑖

=
∏𝑘𝐿

ℓ=1𝑋
(𝑒)
𝑖,ℓ

. Since each Π (𝑒)
𝑖

is uniform and 𝑓𝑢𝑖 is folded, we

have that

E
𝑠𝑖∼Π (𝑒 )

𝑖

[𝑓 (𝑟𝑖 )
𝑢𝑖 (𝑠𝑖 )] =

1

𝑞
.

In particular, this implies that ����� ℓ∏
𝑖=1

E[𝑓 (𝑟𝑖 )
𝑢𝑖 (𝑠𝑖 )] − E

[
ℓ∏

𝑖=1

𝑓
(𝑟𝑖 )
𝑢𝑖 (𝑠𝑖 )

] ����� > 𝜖 ′.

Note that 𝜈 (𝑒) = Ω (𝑒)
1

× · · · × Ω (𝑒)
𝑘𝐿

meets the requirements of Theorem 2.5. Thus, there exists 𝜏, 𝑑 > 0, which are

functions of only 𝜖 ′ and parameters of |𝑃 |, such that

∃ℓ ∈ [𝑘𝐿], |{𝑖 : Inf ≤𝑑
𝑋

(𝑒 )
𝑖,ℓ

𝑓
(𝑟𝑖 )
𝑢𝑖 > 𝜏}| ≥ 3.

Let 𝑖1, 𝑖2, 𝑖3 ∈ [𝑘] be three of these coordinates and let ℓ ∈ [𝑘𝐿] be the guaranteed value of ℓ . Observe that we can

also write Π (𝑒)
𝑖𝑎

as

Π (𝑒)
𝑖𝑎

=
∏

𝑡 ∈[(2𝑘−1)𝐿]
𝑌

(𝑒,𝑖𝑎)
𝑡 .

Note that each𝑋
(𝑒)
𝑖𝑎,ℓ

can be written as the product distribution of at most 2𝑌
(𝑒,𝑖𝑎)
𝑡 ’s, where 𝜋

(𝑒)
𝑖𝑎

(𝑡) = ℓ . By invoking

Lemma 2.4 with 𝐷 = 2, we have that there exists 𝑡1, 𝑡2, 𝑡3 such that 𝜋
(𝑒)
𝑖𝑎

(𝑡𝑎) = ℓ for all 𝑎 ∈ {1, 2, 3} and

Inf
≤2𝑑
𝑌

(𝑒,𝑖𝑎 )
𝑡𝑎

𝑓
(𝑟𝑖 )
𝑢𝑖𝑎

= Inf
≤2𝑑
𝑡𝑎

>
𝜏

2

,

where the equality is due to the fact that the 𝑌
(𝑒,𝑖𝑎)
𝑡𝑎

distributions are uniform distributions on [𝑞].
Note that since each ‘component’ of (𝑒) has two branches, by the Pigeonhole principle, some two of {𝑡1, 𝑡2, 𝑡3}

are in the same branch. Thus, any assignment 𝜎 for which 𝜎 (𝑢𝑖𝑎 ) = 𝑡𝑎 for all 𝑎 ∈ {1, 2, 3} weakly satisfies 𝑒 .

For each 𝑢 ∈ 𝑈 . Let 𝑆𝑢 ⊆ [(2𝑘 − 1)𝐿] be the set of labels 𝑗 for which Inf
≤2𝑑
𝑗 𝑓

(𝑎)
𝑢 > 𝜏/2 for some 𝑎 ∈ [𝑞].

Since Var 𝑓
(𝑎)
𝑢 ≤ max(𝑓 (𝑎)

𝑢 )2 = 1, we have by Lemma 2.3 that |𝑆𝑢 | ≤ 4𝑑𝑞/𝜏 , which is independent of 𝐿. Construct
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a random labeling 𝜎 : 𝑈 → [(2𝑘 − 1)𝐿] by sampling each 𝜎 (𝑢) from 𝑆𝑢 independently and uniformly at random

(if 𝑆𝑢 is empty, let 𝜎 (𝑢) = 1). For each 𝑒 ∈ 𝐸 ′
, we established that there exists 𝑖, 𝑖 ′ ∈ [𝑘] and ℓ ∈ 𝑆𝑢𝑖 and ℓ ′ ∈ 𝑆𝑢𝑖′

such that setting 𝜎 (𝑢𝑖 ) = ℓ and 𝜎 (𝑢𝑖′) = ℓ ′ weakly satisfies 𝑒 . Thus, in expectation at least

|𝐸 ′ |
|𝐸 | ·

1

(max |𝑆𝑢 |)2
=

𝜏2𝜖

16𝑑2𝑞2
> 0

of the edges are weakly satisfied. Note that this expression is independent of 𝐿 and the size of Ψ, as desired. □

We use this theorem to obtain hardness of approximation results for Max-𝑘-CSP𝑞 when 𝑞 ≥ 2 is a prime

power. We start with the following combinatorial lemma.

Claim 5.2. Let 𝑞 ≥ 2 be a prime power, and let ℓ ≥ 1 be odd. There exists 𝑆 ⊂ Fℓ𝑞 with |𝑆 | = 𝑞 (ℓ−1)/2 such that 𝑆 is
3-wise linearly independent over F𝑞 . That is, each three-element subset of 𝑆 is linearly independent.

Remark. The proof is substantially simplified from the conference version [10], based on suggestions by Michael

Forbes and Sergey Yekhanin.

Proof. Let ℓ ′ = (ℓ − 1)/2. Consider
𝑆 = {(1, 𝑥, 𝑥2) : 𝑥 ∈ F𝑞ℓ′ }.

Here, F𝑞ℓ′ is identified with Fℓ
′
𝑞 in the canonical way. Any three distinct vectors are linearly independent because

the Vandermonde determinant is nonzero.

det

©­«
1 1 1

𝑥 𝑦 𝑧

𝑥2 𝑦2 𝑧2

ª®¬ = (𝑥 − 𝑦) (𝑦 − 𝑧) (𝑧 − 𝑥). □

Lemma 5.3. For all 𝑞 ≥ 2 a prime power and 𝑘 ≥ 2, there exists 𝑃 ⊆ [𝑞]𝑘 which is pairwise–independent V label
cover-compatible with |𝑃 | = 2𝑘3𝑞3.

Remark. Because of the recent breakthrough that subsets of Z𝑛𝑞 which do not have an arithmetic progress of

length three have size at most 𝑞𝑐𝑛 for some 𝑐 < 1, [15, 20], it is impossible to improve that factor of 1/2 in the

exponent of Claim 5.2 to 1 when 𝑞 ≥ 3. In particular, Lemma 5.3 can at best be improved to 𝑂𝑞 (𝑘2+𝛾 ) for some

𝛾 > 0 (where the 𝑂𝑞 notation hides the dependence of 𝑞).

Proof. We use a modification of the constructions of [2] and [68]. Let ℓ ≥ 3 be the least odd integer such

that 𝑞 (ℓ−1)/2 ≥ 𝑘 . Thus, 𝑞ℓ ≤ 𝑘2𝑞3. View Fℓ𝑞 as a vector space over F𝑞 . By Claim 5.2 there exists 𝑆 ⊂ Fℓ𝑞 with

|𝑆 | ≥ 𝑞 (ℓ−1)/2 ≥ 𝑘 such that 𝑆 is 3-wise linearly independent (i.e., every 3-element subset is linearly independent).

Let 𝑣 (1) , . . . , 𝑣 (𝑘) ∈ 𝑆 be 𝑘 distinct elements from this set. Define ⟨·, ·⟩ to be the canonical bilinear form on Fℓ𝑞 .

That is, ⟨𝑥,𝑦⟩ = ∑ℓ
𝑖=1 𝑥𝑖𝑦𝑖 .

We give an initial attempt to construct our predicate. Let
13

𝑃0 = {(⟨𝑣 (1) , 𝑋 ⟩, . . . , ⟨𝑣 (𝑘) , 𝑋 ⟩) : 𝑋 ∈ Fℓ𝑞}.

We have that |𝑃0 | ≤ 𝑞ℓ ≤ 𝑘2𝑞3. We show that 𝑃0 satisfies properties (1), (2), and (4) of Definitions 4.1 and 5.1.

Note that the definition of 𝑃0 defined a natural probability distribution 𝜇. It is clear that 𝜇 has uniform marginal

distributions (since each 𝑣 (𝑖) is nonzero and 𝑋 is uniform). Furthermore, the marginal distributions are 3-wise

independent (and thus 3-wise uniform) since the 𝑣 (𝑖) ’s are 3-wise linearly independent. (We omit the proof, a

similar result for pairwise independence is Lemma 4.2 of [2].)

13
Note that we identify [𝑞 ] with F𝑞 in some canonical way.
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Now, fix 𝑖 ∈ [𝑘], define 𝜇𝑖 to be

𝜇𝑖 := {𝑥,𝑦 ∼ 𝜇 independent : 𝑥𝑖 = 𝑦𝑖 }.
Let𝑋𝑖, 𝑗 with 𝑗 ∈ [𝑘] be the marginals of 𝜇𝑖 . We seek to show 𝜇𝑖 satisfies properties (1), (2), and (4) of Definitions 4.1

and 5.1. Property (1) follows immediately from the uniform marginals of 𝜇. Now, fix 𝑗 ≠ 𝑖 , since (𝑥𝑖 , 𝑥 𝑗 ) and
(𝑥𝑖 = 𝑦𝑖 , 𝑦 𝑗 ) are uniform distributions and 𝑥 𝑗 and 𝑦 𝑗 are conditionally independent given 𝑥𝑖 , we have that

Pr[𝑥𝑖 ∧ 𝑥 𝑗 ∧ 𝑦 𝑗 ] = Pr[𝑥 𝑗 ∧ 𝑦 𝑗 |𝑥𝑖 ] Pr[𝑥𝑖 ] = Pr[𝑥 𝑗 |𝑥𝑖 ] Pr[𝑦 𝑗 |𝑥𝑖 ] Pr[𝑥𝑖 ] = Pr[𝑥 𝑗 ] Pr[𝑦 𝑗 ] Pr[𝑥𝑖 ] .
Therefore, (𝑥𝑖 , 𝑥 𝑗 , 𝑦 𝑗 ) is uniform on Fℓ𝑞 . Thus, property (2) and the case 𝑗 ′ = 𝑖 of property (4) follow.

To finish establishing property (4), consider 𝑗 ≠ 𝑗 ′ ∈ [𝑘] \ {𝑖}. We seek to show that (𝑥 𝑗 , 𝑥 𝑗 ′, 𝑦 𝑗 , 𝑦 𝑗 ′) is
uniform for which it suffices to show that (𝑥𝑖 , 𝑥 𝑗 , 𝑥 𝑗 ′, 𝑦 𝑗 , 𝑦 𝑗 ′) is uniform. Like before,

Pr[𝑥𝑖 ∧ 𝑥 𝑗 ∧ 𝑥 𝑗 ′ ∧ 𝑦 𝑗 ∧ 𝑦 𝑗 ′] = Pr[𝑥 𝑗 ∧ 𝑥 𝑗 ′ |𝑥𝑖 ] Pr[𝑦 𝑗 ∧ 𝑦 𝑗 ′ |𝑥𝑖 ] Pr[𝑥𝑖 ]
= Pr[𝑥 𝑗 ] Pr[𝑥 𝑗 ′] Pr[𝑦 𝑗 ] Pr[𝑦 𝑗 ′] Pr[𝑥𝑖 ] (3-wise independence of 𝜇).

Thus, the 𝜇𝑖 ’s satisfy properties (1), (2), and (4) of Definitions 4.1 and 5.1. Sadly, due to the nice algebraic structure

of 𝑃0, we have that 𝜌 (𝜇𝑖 ) = 1 for all 𝑖 . To rectify this, we create a ‘noisy’ version of 𝑃0. For 𝑥 ∈ F𝑘𝑞 , let |𝑥 | be the
number of nonzero coordinates of 𝑥 . Then, we define 𝑃 to be

𝑃 := {𝑥 ∈ F𝑘𝑞 | ∃𝑦 ∈ 𝑃0, |𝑥 − 𝑦 | ≤ 1}.

Note that |𝑃 | ≤ (𝑘 + 1) |𝑃0 | ≤ 2𝑘3𝑞3. Now, modify the 𝜇𝑖 ’s to get 𝜇 ′𝑖 ’s by the following procedure.

(1) Sample (𝑥,𝑦) ∈ 𝜇𝑖 .

(2) Sample 𝑗 ∈ [𝑘] and 𝑎, 𝑏 ∈ F𝑞 uniformly.

(3) If 𝑖 = 𝑗 , set 𝑥𝑖 = 𝑦 𝑗 = 𝑎. Otherwise, set 𝑥𝑖 = 𝑎 and 𝑦 𝑗 = 𝑏.

Clearly the support of 𝜇 ′𝑖 is 𝑃
2
. Also 𝜇 ′𝑖 preserves properties (1), (2), and (4) of Definitions 4.1 and 5.1 of being V

label cover-compatible since re-randomizing coordinates can only assist in maintaining pairwise independent

distributions.

It remains to show that 𝜇 ′𝑖 satisfies property (3) of Definition 4.1. The proof of this is similar to that of

Lemma 4.6 of [68]. Let

𝑍𝑖, 𝑗 :=

𝑘∏
𝑗=1, 𝑗≠𝑖

𝑋𝑖, 𝑗 .

It suffices to show that 𝜌 (𝑋𝑖, 𝑗 , 𝑍𝑖, 𝑗 ) < 1. To do that, it suffices to show by Lemma 2.2 that the bipartite graph

whose edges are the support of 𝑋𝑖, 𝑗 ×𝑍𝑖, 𝑗 is connected. For any (𝛼, 𝛽) ∈ 𝑋𝑖, 𝑗 ×𝑍𝑖, 𝑗 , since with nonzero probability

the 𝑗th coordinate is rerandomized, we have that (𝛼 ′, 𝛽) ∈ 𝑋𝑖, 𝑗 × 𝑍𝑖, 𝑗 for all 𝛼
′
in the support of 𝑋𝑖, 𝑗 . From this

connectivity immediately follows.

Therefore, 𝑃 has the desired properties. □

Using the same proof techniques, we have the following corollary.

Corollary 5.4. For 𝑞 = 2 and all 𝑘 ≥ 2, there exists 𝑃 ⊆ [2]𝑘 which is pairwise–independent V label cover–
compatible and |𝑃 | = 𝑂 (𝑘2).

Proof. Repeat the proof of Lemma 5.3, but note that 𝑆 = {𝑥 ∈ Fℓ
2
:

∑ℓ
𝑖=1 𝑥𝑖 = 1} is a 3-wise-independent

subset of size 2
ℓ−1

. □

Now we may obtain Theorem 1.1.
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Proof of Theorem 1.1. The case 𝑞 = 2 follows immediately from Corollary 5.4 and Theorem 5.1. Similarly,

if 𝑞 ≥ 3 is a prime power, then the result follows from Lemma 5.3 and Theorem 5.1. □

Remark. If 𝑞 is not a prime power, we cannot invoke the monotonicity result of [2, Cor. B.1], since they crucially

assume a lack of perfect completeness. In fact, their reduction does not even produce instances which are near-

perfectly satisfiable. If for a general 𝑞, we can find a distribution 𝜇 ∼ [𝑞]𝑘 whose support is of size poly(𝑞, 𝑘), has
uniform marginals, and has 3-wise independence, then by Theorem 5.1 we can extend our result to Max-𝑘-CSP𝑞 .

This is the first conditional NP-hardness reduction which obtains a soundness of
poly(𝑞,𝑘)

𝑞𝑘
for even one fixed

𝑞. Previously, a long code test due to Tamaki and Yoshida [68] obtained
𝑂 (𝑘)
2
𝑘 for when 𝑞 = 2. The currently best

known unconditional result for Max-𝑘-CSP2 is
2
𝑂 (𝑘1/3 )

2
𝑘 due to Huang [39]. For 𝑞 ≥ 3, the best known result is [36]

[53].

Remark. Using a modification of the predicate of [68], we speculate that it is possible to improve the hardness

factor for Boolean Max-𝑘-CSP to 𝑂 (𝑘/2𝑘 ).

6 REDUCTION TO STRONG/RAINBOW HYPERGRAPH COLORING

Recall the notions of strong and rainbow graph coloring [8, 9, 29].

Definition 6.1. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph of uniformity 𝑘 ≥ 2. Let 𝑞 ≥ 𝑘 be a positive integer. A function

𝜒 : 𝑉 → [𝑞] is a (𝑘, 𝑞)-strong coloring of 𝐻 if for all 𝑒 ∈ 𝐸, 𝜒 ↾ 𝑒 is an injection. In other words, no two vertices

in the same hyperedge receive the same color.

Definition 6.2. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph of uniformity 𝑘 ≥ 2. Let 𝑞 ≤ 𝑘 be a positive integer. A function

𝜒 : 𝑉 → [𝑞] is a (𝑘, 𝑞)-rainbow coloring of 𝐻 if for all 𝑒 ∈ 𝐸, 𝜒 ↾ 𝑒 is a surjection. That is, for all 𝑒 ∈ 𝐸 and 𝑐 ∈ [𝑞],
there is 𝑣 ∈ 𝑒 such that 𝜒 (𝑣) = 𝑐 .

Note that the notions of strong and rainbow coloring coincide when 𝑘 = 𝑞. In these hypergraphs, we would

like to know if we can tractably identify large weak independent sets.

Definition 6.3. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph. A subset𝑊 ⊆ 𝑉 is an weak independent set, if for all 𝑒 ∈ 𝐸,

𝑒 ∩𝑊 ≠ 𝑒 .

Theorem6.1. Assume the induced version of the V label cover-conjecture (Conjecture 4.1). For all𝑘 ≥ 2,𝑞 > 𝑘+
√
𝑘− 1

2

and 𝜖 > 0, given a 𝑘-uniform hypergraph 𝐻 = (𝑉 , 𝐸), it is NP-hard to distinguish between the following two settings.

• YES: 𝐻 admits a (𝑘, 𝑞)-strong coloring.
• NO: 𝐻 does not have a weak independent set of density 𝜖 (|𝑉 |𝜖 vertices).

Theorem 6.2. Assume the induced version of the V label cover-conjecture (Conjecture 4.1). For all 𝑘 > 𝑞 ≥ 2 and
𝜖 > 0, given a 𝑘-uniform hypergraph 𝐻 = (𝑉 , 𝐸), it is NP-hard to distinguish between the following two settings.

• YES: 𝐻 admits a (𝑘, 𝑞)-rainbow coloring.
• NO: 𝐻 does not have a weak independent set of density 𝜖 (|𝑉 |𝜖 vertices).

We can view strong and rainbow hypergraph coloring as CSPs. In particular, let

𝑆𝑘,𝑞 = {(𝑐1, . . . , 𝑐𝑘 ) ∈ [𝑞]𝑘 | ∀𝑖, 𝑗 ∈ [𝑘], if 𝑖 ≠ 𝑗 then 𝑐𝑖 ≠ 𝑐 𝑗 }
be the strong coloring predicate, and let

𝑅𝑘,𝑞 = {(𝑐1, . . . , 𝑐𝑘 ) ∈ [𝑞]𝑘 | ∀𝑐 ∈ [𝑞], ∃𝑖 ∈ [𝑘], 𝑐 = 𝑐𝑖 }
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be the rainbow coloring predicate.

These predicates have structure which we call unpredictable.

6.1 Unpredictable predicates

In this section, we supplement Definition 4.1 to give our distributions additional properties that we need for our

hardness reduction.

Definition 6.4. Let 𝑞, 𝑘 ≥ 2 be parameters. Let 𝑃 ⊆ [𝑞]𝑘 be a predicate. We say that 𝑃 is unpredictably V label
cover–compatible if there exists a V label cover–compatible family 𝜇1, . . . , 𝜇𝑘 supported on 𝑃2

(with marginals

𝑋𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑘]) with the additional properties that:

4. For all 𝑖 ∈ [𝑘] and 1 ≤ 𝑗 < 𝑘 , we have that

𝜌

(
𝑗∏

ℓ=1

𝑋𝑖,ℓ ,

𝑘∏
ℓ=𝑗+1

𝑋𝑖,ℓ

)
< 1.

5. Each 𝑖 ∈ [𝑘] and 𝑗1, 𝑗2 ∈ [𝑘] \ {𝑖} with 𝑗1 ≠ 𝑗2, we have that the marginal distribution of (𝑥 𝑗1 , 𝑦 𝑗2 ) in 𝜇𝑖
(recall that 𝑥 𝑗1 and 𝑦 𝑗2 are in separate ‘branches’ of 𝜇𝑖 ) is uniform over [𝑞]2.

As the properties are rather technical, the following definition helps to streamline our understanding.

Definition 6.5 (c.f., Section 1.4 [55]). Let Ω = 𝑋 (1) × · · · ×𝑋 (𝑘)
be a probability space. We say that Ω is connected

if for all atoms (elements with nonzero probability) 𝑥,𝑦 ∈ Ω, there exists a sequence 𝑧0, . . . , 𝑧𝑛 ∈ Ω of atoms such

that 𝑥 = 𝑧0, 𝑦 = 𝑧𝑛, and 𝑧𝑖 and 𝑧𝑖−1 differ in exactly one of the 𝑘 coordinates for all 𝑖 ∈ [𝑛].

The following lemma demonstrates the utility of connected predicates.

Lemma 6.3. If 𝑃 admits a family 𝜇1, . . . , 𝜇𝑘 (with marginals 𝑋𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑘]) of probability distributions such that
they are connected. Then 𝑃 satisfies property (3) of Definition 4.1 and property (4) of Definition 6.4.

Proof. First we verify property (4) of Definition 6.4. Fix 𝑖 ∈ [𝑘]. It suffices to check for all 1 ≤ 𝑗 < 𝑘 that

𝜌

(
𝑗∏

ℓ=1

𝑋𝑖,ℓ ,

𝑘∏
ℓ=𝑗+1

𝑋𝑖,ℓ

)
< 1.

By Lemma 2.2, it suffices to check that the bipartite graph𝐺𝑖, 𝑗 :=
∏𝑗

ℓ=1
𝑋𝑖,ℓ ×

∏𝑘
ℓ=𝑗+1𝑋𝑖,ℓ corresponding to nonzero

probability events is connected. Consider any atom 𝑥 ∈ ∏𝑗

ℓ=1
𝑋𝑖,ℓ and 𝑦 ∈ ∏𝑗

ℓ=1
𝑋𝑖,ℓ . Since 𝑥 and 𝑦 are marginals

with nonzero probability, there exist atoms 𝑥 ′, 𝑦 ′ ∈ 𝜇𝑖 such that 𝑥 is a prefix of 𝑥 ′
and 𝑦 is a suffix of 𝑦 ′

. Since 𝜇𝑖 is

connected, there exists 𝑧0, . . . , 𝑧𝑛 such that 𝑧0 = 𝑥 ′, 𝑧𝑛 = 𝑦 ′
and 𝑧𝑖 and 𝑧𝑖−1 differ in exactly one coordinate for all

𝑖 ∈ [𝑛]. In particular, this implies that each 𝑧𝑖 corresponds to an edge of𝐺𝑖, 𝑗 and consecutive edges share a vertex.

Thus, 𝑥 and 𝑦 are connected; therefore 𝐺𝑖, 𝑗 is connected. Hence, the 𝜇𝑖 ’s satisfy property (4) of Definition 6.4.

By essentially the same argument, we can see that the 𝜇𝑖 ’s satisfy property (3) of Definition 4.1. □

We can apply this lemma to obtain results about the CSPs corresponding to strong and rainbow hypergraph

coloring.

Lemma 6.4. For all 𝑘 ≥ 2 and 𝑞 > 𝑘+
√
𝑘− 1

2
, 𝑆𝑘,𝑞 is unpredictably V label cover-compatible.

Proof. Since 𝑆𝑘,𝑞 is a symmetric predicate, it suffices without loss of generality to construct the distribution

𝜇1. The distribution 𝜇1 corresponds to the following algorithm
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(1) Pick𝑚 ∈ {2𝑘 − 𝑞 − 1, . . . , 𝑘 − 1} according to a distribution Ω to be specified.

(2) Pick uniformly at random a partial matching (𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚) ∈ {2, . . . , 𝑘}2 such that 𝑎𝑖 ≠ 𝑎 𝑗 and

𝑏𝑖 ≠ 𝑏 𝑗 for all distinct 𝑖, 𝑗 ∈ [𝑚].
(3) Define 𝑆 ′ ⊂ 𝑆𝑘,𝑞 to be

𝑆 ′ := {((𝑥1, . . . , 𝑥𝑘 ), (𝑦1, . . . , 𝑦𝑘 )) ∈ 𝑆𝑘,𝑞 | 𝑥1 = 𝑦1,∀𝑎, 𝑏 ∈ {2, . . . , 𝑘},
𝑦𝑎 = 𝑥𝑏 iff ∃𝑖 ∈ [𝑚], (𝑎, 𝑏) = (𝑎𝑖 , 𝑏𝑖 )}.

Pick ((𝑥1, . . . , 𝑥𝑘 ), (𝑦1, . . . , 𝑦𝑘 )) ∼ 𝑆 ′ uniformly at random.

Our sample from 𝜇1 is then ((𝑥1, . . . , 𝑥𝑘 ), (𝑦1, . . . , 𝑦𝑘 )). In order for this to be sensible, we need to verify the

following claim.

Claim 6.5. For any choice of𝑚 ∈ {2𝑘 − 𝑞 − 1, . . . , 𝑘 − 1} and (𝑎1, 𝑏1), . . . , (𝑎𝑚, 𝑏𝑚), we have that 𝑆 ′ is nonempty.

Proof. By symmetry, we may assume without loss of generality that 𝑎𝑖 = 𝑏𝑖 = 𝑖 + 1 for all 𝑖 ∈ [𝑚]. Let
𝑥𝑖 = 𝑖 for all 𝑖 ∈ [𝑘]. Let 𝑦𝑖 = 𝑖 for all 𝑖 ∈ [𝑚]. For 𝑖 ∈ {𝑚 + 1, . . . , 𝑘}, let 𝑦𝑖 = 𝑘 + 𝑖 −𝑚 ≤ 𝑘 + 𝑘 − (2𝑘 − 𝑞) = 𝑞.

Thus, ((𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛)) ∈ 𝑆 ′, as desired. □

Now, we pick our distribution Ω to satisfy the property guaranteed by the following claim

Claim 6.6. There is a distribution Ω supported on {2𝑘 − 𝑞 + 1, . . . , 𝑘 − 1} such that each element of the set has
nonzero probability and

E [Ω] = (𝑘 − 1)2
𝑞

.

Proof. Since 𝑞 > 𝑘 +
√
𝑘 − 1

2
, we have that

2𝑘 − 𝑞 + 1 <
(𝑘 − 1)2

𝑞
< 𝑘 − 1. (1)

Let 𝑋 be the probability distribution on Ω which samples 2𝑘 − 𝑞 + 1 with probability 1. Let 𝑌 be the probability

distribution on Ω which samples 𝑘 − 1 with probability 1. Let 𝑍 be the uniform distribution on Ω. By (1), there

exists 𝜖 > 0 such that the mixture (1−𝜖)𝑋 +𝜖𝑍 (i.e., the probability distribution which samples𝑋 with probaiblity

1 − 𝜖 and from 𝑍 with probability 𝜖) has mean less than
(𝑘−1)2

𝑞
and the mixture (1 − 𝜖)𝑌 + 𝜖𝑍 has mean greater

than
(𝑘−1)2

𝑞
. Note that both of these distribution have full support.

By an application of the intermediate value theorem, there must be some a mixture of (1 − 𝜖)𝑋 + 𝜖𝑍 and

(1 − 𝜖)𝑌 + 𝜖𝑍 on Ω with mean
(𝑘−1)2

𝑞
which gives every𝑚 ∈ {2𝑘 − 𝑞 + 1, . . . , 𝑘 − 1} nonzero probability. □

Since the algorithm is symmetric with respect to the colors, we have that 𝑥1 (and thus also 𝑦1) is chosen

uniformly at random. Therefore, 𝜇1 has property (1) of Definition 4.1. Fix 𝑖, 𝑗 ∈ {2, . . . , 𝑘} (not necessarily distinct).
Since our algorithm is symmetric with respect to these pairs (𝑖, 𝑗), Claim 6.6 guarantees that 𝑥 𝑗 = 𝑦 𝑗 with

probability 1/𝑞. Thus, 𝑥 𝑗 ≠ 𝑦 𝑗 with probability (𝑞 − 1)/𝑞. These probabilities are consistent with the uniform

distribution on [𝑞]2. By the symmetry of the algorithm, we have that once we decide whether 𝑥 𝑗 = 𝑦 𝑗 or 𝑥 𝑗 ≠ 𝑦 𝑗 ,

the coloring is chosen uniformly from the valid options. Thus, (𝑥 𝑗 , 𝑦 𝑗 ) is a uniform distribution on [𝑞]2, so 𝜇1 has

property (2) of Definition 4.1 and property (5) of Definition 6.4.

The last thing to verify is that 𝜇1 is a connected distribution. Let 𝑆 ′′
𝑘,𝑞

:= {(𝑥,𝑦) ∈ 𝑆2
𝑘,𝑞

| 𝑥1 = 𝑦1}. Note that
each element (𝑥,𝑦) ∈ 𝑆 ′′

𝑘,𝑞
has nonzero probability in 𝜇1, since there is a nonzero probability that𝑚 is chosen and

{(𝑎𝑖 , 𝑏𝑖 ) | 𝑖 ∈ [𝑚]} are drawn in order to equal to {(𝑖, 𝑗) ∈ {2, . . . , 𝑘}2 | 𝑥𝑖 = 𝑦 𝑗 }. Then, since (𝑥,𝑦) ∈ 𝑆 ′, there is a
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nonzero probability (𝑥,𝑦) is drawn. Thus, to show that 𝜇1 is connected, it suffices to show that each (𝑥,𝑦) ∈ 𝑆 ′′
𝑘,𝑞

can reach ((1, 2, . . . , 𝑘), (1, 2, . . . , 𝑘)) ∈ 𝑆 ′′𝑘,𝑞 by changing pairs (𝑥𝑖 , 𝑦𝑖 ) while staying in 𝑆 ′′
𝑘,𝑞

. This can be done by

Algorithm 4.

for 𝑐 ∈ [𝑘] do
for 𝑗 ∈ [𝑘] \ {1} with 𝑥 𝑗 = 𝑐 do

Set 𝑥 𝑗 to some color in [𝑞] \ {𝑥1, . . . , 𝑥𝑘 }
end
for 𝑗 ∈ [𝑘] \ {1} with 𝑦 𝑗 = 𝑐 do

Set 𝑦 𝑗 to some color in [𝑞] \ {𝑦1, . . . , 𝑦𝑘 }
end
Set 𝑥𝑐 = 𝑦𝑐 = 𝑐

end
Algorithm 4: Algorithm demonstrating connectivity of 𝑆 ′′

𝑘,𝑞
.

In the two internal for loops, the modification is always legal, as we purposely select a color not among

those used by the other 𝑥𝑘 ’s. The last line is also legal for 𝑐 = 1 since every other variable has value other than 1.

The last line is also legal for 𝑐 > 1 since 𝑥 𝑗 , 𝑦 𝑗 ≠ 𝑐 for all 𝑗 ∈ {2, . . . , 𝑛} and 𝑥1 = 𝑦1 = 1 ≠ 𝑐 . Thus, we have that 𝜇1
is connected.

Thus, by Lemma 6.3, we have that 𝜇1 is unpredictably V label cover-compatible. □

Lemma 6.7. For all 𝑘 ≥ 3, 𝑅𝑘,𝑘−1 is unpredictably V label cover-compatible

Proof. Again, it suffices to construct 𝜇1 only. Consider the following distribution. Note that the support of

this distribution is a strict subset of 𝑅𝑘,𝑞 , where 𝑞 = 𝑘 − 1.

(1) Let (𝑥2, . . . , 𝑥𝑘 ) and (𝑦2, . . . , 𝑦𝑘 ) be independently chosen uniformly random permutations of (1, . . . , 𝑞).
(2) Pick 𝑏 ∈ {0, 1} and ℓ ∈ {2, . . . , 𝑘} uniformly at random.

(3) If 𝑏 = 0, set 𝑥1 = 𝑦1 = 𝑥ℓ and then recolor 𝑥ℓ uniformly at random (possibly the same color). Otherwise,

if 𝑏 = 1, set 𝑥1 = 𝑦1 = 𝑦ℓ and recolor 𝑦ℓ uniformly at random.

Like usual, ((𝑥1, . . . , 𝑥𝑘 ), (𝑦1, . . . , 𝑦𝑘 )) is our sample from 𝜇1. It is straightforward to verify that this distri-

bution 𝜇1 satisfies properties (1) and (2) of Definition 4.1 and property (5) of Definition 5.1. To verify the other

properties, by Lemma 6.3, if suffices to show that the support of 𝜇1 is connected. We do this by demonstrating

that everything connects to {(1, 1, 2, . . . , 𝑞), (1, 1, 2, . . . , 𝑞)}.
First, note that for any (𝑥,𝑦) ∈ 𝜇1, we have that (𝑥,𝑦) is connected to (𝑥 ′, 𝑦 ′) ∈ 𝜇1 such that (𝑥 ′

2
, . . . , 𝑥 ′

𝑘
)

and (𝑦 ′
2
, . . . , 𝑦 ′

𝑘
) are permutations of (1, . . . , 𝑞), because by Step (3) we can change the color of either 𝑥ℓ or 𝑦ℓ to

make the permutations.

Second, observe that if (𝑥,𝑦) ∈ 𝜇1 has the property that (𝑥2, . . . , 𝑥𝑘 ) and (𝑦2, . . . , 𝑦𝑘 ) are permutations of

(1, . . . , 𝑞), then the modification (𝑥 ′, 𝑦 ′) with 𝑥 ′
1
= 𝑦 ′

1
= 1, but otherwise equal to (𝑥,𝑦), is also in the support of

𝜇1.

Next, we show that if (𝑥,𝑦) ∈ 𝜇1 has 𝑥1 = 𝑦1 = 1 and (𝑥2, . . . , 𝑥𝑘 ) and (𝑦2, . . . , 𝑦𝑘 ) are permutations of

(1, . . . , 𝑞), then for any distinct 𝑖, 𝑗 ∈ {2, . . . , 𝑘}, (𝑥 ′, 𝑦 ′) ∈ 𝜇1 with 𝑥 ′
𝑗 = 𝑥𝑖 and 𝑥 ′

𝑖 = 𝑥 𝑗 , but otherwise equal to

(𝑥,𝑦), is connected to (𝑥,𝑦). We do this as follows.

(1) Set 𝑥1 = 𝑦1 = 𝑥𝑖 .
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(2) Set 𝑥𝑖 = 𝑥 𝑗 .

(3) Set 𝑥 𝑗 = 𝑥1.

(4) Set 𝑥1 = 1.

It is clear a similar result holds for transposing the elements of 𝑦 instead of the elements of 𝑥 .

Now, by applying a standard sorting algorithm, we can see that all (𝑥,𝑦) ∈ 𝜇1 are connected to

((1, 1, 2, . . . , 𝑞), (1, 1, 2, . . . , 𝑞)),

as desired. Thus, 𝑅𝑘,𝑘−1 is unpredictably V label cover–compatible. □

6.2 Hardness results

Now that we know are predicates are unpredictably V label cover-compatible, we may proceed with establishing

Theorems 6.1 and 6.2.

If Φ is a 𝑃-CSP, in which 𝑃 ⊆ [𝑞]𝑘 , define the underlying 𝑘-uniform hypergraph of Φ to be the 𝑘-uniform

hypergraph who vertices are the variables of Φ and those hyperedges are the clauses of Φ.

Theorem 6.8. Let 𝑃 ⊆ [𝑞]𝑘 (𝑞, 𝑘 ≥ 2), be a predicate which supports a unpredictably V label cover-compatible
distribution. Then, assuming the induced version of the V label cover-conjecture (Conjecture 4.1), for all 𝜖 > 0, it is
NP-hard to distinguish the following for a 𝑃-CSP Φ.

• YES: Φ is perfectly satisfiable.
• NO: The underlying 𝑘-uniform hypergraph of Φ does not have an 𝜖-density weak independent set.

Proof. The proof mirrors the structure of Theorem 5.1 and also incorporates some ideas from [18]. First,

we describe the reduction from a V label cover instance to an instance of 𝑃-CSP, and note that such a reduction

preserves perfect completeness. Second, we analyze the soundness of our reduction using Theorem 2.6 to show

that if the underlying hypergraph of the 𝑃-CSP has a large weak-independent set, then our original V label

cover instance also admits an approximation.

Reduction. The reduction is exactly that specified in Section 4.3. This time, we make no modifications for

folding. In particular by Claim 4.2, the reduction has perfect completeness.

Soundness. Assume the the underlying hypergraph 𝐻Φ = (𝑉Φ, 𝐸Φ) has a large weak independent set 𝐼 ⊂ 𝑉Φ
with |𝐼 | ≥ 𝜖 |𝑉Φ |. We view 𝐼 as a collection of functions F = {𝑓𝑢 : [𝑞] (2𝑘−1)𝐿 → {0, 1} : 𝑢 ∈ 𝑈 }, where 𝑓𝑢 (𝑠) = 1

if and only if 𝑥
(𝑢)
𝑠 ∈ 𝐼 . From this, it is clear that

1

|𝑈 |
∑
𝑢∈𝑈
E[𝑓𝑢] ≥ 𝜖,

where the expectation is taken over the uniform distribution on [𝑞] (2𝑘−1)𝐿 . We also define the influences and

the low-degree influences of the 𝑓𝑢 ’s with respect to the uniform distribution of [𝑞] (2𝑘−1)𝐿 . Thus, there exists a
subset𝑈 ′ ⊆ 𝑈 of size |𝑈 ′ | > (𝜖/2) |𝑈 | for which E[𝑓𝑢] > 𝜖/2 for all 𝑢 ∈ 𝑈 ′

. As otherwise,

1

|𝑈 |
∑
𝑢∈𝑈
E[𝑓𝑢] ≥ 𝜖 <

𝜖

2

(1) +
(
1 − 𝜖

2

)
< 𝜖.

For each 𝑒 = (𝑢1, . . . , 𝑢𝑘 ) ∈ 𝐸 ∩ (𝑈 ′)𝑘 , since 𝐼 is a weak independent set of 𝐻Φ.

0 = E
(𝑠1,...,𝑠𝑘 )∼𝜈 (𝑒 )

[𝑥 (𝑢1)
𝑠1 ∈ 𝐼 ∧ · · · ∧ 𝑥

(𝑢𝑘 )
𝑠𝑘 ∈ 𝐼 ]
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= E
(𝑠1,...,𝑠𝑘 )∼𝜈 (𝑒 )

[𝑓𝑢1
(𝑠1) · · · 𝑓𝑢𝑘 (𝑠𝑘 )] .

For all 𝑖 ∈ [𝑘], let Π (𝑒)
𝑖

=
∏𝑘𝐿

ℓ=1𝑋
(𝑒)
𝑖,ℓ

. Since each Π (𝑒)
𝑖

is uniform, E
𝑠𝑖∼Π (𝑒 )

𝑖

[𝑓𝑢𝑖 ] > (𝜖/2).

Because 𝑃 is unpredictably V label cover–compatible, 𝜈 (𝑒) = Ω (𝑒)
1

× · · · × Ω (𝑒)
𝑘𝐿

meets the requirements of

Theorem 2.7. Thus, there exists 𝜖 ′, 𝜏, 𝑑 > 0, which are functions of only 𝜖/2 and parameters of |𝑃 |, such that there

are 𝑖1, 𝑖2 ∈ [𝑘] and 𝑡1, 𝑡2 ∈ [(2𝑘 − 1)𝐿] such that (𝑖1, 𝑡1) and (𝑖2, 𝑡2) are in the same branch and

Inf
≤𝑑
𝑌

(𝑒,𝑖𝑎 )
𝑡𝑎

𝑓𝑢𝑖 = Inf
≤𝑑
𝑡𝑎

𝑓𝑢𝑖 > 𝜏 .

For each 𝑢 ∈ 𝑈 ′
. Let 𝑆𝑢 ⊆ [(2𝑘 − 1)𝐿] be the set of labels 𝑗 for which Inf

≤𝑑
𝑗 𝑓𝑢 > 𝜏 . Since Var 𝑓𝑢 ≤

max(𝑓𝑢)2 = 1, we have by Lemma 2.3 that |𝑆𝑢 | ≤ 𝑑/𝜏 , which is independent of 𝐿. Construct a random partial

labeling 𝜎 : 𝑈 ′ → [(2𝑘 − 1)𝐿] by sampling each 𝜎 (𝑢) from 𝑆𝑢 independently and uniformly at random (if 𝑆𝑢 is

empty, let 𝜎 (𝑢) = 1). For each 𝑒 ∈ 𝐸 ∩ (𝑈 ′)𝑘 , we established that there exists 𝑖, 𝑖 ′ ∈ [𝑘] and ℓ ∈ 𝑆𝑢𝑖 and ℓ ′ ∈ 𝑆𝑢𝑖′
such that setting 𝜎 (𝑢𝑖 ) = ℓ and 𝜎 (𝑢𝑖′) = ℓ ′ weakly satisfies 𝑒 . Thus, inside𝑈 ′

expectation at least

1

(max |𝑆𝑢 |)2
=
𝜏2

𝑑2
> 0

of the edges are weakly satisfied. Note that this expression is independent of 𝐿 and the size of Ψ, as desired. □

Note that Theorem 6.1 follows as a corollary of Theorem 6.8 combined with Lemma 6.4.

Proof of Theorem 6.2. Theorem 6.8 and Lemma 6.7 imply the case 𝑞 = 𝑘 − 1. For 𝑞 < 𝑘 − 1, one can see

that a (𝑘, 𝑘 − 1)-rainbow colorable hypergraph is also a (𝑘, 𝑞)-rainbow colorable hypergraph since we can ‘merge’

colors together while preserving the rainbow property. Therefore, since the V label cover–conjecture implies for

𝜖 > 0, it is NP-hard to distinguish (𝑘, 𝑘 − 1)-rainbow colorable hypergraphs from graphs without an 𝜖-density

independent set, then for any 𝑞 ≤ 𝑘 − 1 it must be NP-hard to distinguish (𝑘, 𝑞)-rainbow colorable hypergraphs

from graphs without an 𝜖-density independent set. □

Theorems 6.1 and 6.2 together imply Theorem 1.2.
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A PROOF OF THEOREM 2.7

Recall the statement of Theorem 2.7.

Theorem A.1 (Theorem 2.7). Fix 𝑘 ≥ 2. For 1 ≤ ℓ ≤ 𝑛, let Ωℓ = 𝑋
(1)
ℓ

× · · · ×𝑋
(𝑘)
ℓ

be a finite probability space with

distributions 𝜇ℓ such that the 𝜇ℓ ’s are independent. Also, assume that for each ℓ ∈ [𝑛] and 𝑖 ∈ [𝑘], 𝑋 (𝑖)
ℓ

=
∏𝑠

(𝑖 )
ℓ

𝑠=1
𝑌

(𝑖)
ℓ,𝑠

,

where the product is of otherwise independent distributions and 𝑠 (𝑖)
ℓ

≤ 2 for all 𝑖 ∈ [𝑘] and ℓ ∈ [𝑛]. Assume we also
have the following key property

• If for distinct 𝑖1, 𝑖2 ∈ [𝑘] we have that 𝑠 (𝑖1)
ℓ

= 𝑠
(𝑖2)
ℓ

= 2, then 𝑌
(𝑖1)
ℓ,1

is independent of 𝑌 (𝑖2)
ℓ,2

(and 𝑌
(𝑖2)
ℓ,2

is

independent of 𝑌 (𝑖1)
ℓ,1

by symmetry).
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For convenience of notation, if 𝑠 (𝑖)
ℓ

= 1, let 𝑌 (𝑖)
ℓ,2

:= 𝑌
(𝑖)
ℓ,1

. Let 𝛿 be the minimum positive probability among all the 𝜇ℓ ’s,
ℓ ∈ [𝑛]. Let

𝜌 = max

 max

1≤ℓ≤𝑛
𝜌 (𝑋 (1)

ℓ
, . . . , 𝑋

(𝑘)
ℓ

), max

1≤ℓ≤𝑛
1≤ 𝑗<𝑘

𝜌

(
𝑗∏

ℓ=1

𝑋
(𝑖)
ℓ
,

𝑘∏
ℓ=𝑗+1

𝑋
(𝑖)
ℓ

) .

and assume that 𝜌 < 1. For every 𝜖 > 0, there exists 𝜖 ′(𝛿, 𝜖, 𝜌), 𝜏 (𝛿, 𝜖, 𝜌), 𝑑 (𝛿, 𝜖, 𝜌) > 0 such that for any functions
𝑓1, . . . , 𝑓𝑘 where 𝑓𝑖 : 𝑋

(𝑖)
1

× · · · × 𝑋
(𝑖)
𝑛 → [0, 1] and E[𝑓𝑖 ] ≥ 𝜖 if

∀ℓ ∈ [𝑛],∀𝑠 ∈ {1, 2}, |{𝑖 | Inf ≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 ≥ 𝜏}| ≤ 1

then

E

[
𝑘∏
𝑖=1

𝑓𝑖

]
≥ 𝜖 ′.

Proof. The proof of this theorem follows a similar structure to the proof of Theorem 3.11 of [18]. Let 𝜖 ′
0
, 𝜏0

be the values guaranteed by Theorem 2.6 for parameters 𝜌, 𝜖, 𝛿 . For each 𝑖 ∈ [𝑘], we define

Σ(𝑖) = [|𝑋 (𝑖)
1

|] × · · · × [|𝑋 (𝑖)
𝑛 |]

(Σ(𝑖) ) ′ = [|𝑌 (𝑖)
1,1

|] × [|𝑌 (𝑖)
1,2

|] × · · · × [|𝑌 (𝑖)
𝑛,2

|]

∀ℓ ∈ [𝑛], 𝛼 (𝑖,ℓ)
1

, . . . , 𝛼
(𝑖,ℓ)
|𝑋 (𝑖 )

ℓ |
: 𝑋

(𝑖)
ℓ

→ R orthonormal basis with 𝛼
(𝑖,ℓ)
1

≡ 1

∀(ℓ, 𝑠) ∈ [𝑛] × [2], 𝛽 (𝑖,ℓ,𝑠)
1

, . . . , 𝛽
(𝑖,ℓ,𝑠)
|𝑌 (𝑖 )

ℓ,𝑠 |
: 𝑌

(𝑖)
ℓ,𝑠

→ R orthonormal basis with 𝛽
(𝑖,ℓ,𝑠)
1

≡ 1

We also require that 𝛼 ’s and 𝛽’s are consistent in the following sense. Since 𝑋
(𝑖)
ℓ

= 𝑌
(𝑖)
ℓ,1

× · · · × 𝑌
(𝑖)
ℓ,𝑠

(𝑖 )
ℓ

, we

have that

𝛽
(𝑖,ℓ,1)
𝑗1

· · · 𝛽 (𝑖,ℓ,𝑠 (𝑖 )ℓ )
𝑗𝑘

is an orthonormal basis of the functions from 𝑋
(𝑖)
ℓ

to R, where ( 𝑗1, . . . , 𝑗𝑠 (𝑖 )ℓ

) ∈ [|𝑌 (𝑖)
ℓ,1

|] × · · · × [|𝑌 (𝑖)
ℓ,𝑠

(𝑖 )
ℓ

|]. Since

𝛽
(𝑖,ℓ,1)
1

· · · 𝛽 (𝑖,ℓ,𝑠 (𝑖 )ℓ )
1

= 1, we may assume that the 𝛼
(𝑖,ℓ)
𝑗

’s are some enumeration of this basis.

We define the Fourier coefficients of the 𝑓𝑖 ’s (see Definition 2.4 for notation) to be

𝑓𝑖 :=
∑

𝜎 ∈Σ(𝑖 )

𝑐
(𝑖)
𝜎

𝑛∏
ℓ=1

𝛼
(𝑖,ℓ)
𝜎ℓ (𝑋

(𝑖)
ℓ

marginals)

=
∑

𝜎′∈(Σ(𝑖 ) )′
𝑐
(𝑖)
𝜎′

𝑛∏
ℓ=1

𝑠
(𝑖 )
ℓ∏
𝑠=1

𝛽
(𝑖,ℓ,𝑠)
𝜎′
ℓ,𝑠

(𝑌
(𝑖)
ℓ,𝑠

marginals),

where 𝑐
(𝑖)
𝜎′ := 𝑐

(𝑖)
𝜎 if

∏𝑛
ℓ=1 𝛼

(𝑖,ℓ)
𝜎ℓ =

∏𝑛
ℓ=1

∏𝑠
(𝑖 )
ℓ

𝑠=1
𝛽
(𝑖,ℓ,𝑠)
𝜎′
ℓ,𝑠

.

Denote |𝜎 | = {ℓ ∈ [𝑛] | 𝜎ℓ ≠ 1} for 𝜎 ∈ Σ(𝑖)
. For 𝜎 ′ ∈ (Σ(𝑖) ) ′, we denote |𝜎 ′ | = {ℓ ∈ [𝑛] | 𝑠 ∈ [𝑠𝑖ℓ ], 𝜎𝑖,𝑠 ≠ 1}.

A key property is that if

∏𝑛
ℓ=1 𝛼

(𝑖,ℓ)
𝜎ℓ =

∏𝑛
ℓ=1

∏𝑠
(𝑖 )
ℓ

𝑠=1
𝛽
(𝑖,ℓ,𝑠)
𝜎′
ℓ,𝑠

, then |𝜎 | = |𝜎 ′ |.
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To not be concerned with low-degree influences, we first replace each 𝑓𝑖 , with a noised version 𝑇𝑋
𝜂 𝑓𝑖 ,

14

which is defined in terms of Fourier coefficients to be

𝑇𝑋
𝜂 𝑓𝑖 :=

∑
𝜎 ∈Σ(𝑖 )

𝜂 |𝜎 |𝑐 (𝑖)𝜎

𝑛∏
ℓ=1

𝛼
(𝑖,ℓ)
𝜎ℓ .

Note that this noise operator is applied to the 𝑋
(𝑖)
ℓ

marginals. Rewriting this in terms of the 𝑌
(𝑖)
ℓ,𝑠

basis,

𝑇𝑋
𝜂 𝑓𝑖 =

∑
𝜎′∈(Σ(𝑖 ) )′

𝜂 |𝜎′ |𝑐 (𝑖)
𝜎′

𝑛∏
ℓ=1

𝑠
(𝑖 )
ℓ∏
𝑠=1

𝛽
(𝑖,ℓ,𝑠)
𝜎′
ℓ,𝑠

.

Since the range of each 𝑓𝑖 is a subset of [0, 1], it well-known that 𝑇𝑋
𝜂 𝑓𝑖 ’s range is also a subset of [0, 1] (e.g.,

Definition 8.28 of [58]).

Let 𝜖1 = 𝜖 ′
0
/(4𝑘) > 0. Since 𝜌 , our correlation, is bounded away from 1, by Lemma 6.2 of [55], there exists

𝜂 < 1 such that �����E
[

𝑘∏
𝑖=1

𝑓𝑖

]
− E

[
𝑘∏
𝑖=1

(𝑇𝑋
𝜂 𝑓𝑖 )

] ����� ≤ 𝜖1

𝑘∑
𝑖=1

√
Var[𝑓𝑖 ]

√√√
Var

[∏
𝑗<𝑖

𝑇𝑋
𝜂 𝑓𝑗

∏
𝑗>𝑖

𝑓𝑗

]
≤ 𝜖1𝑘 =

𝜖 ′
0

4

. (2)

The second inequality follows from the fact that range for both 𝑓𝑖 and

(∏
𝑗<𝑖 𝑇

𝑋
𝜂 𝑓𝑗

∏
𝑗>𝑖 𝑓𝑗

)
are inside [0, 1], so

their variances are bounded by 1. Let 𝑔𝑖 := 𝑇𝑋
𝜂 𝑓𝑖 for all 𝑖 . Note that E[𝑔𝑖 ] = E[𝑓𝑖 ] ≥ 𝜖 and Var[𝑔𝑖 ] ≤ Var[𝑓𝑖 ] ≤ 1.

From (2), it suffices to give a lower bound on E
[∏𝑘

𝑖=1 𝑔𝑖

]
.

Similar to [18], we 𝑑 ∈ N such that 2
8 (𝑑 + 1)𝜂𝑑 < (𝜖 ′

0
)2𝜏0. Also fix

𝜏 =
𝜏0 (𝜖 ′0)2

2
8𝑑𝑘3

<
𝜏0

4

.

Thus, 𝜂𝑑 < 𝜏 . We need the following quantitative bound

Claim A.2. For all 𝑖 ∈ [𝑘] and (ℓ, 𝑠) ∈ [𝑛] × [2], we have that

Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 ≤ Inf
≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 + 𝜏 .

Proof. We have that

Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 =
∑

𝜎′∈(Σ(𝑖 ) )′
𝜎′
ℓ,𝑠≠1

𝜂2 |𝜎
′ | (𝑐 (𝑖)

𝜎′ )2

≤
∑

𝜎′∈(Σ(𝑖 ) )′
𝜎′
ℓ,𝑠≠1

𝜂
| { (ℓ′,𝑠′) |𝜎′

ℓ′,𝑠′≠1} | (𝑐 (𝑖)
𝜎′ )2 (= ⟨𝑓𝑖 ,𝑇𝑌

𝜂 𝑓𝑖⟩)

≤ Inf
≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 + 𝜂𝑑 Var[𝑓𝑖 ]

14
We add a superscript 𝑋 to signify that the noise operator is with respect to the 𝑋

(𝑖 )
1

· · · × · · ·𝑋 (𝑖 )
𝑛 basis.
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≤ Inf
≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 + 𝜏,

as desired. □

Now consider,

𝐵 := {ℓ ∈ [𝑛] | ∃𝑠 ∈ {1, 2}, ∃𝑖 ∈ [𝑘], Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 ≥ 𝜏0/2}.

(This is analogous to the “𝐵” in the proof of Theorem 3.11 of [18].) Then note that for all ℓ ∈ 𝐵, there exists

𝑠 ∈ [2] and 𝑖 ∈ [𝑘] such that

𝜏0

2

≤ Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 ≤ Inf
≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 + 𝜏,

where the inequality follows from Claim A.2. Since 𝜏 < 𝜏0/4, we have that Inf
≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 > 𝜏0/4. Therefore, by

Lemma 2.3, we have that each 𝑖 ∈ [𝑘] has at most 4𝑑/𝜏0 marginals 𝑌
(𝑖)
ℓ,𝑠

with Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 ≥ 𝜏0/2. Thus, |𝐵 | ≤ 4𝑘𝑑
𝜏0

.

Now, we show that we can ‘smooth out’ these high-influence coordinates without substantially changing

the product of the 𝑔𝑖 ’s. For each 𝑖 ∈ [𝑘], define

𝐵lo
𝑖 := {(ℓ, 𝑠) ∈ 𝐵 × [2] | Inf

𝑌
(𝑖 )
ℓ,𝑠

𝑔𝑖 ≤ 2𝜏}

𝐵hi
𝑖 := {(ℓ, 𝑠) ∈ 𝐵 × [2] | Inf

𝑌
(𝑖 )
ℓ,𝑠

𝑔𝑖 > 2𝜏}.

For each 𝑖 ∈ [𝑘], we define 𝑔′𝑖 , 𝑔′′𝑖 : 𝑋
(𝑖)
1

× · · · × 𝑋
(𝑖)
𝑛 to be

𝑔′𝑖 := E∏
(ℓ,𝑠 )∈𝐵lo

𝑖
𝑌

(𝑖 )
ℓ,𝑠

[𝑔𝑖 ]

𝑔′′𝑖 := E∏
(ℓ,𝑠 )∈𝐵hi

𝑖
𝑌

(𝑖 )
ℓ,𝑠

[𝑔′𝑖 ] .

(c.f., the “averaging operator” in Section 2.1 of [18]). In other words, in 𝑔′𝑖 , we average out all of the low-influence

marginals in the blocks Ωℓ = 𝑋
(1)
ℓ

× · · · × 𝑋
(𝑘)
ℓ

which contain a high-influence marginal. In 𝑔′′𝑖 , we then average

out the remaining marginals. For each 𝑖 ∈ [𝑘], we average out at most 2|𝐵 | ≤ 4𝑘𝑑
𝜏0

coordinates, so we have that

Var[𝑔𝑖 − 𝑔′𝑖 ] ≤
∑

(ℓ,𝑠) ∈𝐵lo
𝑖

Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔𝑖 ≤ 2|𝐵 | (2𝜏) = 16𝑘𝑑𝜏

𝜏0
≤

(𝜖 ′
0
)2

16𝑘2
.

Thus, by Cauchy-Schwartz,�����E
[

𝑘∏
𝑖=1

𝑔𝑖 −
𝑘∏
𝑖=1

𝑔′𝑖

] ����� ≤ 𝑘∑
𝑖=1

√
Var[𝑔𝑖 − 𝑔′

𝑖
]

√√√
Var

[∏
𝑗<𝑖

𝑔′
𝑗

∏
𝑗>𝑖

𝑔 𝑗

]
≤

𝑘∑
𝑖=1

𝜖 ′
0

4𝑘
=
𝜖 ′
0

4

. (3)

Now, we claim the (rather remarkable) fact that

E

[
𝑘∏
𝑖=1

𝑔′𝑖

]
= E

[
𝑘∏
𝑖=1

𝑔′′𝑖

]
. (4)
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First recall the assumption that for all (ℓ, 𝑠) ∈ [𝑛] × [2], we have that
|{𝑖 | Inf ≤𝑑

𝑌
(𝑖 )
ℓ,𝑠

𝑓𝑖 ≥ 𝜏}| ≤ 1. (5)

By Claim A.2, if (ℓ, 𝑠) ∈ 𝐵hi
𝑖 for some 𝑖 ∈ [𝑘], then Inf

≤𝑑
𝑌

(𝑖 )
ℓ,𝑠

𝑓𝑖 ≥ 𝜏 . Thus, each (ℓ, 𝑠) ∈ [𝑛] × [2] is in at most one 𝐵hi
𝑖 .

Consider the set of marginal distributions

𝑆 := {𝑌 (𝑖)
ℓ,𝑠

| 𝑖 ∈ [𝑘], (ℓ, 𝑠) ∈ [𝑛] × [2] s.t. (ℓ, 𝑠) ∈ 𝐵hi
𝑖 }.

We claim that this set of marginal distributions is independent. Since Ω1, . . . ,Ω𝑛 are independent, it suffices to

check independence of each subset

𝑆 ⊃ 𝑆ℓ := {𝑌 (𝑖)
ℓ,𝑠

| 𝑖 ∈ [𝑘], 𝑠 ∈ [2] s.t. (ℓ, 𝑠) ∈ 𝐵hi
𝑖 }

for all ℓ ∈ [𝑛]. Note that |𝑆ℓ | ≤ 2 for all ℓ because of (5). If |𝑆ℓ | = 1 we are immediately done. If 𝑌
(𝑖)
ℓ,𝑠

∈ 𝑆ℓ in which

𝑠
(𝑖)
ℓ

= 1, then recall that 𝑌
(𝑖)
ℓ,1

= 𝑌
(𝑖)
ℓ,2

, so (ℓ, 1), (ℓ, 2) ∈ 𝐵hi
𝑖 . Thus, there cannot be any more elements of 𝑆ℓ besides

𝑌
(𝑖)
ℓ,1

. Thus, |𝑆ℓ | = 1, so 𝑆ℓ is vacuously a set of independent random variables. In the last case, we have |𝑆ℓ | = 2 and

𝑌
(𝑖1)
ℓ,1

, 𝑌
(𝑖2)
ℓ,2

∈ 𝑆ℓ have the property that 𝑠
(𝑖1)
ℓ

= 𝑠
(𝑖2)
ℓ

= 2. Then, by our assumption on the marginal distributions,

we have that 𝑌
(𝑖1)
ℓ,1

and 𝑌
(𝑖2)
ℓ,2

are independent. Thus, 𝑆ℓ is independent for all ℓ ∈ [𝑛]. Therefore, 𝑆 is independent.

Let 𝑍 =
∏

ℓ∈[𝑛]\𝐵 Ωℓ . It is easy to see that 𝑆 ∪ 𝑍 is independent. Note that

∏𝑘
𝑖=1 𝑔

′
𝑖 is a function of only

𝑍 × ∏
𝑌 ∈𝑆 𝑌 and that

∏𝑘
𝑖=1 𝑔

′′
𝑖 is a function of only 𝑍 . Thus,

E
𝑍×∏

𝑌 ∈𝑆 𝑌

[
𝑘∏
𝑖=1

𝑔′𝑖

]
= E

𝑍

[
E∏
𝑌 ∈𝑆 𝑌

[
𝑘∏
𝑖=1

𝑔′𝑖

] ]
(independence)

= E
𝑍

[ [
𝑘∏
𝑖=1

E∏
𝑌 (𝑖 ) ∈𝑆 𝑌

(𝑖 )
𝑔′𝑖

] ]
(magic: independence)

= E
𝑍

[
𝑘∏
𝑖=1

𝑔′′𝑖

]
.

The second equality follows from the fact that each 𝑌
(𝑖)
ℓ,𝑠

∈ 𝑆 only affects the value of 𝑔′𝑖 . Thus, (4) holds. Now,
note that for all 𝑖 ∈ [𝑘] and ℓ ∈ [𝑛], we have that

Inf
𝑋

(𝑖 )
ℓ

𝑔′′𝑖 < 𝜏0,

as otherwise by Lemma 2.4 (where 𝑑 = 𝑛), we would have that there exists 𝑠 ∈ [2] for which Inf
𝑌

(𝑖 )
ℓ,𝑠

𝑔′′𝑖 ≥ 𝜏0/2> 2𝜏 ,

but such coordinates were averaged out from 𝑔𝑖 from construction of 𝑔′′𝑖 . Thus, we may invoke Theorem 2.6 to

obtain that

E

[
𝑘∏
𝑖=1

𝑔′′𝑖

]
≥ 𝜖 ′

0
. (6)

Thus, by combining (2, 3, 4, 6), we have that

E

[
𝑘∏
𝑖=1

𝑓𝑖

]
≥

𝜖 ′
0

2

.

Therefore, we may set 𝜖 ′ = 𝜖 ′
0
/2 > 0. □
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Remark. Unlike [18], we do not require that the distributions are symmetric.
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