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Abstract—With the increasing fidelity and resolution enabled
by high-performance computing systems, simulation-based sci-
entific discovery is able to model and understand microscopic
physical phenomena at a level that was not possible in the past.
A grand challenge that the HPC community is faced with is how
to handle the large amounts of analysis data generated from
simulations. In-memory computing, among others, is recognized
to be a viable path forward and has experienced tremendous
success in the past decade. Nevertheless, there has been a lack of
a complete study and understanding of in-memory computing as
a whole on HPC systems. This paper presents a comprehensive
study, which goes well beyond the typical performance metrics.
In particular, we assess the in-memory computing with regard to
its usability, portability, robustness and internal design trade-offs,
which are the key factors that of interest to domain scientists.
We use two realistic scientific workflows, LAMMPS and Laplace,
to conduct comprehensive studies on state-of-the-art in-memory
computing libraries, including DataSpaces, DIMES, Flexpath and
Decaf. We conduct cross-platform experiments at scale on two
leading supercomputers, Titan at ORNL and Cori at NERSC,
and summarize our key findings in this critical area.

Index Terms—High-performance computing, data analytics,
workflow, in-memory computing

I. INTRODUCTION

It is well recognized that on high-performance computing

(HPC) systems, the compute has become increasingly cheaper

as compared to the storage and I/O [1]. This architectural trend

has continued to motivate and drive the HPC community to

look for alternative solutions that allow data analysis to be

done efficiently, rather than post-processing scientific data at

persistent storage. In-memory computing, among others, aims

to address this challenge by analyzing data while they are

still in memory so that the cumbersome post-processing over

persistent storage can be avoided. Unlike Big Data domain,

in-memory computing in HPC is apt to reduce the abstraction

layers of data object and I/O subsystems, for achieving high

performance on data management and movement. For exam-

ple, ORNL ADIOS [2] configures an external XML file for

depicting raw data (dimensions, offsets, sizes and types), rather

than encapsulates the raw data with metadata and semantics

via high-level data abstraction, e.g. RDD in Apache Spark.

Broadly, in-memory computing on HPC systems can be in

the form of in situ [3], [4], [5], [6], [7], [8], [9], [10], in

transit [11], [12], [13], [14], [15], [16], or the combination of

the two, depending on how the simulation and data analytics

* The work was performed at NJIT.

are deployed. Particularly for in situ, the simulation and

data analytics can execute on the same compute node. As

such, the data analytics can directly retrieve raw data from

the simulation memory and there is short data movement

associated with it. A key disadvantage of this approach is that

simulation and analytics must be tightly coupled via shared

memory mechanism instead of saving data into a dedicate

data staging area. In contrast, the in transit approach stages

data from the simulation memory to a dedicated off-node

staging area where the data can be further analyzed. While

this approach incurs explicit off-node data movement, a major

benefit is that the simulation can run asynchronously with

the data analytics, thus posing much lower impact on the

simulation.

Despite the multitude of efforts and the demonstrated suc-

cess in both in situ and in transit, there has been a lack

of complete evaluations and understanding of in-memory

computing as a whole on emerging HPC architectures. This is

particularly needed for general-purpose in-memory computing

libraries that provide generic APIs for coupling scientific

workflows in various application scenarios and HPC sys-

tems. Without expertise on system design and performance

tuning, these libraries can significantly impact the workflow

performance and scalability. Our evaluation demonstrates that

the in-memory libraries may yield lower performance and

scalability than persistent file I/O under default configuration.

Therefore, our study is conducted to help domain scientists

understand the internal mechanism of these libraries, tune

workflow performance, and also benefit library developers on

how to achieve better performance, usability, robustness and

etc. To this end, we evaluates state-of-the-art general-purpose

in-memory libraries, including DataSpaces [13], DIMES [13],

Flexpath [14], and Decaf [15], with some of these tested

through the ADIOS [2] framework, using two realistic sci-

entific workflows, i.e., LAMMPS [17] and Laplace [18].

Specifically, our paper makes the following contributions:

• We believe this work presents the most comprehensive study

of in-memory computing on HPC systems, and assesses a

broad spectrum of metrics that are to the interest of domain

scientists, including the end-to-end performance (Section

III-B1) of scientific workflows, software usability (Section

IV-A), portability (Section IV-B), and robustness (Section

IV-C), thus being much broader than the scope of prior

work [16], [3]. These dimensions are important for broad
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Fig. 1: In-memory computing libraries. Data staging stores the
simulation output in an intermediate storage for further processing.
For DataSpaces and DIMES, the metadata maintains the descriptive
information of staged data, such as data dimension, size, location,
type and etc.

adoption of in-memory computing by domain scientists, but

have rarely been discussed in the literature.

• We conduct in-depth qualitative and quantitative analyses

of the behavior of in-memory computing, and summarize a

number of key findings that we hope can shed a light on

the weaknesses and possible areas for future research. We

verify our findings through experiments, deep code review,

debugging as well as discussions with some of the library

developers.

• We conduct cross-platform studies at scale on two leading

supercomputers, Titan [19] at Oak Ridge National Labora-

tory (ORNL) and Cori [20] at National Energy Research

Scientific Computing Center (NERSC). With adjusting the

building configurations and running modes, we show the

insights of how to tune the performance of in-memory

libraries on the two distinct systems.

The rest of this paper is organized as follows. We present a

survey on in-memory libraries and methodologies along with

the related work in Section II. A comprehensive performance

evaluation and analysis are presented in Section III. In Sec-

tion IV, we present a quality assessment on the usability, porta-

bility and robustness of those libraries. Finally, we conclude

this work in Section V.

II. BACKGROUND AND RELATED WORK

A. In-memory Computing

For the traditional post-processing on HPC systems, a simu-

lation dumps the analysis output onto persistent storage. After

the run is over, data analytics will retrieve and analyze the

data. In contrast, in-memory computing allows the simulation

and analytics to be coupled through the memory layer, which

delivers a much higher throughput and lower latency than

persistent storage. Figure 1 illustrates the high-level design

of general-purpose in-memory computing libraries, which can

couple applications and analytics in various scenarios, such as

feature extraction, anomaly detection, visualization and etc.

DataSpaces and DIMES construct a shared virtual space to

stage data and metadata respectively. In contrast, Flexpath

stages data at the simulation side and uses the subscrip-

tion/publication mechanism to notify analytics with regard to

where and when to retrieve the staged data. Decaf is a dataflow

system that depicts a dataflow graph, where an edge denotes

the direction of dataflow and a node represents where data

resides, e.g. at simulation, analytics and data staging area.

DataSpaces [13] provides a set of high-level declarative

APIs, such as put() and get(), to allow analysis data to be

placed into a shared virtual space, indexed and subsequently

queried by various workflow components. DataSpaces de-

ploys dedicated staging and metadata servers to manage the

distributed datasets, and utilizes DART [21] as the under-

lying communication layer to achieve highly-optimized data

movement over interconnect. As of now, DataSpaces has

customized data transport over a variety of remote direct

memory access (RDMA) implementations, such as Infiniband,

Cray Gemini [22] and Aries [23].

DIMES [13] is another in transit method offered from the

DataSpaces library and similarly provides put() and get() to

access data staging servers. As compared to the baseline, it

places the shared virtual space directly into the simulation

memory in a distributed fashion, and provides direct memory-

to-memory data exchange, as opposed to moving data to the

dedicated staging servers first. However, metadata are still

maintained by the stand-alone DIMES servers.

Flexpath [14] adopts a publisher/subscriber based model to

exchange data between the simulation and data analytics. To

support a range of communication protocols, Flexpath uses

a network abstraction layer, EVPath [24], which currently

supports TCP sockets, Sandia NNTI [22], Infiniband, Cray

Gemini, and the BlueGene interconnect. Flexpath adopts Fast

Flexible Serialization (FFS) [25] for data serialization, which

creates self-describing events to support flexible data types.

Decaf [15] is a dataflow system that enables the parallel

communication between the coupled components within an

HPC workflow. In particular with Decaf, workflows can per-

form data transformations on-the-fly, including serialization

and complex data redistribution. The communication layer

of Decaf is entirely based upon message passing over MPI,

thus being portable across different platforms. In contrast to

the libraries mentioned above, Decaf adopts a simple Python

API for mapping a workflow to a graph, e.g. add node(),
add edge() and processGraph(). Users can also assign roles to

the nodes of dataflow graph, such as producer and consumer.

ADIOS [2] is a framework level library that provides

a range of I/O methods, including both file I/O and in-

memory computing. A key contribution of ADIOS is that it

provides an open framework that allows new I/O methods to

be easily plugged and played. On the other hand, ADIOS

designs a binary-packed mechanism that allows for the self-

describing data format. As of now, ADIOS has demonstrated

its high performance and scalability over 1 million cores
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on leadership class systems. ADIOS has integrated nearly

all general-purpose in-memory libraries, including Flexpath,

DataSpaces and DIMES, and hides the complexity of usage.

It also provides a set of descriptive APIs, e.g. adios write()
and adios read(), and users can determine the underlying

in-memory library to be used typically through an XML

configuration file.

B. Other Related Work

Researchers have proposed various in situ and in transit

methodologies to allow science to be done more efficiently on

HPC systems, for example, for feature extraction [26], [27],

parallel visualization [12], [8]. Prior research [5], [9], [3] have

improved the efficiency of running in situ workflows at the

framework level. Malakar et al. [28] propose a mathematical

model to choose the optimal frequency of data transfer be-

tween workflow components under a given resource constraint.

Zipper [16] identifies and resolves the performance bottleneck

of in-memory frameworks through deep performance analysis.

SENSEI [3] is primarily an in situ library that provides VTK

data model [29] for performing analysis and visualizations.

Meanwhile, a set of in transit techniques at the system level is

designed and implemented to enable data analytics to run more

efficiently, such as PreDatA [30]. Larsen et al. [31] present a

statistical modeling based technique to accurately predict the

runtime cost of in situ volume rendering. Our work differs

from all prior work in the sense that we comprehensively

compare the state-of-the-art in-memory computing on two

different platforms with a set of metrics, including end-to-end

performance, usability, portability and robustness. Through

deep analysis on these metrics, we identify the design and

scalability challenges and opportunities.

III. PERFORMANCE EVALUATION

A. System Setup
This paper evaluates two realistic scientific workflows,

LAMMPS and Laplace, along with a synthetic workflow

on two different HPC systems: Titan [19] at ORNL and

Cori [20] at NERSC. The Titan system contains 18,688

physical compute nodes, with each containing a 16-core 2.2

GHz AMD Opteron (Interlagos) processor, 32 GB of RAM,

and an NVIDIA Kepler accelerator with 6 GB of DDR5

memory. The interconnect on Titan is Cray Gemini in 3D

Torus and is capable of delivering 5.5 GB/s peak injection

bandwidth [32] on each node. The parallel file system on

Titan is Lustre, which is configured with 32 PB disk space

and 1 TB/s peak performance. The Cori system has 2,388

Haswell nodes and 9,688 Knights Landing (KNL) nodes. Our

experiments were conducted on KNL nodes, each of which is a

single-socket Intel Xeon Phi processor with 68 1.4 GHz cores.

Each core supports up to 4 hardware threads, thus totaling

272 threads per node. Each node has 96 GB 2.4 GHz DDR4

memory in six DIMMs. Each Haswell node has two 2.3 GHz

16-core Haswell processors with 128 GB memory. With the

die-stacked memory, the total memory capacity of Cori is 1.09

PB. The interconnect on Cori is Cray Aries with the Dragonfly

topology, and each node is capable of delivering 15.6 GB/s

peak injection bandwidth [33]. Similar to Titan, Cori uses

Lustre file system that has 248 storage targets with 744 GB/s

peak performance and 30 PB disk space.
The build and runtime configurations of each in-memory

library are detailed in Table I, and the descriptions of the

scientific workflows used throughout this paper are presented

in Table II. The LAMMPS workflow consists of the LAMMPS

simulation [17], a molecular dynamics code, and computing

the mean squared displacement (MSD) [16], [28]. In particular,

the LAMMPS simulation models the clusters of Lennard-Jones

atoms and studies the melting process of materials from a

low-energy solid structure to a set of higher energy liquid

structures. The coupled data analytics computes MSD, which

characterizes the deviation between the position of a particle

and a reference position. The Laplace workflow runs a Laplace

based computational fluid dynamics simulation [34], [18], and

its analysis output is further processed by a parallel n-th

moment turbulence data analysis (MTA) [16]. Particularly,

the output data of the two workflows are multi-dimensional

floating-point arrays that are representative of HPC data [35].
In the evaluation, we configure the in-memory staging

area based upon the workflow problem size and processor

count [13], [14], [15], [16]. In particular, the number of

Decaf servers is set to the number of analytics processors

used. Unless otherwise specified, the numbers of DIMES and

DataSpaces servers are set to 4 (since only metadata servers

are involved in DIMES) and (# of analytics processors)/8,

respectively. Each DataSpaces server deals with 16 simulation

and 8 analytics processors. For the runs throughout this paper,

we vary either the processor count, i.e., the number of MPI

processors used by the simulation and analytics in Figure 2,

respectively, or the problem size in Figure 3, which is the

simulation output size per MPI processor, to study the scaling

behavior.

B. Performance
In this section, we study a set of in-memory libraries in-

cluding Flexpath, DataSpaces with ADIOS, native DataSpaces,

DIMES with ADIOS, native DIMES, and Decaf using the

two real scientific workflows (Table II). For comparison, we

also discuss the MPI-IO method, which dumps data from the

simulation directly to persistent storage.
1) Overall Performance: Figure 2a and Figure 2b show

the end-to-end times of running LAMMPS and Laplace work-

flows, respectively, using each of the in-memory libraries.

The runs of “simulation only” and “analytics only” measure

the time spent on the simulation and analytics, respectively,

without I/O. Since the CPU frequency of Cori is only 63.6% of

Titan, the finish times of compute-intensive Laplace workflow

and MTA on Cori are much longer than those times on Titan.

These provide a baseline for us to understand the scalability

of the workflow itself. Overall, in-memory libraries, except

DataSpaces on Titan, exhibit better scalability than MPI-IO

due to the fact that the workflows are executed in the faster

memory tier with the size of staging area scaling up with the

processor count. For example, when the LAMMPS workflow

scales from (32, 16) to (8192, 4096), the end-to-end time
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TABLE I: Build and runtime configurations.
Method Version Build options Runtime configurations
DataSpaces/ADIOS
and
DIMES/ADIOS

DataSpaces 1.7.2,
ADIOS 1.13

–with-dataspaces, –with-dimes, –with-mxml,
–with-flexpath, –enable-dimes, –with-dimes-
rdma-buffer-size=1024, –enable-drc

lock type=2, hash version=2,
max versions=1

DataSpaces/native
and DIMES/native

DataSpaces 1.7.2,
ADIOS 1.13

–enable-dimes, –enable-drc,
–with-dimes-rdma-buffer-size=2048

lock type=2, hash version=2,
max versions=1

MPI-IO/ADIOS ADIOS 1.13 –with-mxml lfs setstripe –stripe-size 1m –stripe-count -1,
ADIOS XML: stats=off

Flexpath/ADIOS ADIOS 1.13, EVPath
for ADIOS 1.13

–with-flexpath CMTransport=nnti, ADIOS XML: queue size=1

Decaf version as of 06/20/2018 transport mpi=on,
build bredala=on, build manala=on

prod dflow redist=‘count’,
dflow con redist=‘count’

TABLE II: Workflow description. Note that nprocs is the number of MPI processors used in the simulation.
Workflow Simulation Analytics Output data
LAMMPS LAMMPS (version as of 08/22/2018),

a molecular dynamics simulator
mean squared displacement (MSD) 5×nprocs×512000 double-precision

data
Laplace Solving Laplace’s equation in a rectan-

gle region
moment turbulence data analysis (MTA) 4096 × nprocs × 4096 double-

precision data
Synthetic An MPI based writer that outputs data

to the staging servers in parallel
An MPI based reader that retrieves data
from the staging servers in parallel

Configurable, e.g. a 3D array and each
MPI processor access a portion.

increases only by 60% for Flexpath. In comparison, the end-

to-end time of MPI-IO increases linearly with the number

of processors allocated to the workflow. We note that such

a trend of MPI-IO is a result of raw storage performance, for

which there are only a fixed amount of Lustre storage targets

available in the systems, as well as the metadata service, for

which a very limited amount of Lustre metadata servers are

deployed, with four on Titan and one on Cori.
The exception is DataSpaces running on Titan, in which

the end-to-end time of LAMMPS increases rapidly with the

processor count. Our diagnosis indicates that there exists a data

decomposition mismatch between the writers in LAMMPS,

the data layout in the staging servers, and the readers in MSD

(further illustrated in Figure 8), which leads to the situation

that all processors in the simulation and analytics have to

access one staging server to put/get the data. This results in

expensive and unscalable N-to-1 data movement at memory

layer (detailed in Subsection III-B4). However, due to the

higher throughput of the Aries interconnect on Cori (15.6 GB/s

versus 5.5 GB/s on Titan), this overhead does not appear on

Cori at the problem size (4096× 2048).

Finding 1: In-memory libraries do not always yield higher

performance than persistent file I/O due to the expensive

N-to-1 data movement at memory layer involved.

Note that both LAMMPS and Laplace workflows fail to

run at (8192, 4096) on Cori, which uses the dynamic RDMA

credentials (DRC) [36] to allow for the shared access between

applications. If configured with RDMA, the workflow runtime

needs to access the DRC service to acquire RDMA credentials

prior to the communication. For a large-scale run that issues

large amounts of parallel requests, the DRC server can be

overwhelmed and result in failures. We will elaborate more

on the impact of dimension mismatch in Section III-B4.
In Figure 3, we further examine the scalability by varying

the problem size of the Laplace workflow from 512 KB

(256×256) to 128 MB (4096×4096) per processor. It is

observed that the end-to-end time increases proportionally

with the problem size. We note that at the problem size of

128 MB, DataSpaces and DIMES are out of RDMA memory

on Titan. Therefore, in this figure we double the amount of

the staging servers in order to make the runs successful. As

a matter of fact, a key obstacle to scaling up the problem

size on Titan is the RDMA memory constraint. DataSpaces

and DIMES adopt a low-level Cray RDMA interface uGNI

to synchronously acquire and release RDMA memory. If

requesting more RDMA resources than what is available in

the system, then the acquire operation will fail and crash the

application. What happened in the Laplace workflow is that

two staging servers are launched on each node and each server

handles 8 analytics and 16 simulation processors. A simula-

tion or analytics processor calls the DataSpaces/DIMES API

(datapspaces/DIMES put() and datapspaces/DIMES get()) to

send/receive 128/256 MB data to/from the servers. When all

simulation or analytics processors perform data movement

concurrently, 2 GB RDMA memory is needed on each server

and this exceeds the maximum RDMA capacity per node

on Titan. Additionally, the RDMA resources on Titan are

constraint not only by the total capacity, but also the number of

RDMA memory handlers. The latter leads to the DataSpaces

and DIMES failure at (8192, 4096) in Figure 2a, even with a

reduced problem size (e.g., 20 MB).

To further quantify the limitation of RDMA resources, we

run a synthetic test on Titan to acquire and release RDMA

memory by varying the request size and concurrency, as shown

in Figure 4. If the request size is less than 512 KB, the

run can concurrently register at most 3,675 RDMA memory

handlers. If the request is larger than 512 KB, the maximum

concurrency of RDMA memory requests is constraint by the

RDMA memory capacity (1,843 MB per node on Titan).

2) Memory Usage: As compared to persistent storage,

memory is a precious resource on HPC systems. This is

particularly true in the context of in-memory computing where

the simulation and data analytics may share the same physical

memory space, and sophisticated highly optimized data move-

ment can further consume memory space. In light of the out

of memory issues we experienced as well as the trend that the

memory has become increasingly bottlenecked as compared

to compute, we aim to further understand the memory usage
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Fig. 2: End-to-end time of scientific workflows (LAMMPS and Laplace) on different architectures (Titan and Cori KNL). The x-axis
represents the the number of processors assigned to the simulation and analytics, respectively. For example, the notation of (32,16) represents
the case that 32 and 16 processors are assigned to the simulation and analytics, respectively. LAMMPS and Laplace produce 20 MB and
128 MB per processor, respectively.

patterns of in-memory computing.

In Figure 5, we profile the memory usage of each library

using the profiling tool, Valgrind, with millisecond resolution.

In particular, we measure the memory usage at the simulation,

data analytics, and staging servers (if any), respectively. For

Flexpath, there are no stand-alone staging servers, and for

DIMES, a staging server only manages metadata and there-

fore incurs a small memory consumption on the server side.

Carefully note that the total memory consumption includes

those consumed by the main calculation as well as those by

calling the in-memory libraries. For DataSpaces, DIMES and

Flexpath, LAMMPS uses approximately 400 MB of memory
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per MPI processor (Figure 5a, 5b and 5c), of which 173 MB

is consumed by the numerical calculation and 227 MB is

consumed by the in-memory libraries to perform data move-

ment and staging. In contrast, Decaf needs 40% more memory

(Figure 5d) due to the extra overhead incurred by flattening

and buffering high dimensional data. Both DataSpaces and

Decaf allocate up to 560 MB to stage the LAMMPS output.

We note that in Figure 5a and 5e, the spike at 40 second marks

the creation of DataSpaces staging servers.

To further diagnose the memory consumption, we break

down the memory usage of the Laplace workflow in Figure 7.

With each DataSpaces server handling 16 processors in the

Laplace simulation, each of which generating 128 MB data,

we expect 2 GB data in total to be staged in a server. However,

in our measurement, we observe the total consumption is more

than 2 GB due to the additional buffering used by DataSpaces.

For Decaf, each Decaf server stages the output from two

Laplace processors totaling 256 MB. As a result of extra data

transformation between raw data and the internal object with

rich semantic information, the total memory consumption of

Decaf is 7 times that of the raw data size.

Finding 2: The raw data transformation to high-level

data abstraction with rich metadata and semantics can be

overly expensive with regard to the memory consumption,

and therefore needs to be carefully managed.

3) Cost of Indexing: To identify the location of target

data, DataSpaces and DIMES build a spatial index to serve

the queries from data analytics. Figure 6 shows the memory

usage using the Hilbert space-filling curve (SFC) [37] to index

data. When the problem size scales to 64 MB (4096× 2048)

per processor, each DataSpaces server allocates around 6 GB

memory to index and stage data from 16 Laplace processors.
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Such a quadratic trend of memory usage is partially due to the

construction of SFC index, which requires an n-dimensional

index space with the size of each dimension being 2k, where

n is the number of dimensions of the raw data and k is

the smallest integer that satisfies 2k greater than the size of

longest dimension. Each dimension is then divided into smaller

buckets, which are mapped to DataSpaces servers evenly. For

example, for the problem size of 4096 × 2048 per processor

(i.e., with the global problem size of 4096×(64×2048) for 64

Laplace processors), SFC will construct a mapping between

the 2D data and index space with the size of 262144×262144,

which is then evenly mapped to DataSpaces servers. This leads

to a high indexing cost. In contrast, the DIMES servers use

much smaller memory (about 154 MB) than DataSpaces due

to the fact that DIMES stores the index at the simulation

processors, rather than the metadata servers.

4) Data Decomposition and In-memory N-to-1 Access: In

our experiments, data decomposition is observed to be another

factor that substantially affects the performance. As aforemen-
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(a) Mismatch (b) Match

Fig. 8: Data layout in the staging area. The suffixes “S-” and “A-”
denote a processor in the simulation and data analytics, respectively.

tioned in Figure 2a, the end-to-end time of the LAMMPS

workflow increases by up to 2X using DataSpaces/DIMES,

when the processor count scales up to (4096, 2048). This

performance degradation is attributed to the data decomposi-

tion at simulation side, which enforces N processors accessing

one staging node. In particular, the domain decomposition of

LAMMPS occurs in the second dimension, and the global

dimensions of the LAMMPS output are 5×nprocs×512000.

However, DataSpaces/DIMES decomposes the problem do-

main into 2�log(n)� regions in the longest dimension, where n
is the number of staging servers. This decomposition strategy

can result in a mismatch between the decomposition and

processor scaling, with an example illustrated in Figure 8a.

Internally each processor of simulation and analytics accesses

its data region from begin to end in each iteration, without

enabling multi-threads to split and concurrently access that

region. As such, the regions are decomposed into sub-regions,

which are mapped to the staging servers sequentially. Then

all processors must access the corresponding staging servers

in the same sequence as that of the sub-regions, leaving

other staging servers in idleness. Thus, this results in the

expensive N-to-1 communications. For example in Figure 8a,

since the first sub-regions of all 4 ‘S-’ processors are placed

on staging server 1, the 4 processors have to concurrently

access server 1 with other three servers idle. By adjusting the

domain decomposition, all processors can access all staging

servers (N-to-N access), as shown in Figure 8b. Figure 9

shows that by matching the decomposition dimension to the

processor scaling dimension, e.g. 5× 512× (1000×nprocs),
the performance of the synthetic workflow can be improved

by up to 5.3X.
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Fig. 10: Workflow end-to-end time using socket (Titan).

Finding 3: The mismatch between staging data layout and

the decomposition strategy can result in the unexpected

N-to-1 access to data staging area. This can introduce

a significant performance penalty at scale (5.3X perfor-

mance degradation in our experiments).

5) Transport Layer: Data movement is a critical step within

an in transit workflow. In Figure 10, we compare the per-

formance of using different transport layers for moving data

between the simulation and analytics. As expected, RDMA

results in a shorter end-to-end time than TCP sockets. The

average performances of the LAMMPS and Laplace workflows

are improved by 15.8% and 3.82% using Flexpath with NNTI,

and by 8.4% and 17.3% using DataSpaces with Cray uGNI.

The performance loss incurred by socket is mainly due to the

cost of memory copy across the network stack [38], which is

well acknowledged in the literature [38], [39], [40], [41].

Note that when using socket beyond (1024, 512), the

workflows failed to establish socket connections between the

staging servers and simulation/analytics. This is attributed to

out of socket descriptors on the server side. After digging

into the system logs and source code, we found that the

socket connections are requested by the following operations:

1) simulation staging data to DataSpaces/DIMES servers; 2)

analytics retrieving data from the servers; and 3) servers

updating metadata among peers. As a result, even if we try

to increase the number of data staging servers to reduce the

connection load per server from simulation and analytics, a

server still needs to establish more socket connections with its

peers to manage distributed metadata.
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Fig. 11: Memory usage vs. the number of Decaf servers, Laplace
workflow with processor scale (64, 32), (Titan).
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Finding 4: While using high-level protocols, e.g., RPC and

sockets over RDMA, is more convenient and portable,

proprietary low-level RDMA implementations, such as

Cray uGNI, yield substantial performance gains, e.g., up

to 17.3% in DataSpaces. The accompanied challenge is

that the non-trivial engineering effort on adapting the low-

level implementations to various application scenarios.

6) Number of Staging Servers: Intuitively, by increasing

the number of staging servers in Decaf and DataSpaces,

one would expect higher performance and lower memory

usage per server. To quantify the impact of the number of

staging server, we run a set of experiments by varying the

number of staging servers. For Decaf, as shown in Figure 11,

the memory usage per server is proportionally decreased by

83.5%, when the number of servers increases from 8 to 64.

However, the end-to-end time of the Laplace workflow is only

reduced by 5.5%, quite insensitive to the number of servers.

Figure 12 shows the end-to-end time of the Laplace workflow

under different number of DataSpaces servers. The overall

performance improvement by doubling the number staging

servers is about 5.4% and the performance gain on data staging

(versus computation) can be up to 20.1%.

7) Shared Memory: Figure 13 shows the results of running

the LAMMPS and Laplace workflows using shared memory

on Cori. Compared to the results of Figure 2b, the performance

of using Flexpath improves by 12.7% and 17.0%, respectively,

for LAMMPS and Laplace. Similarly, the performance of

using DataSpaces improves by 11.0% and 8.9%, respectively.

The gain is attributed to the shortened I/O path from off-
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Fig. 13: Running workflows in the shared mode (Cori).

node data movement to local memory copy. Nevertheless,

two executables sharing memory on a node is not universally

supported on HPC systems. For example, Titan does not allow

multiple jobs running on the same compute node. Even though

Cori supports multiple jobs sharing one node, it does not

support heterogeneous running, which wraps multiple jobs

in one MPI communicator and allocates resources to each

job. Without this capability, Decaf cannot allocate compute

resources to the MPI wrapped workflow. In addition, the DRC

service may prohibit some workflows from running in the

shared mode. By default, DRC does not allow multiple jobs

on the same node to use the same credential to access a shared

network domain, unless its node-insecure option is enabled. As

a result, in Figure 13, we had to run DataSpaces using socket

rather than uGNI in order to avoid acquiring and releasing

DRC on Cori.

Finding 5: Despite the substantial performance improve-

ment (about 10%), shared memory is a restricted running

mode on some leadership HPC systems due to security.

IV. LIBRARY QUALITY ASSESSMENT

In this section, we further evaluate in-memory computing

more broadly regarding usability, portability, and robustness.
A. Usability

In-memory computing ultimately needs to be in the hands

of domain scientists to allow analytics to be done more

efficiently for science productions. Therefore, the aspect of

software usability, for long being ignored and less favored as

compared to the software performance and robustness, would

matter for the broad adoption of in-memory computing. For

example, ADIOS is a framework that incorporates a number

of third party libraries to accommodate a broad spectrum of

science scenarios, making it nontrivial for domain scientists to

configure and build ADIOS properly on their local systems. As

of now, most of these in-memory libraries still need extensive

support from HPC administrators or library developers in order

to be seamlessly integrated in science production. Herein we

thoroughly examine the complexity of their build systems and

software interfaces, two key factors to the overall usability of

in-memory libraries.
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TABLE III: Lines of code for configuration and API invocation.
Category LOC Functionality

DataSpace and DIMES (ADIOS)
Build options 13 Enable RDMA, socket and etc.
Runtime config. 8 Define staging area: dimensions, size, offset and etc.
ADIOS XML config. 18 Data description in ADIOS: dimensions, size, offset and etc.
ADIOS data staging API 30 Server and client init, put/get data, and finalize

DataSpace and DIMES (native)
Build options 13 Enable RDMA, socket and etc.
Runtime config. 8 Define staging area: dimensions, size, offset and etc.
Data staging API 81 Server and client init, lock/unlock, put/get data, and finalize

Flexpath
Build options 5 RDMA API options, compiler and flags.
ADIOS XML config. 18 Data description in ADIOS: dimensions, size, offset and etc.
Data staging API 30 Init, put/get data and finalize

Decaf
Build options 8 Enable transport layers, e.g. MPI
Bootstrap script 21 Define and link producer, consumer and staging processes
Data staging API 32 Init, dynamical load libs, data transformation, staging and finalize

By and large, there are dozens of building options and

switches to properly configure these libraries, and some of

these options require users to be knowledgeable about the

HPC hardware, such as the details of HPC interconnect,

or the library internals, such as the hashing scheme used.

Additionally, they may require domain scientists to compose

the library configuration files (e.g. XML file for Flexpath), or

write nontrivial code (for Decaf) for application integration.

In particular, DataSpaces, DIMES and Flexpath connect sim-

ulation, staging servers and analytics via the communication

APIs, while Decaf adopts python or C++ to wrap them

into one MPI communicator. The engineering efforts involved

can be substantial, e.g., defining and accessing staging area

and defining staging object (dimensions, size and data type)

and etc. Therefore, unless the I/O cost of an application is

prohibitively high, in-memory computing may see resistance

from domain scientists for production usage. In Table III,

we summarize the number of lines of code for build and

runtime configurations as well as calling the APIs to perform

in-memory computing on Cori and Titan.

Finding 6: In terms of usability, in-memory libraries are

still far from being plug-and-play for domain scientists,

and most of them require substantial support from HPC

administrators or library developers, e.g. choosing the

optimal build options and runtime I/O configurations.

B. Portability
The HPC systems have become increasingly diverse in

terms of the architecture, hardware and software. The ability

to be able to function seamlessly across platforms and fully

exploit the hardware and software ecosystem is crucial for

production science. This is particularly true for in-memory

computing as it needs to deal with the interconnect and

memory subsystem which are often different across machines.

At the hardware level, we investigate the portability of

in-memory libraries between CPUs and GPUs. We found

that GPU is mostly not supported by the current in-memory

libraries, and data staging is assumed to be done at main

memory between compute nodes, rather than at GPU memory.

As a result, GPU-enabled workflows are required to take

care of the movement between GPU and CPU memory. We

comment that, given the recent development in new intercon-

nects, e.g., NVLink, between GPUs, we believe this will an

attractive area for future research and development for in-

memory computing.

At the transport layer, DataSpaces, DIMES and Flexpath

support both TCP sockets as well as high performance proto-

cols including RDMA, Cray Gemini via Sandia NNTI [22] and

uGNI [23]. In contrast, Decaf wraps the workflow components

into an MPI communicator and thus the communication is

done through MPI message passing. Therefore, Decaf relies on

MPI to be portable. For all the in-memory computing libraries,

we have not seen official releases that explicitly support new

memory devices, such as non-volatile memory and die-stacked

memory, for memory allocation and migration. In the libraries,

the usage of new memory devices are mainly handled by

the operating system and are used no differently from the

conventional disks and DRAM.

At the application layer, both DataSpaces and DIMES can

be configured as services to applications through generic API

calls. Additionally, DataSpaces, DIMES and Flexpath are inte-

grated into the ADIOS framework as transport method, which

allows them to interact with a range of analytics packages,

such as FastBit, Paraview, VisIt, using the ADIOS API as

the interface of choice [14]. Rather than providing generic

APIs, Decaf is designed to build a dataflow system for coupled

scientific workflows and rely on MPI for communications.

Therefore, Decaf is applicable to any MPI-based (versus

socket-based) scientific workflows.

Finding 7: To achieve high performance and portability

for expert users, most of in-memory libraries can be con-

figured to reduce the layers of I/O stack and ported to low-

level APIs. For non-expert users without the knowledge

of performance tuning, these libraries can be ported to

high-level abstraction API, e.g. TCP socket over RDMA,

so as to hide the low-level API complexity.

C. Robustness

We view robustness as an area that needs continued invest-

ment and improvement in order for in-memory computing to

be fully production ready. This is attributed to the following: 1)

compared to the enterprise sector, the HPC user communities

are much smaller, particular for those who are supercomputer

users. As a result, the opportunities of leveraging the user

communities to provide feedback and potentially have them

contribute to the code development are insignificant. We

looked into some of the library repositories and noticed that

the code contributions are dominated by the library developers,

with occasional bug fixes initiated from domain scientists.

2) HPC systems are rapidly evolving with new architectures

and hardware, and in some cases the hardware interfaces

are proprietary, such as the Cray interconnect. 3) Resilience

mechanisms for machine failures have not been constructed in

existing in-memory computing libraries. This is vital to large-

scale runs of workflows, since we know the machine failures

are quite common in the extreme-scale cluster. In conjunction

with the complexity in scale and application, this results in

substantial engineering challenges associated with hardening

the software infrastructure on HPC systems.
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TABLE IV: Lessons of running in-memory workflows.
Issue Description Suggested resolve
Out of
RDMA
memory

Data movement between
simulation and data an-
alytics can deplete the
shared RDMA resources
on a compute node.

1. Better error handing, e.g.,
adding wait and re-try.
2. Add a layer of indirec-
tion that manages the re-
quests from applications so
that the RDMA resource con-
straint can be checked and
observed in advance.

Data di-
mension
overflow

The dimension size can
be overflown, if it is set
to 32-bit unsigned integer

Switch to 64-bit unsigned
long int.

Out of
main
memory

In-memory libraries
might incur huge
memory footprint (e.g., 7
times the size of analysis
data (1.8 GB versus
256 MB)), resulting
in unexpected out of
memory aborts.

1. Better understand the mem-
ory consumption through pro-
filing so that we can allocate
sufficient memory resources.
2. Optimize memory usage
by freeing the memory region
that may not be used immedi-
ately.

Out of
sockets

A reader in data analyt-
ics may read data from
all processors in the stag-
ing servers. In this case,
the socket descriptors can
be depleted on a compute
node.

1. If possible, adjust the com-
munication pattern so that a
reader only reads data from a
small number of processors.
2. Alternatively, we can de-
sign a socket pool that is re-
sponsible for communication
so that only a small number
of sockets are used. However,
this may compromise the data
movement efficiency.

Out of
DRC

If uGNI is used as the
RDMA layer, an appli-
cation need to access
the DRC service to ac-
quire RDMA credentials
prior to communication.
A large scientific work-
flow may overwhelm the
DRC.

1. Add a layer of indirection
that manages requests to the
DRC service.
2. Re-sign the DRC service
to be distributed so that it
can handle a large amount of
requests at a time.

Table IV lists the robustness-related issues we encountered

in deploying and running these workflows on Titan and Cori.

In addition to the out of RDMA memory issue as aforemen-

tioned, there are a handful of hardware and software issues.

First, while the data dimension overflow issue is not erroneous

from the library level, we note that this often results in ugly

crashes that may not be easily debugged. Second, the out

of memory error appears much more often than one would

expect. This is mainly due to the optimizations that these

libraries employ to trade space for improving usability and

robustness via high-level abstraction. In Decaf, we observed

in our runs that memory consumption can be as high as 7

times the raw data size. For extreme-scale dataset, this can

result in unexpected out of memory errors. In addition to the

capacity related issues, resource descriptors for both RDMA

and sockets can also run out quickly for large runs. Last but

not the least, a single entity, such as the DRC server, in a

massively parallel environment, can be easily overwhelmed.

Finding 8: Using sophisticate high-level abstractions, e.g.,

wrapping all components into MPI or using TCP over

RDMA, dose not always improve usability and robust-

ness. In an extreme run, available resources, e.g. memory

and socket capacity, might be overwhelmed by high

abstraction overhead and lead to crash, particularly while

running those data intensive workflows.

TABLE V: Qualitative summary. ‘+’ denotes that the finding is
relevant to a particular library, while ‘-’ denotes otherwise and ‘+/-’
denotes being conditionally relevant.

Findings DataSpaces DIMES Flexpath Decaf
Finding 1 + - - -
Finding 2 +/- - - +
Finding 3 + - - -
Finding 4 + + + -
Finding 5 +/- +/- +/- -
Finding 6 + + + -
Finding 7 + + + -
Finding 8 - - - +

D. Qualitative Analysis of Findings

Herein, we conduct a qualitative analysis on the above

findings in Table V. This qualitative analysis can further reveal

the challenges and opportunities of using in-memory comput-

ing to potential users including both domain scientists and

library developers. Note that some findings are conditionally

relevant to in-memory libraries. For example, finding 2 is

relevant to DataSpaces on the condition of using SFC to

index staging data. Finding 5 needs supports from HPC job

scheduler and system administrators. To avoid the undesirable

situations in finding 1 and 3, users need to understand the

inner mechanisms of how application data is decomposed

and moved into the staging servers, so as to lower the cost

of data movement. Finding 2 can be a lesson learned for

library developers - simply using high-level abstractions can

be overly expensive. Finding 4 can be beneficial to both library

developers and domain scientists. Although using sockets and

RPC is more convenient and productive for code development,

using proprietary low-level RDMA implementations can result

in substantial performance gains. This is an area that needs

continued investment so that proprietary RDMA can be fully

exploit and hardened. Similarly in finding 5, shared memory

is not well supported on HPC systems and needs to hardened.

Finding 6, 7 and 8 evaluate in-memory libraries beyond the

common performance metrics, and reveal the design trade-offs

among usability, portability and robustness.

V. CONCLUSION

This paper conducts a comprehensive study of in-memory

computing on two large supercomputers, Titan and Cori, using

two realistic scientific workflows. Our results suggest that

in general, in-memory computing offers much higher scala-

bility and performance than the traditional post-processing.

However, the scalability of in-memory is often constrained

by the availability of resources on HPC systems, such as

RDMA memory and sockets. These libraries generally have

excellent portability across platforms, leveraging the sophis-

ticated software stack, such as MPI, and open frameworks,

such as ADIOS. Usability and robustness are the two areas

that need continued investment and improvement due to the

complexity of HPC systems and the design trade-off among

usability, portability and performance. Furthermore, we assess

the memory usage, the impact of data layout, transport layer,

sharing mode and etc, for in-memory computing.
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