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The Unique Games Conjecture (UGC) has pinned down the approximability of all constraint satisfaction problems (CSPs),
showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP.
This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness
inherent in the UGC.

This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances
of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable
instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover which we call “V
Label Cover” Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we
prove the following implications:

o There is an absolute constant ¢o such that for k > 3, given a satisfiable instance of Boolean k-CSP, it is hard to find
an assignment satisfying more than cok?/2¥ fraction of the constraints.

e Given a k-uniform hypergraph, k > 2, for all € > 0, it is hard to tell if it is g-strongly colorable or has no independent
set with an € fraction of vertices, where ¢ = [k + vk - %'l

e Given a k-uniform hypergraph, k > 3, for all € > 0, it is hard to tell if it is (k — 1)-rainbow colorable or has no
independent set with an € fraction of vertices.
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1 INTRODUCTION

The sustained progress on approximation algorithms and inapproximability results for optimization problems
since the early 1990s has been nothing short of extraordinary. This has led to a sharp understanding of the
approximability threshold of many fundamental problems, alongside the development of a rich body of techniques
on the algorithmic, hardness, and mathematical programming aspects of approximate optimization. Yet there
also remain many problems which have resisted resolution and for some there are in fact large gaps between
the known algorithmic and hardness results. Examples include vertex cover, graph coloring, max-cut, feedback
vertex set, undirected multicut, densest subgraph, and so on.

The Unique Games Conjecture of Khot [44] postulates a strong inapproximability result for a particular class
of arity two constraint satisfaction problems. This single assumption has a remarkable array of consequences, and
implies tight inapproximability results for numerous problems including Vertex Cover [48], max-cut and indeed
all constraint satisfaction problems (CSPs) [45, 56, 60], maximum acyclic subgraph and all ordering CSPs [25],
scheduling problems [3, 4], graph pricing [51], and cut problems like directed multicut [52], to name a few.
Furthermore, for CSPs, the UGC implies that a standard semidefinite programming relaxation gives the best
approximation ratio [11, 60, 61].

While the UGC has identified a common barrier against progress on a host of approximation problems,
there are still several situations it does not apply to. Crucially, imperfect completeness, where Yes instances are
only almost satisfiable, is inherent in the UGC, and this feature is inherited by the problems it reduces to. In
particular, the UGC does not say anything about problems with perfect completeness, where Yes instances have a
perfect solution obeying all the constraints. Important classes of such problems include satisfiable instances of
CSPs (which have a perfect satisfying assignment and the goal is maximize the number of satisfied constraints)
and coloring graphs/hypergraphs with approximately optimal number of colors.

Our understanding of approximating satisfiable instances of CSPs still has many gaps. Hastad’s tight hardness
result for approximating Max 3-SAT on satisfiable instances was much harder to prove than the analogous result
for near-satisfiable instances, and was an early sign of the subtleties of ensuring perfect completeness; albeit
this proof was later simplified by Saket [64]. The approximability of satisfiable CSPs corresponds via a direct
translation to the power of probabilistically checkable proof (PCP) systems with perfect completeness — the
best soundness error one can achieve with a k query (non-adaptive) PCP is equal to the best inapproximability
factor one can prove for a satisfiable arity k CSP. For k = 3, the best soundness is 5/8 + ¢ for any ¢ > 0, and
this was established only recently via an intricate proof of the approximation resistance of satisfiable NTW (the
arity 3 No-Two predicate which stipulates the number of true literals must be either 0,1 or 3) [41]. As a basic
open question that still remains wide open, we do not know the approximability of satisfiable Max NAE-3-SAT
(not-all-equal 3-SAT) under any plausible (or even not so plausible!) conjecture.

The above-mentioned Unique Games hardness results consist of two components: (i) a dictatorship test that
gives a way to test if a function is a dictator or is far from a dictator (e.g., has no influential coordinates), using
constraints corresponding to the problem at hand (for NAE-3-SAT this would be checking if certain triples of
function values are not all equal), and (ii) a reduction from Unique Games via the dictatorship test that establishes
inapproximability under the UGC. The second step is standard, and it gives a “free pass” from the world of
combinatorics/analysis of Boolean functions to the complexity world. When we require perfect completeness, no
such conjectured off-the-shelf compiler from dictatorship tests to hardness is known (and such a passage even
appears unlikely). For instance, dictatorship tests with perfect completeness and optimal soundness are known
for Max k-CSP [68] (which was improved by [7]) and Max NAE-3-SAT (folklore, and this has connections to
robust forms of Arrow’s theorem from social choice theory, as established using Fourier analysis [42] and [57, Sec.
4]). However, in both cases we do not have matching inapproximability results under any plausible conjecture.
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The closest to a UGC surrogate in the literature is the d-to-1 conjecture also made in [44]. The Unique
Games problem is an arity 2 CSP whose constraints are bijections; the d-to-1 Label Cover is an arity 2 CSP
whose constraints are d-to-1 functions. When d > 2, deciding satisfiability of a d-to-1 Label Cover instance is
NP-complete, unlike Unique Games whose satisfiability is trivial to ascertain. Khot’s d-to-1 conjecture states that
d-to-1 Label Cover is also hard to approximate within any constant factor, even on satisfiable instances. Note that
the UGC and d-to-1 conjecture are incomparable in strength; the UGC has simpler bijective constraints but the
d-to-1 conjecture asserts perfect completeness which the UGC cannot. Recently, the 2-to-1 conjecture without
perfect completeness has been shown to be true [5, 16, 17, 46, 47], which gives further evidence that 2-to-1 with
perfect completeness is likely to be true.

The d-to-1 conjecture has been used to show some strong inapproximability results. Such applications are,
however, sporadic and also typically do not yield tight results. Some of these results are conditioned specifically on
the 2-to-1 conjecture, such as a V2 — e inapproximability for vertex cover (mentioned in [44] and explicit in [46]),
which is now an NP-hardness due to the proof of the conjecture with imperfect completeness. Other implications
of the 2-to-1 conjecture which are still open include max k-coloring with perfect completeness [33] and coloring
4-colorable graphs [18]. The d-to-1 conjecture, for any fixed d, has been used to show the approximation resistance
of NTW [59] and a similar result for larger arity [38],! and finding independent sets in 2-colorable 3-uniform
hypergraphs [50]. Yet, the implications of the d-to-1 conjecture are limited, and it has become apparent that it is
not a versatile starting point for hardness results with perfect completeness.

1.1 Our contributions

Given the above context, our work is motivated by the quest for a better starting point than 2-to-1 Label Cover
for inapproximability results with perfect completeness, and which might be able to give striking consequences
similar to the UGC.

Aggressive Unique Games variant. One version of Label Cover that is most similar to Unique Games, which
we call (L, s)-nearly unique Label Cover, has constraint relations in? [L] x [L] consisting of a matching and
s additional edges, for a small s that is a constant independent of L. For this version, it is NP-hard to decide
satisfiability, and in fact one can give strong reductions matching the performance of dictatorship tests from
it. However, this nearly unique form of Label Cover has a constant factor approximation algorithm with ratio
depending only on s. We prove this result in Section 3.

V label cover. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover
which we call “V label cover” This is a hypergraph variant® of 2-to-1 Label Cover. In 2-to-1 Label Cover, the

3

constraint predicates are 2-to-1 maps from [2L] to [L], whose relation graph can be visualized as L disjoint “V’s.
In V label cover of arity k, we have “longer V’s” where the two branches involve k variables which coincide in
single variable.* This is best illustrated by Figure 1 in Section 4. We put forth the V label cover conjecture, which
asserts a strong inapproximability result for this problem. For completeness, we want an assignment where for
every constraint, the k variables involved get values in a single “V-branch.” For soundness, we insist that no

assignment even weakly satisfies more than a tiny fraction of constraints, where a constraint is weakly satisfied if

IThese were later improved to NP-hardness in [41] and [72].

2We denote [L] = {1,...,L}.

3That said, the “graph” variant of V label cover is not quite the same as 2-to-1 Label Cover. In particular, the arity of both sides of the predicate
is the same, so there are an equal number of V’s and A’s in the relation graph.

4We should mention that our path to the formulation of V label cover was more circuitous, and has its origins in attempts to define hypergraph
versions of the “a Label Cover” problem of [18].
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two of its k variables get values in some V-branch. > For this to make sense, the “junction” of the V’s cannot all
be on the same variable (as in 2-to-1 Label Cover), as in that case we will have a Unique Label Cover constraint
between the other (k — 1) variables, which we can perfectly satisfy. Therefore, in our V label cover constraints,
we have V’s with junctions at all the k variables involved in the constraint. At a high level, this is similar to the
correlation-breaking constraints of Chan [13].

Near-optimal inapproximability for Max k-CSP with perfect completeness. Assuming the V label cover
conjecture, we prove a near-tight inapproximability result for approximating satisfiable Max k-CSP over any
fixed domain.

Theorem 1.1. Assume the V label cover conjecture. There is an absolute constant cy such that fork > 3, given a
satisfiable instance of Boolean k-CSP, it is hard to find an assignment satisfying more than cok?/2* fraction of the
constraints. For CSP over domain size q > 3, where q is a prime power, it is hard to satisfy more than cok*q* /q* of
the constraints.

The approximability of Max k-CSP has been the subject of many papers in the past two decades since the
advent of Hastad’s optimal inapproximability results [35]; a partial list includes [2, 13, 21, 22, 30, 36, 39, 65-67]
on the hardness side, and [14, 30, 34, 53, 69, 70] on the algorithmic side.

The best known approximation guarantee for Max k-CSP over domain size q is Q(kq/q~) (for k > Q(log g),
and 0.62k/2F for the Boolean case [53]. This tight up to constant factors, due to Chan’s inapproximability factor
of O(kq/q¥) [13]. However, this hardness does not apply for satisfiable instances. For satisfiable instances, the
best hardness factor is 20(1‘1/3)/2" for Boolean Max k-CSP [39], and qo“@ /g~ for Max k-CSP over domain size
a prime q [36]. Note that our improved hardness factors (conditioned on the V label cover conjecture) from
Theorem 1.1 are the first to get poly(k, g)/¢* type hardness for satisfiable instances (albeit only for prime powers)
and are close to optimal. We note that satisfiable instances can be easier to approximate — Trevisan gave an
elegant linear-algebra based factor (k + 1)/2F approximation algorithm for satisfiable Boolean Max k-CSP [70]
long before Hast’s Q(k/2F) algorithm for the general case [34].

Inapproximability for strong and rainbow colorable hypergraphs. Our other application of the V label
cover conjecture is to hypergraph coloring, another fundamental problem where perfect completeness is crucial.
We say a hypergraph is c-colorable if there is a coloring of its vertices with ¢ colors so that no hyperedge is
monochromatic. Given a 2-colorable k-uniform hypergraph for k > 3, strong inapproximability results that show
the NP-hardness of coloring with any fixed £ number of colors are known [19, 26], and recent developments show
hardness (for k > 8) even for ¢ = exp((log n)®") where n is the number of vertices [40, 49, 71]. However, these
results do not apply when the hypergraph has some form of balanced coloring that is stronger than just being
2-colorable. Specifically, we consider the notions of strong and rainbow colorability in this work. A hypergraph
is g-strongly colorable, g > k (resp. g-rainbow colorable, g < k) if it can be colored with g colors so that in
every hyperedge, all vertices get distinct colors (resp. all q colors are represented). We refer the reader to the
recent work [8, 9, 29, 32] for further context on these notions. When k = g, so that there is a perfectly balanced
k-coloring where each hyperedge has exactly one vertex of each of the k colors, one can in polynomial time find
a 2-coloring without any monochromatic hyperedge [54]. Here we prove a strong hardness result for coloring
hypergraphs (in fact for finding sizable independent sets), when this perfect balance condition is relaxed even
slightly (specifically, g = k — 1 for rainbow coloring, and q = k + o(k) for strong coloring).

A g-strong coloring of a hypergraph is also a legal g-coloring of the graph obtained by converting each
of its hyperedges into a clique. For this reason, our hardness result for strongly colorable hypergraphs also

5This stronger requirement in soundness is common in hypergraph versions of Label Cover. For general Label Cover the stronger soundness
guarantee can be ensured with a minor loss in parameters, but for V label cover we do not know such a reduction.
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implies hardness results in the more elementary setting of approximate graph coloring. There are several “pure”
NP-hardness results known for graph coloring (e.g., the best known results in different regimes are [9, 27, 40, 43]),
but there is a gigantic gap between these results and the known algorithms. [18] establishes much improved
results, assuming variants of both the 2-to-1 conjecture as well as a new variant known as alpha label cover.
Their main result is that for all € > 0, given a 3—colorable graph G, under these assumptions, it is NP-hard to
locate an independent set with |G|e vertices. In this work, assuming the V label cover—conjecture, we give a
substantial generalization of this hardness.

Theorem 1.2. Assume the V label cover conjecture.®

o Given a k-uniform hypergraph, k > 2, for all € > 0, it is hard to tell if it is g-strongly colorable or has no
independent set with an e fraction of vertices, where q = [k + Vk — % .

o Given a k-uniform hypergraph, k > 3, for all € > 0, it is hard to tell if it is (k — 1)-rainbow colorable or has
no independent set with an € fraction of vertices.

The authors of [29] showed that for any € > 0, it is NP-hard to distinguish if a k-uniform hypergraph (k
even) is a k/2-rainbow colorable or does not have a independent set with € fraction of the vertices. The results of
[9] give results for strong coloring, but they only apply when k = 2 or when the weak coloring has only two
colors. Thus, modulo the V label cover—conjecture, our results improve on those in the literature.

1.2 Proof overview

We now briefly describe the steps needed to prove Theorem 1.1 and Theorem 1.2.

In each case, we reduce from a V label cover instance to a constraint satisfaction problem (with weighted
constraints). In Section 4.3, we detail this reduction. The structure of the reduction has the same standard form as
many other inapproximability results. Each vertex of the V label cover instance is replaced by a constellation
of variables, known as a long code. Each hyperedge of the V label cover instance is replaced by a probability
distribution of constraints between the variables in the correspond long codes. This is done carefully as to ensure
that perfectly strongly satisfiable V label cover instances map to perfectly satisfiable CSPs.

For each problem type (Max-k-CSP, strong coloring, rainbow coloring), we craft a probability distribution
which exploits its underlying structure. The probability distributions need to have a special correlation structure
in order to be compatible with the V label cover constraints. We abstract a general notion termed V label cover—
compatibility (Definition 4.1) which captures the properties common to these distributions. For example, we
dictate that each vertex of each long code is sampled uniformly at random. Then, for each application, we outline
the additional properties of our probability distributions in order for the reductions to have the proper soundness
(Definitions 5.1 and 6.4).

For the soundness analysis, given a good approximation to the resulting CSP, we seek to find an approximate
weak labeling of the original V label cover instance. To do that, we attempt to decode each long code by finding
one (or many) low-degree influential coordinates; these coordinates can be viewed as candidate labels for the
associated vertex. We then argue that for a sizable fraction of constraints, two of the decoded labels will belong
to the a single V-branch in the constraint. We can then label our V label cover instance by assigning each vertex
a label selected at random from among its decoded labels, which in expectation finds a good approximate weak
labeling.

In order to guarantee these influential coordinates, we invoke a couple of invariance principles. For Max-k-
CSP, we directly invoke a result due to Mossel (Theorem 2.5) on pairwise independent probability distributions.

6Technically, we need an “induced” version of the V label cover conjecture for this result.
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1:6 + Brakensiek and Guruswami

This version guarantees a common influential coordinate between three functions that belongs to a common “V”
A pigeonhole principle then implies that two of these labels must be in the same branch. For the hypergraph
coloring problems, where we do not have pairwise independence of the distributions, we generalize the invariance
principles of Mossel (see Theorem 2.6) and [18, Thm. 3.11] to yield a common influential coordinate for two
functions that further lie on the same V-branch. This result, Theorem 2.7, is a key technical component of our
reduction, which we hope will find other uses in the future.

1.3 A path to NP-hardness results?

In several cases, the UGC conditioned hardness results were later replaced by NP-hardness results. Examples
include some geometric inapproximability results [31], hardness of Unique Coverage [28], inapproximability
results for agnostic learning [23], tight hardness results for scheduling [63], Chan’s breakthrough showing
an asymptotically tight inapproximability result for (near-satisfiable) Max k-CSP [13], etc. In addition, the
very recent breakthrough on 2-to-1 games without perfect completeness has led to a number of implications
(5, 6, 16, 17, 46, 47], including approximating vertex cover and bounded-degree independence set.

We hope that establishing a similar body of conditional results for perfect completeness, based on the V
label cover conjecture or related variants, will point to strong inapproximability results and spur unconditional
results in this domain.

The recent proof of the 2-to-1 conjecture without perfect completeness, and the accompanying implicit con-
struction of strong SDP gaps (for the sum-of-squares hierarchy) for 2-to-1 Label Cover with perfect completeness,
raise similar questions about V Label Cover. Such a quest could be a good intermediate goal toward establishing
hardness results or gaps for Unique Games.

1.4 Organization

In Section 2, we outline the necessary background on CSPs and probability spaces. In Section 3, we show that
(L, s)-nearly unique Label cover has a polynomial-time approximation algorithm. In Section 4, we motivate and
detail the V label cover—conjecture. In Section 5, we apply V label cover to the Max-k-CSP problem. In Section 6,
we apply V label cover to the strong and rainbow hypergraph coloring problems. In Appendix A, we prove
Theorem 2.7.

2 PRELIMINARIES
2.1 Probability distributions

As is now commonplace in hardness of approximation reductions (e.g., [2, 13, 18, 55]), we utilize the following
results on correlated probability spaces.

Definition 2.1 ([24, 37, 62]7). Let X X Y be a finite joint probability space with a probability measure . The
correlation between X and Y, denoted p(X, Y) is defined to be

p(X.Y) = sup [ E [f(x)g(y)]]~
f:X->Rg:Y>R (x.y)~p
E[f]=E[g]=0, Var[f]=Var[g]=1

This is then easily extended to the correlation of n > 3 spaces.

7See [1] for a history of this definition.
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Definition 2.2 (Definition 1.9 of [55]). Let X; X X; X --- X X, be a finite joint probability space. Let Z; =
X1 XXy X+ X Xj_1 X Xjz1 X -+ X X,. Then we define the correlation of Xj, ..., X, to be

p(X1, X, ..., X)) = 1maxp(Xi,Zi).

<i<n

When a probability space can be decomposed into the product of independent subspaces, then the correlation
behaves elegantly.

Lemma 2.1 (Theorem 1 of [73]). Foralli € [n]:={1,2,...,n}, let X; X Y; be a probability space with measure ;.
Assume that iy, . . ., li, are independent. Then,

PXI XXy XXX, V1 XY X XY,) = 1r£1'21<xp(X,-,Yi).
Sisn
Often it can be difficult to bound the correlation of a distribution away from 1. The following result is key
in reducing these complex correlation problems into rather elementary graph connectivity problems.

Lemma 2.2 (Lemma 2.9 of [55]). Let X X Y be a finite joint probability space with measure u. Let G be the bipartite
graph on X U'Y such that (x,y) € X X Y is an edge iff Pr[x, y] > 0 with respect to p. Assume that G is connected,
and let § be the minimum nonzero probability in the joint distribution. Then, we have that

p(X,Y) <1-68%/2.

2.2 Influences
Recall the influence of a function over a probability space.

Definition 2.3. Let Xj,...,X, be finite independent probability spaces, and let f : X; X --- X X;, = Rbea
function. Let ¥; = X; X -+ - X X;_1 X Xj;31 X - - - X Xj,. The influence is

Inf;(f) = xIEE,Y[VarZeXL. f(x1, oo Xic1, 2, Xkt - <5 Xn) ]

Likewise, we need the notion of low-degree influences. We use the multilinear-polynomial definition used
many times previously (e.g., [18, 55, 56]).

Definition 2.4 (e.g., Definition 3.4,3.7 of [56]). Let Xj,...,X, be finite independent probability spaces, and

let f: X1 X--- XX, — R be a function. For each i € [n], let g; be the cardinality of the support of X;. Let
(i) () .

a; ..., g, + X; = Rbe an orthonormal basis of functions such that a{i) =1.LetX = [¢1] X--- [gn]. Now, f
can be uniquely expressed as
n
f= Z Co 1_[ a((,?.
oEX i=1
for ¢, € R, which we call the Fourier coefficients. For ¢ € Q, let |o| = |{i € [n] | o; # 1}|. The low-degree
influence for d € [n] is
mfFlf= >

o
o€l |o|<d,o;#1

The following is a key elementary fact concerning influences.

Lemma 2.3 (e.g., Proposition 3.8 [56]). Consider f : X; X --- X X, — R. For all integersd > 1,
n
> Iff f < dVarf.
i=1
In particular, for allt > 0, |{i € [n] | Inffdf > 1} < w.
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Sometimes, we look at f from the perspective of different marginal distributions. Consider f : X; X - X,, —
R where the X;’s are independent. Furthermore, assume that each X; can be written as X; = Y;; X - - - Y; 5, where
these Y; ;’s are independent. Then, we let Inf f(d f denote the low-degree influence of f in the ith coordinate with

respect to the X;’s. Likewise, we let Inf ii f be the influence of the (i, j)th coordinate when viewed from the

perspective of f : Yi; X--- XY, — R.

For each (i, j), let ﬁfi’j), e, ézj) : Y;; — R be an orthonormal basis of functions such that ﬁl(i’j) = 1. Note
thatg; = n§i=1 qij-Let 3’ = [g11]X: - - [gng, ] Then, we have that there exist ¢;’s such that f = 3,5 ¢/ [11L; a((,?.
If ¢; < D for all i, then we have the following result

Lemma 2.4 (e.g., Claim 2.7 [18]). Ift; < D foralli € [n], then we have for all i,d € [n] that
4]
<d <Dd
Infg! £ < > Inf5P £,
k=1

Thus, there exists k € [£;] such that

1 d d

5 Inf3 f < Inf72¢ f.
Proor. The proof is a straightforward adaptation of the proof of Claim 2.7 in [18]. ]
For our applications, we only need the case D = 2.

2.3 Invariance principles
Like [2], we use the following result on pairwise independent probability spaces.
Theorem 2.5 (Lemmas 6.6,6.9 [55]). Fixk > 3. For1 < i < n, let Q; = Xl.(l) X+ X Xl.(k) be finite pairwise

independent probability spaces with probability measure y; such that the probability measures corresponding to
[, - .., lln are independent. Let § be the minimum positive probability among all the ;. Let

p = max p(Xi(l), .. .,Xl.(k))

1<i<n
and assume that p < 1. For every € > 0, there exists 7(J, €, p), d(d, €, p) > 0 such that for any functions fi,. .., fx
where f; :Xl(') x - x X 5 [0,1] if

. <d
Ve € [n], |{i| Inf;p fi>r} <2
then

<e.

k k
[ el -E ﬂfil

In other words, if the product of the expected values and the expected value of the product significantly
differ, then there must exist three functions with a common high low-degree influence coordinate. Note that the
number “three” is crucially used in our reduction in Section 5.

As we cannot always obtain pairwise independent probability distributions (such as with our reduction to
hypergraph coloring), we also need the following result on correlated probability spaces.
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Theorem 2.6 (Theorem 1.14 [55]). Fixk > 2. For1 <i < n,let Q; = Xi(l) PEREI Xi(k) be a finite probability
spaces with measures y; such that jiy, . . ., ji, are independent. Let § be the minimum positive probability among all
the y;. Let

J k
- 1 (k) (i) (i)
p = max lréllasxnp(Xi D S maxp(l—le , H X, )

1<i<n 3
1<j<k \e=1 r=j+1

and assume that p < 1. For every € > 0, there exists €’ (J, €, p), 7(, €, p) > 0 such that for any functions fi,. .., fi
where f; :Xl(') x - x XD 5 [0,1] andEB[fi] > € if

Vet € [n],Vi € [k],Ian<,-)ﬁ <T
then

E > e’

k
[14
i=1

We need a stronger version of this theorem for our applications. We prove Theorem 2.7 in Appendix A.

Theorem 2.7. Fixk > 2. For1 < ¢ < n,let Qp = X;l) X +ee X Xl,(k) be a finite probability space with distributions

. o
e such that the yip’s are independent. Also, assume that for each ¢ € [n] andi € [k], X[(’) = Hz’zl Yz(:) where the

product is of otherwise independent distributions and s;i) < 2 foralli € [k] and ¢ € [n]. Assume we also have the
following key property
o If for distinct iy, iz € [k] we have that s[(“) = s;iZ) = 2, then Yéil) is independent Ofo(,;Z) (and Y[f;é) is
independent of Y((’il) by symmetry).

For convenience of notation, ifs;i) =1, let Yt,(;) = Y((,?. Let 5 be the minimum positive probability among all the yi;’s,
t € [n]. Let

j k
_ (1) (k) ©)] ()
p = max lrg{g;cnp(X[ »o.,X,"7), max p (l_[X , 1_[ X,

1<t<n ;
1<j<k =1 t=j+1

and assume that p < 1. For every € > 0, there exists €’ (5, €, p), 7(, €, p), d(J, €, p) > 0 such that for any functions
firooos fi where fi: X x - x X = [0,1] and B[] = € if
Ve e [n],Vs € {1,2},|{i | Inf5% f; > 1} <1

(i)
Yl,s

then
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3 (L,s)-NEARLY 1-TO-1 LABEL COVER

Consider the following variant of the classic Label Cover problem.

Definition 3.1. Let L be a positive integer and s € {0, ...,L%}. An instance of (L, s)-nearly 1-to-1 Label Cover
consists of ¥ = (V, E, {Se }ecEs {7eu }ecEuce), Where (V, E) is a regular graph,®, the S, C [L] x [L] have size s,”
and the maps ., : [L] — [L] are permutations. A labeling is a function o : V. — [L]. An edge e € E is satisfied
if (7eu(0()), Teo(0(v))) € {(£,€) : £ € [L]} U Se.

Assume s > 1 (as the case s = 0 is unique games with perfect completeness). We show that when s is a
constant relative to L, the (L, s)-nearly 1-to-1 Label Cover problem is efficiently approximable.

Theorem 3.1. There exists a functionn : N — (0, 1] (presumably decreasing) such that there is a randomized
polynomial time algorithm which with high probability distinguishes the following two types of instances ¥ =
(V,E, {7teu}ecEuce) of (L,s)-nearly 1-to-1 Label Cover.

o Accept: ¥ is perfectly satisfiable.

o Reject: every labeling of ¥ satisfies strictly less than n(s) fraction of the edges.

In fact, one may take n(s) = lexsz'

Foreache € E,let T, = {x : (x,y) € Se} U{y : (x,y) € S¢}. Note that |T,| < 2s.
Assume that a perfect labeling exists for ¥ and let ¥ : V. — [L] be such a labeling. We show that we can

efficiently construct a labeling o : V' — [L] which satisfies at least 1(s) fraction of the edges. Such an algorithm
will suffice to distinguish the two cases specified in the theorem statement.

For each e € E, we say that a satisfied edge e = (u,0) is type-1-satisfied by X if 7.,(Z(u)) ¢ T, and
Tes(2(0)) & T,. Otherwise, we say that a satisfied edge e is type-2-satisfied by 2. Let E; C E be the type-1-satisfied
edges, and let E, be the type-2 satisfied. Let D be the degree of each vertex of (V, E). Let d;(v) be the number of
edges incident to vertex v which are type-i satisfied by o.

First, we use a standard DFS algorithm to construct partial, but perfect labelings of ¥.
Lemma 3.2. Givenvy € V and ¢ € L there is a polynomial time algorithm which outputs a subset W C 'V and a
partial labeling o : W — [L] with the following properties.
e vy € Wando(vy) =¢.
e Everye € ENW X W is satisfied by o.

e Foreveryo’ : V — [L] which extends o (i.e., o’ (v) = o(v) for allv € W) which perfectly satisfies ¥, every
edge in the cut EN'W X (V \ W) must be type-2-satisfied.

If there is no satisfying assignment o : V. — [L] to ¥ with o(vy) = ¢, then the algorithm returns L.

Informally, the last condition means that the partial labeling cannot be extended any further by type-1
satisfying edges.

Proor. Consider the DFS/BFS-like Algorithm 1.
We claim that calling Partial-Type-1-Labeling(¥, {v}, vg — £)'° is the correct procedure. To prove
efficiency, it is easy to see that during each recursive call, W will grow by at least one element or the procedure

8We assume that (V, E) is a regular graph for simplicity of presentation. The authors believe the same result should hold for general graphs.
%If S, is not symmetric, then the edge e is technically directed, but it is fine to assume that (V, E) is undirected for most of our analysis.
199y > £ is shorthand for the function o : {gg} — [L] such that o(v) = ¢.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.



The Quest for Strong Inapprox. Results «  1:11

Function Partial-Type-1-Labeling(¥, W, o) do
Data: (L, s)-nearly 1-to-1 Label Cover instance ¥ = (V, E, {Sc }ecE, {7eu tecEuce), W SV, 0 : W — [L]
Result: Either L or a pair (W’,¢’) where W C Vand o’ : V — [L].
forov € W do
for e € E wherev € e do
Set u to other vertex of e
if u € W then
‘ if o does not satisfy e then return L
end
else if 7. ,(o(v)) ¢ T, then
Set W =W U {u}
Seto’ |W=0
Set 0’ (u) = (7, © 7e0) (0(0))
return Partial-Type-1-Labeling(¥, W’, ¢’)
end

end

end

return (W, o)
end

Algorithm 1: Finding a partial solution using type-1-satisfied edges.

will terminate. Hence there can be at most |V| recursive calls (including the initial call). Furthermore, within one
recursive call only a polynomial amount of work is done. Thus, the procedure runs in polynomial time.

To prove correctness, note that the final recursive call will verify that every edge inside the vertices of W is
correctly labeled and every edge between W and V \ W must be type-2 satisfied. Thus, if the algorithm outputs
(W, 0), we know that W and o will have the required properties. Furthermore, observe that the algorithm adds a
new vertex to W only when the label of that vertex is forced. Thus, any contradiction found is proof that there is
no fully satisfiable way to extend the initial choice that o(vy) = £.

Thus, the algorithm is correct and efficient. m]

Note that the above algorithm will do quite well when ¥ type-1-satisfies most of the edges. The following
algorithm deals with the case in which most of the edges are type-2-satisfied. Let § = |E;|/|E|.

Lemma 3.3. Assume ¥ is satisfiable and 5 > 1/2. Then there is a randomized polynomial-time algorithm which
finds a labeling o : V. — [L] which satisfies at least f(s) = WI‘ISZ of the constraints of ¥ with probability 1 —

Remark. We set (s) = f(s).

_1__
2poly(IV1) *

Proor. Consider Algorithm 2. Clearly the algorithm runs in polynomial time. It suffices to show that the
above algorithm succeeds in finding an 5(s) approximation with constant probability, as one may repeat the
subroutine polynomially many times and take the best solution. The first step of our analysis is the following
simple claim.

Claim 3.4. For eachv € V, with probability at least dzzsg) ,0(0) =2(v).

ProoF. With probability dzg’)

we then subsequently pick 2(v) since 7, ,(Z(v)) € T..

we pick an edge e which is type-2 satisfied by X. With probability ﬁ >

o ¥~
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Function Approx-Type-2-Labeling(¥) do
Data: (L, s)-nearly 1-to-1 Label Cover instance ¥ = (V, E, {Sec }eer, {7eu }ecEuce)
Result: An approximately satisfying labeling o : V' — [L].
forv € V do
Pick e € E uniformly at random such that v € e.
Pick ¢ € T, uniformly at random.
Set o(v) = 7, (¢)
end

return o
end

Algorithm 2: Finding a good approximate solution when there are many type-2 edges.

Define a vertex v € V to be good if d2(v) > |D|/4. Let V' C V be the set of good vertices. By Markov’s
inequality and the fact that V is regular, |V’| > |V|/4. Define an edge (u,v) € E to be goodifu,0 € V'.Let E’ C E
be the set of good edges.

Claim 3.5. At least 1/8 fraction of the edges are good.

Proor. Let A = |E’|/|E;|. Pick a uniformly random edge e € E; and pick a uniformly random vertex u of e.
The probability that u is not good is at least (1 — 1) /2. Note that the probability that any particular u is picked is

dy(u)
22|E2| . Thus,
1-A7 < dz(u)
2 veEV\V 2| E|
D
S VAV =
8|E,|
3|V|D
<
32| Ey|
_ 3|E|
~16|Ey|
3
< -.
8

Thus, A > i, so |E’'|/|E| = A6 > %.

The expected fraction of edges satisfied is then

1

E|—
|E|

\%

Z 1[0 satisfies e] | > |f1| Z E[1[(o(u), o(v)) = (Z(u), 2(0))]]
ecE (u,0)€E
> |%| ( Z % (Claim 3.4 and independence).

u,v)€E

Ly kWi
(25)?[E[ D?
|E'|

= 6as?[E|

u,0) EE’
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1
> —— (Claim 3.5).
512s2 ( )

Thus, by Markov’s inequality, the above algorithm will find a solution satisfying at least fraction of the

edges with probability at least m. ]

_1
102452

Consider the case § < 1/2, Thus, most of the edges of E are type-1 satisfied by o. Assume that (V, E;) has k
connected components V; U - - - U Vi = V. We would like to show that one of these sets Vi, ..., Vi has small edge
expansion. First, recall the definition of edge expansion.

Definition 3.2. The edge expansion of a subset V' C V of an undirected D-regular graph (V,E) is
[EN (V! x (VA V)|
D|V’|

(V') =

Intuitively, if we can perfectly label the induced edges of a connected component V; with poor edge expansion,
we have made good progress toward a labeling satisfying a constant fraction of the edges, as we can recursively
apply our algorithm to find an approximate labeling of V' \ V; and union it with our labeling of V;. The following
lemma shows that such a V; always exists.

Lemma 3.6. Let (V, E) be an undirected D-regular graph, and let Vi, . .., Vi be a partition of the vertices. Assume
that at most § fraction of the edges of E are between different V;. Then there exists an i € [k] such that ®(V;) < 4.

Proor. Let E’ be the set of edges between the V1, V5, . .., Vi. Note that

2|E'| = Z |EN (V; X (V\ V;))| (each edge of E’ is between two of the V;’s)
ie[k]
= >, DIVilo(V))
iclk]
> D|V| min ®(V;).
1

Since 2|E’| = 8(2|E|) = D|V|5, we have that § > min; ®(V;). O
With this lemma proven, we may now state the final algorithm (3).

Proor oF THEOREM 3.1. We prove the algorithm works by strong induction on |V]|.

Assume ¥ is perfectly satisfiable. If § = |E}|/|E| > 1/2, then Lemma 3.3 guarantees that we will find an 7(s)
approximation with high probability. Otherwise, if § < 1/2, we know by Lemma 3.6 there exists W C V and a
perfect partial labeling o, : W — [L] such that W is connected by edges type-1-satisfied by o and ®(W) < 1/2.
By Lemma 3.2, the above for loop will succeed in finding some (W, o,) with these properties in polynomial time.
By the strong induction hypothesis, we can with high probability find a 5(s)-approximate labeling o3 to the
instance ¥’ induced by V' \ W. Thus, the labeling o, U o3 satisfies at least 1/2 fraction of the edges incident with
at least one vertex of W (since ®(W) < 1/2 and the edges inside of W are perfectly satisfied) and at least 5(s) of
the edges not incident with W. Thus, we have efficiently found a min(1/2, n(s)) = n(s) approximation for ¥. If
the algorithm does not succeed, then ¥ is not perfectly satisfiable. ]

4 V LABEL COVER

In this section, we propose a variant of hypergraph label cover which seems to plausibly have perfect completeness
while also allowing for new hardness reductions. It can be thought of as a generalization of 2-to-1 label cover.
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Function Approximate-Labeling(¥) do

Data: (L, s)-nearly 1-to-1 Label Cover instance ¥ = (V, E, {7e y }ecEuce)
Result: Either L or an approximately-satisfying labeling o : V. — [L].
Set o1 = Approx-Type-2-Labeling (¥)
if o7 satisfies (s) fraction of the edges of ¥ then
| return o;
end
forveV,te[L] do
Set 0, (v) = ¢.
Set r = Partial-Type-1-Labeling(¥,v, o3)
if 7 = (W, 0;) and (W) < 1/2 then
SetV'=V\W
SetE’ = En (V')?
Set ¥’ = (V,a E’, {ﬂe,u}eEE',uee)
Set o3 = Approximate-Labeling(¥’)
if o3 #1 then return o, U o3

end
end
return L
end
Algorithm 3: The full algorithm.
1 2 3 4 5 6 7 8 9 10 11
uw o e e ° ° o o o o o °
| | |
u; e e ° ) ® o o o
s e @ ) o e ¢ o v
l l l l
| | | |
Uy [ J [ J [ [ J [ J ([ [ [

Fig. 1. A schematic diagram of the branches for an edge e = (u1, u2, u3, ug) of V label cover instance ¥ with parameters k = 4
and the jth column represents the input j. The dashed and dotted lines are to indicated
the two different branches with the same values with respect to 79 For example, we may deduce from this diagram that

(10,10,10,10) and (9,10, 11,11) are two branches of e. In particular, we have that 7[1(6)(9) = Jrz(e)(lo) = 7'[3(2) (11) = nie)(ll).

and L = 2. The ith row represents

Note that l//l.(e) (j) =1 exactly when the node of the ith row and jth column is at the intersection of two branches. Compare

with Figure 1 of [18].
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4.1 Definition

Let k > 2 and L > 1 be positive integers. An instance of k-uniform V-label cover is a k-uniform hypergraph

on vertex set U. The constraints are on k-tuples E C U*. Each edge e = (uj,...,ux) also has projection maps
ﬂl(e), ces 7[156) : [(2k — 1)L] — [kL] with the following special property.

o The maps are surjective, in particular for all i € [k] and j € [kL],

(-1, _ )1 i=j modk
()0 {2 otherwise

In addition we would like to be able to distinguish between the two labels which map to a common value.
To do this, we supplement the projection maps with distinguishing functions Y, ..., ¥y : [(2k —1)L] — {0,1, L}
such that for all i € [k], the map x > (ni(e) (x), %(e) (x)) is injective. Furthermore, if |(ni(e))‘1(ﬁi(e) (x))| = 1, then
we define %(e) (x) =1, and otherwise lﬁi(e) (x) € {0,1}. We say that (t,...,t) € [(2k — 1)L]* is a branch of e if
there is £ € [kL] and b € {0, 1} such that for all i, (ﬂi(e) (t;), lﬁi(e) (#;)) equals (¢,b) or (£, L). Note that for each
branch, there is exactly one j € [k] such that I//;e) (tj) =L.In fact such an index satisfies j = ﬂ'l.(e) (t;) mod k for
all i. We say that j is the junction of the branch. To better understand the setup, see Figure 1.

The goal of V-label cover is to produce a labeling of the vertices o : U — [(2k—1)L]. We say that a hyperedge
e = (uy, ..., uy) is strongly satisfied if (o(u1), ..., o(ux)) is abranch. In other words, for all i, j € [k], ni(e) (o(u;)) =
JT;E)(O'(uj)) and either t,bi(e)(cr(ui)) = ¢;6>(U(uj)) # L or exactly one of gbi(e)(a(ui)), g&}e)(o(uj)) is L. Another
way to express this is that (r[i(e) (o(uy)), %(e) (o(u;))) is uniform except for one i for which lﬁi(e) (o(u;)) =L (the
meeting point in the ‘V’ of the two branches).

We say the hyperedge is weakly satisfied if for some distinct i, j € [k], nl.(e) (o(uy)) = n;e) (o(uj)) and o(u;)
and o(uj) are in the same branch.

We now formally state our conjectured intractability of approximating V label cover. Below we state an
“induced” version where in the soundness guarantee, for every labeling, most of the hyperedges within any subset
of vertices of density € fail to be weakly satisfied. The induced version is needed for our reduction to hypergraph
coloring (this is similar to the a conjecture of [18] which was also defined in an induced form). For our Max

k-CSP result, it suffices to assume the soundness condition that at most € fraction of edges are weakly satisfiable.
For simplicity, we only state the stronger induced version below.

Conjecture 4.1 (V label cover—conjecture, induced version). For allk > 2 and € > 0, there exists an L > 1 such
that for any k-uniform V label cover instance ¥ on label set L and vertex set U and hyperedge set E, it is NP-hard to
distinguish between

o YES: There exists a labeling for which every hyperedge is strongly satisfied.

e NO: For every labeling and every subset U’ C U with |U’| > |Ule, less than € fraction of the edges in
(U")* N E are weakly satisfied by the labeling.

4.2 Compatibility

Consider a domain size ¢ > 2, an arity k > 2, and a predicate P C [g]*. In order to understand the “V label
cover—hardness” of this predicate P, for each edge e = (us,...,ux) of our V label cover instance we seek to
construct probability distributions on [q]**(?*=UL such that the marginal distribution of each branch of e is
supported by P. We define the notion of V label cover—compatibility in order to capture exactly what we need.
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Definition 4.1. For a predicate P C [q]*, consider y, ..., sy supported on P?. For i, j € [k], let Xij ~ [q]* be
the marginal distribution of y; on the jth coordinates. That is, for all (a, b) € [q]?,

LB ) = @bl = PG = @b)
We call the distributions py, . . ., gx a V label cover—compatible family if they satisfy the following properties.
(1) For all i € [k], X;; is uniform on {(a,a) | a € [q]}.
(2) Forall i, j € [k] withi # j and X; ; is uniform on [q]%.
(3) For all i € [k], p(u;) < 1, which we define to be

p(pi) = p(Xit, ..., Xik).

We say that P is V label cover—-compatible if a V label cover—compatible family y, . . ., i exists.

The reason we have k different distributions is because the two connected branches can intersect in k
different rows (see Figure 1).

Property (3) of Definition 4.1 precludes any algebraic structure in our predicate that would permit a
polynomial-time algorithm. For example, the uniform distribution on the predicate {x € Z | x; +--- + x, = 0}
has correlation 1 and allows for Gaussian-elimination to solve exactly.

4.3 Reduction from V label cover to P-CSP

Let P C [¢]* be a predicate for g, k > 2 which is V label cover—compatible with distributions i, . . ., . In this
section, we show how to reduce an arbitrary instance of V label cover into an instance of P-CSP, the constraint
satisfaction problem where all clauses are of the form (x;,, ..., x;,) € P. Furthermore, we assign weights to the
clauses of this CSP, in which the weights are determined by these distributions y;. This reduction is the starting
point for showing the conditional NP-hardness results in Sections 5 and 6.

Let ¥ = (U,E, L, {ni(e)}eeE,ie[k], {I//i(e)}eeE’ig[k]) be our instance of k-uniform V label cover. For each u € U,

we construct q(Zk_l)L variables xs(”), where s € [q] (2k-1)L

s, .50 g [q] ®DL with the following property

. Now, for every edge e = (uy,...,ux) € E and every

e Forany ty,...,t € [(2k — 1)L] such that (#,..., f;) is a branch of e, we have (s}ll), e st(lf)) € P,

we add the constraint (xs((ul‘)), . ,xs(:fj)) € P. Looking back at Figure 1, we have that any assignment of values

from [g] to the nodes of the schematic such that each branch is an element of P corresponds to some choice
(s(l), .. .,s(k)).

Let ® be the resulting instance. Although we have described the clauses, we have not yet determined the
relative weights of the clauses.

Claim 4.2. If¥Y has a labeling o : U — [(2k — 1)L] which strongly satisfies every hyperedge, then we have that ®
has a perfect satisfying assignment. In other words, this reduction has perfect completeness.

Proor. For each u € U, and s € [q] , we let xs(") = S¢(u)- One can verify this assignment satisfies
. O

(2k-1)L

Now, fix e = (uy,...,ur) € E. For each £ € [kL], let (ay,...,ax), (b1,...,br) be the two branches of e such
that ﬁ;e) (a;) = JTi(e) (b;) = t for all i. Let j € [k] be the unique index for which a; = b}, (i.e., j is the junction).
Let I be the index set I := {(i,a;) | i € [k]} U {(i,b;) | i € [k]}; note that |I| = 2k — 1. Let Q! ~ [g]” be the
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probability distribution isomorphic to y; such that the marginals x;, ..., xx, y1,. .., Y of pi; correspond to the
marginals indexed by (1, ay), ..., (k, ax), (1,b1),..., (k, bg) of Qt(,e).

Let
(@) = l_[ Qt(,e),
telkL]

where the product is over independent distributions. Note that the support of v(¢) can be identified with
[q] eIXLCE=DL] since each (i,a;) € [k] x [(2k — 1)L] is accounted for in some branch. We let Yj(e’l) be the

marginal distribution of coordinate (i, j) € [k] x [(2k — 1)L] of v(¢). For any i € [k] and ¢ € [kL], we let Xl.(j) be
the marginal distribution on the indices {(i, t) | Jl'i(e) (¢) = ¢}. In particular, if i is a junction, the meeting point of
the branches, then Yt(e’i) = Xl.(j). Otherwise, Xl.(j) is the product of two Y’s:

(e _ (e0)
x9= 1] ¥
te(m)1(e)

This distribution v(¢) specifies the probability distribution of the clauses corresponding to a particular edge of
the label cover instance. These probabilities are the relative weights of the clauses in the instance.

5 PERFECT-COMPLETENESS APPROXIMATION RESISTANCE AND MAX-k-CSP,

A natural question to ask concerning V label cover is if it reduces to natural families of predicates which are hard
to approximate, even when guaranteed perfect completeness. In the case of imperfect completeness, Austrin and
Mossel [2] showed assuming the Unique Games Conjecture that if a predicate P C [g]¥, for some finite domain
size g, supports a balanced pairwise independent distribution, then P is approximation resistant. That is, for all
€ > 0, it is NP-hard to distinguish between 1 — e-satisfiable and % + e-satisfiable P-CSPs. Only a few years later,

in a breakthrough by Chan [12], unconditional approximation resistance was shown for any P which supports
a balanced pairwise independent subgroup. We hope that establishing a similar conditional results for perfect
completeness will spur unconditional results in this domain.

In order to reduce from V label cover, we need a more stringent criteria than merely supporting a balanced
pairwise independent distribution. We call these more structured distributions pairwise-independent V label
cover-compatible.

Definition 5.1. Let ¢ > 2,k > 3 be parameters. Let P C [q]* be a predicate. We say that P is pairwise—
independent V label cover—compatible if there exists a V label cover—compatible family p, . .., i supported on P?
(with marginals Xj ;, i, j € [k]) with the additional property that

4. Foralli € [k] and j # j’ € [k], we have that X| ; and X; j are pairwise independent.

To motivate the definition, one way to view property (4), when combined with properties (1) and (2) of
Definition 4.1, is that P does not just support a pairwise independent distribution, but that the distribution can
preserve pairwise independence even when conditioning on the value of a coordinate.!’ Assuming the V label
cover-conjecture, this property suffices to establish perfect-completeness approximation resistance if we allow
what are known as folded predicates.!? Assume that [q] has a + operator (e.g., addition modulo g). We specify

The definition permits a slightly broader class of P (i.e., the distribution can change depending on which coordinate is conditioned on), but
our applications will construct P of the type specified in the motivation.
12This is a standard assumption in the CSP literature, e.g. [2].
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that we may use folded versions of our predicate P to be the predicates
ac gk, P9 = {(x;+ay....x+ar) | (x1,...,x;) € P}.

Each P(@ has the same cardinality, so incorporating these extra predicates can only increase the severity of the
hardness of approximation because a lower bound argument can choose to ignore these additional predicates.
Thus, more precisely we say that the family of predicates {P'® | a € [q]*} is perfect-completeness approximation
resistant. That is, for every € > 0, it is NP-hard to distinguish whether a CSP with predicates from {P(? | a € [q]*}

is perfectly satisfiable or is % + € satisfiable.

Theorem 5.1. Let P C [q]|* be a predicate which supports a pairwise-independent V label cover—compatible

distribution. Then, assuming the V label cover—conjecture, we have that the collection of predicates {P'¥ | a € [q]*}
is perfect-completeness approximation resistant.

Proor. The high-level structure of our proof is analogous to that of Austrin and Mossel [2]. The proof
proceeds in a couple of stages. First, we describe the reduction from a V label cover instance to an instance of
P-CSP, and note that such a reduction preserves perfect completeness. Second, we analyze the soundness of
our reduction using Theorem 2.5 to show that if our P-CSP can be well-approximated, then our original V label
cover instance also admits an approximation.

Reduction. Let ¥ = (U,E, L, {ﬂi(e)}eeE,ie[k], {lﬁi(e)}egEng[k]) be our instance of k-uniform V label cover.
Let ® be the instance of P-CSP guaranteed by the construction in Section 4.3. Let v(¢) € [¢]KIX[(2k=DL] pe the
weighting distributions on the clauses corresponding to the hyperedges. Let Q°) ,Xl.(j.), Yj(e’i) be the marginal
distributions described in Section 4.3. By Claim 4.2, our reduction has perfect completeness.

We now modify the CSP @ into a new CSP &’ which incorporates folding. For each constraint

(u1) (ux)
(xs(ll) ,...,xs(k’j )epP

and for each i € [k], let (s(0)’ = s — SY) (i.e., subtract sl(i) from every coordinate). Then, we specify that

1 k
sy

(u1) (ur)
(x(?(ﬂ)),, ... ,x(;l(’jc)),) e pts

One may check that this modification preserves perfect completeness.

Soundness. We view an assignment to @’ as a collection of functions 7 = {f;, : [¢q]**" DL — [q] | u € U},
where f;(s) is the assigned value for x¥. Because of our modification to the CSP, we only specify constraints for
fu(s) when s; = g. Thus, we may assume that each f, is folded. That is, f,(s) +a = f,(s+ (a,...,a)) mod q for
all a € [g]. One may check that the f,’s satisfy a clause in @’ if and only if they satisfy the corresponding clause
in ®. Thus, it is equivalent to focus on the f,’s satisfaction of ®.

19 () = {1 fulx)=a

For a € [q], we let

0 otherwise

We define the influences and low-degree influences (Definitions 2.3 and 2.4) of the u(a) ’s to be with respect to the

uniform distribution.
Let ®(F) be the fraction of constraints of ® satisfied by 7, using the weights specified by the v(¢) distribu-
tions. We seek to show for any € > 0 if there exists a ¥ such that ®(F) > lq%l + ¢, then there exists § > 0 and

0 : U — [(2k — 1)L] such that o weakly satisfies § fraction of the constraints of V.
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It is evident from the construction, that a group of constraints are associated with each e € E. Let e(¥)
be the fraction of constraints corresponding to ¢ satisfied by  (that is the measure with respect to v(¢) of the
clauses satisfied by ). We have that

o) = 1 > ).

e€E
Thus, if ®(F) > % + €, there exists a subset E’ C E such that |E’| > (¢/2)|E| and e(F) > % +e/2foralle € E;
as otherwise, ®(F) < e€/2-1+(1—¢€/2) - (‘PI + 6/2) ‘PI +e€.
Fix, e = (uy,...,ur) € E’. Note that
€)= B (s fu (50) € P

=2, B U0 il o).

Thus, for some r € P, we have that
€

B U0 6ol > 2 o

Let ¢’ = €/(2|P|) > 0. Also, for all i € [k], let er) = ];i‘l Xif?). Since each Hf ®) is uniform and fu; is folded, we
have that

B [f ()] = -
Si~H£. )
In particular, this implies that
¢
[ [BLAY (1 -E ﬂf“”(sl
i=1

Note that v(®) = Qie) X e X Q](CEL) meets the requirements of Theorem 2.5. Thus, there exists 7,d > 0, which are
functions of only €’ and parameters of |P|, such that

3¢ € [kL], |{i : Inf<(e) ) S )] 2 3.

Let iy, ip, i3 € [k] be three of these coordinates and let £ € [kL] be the guaranteed value of £. Observe that we can
also write HS) as
n® = ] v
te[(2k=1)L]
Note that each Xl.(;z, can be written as the product distribution of at most 2 Yt(e’i“) ’s, where ﬂi(:) (t) = £. By invoking
Lemma 2.4 with D = 2, we have that there exists t, t5, t3 such that n.(e) (tg) =tforalla € {1,2,3} and

<2d (r:) <2d
In fy(ela) Uig =1In f 2’

where the equality is due to the fact that the Yt(:’l“) distributions are uniform distributions on [q].

Note that since each ‘component’ of (e) has two branches, by the Pigeonhole principle, some two of {1, t5, t3}
are in the same branch. Thus, any assignment ¢ for which o (u;,) = t, for all a € {1, 2,3} weakly satisfies e.

For each u € U. Let S, C [(2k — 1)L] be the set of labels j for which InijZd u(a) > /2 for some a € [q].
Since Var ]Z(a) < max( fu(a))2 = 1, we have by Lemma 2.3 that |S,,| < 4dq/r, which is independent of L. Construct
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a random labeling o : U — [(2k — 1)L] by sampling each o(u) from S, independently and uniformly at random
(if S, is empty, let o(u) = 1). For each e € E’, we established that there exists i,i’ € [k] and f € S,,, and ¢’ € S,
such that setting o(u;) = £ and o(uy) = ¢’ weakly satisfies e. Thus, in expectation at least

|E’| 1 _ e

—_— = >0
|El  (max|Su[)?  16d*q
of the edges are weakly satisfied. Note that this expression is independent of L and the size of ¥, as desired. O

We use this theorem to obtain hardness of approximation results for Max-k-CSP, when q > 2 is a prime
power. We start with the following combinatorial lemma.

Claim 5.2. Let q > 2 be a prime power, and let £ > 1 be odd. There exists S C Fg with |S| = ¢"¢D/2 such that S is
3-wise linearly independent over F,. That is, each three-element subset of S is linearly independent.

Remark. The proof is substantially simplified from the conference version [10], based on suggestions by Michael
Forbes and Sergey Yekhanin.

PRrROOF. Let £’ = (£ — 1) /2. Consider
S={(L,x,x}):x¢€ qu}.

Here, F v is identified with }Fg in the canonical way. Any three distinct vectors are linearly independent because
the Vandermonde determinant is nonzero.

1 1 1
det| x y =z |=(x-y)(y—2)(z-x). O
2oy 2

Lemma 5.3. Forall ¢ > 2 a prime power and k > 2, there exists P C [q]* which is pairwise—independent V label
cover-compatible with |P| = 2k3q°.

Remark. Because of the recent breakthrough that subsets of Zg which do not have an arithmetic progress of
length three have size at most ¢* for some ¢ < 1, [15, 20], it is impossible to improve that factor of 1/2 in the
exponent of Claim 5.2 to 1 when ¢ > 3. In particular, Lemma 5.3 can at best be improved to O4(k**Y) for some
y > 0 (where the O notation hides the dependence of g).

Proor. We use a modification of the constructions of [2] and [68]. Let £ > 3 be the least odd integer such
that ¢"V/2 > k. Thus, ¢’ < k%¢®. View F, as a vector space over Fy. By Claim 5.2 there exists S C Fj, with

IS| = q"V/2 > k such that S is 3-wise linearly independent (i.e., every 3-element subset is linearly independent).
Let o, ..., 0% € S be k distinct elements from this set. Define (-, ) to be the canonical bilinear form on Ff].

That is, (x,y) = X'_; xiy;.
We give an initial attempt to construct our predicate. Let!
Py = {(@W,X)..... ".X)) : X € Fy).

We have that |Py| < q° < k%q>. We show that P, satisfies properties (1), (2), and (4) of Definitions 4.1 and 5.1.
Note that the definition of Py defined a natural probability distribution . It is clear that g has uniform marginal
distributions (since each v'¥) is nonzero and X is uniform). Furthermore, the marginal distributions are 3-wise
independent (and thus 3-wise uniform) since the v)’s are 3-wise linearly independent. (We omit the proof, a
similar result for pairwise independence is Lemma 4.2 of [2].)

3Note that we identify [q] with Fg4 in some canonical way.
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Now, fix i € [k], define y; to be
Ui = {x,y ~ p independent : x; = y;}.
Let X; ; with j € [k] be the marginals of ;. We seek to show y; satisfies properties (1), (2), and (4) of Definitions 4.1
and 5.1. Property (1) follows immediately from the uniform marginals of y. Now, fix j # i, since (x;,x;) and
(xi = y;, y;) are uniform distributions and x; and y; are conditionally independent given x;, we have that
Pr[x; A xj Ay;] =Prx; A y;lx;] Prx;] = Prx;lx;] Prly;lx;] Prx;] = Pr[x;] Pry;] Pr[x;].
Therefore, (x;, x},y;) is uniform on ]Ff]. Thus, property (2) and the case j = i of property (4) follow.
To finish establishing property (4), consider j # j* € [k] \ {i}. We seek to show that (xj,x;,y;,y;) is
uniform for which it suffices to show that (x;, xj, x;7, y;, yj) is uniform. Like before,
Prix; Axj Axy Ayj Ayl =Prlx; Axplx] Prly; Ayjlx] Prlx]
= Pr[x;] Pr[x;] Pr[y;] Pr[y;] Pr[x;] (3-wise independence of y).
Thus, the y;’s satisfy properties (1), (2), and (4) of Definitions 4.1 and 5.1. Sadly, due to the nice algebraic structure

of Py, we have that p(y;) = 1 for all i. To rectify this, we create a ‘noisy’ version of P,. For x € F’q‘, let |x| be the
number of nonzero coordinates of x. Then, we define P to be

P:={xeF;|3yePlx—yl <1}
Note that |P| < (k + 1)|Po| < 2k*q”. Now, modify the y;’s to get u/’s by the following procedure.
(1) Sample (x,y) € p;.
(2) Sample j € [k] and a, b € F, uniformly.
(3) If i = j, set x; = y; = a. Otherwise, set x; = aand y; = b.
Clearly the support of ] is P?. Also ] preserves properties (1), (2), and (4) of Definitions 4.1 and 5.1 of being V

label cover-compatible since re-randomizing coordinates can only assist in maintaining pairwise independent
distributions.

It remains to show that y satisfies property (3) of Definition 4.1. The proof of this is similar to that of
Lemma 4.6 of [68]. Let

It suffices to show that p(X;;, Z; ;) < 1. To do that, it suffices to show by Lemma 2.2 that the bipartite graph
whose edges are the support of X; ; X Z; ; is connected. For any (a, f) € X; ; X Z; ;, since with nonzero probability
the jth coordinate is rerandomized, we have that (a’, f) € X;; X Z; ; for all &’ in the support of X; ;. From this
connectivity immediately follows.

Therefore, P has the desired properties. m]

Using the same proof techniques, we have the following corollary.

Corollary 5.4. Forq = 2 and all k > 2, there exists P C [2]X which is pairwise—independent V label cover—
compatible and |P| = O(k?).

Proor. Repeat the proof of Lemma 5.3, but note that § = {x € F : >, x; = 1} is a 3-wise-independent

subset of size 2¢71. m]

Now we may obtain Theorem 1.1.
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Proor oF THEOREM 1.1. The case q = 2 follows immediately from Corollary 5.4 and Theorem 5.1. Similarly,
if ¢ > 3 is a prime power, then the result follows from Lemma 5.3 and Theorem 5.1. ]

Remark. If q is not a prime power, we cannot invoke the monotonicity result of [2, Cor. B.1], since they crucially
assume a lack of perfect completeness. In fact, their reduction does not even produce instances which are near-
perfectly satisfiable. If for a general g, we can find a distribution y ~ [¢]* whose support is of size poly(g, k), has
uniform marginals, and has 3-wise independence, then by Theorem 5.1 we can extend our result to Max-k-CSP,.

This is the first conditional NP-hardness reduction which obtains a soundness of pob;# for even one fixed

g. Previously, a long code test due to Tamaki and Yoshida [68] obtained Oz(kk ) for when q = 2. The currently best

1/3
zo(zkk " due to Huang [39]. For q > 3, the best known result is [36]

known unconditional result for Max-k-CSP, is
[53].

Remark. Using a modification of the predicate of [68], we speculate that it is possible to improve the hardness
factor for Boolean Max-k-CSP to O(k/2F).

6 REDUCTION TO STRONG/RAINBOW HYPERGRAPH COLORING
Recall the notions of strong and rainbow graph coloring [8, 9, 29].

Definition 6.1. Let H = (V, E) be a hypergraph of uniformity k > 2. Let ¢ > k be a positive integer. A function
x:V — [q] is a (k, q)-strong coloring of H if for all e € E, y | e is an injection. In other words, no two vertices
in the same hyperedge receive the same color.

Definition 6.2. Let H = (V, E) be a hypergraph of uniformity k > 2. Let ¢ < k be a positive integer. A function
x:V — [q] isa (k, q)-rainbow coloring of H if for all e € E, y | e is a surjection. That is, for alle € E and ¢ € [q],
there is v € e such that y(v) = c.

Note that the notions of strong and rainbow coloring coincide when k = gq. In these hypergraphs, we would
like to know if we can tractably identify large weak independent sets.

Definition 6.3. Let H = (V,E) be a hypergraph. A subset W C V is an weak independent set, if for all e € E,
enNW #e.

Theorem 6.1. Assume the induced version of the V label cover-conjecture (Conjecture 4.1). Forallk > 2,q > k+\/E—%
and € > 0, given a k-uniform hypergraph H = (V, E), it is NP-hard to distinguish between the following two settings.

e YES: H admits a (k, q)-strong coloring.
e NO: H does not have a weak independent set of density € (|V|e vertices).

Theorem 6.2. Assume the induced version of the V label cover-conjecture (Conjecture 4.1). For allk > q > 2 and
€ > 0, given a k-uniform hypergraph H = (V, E), it is NP-hard to distinguish between the following two settings.

e YES: H admits a (k, q)-rainbow coloring.
e NO: H does not have a weak independent set of density € (|V|e vertices).
We can view strong and rainbow hypergraph coloring as CSPs. In particular, let
Skq =1{(c1,...,ck) € [q]* | Vi, j € [k], if i # j then¢; # c;}
be the strong coloring predicate, and let

Rig ={(c1,....ck) € [q]* | Ve € [q],Ti € [k],c = c;}
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be the rainbow coloring predicate.
These predicates have structure which we call unpredictable.

6.1 Unpredictable predicates

In this section, we supplement Definition 4.1 to give our distributions additional properties that we need for our
hardness reduction.

Definition 6.4. Let ¢,k > 2 be parameters. Let P C [q]* be a predicate. We say that P is unpredictably V label
cover—compatible if there exists a V label cover—compatible family p, . . ., px supported on P? (with marginals
Xi j, i, j € [k]) with the additional properties that:

4. Foralli € [k] and 1 < j < k, we have that
J k
p (l_[Xi,t’» l_[ Xi,t’) <1
=1 r=j+1

5. Each i € [k] and jy, j; € [k] \ {i} with j; # j,, we have that the marginal distribution of (x;,,y;,) in y;
(recall that x;, and y;, are in separate ‘branches’ of y;) is uniform over [g]?.

As the properties are rather technical, the following definition helps to streamline our understanding.

Definition 6.5 (c.f, Section 1.4 [55]). Let Q = XM x ... x XK be a probability space. We say that Q is connected
if for all atoms (elements with nonzero probability) x,y € Q, there exists a sequence z, . .., z, € Q of atoms such
that x = 2z, y = z,,, and z; and z;_; differ in exactly one of the k coordinates for all i € [n].

The following lemma demonstrates the utility of connected predicates.

Lemma 6.3. If P admits a family jny, . . ., i (with marginals X; ;, i, j € [k]) of probability distributions such that
they are connected. Then P satisfies property (3) of Definition 4.1 and property (4) of Definition 6.4.

Proor. First we verify property (4) of Definition 6.4. Fix i € [k]. It suffices to check for all 1 < j < k that

j k
P ﬁXi’[’ l_[ X,"[ <1.
=1 =j+1

By Lemma 2.2, it suffices to check that the bipartite graph G; ; := ni:l Xie X ﬂ];: j+1 Xi¢ corresponding to nonzero

probability events is connected. Consider any atom x € [—[i:1 Xi¢ and y € [}_, Xi,. Since x and y are marginals
with nonzero probability, there exist atoms x”,y” € p; such that x is a prefix of x” and y is a suffix of y’. Since y; is
connected, there exists zy, . . ., z, such that zo = x’, z,, = y’ and z; and z;_; differ in exactly one coordinate for all
i € [n]. In particular, this implies that each z; corresponds to an edge of G; ; and consecutive edges share a vertex.
Thus, x and y are connected; therefore G; ; is connected. Hence, the y;’s satisfy property (4) of Definition 6.4.

By essentially the same argument, we can see that the y;’s satisfy property (3) of Definition 4.1. ]

We can apply this lemma to obtain results about the CSPs corresponding to strong and rainbow hypergraph
coloring.

Lemma 6.4. Forallk > 2 and q > k+\/E—%, Sk,q is unpredictably V label cover-compatible.

PRrOOF. Since S 4 is a symmetric predicate, it suffices without loss of generality to construct the distribution
1. The distribution y; corresponds to the following algorithm
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(1) Pickme {2k —q—1,...,k — 1} according to a distribution Q to be specified.
(2) Pick uniformly at random a partial matching (a1, b1), ..., (am, bm) € {2,...,k}* such that a; # a; and
b; # b; for all distinct i, j € [m].
(3) Define " C S 4 to be
S = {((x1, .-, %), (Y1, .- Yk)) € Sk | X1 =y, Va, b € {2,... k},
Yo = xp iff Ji € [m], (a,b) = (a;, b;)}.
Pick ((x1, ..., %), (Y1, - -, yx)) ~ S uniformly at random.

Our sample from py is then ((xy, ..., x%), (y1,-- ., yx)). In order for this to be sensible, we need to verify the
following claim.

Claim 6.5. For any choice of m € {2k —q—1,...,k — 1} and (a1, b1), ..., (@m, bm), we have that S’ is nonempty.

Proor. By symmetry, we may assume without loss of generality that a; = b; = i+ 1 for all i € [m]. Let
x;=iforallie [k].Lety; =iforalli € [m].Forie {m+1,....k},lety;=k+i-m<k+k—-(2k-q) =q.
Thus, ((x1,...,%n), (Y1,.-.,Yn)) € S’, as desired. |

Now, we pick our distribution Q to satisfy the property guaranteed by the following claim

Claim 6.6. There is a distribution Q supported on {2k — q+ 1,...,k — 1} such that each element of the set has
nonzero probability and

k—1)?
gloy = k=D
q
PRrOOF. Since ¢ > k + Vk — 1. we have that
k—1)?
2k—q+1<( ) <k-1 (1)

Let X be the probability distribution on Q which samples 2k — g + 1 with probability 1. Let Y be the probability
distribution on Q which samples k — 1 with probability 1. Let Z be the uniform distribution on Q. By (1), there

exists € > 0 such that the mixture (1—¢€)X +€Z (i.e., the probability distribution which samples X with probaiblity

1 — € and from Z with probability €) has mean less than —(k;l)z

than (k%)z. Note that both of these distribution have full support.
By an application of the intermediate value theorem, there must be some a mixture of (1 — €)X + €Z and

(1-€)Y +eZ on Q with mean (k%)z which gives every m € {2k —q+ 1,...,k — 1} nonzero probability. ]

and the mixture (1 — €)Y + €Z has mean greater

Since the algorithm is symmetric with respect to the colors, we have that x; (and thus also ;) is chosen
uniformly at random. Therefore, y; has property (1) of Definition 4.1. Fix i, j € {2, ..., k} (not necessarily distinct).
Since our algorithm is symmetric with respect to these pairs (i, j), Claim 6.6 guarantees that x; = y; with
probability 1/q. Thus, x; # y; with probability (¢ — 1)/q. These probabilities are consistent with the uniform
distribution on [gq]%. By the symmetry of the algorithm, we have that once we decide whether x; = y; or x; # y;,
the coloring is chosen uniformly from the valid options. Thus, (x;,y;) is a uniform distribution on [q]? so 1 has
property (2) of Definition 4.1 and property (5) of Definition 6.4.

The last thing to verify is that y; is a connected distribution. Let Sl’c’q ={(x,y) € Si q | x; = y1}. Note that
each element (x,y) € S ]’c’q has nonzero probability in y4, since there is a nonzero probability that m is chosen and

{(ai, b;) | i € [m]} are drawn in order to equal to {(i, j) € {2,...,k}? | x; = y;}. Then, since (x,y) € &', there is a
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nonzero probability (x, y) is drawn. Thus, to show that y; is connected, it suffices to show that each (x,y) € Sl’c’q
canreach ((1,2,...,k),(1,2,...,k)) € S”k,q by changing pairs (x;, y;) while staying in Sl’c’q. This can be done by
Algorithm 4.

for c € [k] do
for j € [k] \ {1} withx; =cdo
‘ Set x; to some colorin [q] \ {x1,...,xx}
end
for j € [k] \ {1} withy; =cdo
‘ Set y; to some color in [g] \ {y1, ..., yx}
end
Setx.=y.=c
end

Algorithm 4: Algorithm demonstrating connectivity of S,’C’q.

In the two internal for loops, the modification is always legal, as we purposely select a color not among
those used by the other x;’s. The last line is also legal for ¢ = 1 since every other variable has value other than 1.
The last line is also legal for ¢ > 1 since x;,y; # cforall j € {2,...,n} and x; = y; = 1 # c. Thus, we have that y
is connected.

Thus, by Lemma 6.3, we have that y; is unpredictably V label cover-compatible. ]

Lemma 6.7. Forallk > 3, Ry x—1 is unpredictably V label cover-compatible

Proor. Again, it suffices to construct y; only. Consider the following distribution. Note that the support of
this distribution is a strict subset of Ry 4, where ¢ = k — 1.

(1) Let (x2,...,xx) and (ya, . . ., yx) be independently chosen uniformly random permutations of (1,..., q).
(2) Pickb € {0,1} and ¢ € {2,.. ., k} uniformly at random.

(3) If b = 0, set x; = y; = x, and then recolor x, uniformly at random (possibly the same color). Otherwise,
if b =1, set x; = y; = y, and recolor y, uniformly at random.

Like usual, ((x1,..., %), (y1,-..,yk)) is our sample from p;. It is straightforward to verify that this distri-
bution y; satisfies properties (1) and (2) of Definition 4.1 and property (5) of Definition 5.1. To verify the other
properties, by Lemma 6.3, if suffices to show that the support of p; is connected. We do this by demonstrating
that everything connects to {(1,1,2,...,9),(1,1,2,...,9)}.

First, note that for any (x,y) € p1, we have that (x,y) is connected to (x’,y") € p; such that (xj,...,x)
and (y3, ..., y;) are permutations of (1,..., q), because by Step (3) we can change the color of either x; or y, to
make the permutations.

Second, observe that if (x,y) € y; has the property that (xo,...,xx) and (ys, ..., yx) are permutations of
(1,...,q), then the modification (x’,y") with x{ = y{ = 1, but otherwise equal to (x,y), is also in the support of
Ha-

Next, we show that if (x,y) € y; has x; = y; = 1 and (xy,...,x%) and (ya, ..., yx) are permutations of
(1,...,q), then for any distinct i, j € {2,...,k}, (x’,y") € p with x]'. = x; and x] = x;j, but otherwise equal to
(x,9), is connected to (x,y). We do this as follows.

(1) Setx; =y1 = x;.
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(2) Set x; = x;.
(3) Set x; = x;.
(4) Set x; = 1.

It is clear a similar result holds for transposing the elements of y instead of the elements of x.

Now, by applying a standard sorting algorithm, we can see that all (x,y) € p; are connected to

(1,12...,9,(1,1,2,...,9),

as desired. Thus, Rk -1 is unpredictably V label cover-compatible. O

6.2 Hardness results

Now that we know are predicates are unpredictably V label cover-compatible, we may proceed with establishing
Theorems 6.1 and 6.2.

If @ is a P-CSP, in which P C [q]¥, define the underlying k-uniform hypergraph of ® to be the k-uniform
hypergraph who vertices are the variables of ® and those hyperedges are the clauses of ®.

Theorem 6.8. Let P C [q]* (q.k > 2), be a predicate which supports a unpredictably V label cover-compatible
distribution. Then, assuming the induced version of the V label cover-conjecture (Conjecture 4.1), for all € > 0, it is
NP-hard to distinguish the following for a P-CSP ®.

o YES: ® is perfectly satisfiable.
o NO: The underlying k-uniform hypergraph of ® does not have an e-density weak independent set.

Proor. The proof mirrors the structure of Theorem 5.1 and also incorporates some ideas from [18]. First,
we describe the reduction from a V label cover instance to an instance of P-CSP, and note that such a reduction
preserves perfect completeness. Second, we analyze the soundness of our reduction using Theorem 2.6 to show
that if the underlying hypergraph of the P-CSP has a large weak-independent set, then our original V label
cover instance also admits an approximation.

Reduction. The reduction is exactly that specified in Section 4.3. This time, we make no modifications for
folding. In particular by Claim 4.2, the reduction has perfect completeness.

Soundness. Assume the the underlying hypergraph Hy = (Vg, Ep) has a large weak independent set I C Vg
with |I| > €|Vy|. We view I as a collection of functions ¥ = {f, : [q]®*"VL — {0,1} : u € U}, where f,(s) = 1
if and only if xs(“) € I. From this, it is clear that

7 2Bl 2 e

where the expectation is taken over the uniform distribution on [q]
the low-degree influences of the f,’s with respect to the uniform distribution of [¢]**~VL. Thus, there exists a
subset U’ C U of size |U’| > (e/2)|U| for which E[f,] > €/2 for all u € U’. As otherwise,

|—I1J|ZE[]Z]ZE<§(1)+(1—§)<6.

uelU

(k=)L \We also define the influences and

For each e = (uy,...,ux) € EN (U")¥, since I is a weak independent set of Hg.

0= E [xs(l'“)EI/\-~~/\xs(:k)€I]
(S1ye-0Sie) ~ V()
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= B [fu(s) o fu (o)l

(815008 ) ~v(€)
Foralli € [k], let Hl@ = ];i“l Xi(j). Since each Hl.(e) is uniform, ]E( )[ﬁu] > (e/2).
SiNHie

Because P is unpredictably V label cover—compatible, v(¢) = Qie) x - x Q' meets the requirements of
Theorem 2.7. Thus, there exists €, 7,d > 0, which are functions of only €/2 and parameters of |P|, such that there
are iy, is € [k] and t, t; € [(2k — 1)L] such that (iy, t;) and (iy, t;) are in the same branch and

<d _ <d
Ian[(eyia) w, = Infy " fu, > 7.
a

For each u € U’. Let S, C [(2k — 1)L] be the set of labels j for which Inffdfu > 7. Since Var f;, <
max(f;)? = 1, we have by Lemma 2.3 that |S,| < d/z, which is independent of L. Construct a random partial
labeling o : U” — [(2k — 1)L] by sampling each o(u) from S, independently and uniformly at random (if S, is
empty, let o(u) = 1). For each e € E N (U”)¥, we established that there exists i,i’ € [k] and £ € Sy and ¢’ €Sy,
such that setting o(u;) = £ and o(uy) = £’ weakly satisfies e. Thus, inside U’ expectation at least

1 _ 2
(max[,)7 &

of the edges are weakly satisfied. Note that this expression is independent of L and the size of ¥, as desired. O
Note that Theorem 6.1 follows as a corollary of Theorem 6.8 combined with Lemma 6.4.

PrRoOF oF THEOREM 6.2. Theorem 6.8 and Lemma 6.7 imply the case ¢ = k — 1. For g < k — 1, one can see
that a (k, k — 1)-rainbow colorable hypergraph is also a (k, q)-rainbow colorable hypergraph since we can ‘merge’
colors together while preserving the rainbow property. Therefore, since the V label cover—conjecture implies for
€ > 0, it is NP-hard to distinguish (k, k — 1)-rainbow colorable hypergraphs from graphs without an e-density
independent set, then for any ¢ < k — 1 it must be NP-hard to distinguish (k, q)-rainbow colorable hypergraphs
from graphs without an e-density independent set. m]

Theorems 6.1 and 6.2 together imply Theorem 1.2.
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A PROOF OF THEOREM 2.7
Recall the statement of Theorem 2.7.

Theorem A.1 (Theorem 2.7). Fixk > 2. For1 < ¢ < n,letQ, = Xf,(l) X XX;k) be a finite probability space with
: o
distributions pip such that the y,’s are independent. Also, assume that for each ¢ € [n] and i € [k], X;’) =11 y®

s=1 "¢’

where the product is of otherwise independent distributions and sé') < 2foralli € [k] and ¢ € [n]. Assume we also
have the following key property

o If for distinct iy, iz € [k] we have that stgil) = s§i2) = 2, then Yéil) is independent on[(’;Z) (and Y[(];Z) is

independent of Yr(,il) by symmetry).
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For convenience of notation, ifs{Ei) =1, let Yé;) = Yt,(’i). Let § be the minimum positive probability among all the yi;’s,
t € [n]. Let

J k

— (1) (k) (i) (i)
p=max maxp0q X, s | [ X ] ]
1<j<k =1 f=j+1

and assume that p < 1. For every € > 0, there exists €’ (5, €, p), 7(5, €, p), d (5, €, p) > 0 such that for any functions
fis- -+ fc where f; :Xl(l) x - x X 5 [0,1] andE[fi] = € if
Ve € [n],Vs € {1,2},|{i | Infjg) fizr} <1
t,s

then

E

ﬁfil > e

Proor. The proof of this theorem follows a similar structure to the proof of Theorem 3.11 of [18]. Let €, o
be the values guaranteed by Theorem 2.6 for parameters p, €, 8. For each i € [k], we define

@ = [IxP ) x-x [1xP]
D\ _ (i) (i) (i)
EDY =[x 1501 % x 1r)

V¢t € [n], a(i’f), cees a0 . xD _, R orthonormal basis with a*? = 1
1 X0y 1

V(L s) € [n] x [2],ﬂfi,l’,s), . ﬂl(;f’)sf : Yg(;) — R orthonormal basis with ﬁl(i,f,s) =1
s

We also require that o’s and f’s are consistent in the following sense. Since X;i) = Y[(i) X+ X Y;i)(i), we
: ¢

have that
(i,{’,s;i))

(i,6,1)
ﬂjl Ce :Bj

is an orthonormal basis of the functions from X{,(i) to R, where (jy,... ’js§i)) € [|Yéi) ] x---x [|Y[(?(i) |]. Since
Se

?)

. (D)
61 (its,7) . . .
fl ). L ’s are some enumeration of this basis.

= 1, we may assume that the aj.i’
We define the Fourier coefficients of the f;’s (see Definition 2.4 for notation) to be

n
fi= Z Y 1—[ ac(,i,’[) (X;l) marginals)
oex) =1
o)
. n L4 . B
= Z c((rl,) l_[ 1_[ ﬁc(:;f’s) (Y[f;) marginals),
o e(S) =1 s=1 ’

) . . I
where ef) = ! if [T7, " = [To, [T, A%
Denote |o]| = {¢ € [n] | o¢ # 1} for o € . For o’ € (£1)’, we denote |o’| = {¢ € [n] | s € [s{’;],cri,S # 1}
. R
. . 0 WL,
A key property is that if ]}, a((,l{ ) = My, 11, ﬁ((;;ss), then o] = [o”|.
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To not be concerned with low-degree influences, we first replace each f;, with a noised version T,f 1

which is defined in terms of Fourier coefficients to be

n

TN SICNT § )

ogex(d) t=1

Note that this noise operator is applied to the X, ;i) marginals. Rewriting this in terms of the Yf(i) basis,

(i)

n Sp
X g _ lo’] (D) (i.ts)
T, fi = E n Cﬂ’llllﬁd}ﬁ'

ez =1 s=1

Since the range of each f; is a subset of [0, 1], it well-known that T,ffi’s range is also a subset of [0,1] (e.g.,

Definition 8.28 of [58]).

Let ¢; = ¢;/(4k) > 0. Since p, our correlation, is bounded away from 1, by Lemma 6.2 of [55], there exists

n < 1 such that

k k k
Ell]4|-B|] [@A |s612 Var[fi],|Var |[ [ X5 [ |
i=1 i=1 i=1 j<i J>i
SElk—%{).

|

@

The second inequality follows from the fact that range for both f; and (H j<i T,f filljsi fj) are inside [0, 1], so
their variances are bounded by 1. Let g; := T,i(fl for all i. Note that E[g;] = E[f;] > € and Var[g;] < Var[f;] < 1.

From (2), it suffices to give a lower bound on E []—[le g,-] .
Similar to [18], we d € N such that 28(d + 1)5¢ < (€5)*1o. Also fix

w(&)’

T A 4
Thus, 7? < 7. We need the following quantitative bound

Claim A.2. Foralli € [k] and (¢,s) € [n] X [2], we have that

g <d r
Ian[(’? gi < Ian[(,? fi+r

Proor. We have that

Ianf(,? gi = Z UZlU,l(C((;))Z
a’e(z®y
oy #1
< Z g #1002 (= TV )
oe(zMy

0';,’5-;*-1

< Inflf(di) fi+ r]d Var|f;]
{,s

14We add a superscript X to signify that the noise operator is with respect to the Xl(i) ceeX e -X,(li) basis.
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<Inf*? fi+7,
Yl’,s
as desired. m|

Now consider,
B:={te[n]|3se{1,2},die [k],Ian(i) gi > 10/2}.
l,s

(This is analogous to the “B” in the proof of Theorem 3.11 of [18].) Then note that for all £ € B, there exists
s € [2] and i € [k] such that

70 <d
E < Iane(,i) gi < Infyé? f, +1,
where the inequality follows from Claim A.2. Since 7 < 73/4, we have that Inf f](‘i) fi > /4. Therefore, by
s

Lemma 2.3, we have that each i € [k] has at most 4d /7, marginals Y[(? with Infy o gi 2 79/2. Thus, |B| < %.
> t,s

Now, we show that we can ‘smooth out’ these high-influence coordinates without substantially changing
the product of the g;’s. For each i € [k], define

BP ={(t.s) € Bx [2] | Inf ) g; < 27}
s

B := {(t.s) € Bx [2] | Inf » g; > 21}.
s

For each i € [k], we define g/, g; : Xl(i) X oo xX,Si) to be

’
9i = E o [g:]
n((,s)eBIio Yes
"o._ ’
9i = E gl
. Y(t)
(es)eBli Tes

(c.f, the “averaging operator” in Section 2.1 of [18]). In other words, in g, we average out all of the low-influence

marginals in the blocks Q, = X {,(1) XXX f(k) which contain a high-influence marginal. In g;’, we then average

out the remaining marginals. For each i € [k], we average out at most 2|B| < % coordinates, so we have that

, 16kdr  (€})?
Var[g; — g;] < Z Infyx) g: < 2|B|(27) = - < 160k2.

I
(¢,5)€BY?

Thus, by Cauchy-Schwartz,

E

k
< ) +/Varlgi - g;]| Var l_[ 9; 1_[ gjl
j<i Jj>i

i=1
k ’
€, €
0
< = —, 3
;4 . (3)

Now, we claim the (rather remarkable) fact that

k
[ s
i=1

k k
[ [o:=] |oi
i=1

i=1

|,

=~

E =E

k
]—[g,"l ~ )

i=1
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First recall the assumption that for all (¢,s) € [n] X [2], we have that
1{i | Inf;d fizt} <1 (5)

h)
s
By Claim A.2, if (¢,s) € B?i for some i € [k], then Infi(a;) f; = 7. Thus, each (£,s) € [n] X [2] is in at most one B?i.
t,s
Consider the set of marginal distributions

S ={Y\? |ie[kl.(ts) € [n] x [2] s.t. (£.5) € B},
We claim that this set of marginal distributions is independent. Since Qy, ..., Q, are independent, it suffices to
check independence of each subset

$O S = {Y,f? | i€ [kl,se[2]st (6s) € BN}

for all £ € [n]. Note that |Sy| < 2 for all £ because of (5). If |S;| = 1 we are immediately done. If Y[(’? € S; in which

s;i) =1, then recall that Yt,(’i) = Y[f;), so (£,1),(¢£,2) € B?i. Thus, there cannot be any more elements of Sy besides

Y[(i) Thus, |S;| = 1, s0 Sy is vacuously a set of independent random variables. In the last case, we have |S,| = 2 and
Y((,il), Y[(’?) €Sy have the property that séil) = stﬁiz) = 2. Then, by our assumption on the marginal distributions,
we have that Yé;l) and Yé;” are independent. Thus, S, is independent for all ¢ € [n]. Therefore, S is independent.

Let Z = [lse[n)\B Q- It is easy to see that S U Z is independent. Note that Hf-ll g; is a function of only

Z X [1yes Y and that H{-‘zl g;' is a function of only Z. Thus,

k k
E =E| E [ (independence
ZX[lyes Y l;[gl z 7HYESY li__llng ( P )
k
=E E  g/|| (magic: independence)
Z | =1 Hyes YO
Mk
=B |9
| i=1

The second equality follows from the fact that each Yt,(;) € S only affects the value of g;. Thus, (4) holds. Now,
note that for all i € [k] and ¢ € [n], we have that

’”
Ian;i) g; < 7o,

as otherwise by Lemma 2.4 (where d = n), we would have that there exists s € [2] for whichInf ) g;" > 70/2> 27,
ts

but such coordinates were averaged out from g; from construction of g!’. Thus, we may invoke Theorem 2.6 to

obtain that
E ng{’l > €. (6)

Thus, by combining (2, 3, 4, 6), we have that

Therefore, we may set €’ = ¢;/2 > 0. m|
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Remark. Unlike [18], we do not require that the distributions are symmetric.
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