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Abstract—With the increasing fidelity and resolution enabled
by high-performance computing systems, simulation-based sci-
entific discovery is able to model and understand microscopic
physical phenomena at a level that was not possible in the past.
A grand challenge that the HPC community is faced with is how
to handle the large amounts of analysis data generated from
simulations. In-memory computing, among others, is recognized
to be a viable path forward and has experienced tremendous
success in the past decade. Nevertheless, there has been a lack of
a complete study and understanding of in-memory computing as
a whole on HPC systems. This paper presents a comprehensive
study, which goes well beyond the typical performance metrics.
In particular, we assess the in-memory computing with regard to
its usability, portability, robustness and internal design trade-offs,
which are the key factors that of interest to domain scientists.
We use two realistic scientific workflows, LAMMPS and Laplace,
to conduct comprehensive studies on state-of-the-art in-memory
computing libraries, including DataSpaces, DIMES, Flexpath and
Decaf. We conduct cross-platform experiments at scale on two
leading supercomputers, Titan at ORNL and Cori at NERSC,
and summarize our key findings in this critical area.

Index Terms—High-performance computing, data analytics,
workflow, in-memory computing

I. INTRODUCTION

It is well recognized that on high-performance computing
(HPC) systems, the compute has become increasingly cheaper
as compared to the storage and I/O [1]. This architectural trend
has continued to motivate and drive the HPC community to
look for alternative solutions that allow data analysis to be
done efficiently, rather than post-processing scientific data at
persistent storage. In-memory computing, among others, aims
to address this challenge by analyzing data while they are
still in memory so that the cumbersome post-processing over
persistent storage can be avoided. Unlike Big Data domain,
in-memory computing in HPC is apt to reduce the abstraction
layers of data object and I/O subsystems, for achieving high
performance on data management and movement. For exam-
ple, ORNL ADIOS [2] configures an external XML file for
depicting raw data (dimensions, offsets, sizes and types), rather
than encapsulates the raw data with metadata and semantics
via high-level data abstraction, e.g. RDD in Apache Spark.
Broadly, in-memory computing on HPC systems can be in
the form of in situ [3], [4], [5], [6], [7], [8], [9], [10], in
transit [11], [12], [13], [14], [15], [16], or the combination of
the two, depending on how the simulation and data analytics
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are deployed. Particularly for in situ, the simulation and
data analytics can execute on the same compute node. As
such, the data analytics can directly retrieve raw data from
the simulation memory and there is short data movement
associated with it. A key disadvantage of this approach is that
simulation and analytics must be tightly coupled via shared
memory mechanism instead of saving data into a dedicate
data staging area. In contrast, the in transit approach stages
data from the simulation memory to a dedicated off-node
staging area where the data can be further analyzed. While
this approach incurs explicit off-node data movement, a major
benefit is that the simulation can run asynchronously with
the data analytics, thus posing much lower impact on the
simulation.

Despite the multitude of efforts and the demonstrated suc-
cess in both in situ and in transit, there has been a lack
of complete evaluations and understanding of in-memory
computing as a whole on emerging HPC architectures. This is
particularly needed for general-purpose in-memory computing
libraries that provide generic APIs for coupling scientific
workflows in various application scenarios and HPC sys-
tems. Without expertise on system design and performance
tuning, these libraries can significantly impact the workflow
performance and scalability. Our evaluation demonstrates that
the in-memory libraries may yield lower performance and
scalability than persistent file I/O under default configuration.
Therefore, our study is conducted to help domain scientists
understand the internal mechanism of these libraries, tune
workflow performance, and also benefit library developers on
how to achieve better performance, usability, robustness and
etc. To this end, we evaluates state-of-the-art general-purpose
in-memory libraries, including DataSpaces [13], DIMES [13],
Flexpath [14], and Decaf [15], with some of these tested
through the ADIOS [2] framework, using two realistic sci-
entific workflows, i.e., LAMMPS [17] and Laplace [18].
Specifically, our paper makes the following contributions:

« We believe this work presents the most comprehensive study
of in-memory computing on HPC systems, and assesses a
broad spectrum of metrics that are to the interest of domain
scientists, including the end-to-end performance (Section
III-B1) of scientific workflows, software usability (Section
IV-A), portability (Section IV-B), and robustness (Section
IV-C), thus being much broader than the scope of prior
work [16], [3]. These dimensions are important for broad
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Fig. 1: In-memory computing libraries. Data staging stores the
simulation output in an intermediate storage for further processing.
For DataSpaces and DIMES, the metadata maintains the descriptive
information of staged data, such as data dimension, size, location,
type and etc.

adoption of in-memory computing by domain scientists, but
have rarely been discussed in the literature.

« We conduct in-depth qualitative and quantitative analyses
of the behavior of in-memory computing, and summarize a
number of key findings that we hope can shed a light on
the weaknesses and possible areas for future research. We
verify our findings through experiments, deep code review,
debugging as well as discussions with some of the library
developers.

o We conduct cross-platform studies at scale on two leading
supercomputers, Titan [19] at Oak Ridge National Labora-
tory (ORNL) and Cori [20] at National Energy Research
Scientific Computing Center (NERSC). With adjusting the
building configurations and running modes, we show the
insights of how to tune the performance of in-memory
libraries on the two distinct systems.

The rest of this paper is organized as follows. We present a
survey on in-memory libraries and methodologies along with
the related work in Section II. A comprehensive performance
evaluation and analysis are presented in Section III. In Sec-
tion IV, we present a quality assessment on the usability, porta-
bility and robustness of those libraries. Finally, we conclude
this work in Section V.

II. BACKGROUND AND RELATED WORK
A. In-memory Computing

For the traditional post-processing on HPC systems, a simu-
lation dumps the analysis output onto persistent storage. After
the run is over, data analytics will retrieve and analyze the
data. In contrast, in-memory computing allows the simulation
and analytics to be coupled through the memory layer, which
delivers a much higher throughput and lower latency than
persistent storage. Figure 1 illustrates the high-level design
of general-purpose in-memory computing libraries, which can
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couple applications and analytics in various scenarios, such as
feature extraction, anomaly detection, visualization and etc.
DataSpaces and DIMES construct a shared virtual space to
stage data and metadata respectively. In contrast, Flexpath
stages data at the simulation side and uses the subscrip-
tion/publication mechanism to notify analytics with regard to
where and when to retrieve the staged data. Decaf is a dataflow
system that depicts a dataflow graph, where an edge denotes
the direction of dataflow and a node represents where data
resides, e.g. at simulation, analytics and data staging area.

DataSpaces [13] provides a set of high-level declarative
APIs, such as put() and get(), to allow analysis data to be
placed into a shared virtual space, indexed and subsequently
queried by various workflow components. DataSpaces de-
ploys dedicated staging and metadata servers to manage the
distributed datasets, and utilizes DART [21] as the under-
lying communication layer to achieve highly-optimized data
movement over interconnect. As of now, DataSpaces has
customized data transport over a variety of remote direct
memory access (RDMA) implementations, such as Infiniband,
Cray Gemini [22] and Aries [23].

DIMES [13] is another in transit method offered from the
DataSpaces library and similarly provides put() and get() to
access data staging servers. As compared to the baseline, it
places the shared virtual space directly into the simulation
memory in a distributed fashion, and provides direct memory-
to-memory data exchange, as opposed to moving data to the
dedicated staging servers first. However, metadata are still
maintained by the stand-alone DIMES servers.

Flexpath [14] adopts a publisher/subscriber based model to
exchange data between the simulation and data analytics. To
support a range of communication protocols, Flexpath uses
a network abstraction layer, EVPath [24], which currently
supports TCP sockets, Sandia NNTI [22], Infiniband, Cray
Gemini, and the BlueGene interconnect. Flexpath adopts Fast
Flexible Serialization (FFS) [25] for data serialization, which
creates self-describing events to support flexible data types.

Decaf [15] is a dataflow system that enables the parallel
communication between the coupled components within an
HPC workflow. In particular with Decaf, workflows can per-
form data transformations on-the-fly, including serialization
and complex data redistribution. The communication layer
of Decaf is entirely based upon message passing over MPI,
thus being portable across different platforms. In contrast to
the libraries mentioned above, Decaf adopts a simple Python
API for mapping a workflow to a graph, e.g. add_node(),
add_edge() and processGraph(). Users can also assign roles to
the nodes of dataflow graph, such as producer and consumer.

ADIOS [2] is a framework level library that provides
a range of I/O methods, including both file I/O and in-
memory computing. A key contribution of ADIOS is that it
provides an open framework that allows new I/O methods to
be easily plugged and played. On the other hand, ADIOS
designs a binary-packed mechanism that allows for the self-
describing data format. As of now, ADIOS has demonstrated
its high performance and scalability over 1 million cores
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on leadership class systems. ADIOS has integrated nearly
all general-purpose in-memory libraries, including Flexpath,
DataSpaces and DIMES, and hides the complexity of usage.
It also provides a set of descriptive APIs, e.g. adios_write()
and adios_read(), and users can determine the underlying
in-memory library to be used typically through an XML
configuration file.

B. Other Related Work

Researchers have proposed various in situ and in transit
methodologies to allow science to be done more efficiently on
HPC systems, for example, for feature extraction [26], [27],
parallel visualization [12], [8]. Prior research [5], [9], [3] have
improved the efficiency of running in situ workflows at the
framework level. Malakar et al. [28] propose a mathematical
model to choose the optimal frequency of data transfer be-
tween workflow components under a given resource constraint.
Zipper [16] identifies and resolves the performance bottleneck
of in-memory frameworks through deep performance analysis.
SENSEI [3] is primarily an in situ library that provides VTK
data model [29] for performing analysis and visualizations.
Meanwhile, a set of in transit techniques at the system level is
designed and implemented to enable data analytics to run more
efficiently, such as PreDatA [30]. Larsen et al. [31] present a
statistical modeling based technique to accurately predict the
runtime cost of in situ volume rendering. Our work differs
from all prior work in the sense that we comprehensively
compare the state-of-the-art in-memory computing on two
different platforms with a set of metrics, including end-to-end
performance, usability, portability and robustness. Through
deep analysis on these metrics, we identify the design and
scalability challenges and opportunities.

III. PERFORMANCE EVALUATION

A. System Setup

This paper evaluates two realistic scientific workflows,
LAMMPS and Laplace, along with a synthetic workflow
on two different HPC systems: Titan [19] at ORNL and
Cori [20] at NERSC. The Titan system contains 18,688
physical compute nodes, with each containing a 16-core 2.2
GHz AMD Opteron (Interlagos) processor, 32 GB of RAM,
and an NVIDIA Kepler accelerator with 6 GB of DDRS5
memory. The interconnect on Titan is Cray Gemini in 3D
Torus and is capable of delivering 5.5 GB/s peak injection
bandwidth [32] on each node. The parallel file system on
Titan is Lustre, which is configured with 32 PB disk space
and 1 TB/s peak performance. The Cori system has 2,388
Haswell nodes and 9,688 Knights Landing (KNL) nodes. Our
experiments were conducted on KNL nodes, each of which is a
single-socket Intel Xeon Phi processor with 68 1.4 GHz cores.
Each core supports up to 4 hardware threads, thus totaling
272 threads per node. Each node has 96 GB 2.4 GHz DDR4
memory in six DIMMs. Each Haswell node has two 2.3 GHz
16-core Haswell processors with 128 GB memory. With the
die-stacked memory, the total memory capacity of Cori is 1.09
PB. The interconnect on Cori is Cray Aries with the Dragonfly
topology, and each node is capable of delivering 15.6 GB/s

989

peak injection bandwidth [33]. Similar to Titan, Cori uses
Lustre file system that has 248 storage targets with 744 GB/s
peak performance and 30 PB disk space.

The build and runtime configurations of each in-memory
library are detailed in Table I, and the descriptions of the
scientific workflows used throughout this paper are presented
in Table II. The LAMMPS workflow consists of the LAMMPS
simulation [17], a molecular dynamics code, and computing
the mean squared displacement (MSD) [16], [28]. In particular,
the LAMMPS simulation models the clusters of Lennard-Jones
atoms and studies the melting process of materials from a
low-energy solid structure to a set of higher energy liquid
structures. The coupled data analytics computes MSD, which
characterizes the deviation between the position of a particle
and a reference position. The Laplace workflow runs a Laplace
based computational fluid dynamics simulation [34], [18], and
its analysis output is further processed by a parallel n-th
moment turbulence data analysis (MTA) [16]. Particularly,
the output data of the two workflows are multi-dimensional
floating-point arrays that are representative of HPC data [35].

In the evaluation, we configure the in-memory staging
area based upon the workflow problem size and processor
count [13], [14], [15], [16]. In particular, the number of
Decaf servers is set to the number of analytics processors
used. Unless otherwise specified, the numbers of DIMES and
DataSpaces servers are set to 4 (since only metadata servers
are involved in DIMES) and (# of analytics processors)/8,
respectively. Each DataSpaces server deals with 16 simulation
and 8 analytics processors. For the runs throughout this paper,
we vary either the processor count, i.e., the number of MPI
processors used by the simulation and analytics in Figure 2,
respectively, or the problem size in Figure 3, which is the
simulation output size per MPI processor, to study the scaling
behavior.

B. Performance

In this section, we study a set of in-memory libraries in-
cluding Flexpath, DataSpaces with ADIOS, native DataSpaces,
DIMES with ADIOS, native DIMES, and Decaf using the
two real scientific workflows (Table II). For comparison, we
also discuss the MPI-IO method, which dumps data from the
simulation directly to persistent storage.

1) Overall Performance: Figure 2a and Figure 2b show
the end-to-end times of running LAMMPS and Laplace work-
flows, respectively, using each of the in-memory libraries.
The runs of “simulation only” and “analytics only” measure
the time spent on the simulation and analytics, respectively,
without I/O. Since the CPU frequency of Cori is only 63.6% of
Titan, the finish times of compute-intensive Laplace workflow
and MTA on Cori are much longer than those times on Titan.
These provide a baseline for us to understand the scalability
of the workflow itself. Overall, in-memory libraries, except
DataSpaces on Titan, exhibit better scalability than MPI-IO
due to the fact that the workflows are executed in the faster
memory tier with the size of staging area scaling up with the
processor count. For example, when the LAMMPS workflow
scales from (32, 16) to (8192, 4096), the end-to-end time

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 29,2021 at 23:13:04 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Build and runtime configurations.

Method Version Build options Runtime configurations
DataSpaces/ADIOS | DataSpaces 1.7.2, —with-dataspaces, —with-dimes, —with-mxml, | lock_type=2, hash_version=2,
and ADIOS 1.13 —with-flexpath, —enable-dimes, —with-dimes- | max_versions=1
DIMES/ADIOS rdma-buffer-size=1024, —enable-drc

DataSpaces/native DataSpaces 1.7.2, —enable-dimes, —enable-drc, lock_type=2, hash_version=2,

and DIMES/native | ADIOS 1.13 —with-dimes-rdma-buffer-size=2048 max_versions=1
MPI-IO/ADIOS ADIOS 1.13 —with-mxml Ifs setstripe —stripe-size 1m —stripe-count -1,
ADIOS XML: stats=off
Flexpath/ADIOS ADIOS 1.13, EVPath | —with-flexpath CMTransport=nnti, ADIOS XML: queue_size=1
for ADIOS 1.13
Decaf version as of 06/20/2018 | transport_mpi=on, prod_dflow_redist="count’,

build_bredala=on, build_manala=on

dflow_con_redist="count’

TABLE II: Workflow description. Note that nprocs is the number of MPI processors used in the simulation.

\ Workflow lation Analytics Output data
LAMMPS LAMMPS (version as of 08/22/2018), | mean squared displacement (MSD) 5 x nprocs x 512000 double-precision
a molecular dynamics simulator data
Laplace Solving Laplace’s equation in a rectan- | moment turbulence data analysis (MTA) | 4096 x mnprocs X 4096 double-
gle region precision data
Synthetic An MPI based writer that outputs data | An MPI based reader that retrieves data | Configurable, e.g. a 3D array and each
to the staging servers in parallel from the staging servers in parallel MPI processor access a portion.

increases only by 60% for Flexpath. In comparison, the end-
to-end time of MPI-IO increases linearly with the number
of processors allocated to the workflow. We note that such
a trend of MPI-IO is a result of raw storage performance, for
which there are only a fixed amount of Lustre storage targets
available in the systems, as well as the metadata service, for
which a very limited amount of Lustre metadata servers are
deployed, with four on Titan and one on Cori.

The exception is DataSpaces running on Titan, in which
the end-to-end time of LAMMPS increases rapidly with the
processor count. Our diagnosis indicates that there exists a data
decomposition mismatch between the writers in LAMMPS,
the data layout in the staging servers, and the readers in MSD
(further illustrated in Figure 8), which leads to the situation
that all processors in the simulation and analytics have to
access one staging server to put/get the data. This results in
expensive and unscalable N-to-1 data movement at memory
layer (detailed in Subsection III-B4). However, due to the
higher throughput of the Aries interconnect on Cori (15.6 GB/s
versus 5.5 GB/s on Titan), this overhead does not appear on
Cori at the problem size (4096 x 2048).

Finding 1: In-memory libraries do not always yield higher
performance than persistent file I/O due to the expensive
N-to-1 data movement at memory layer involved.

Note that both LAMMPS and Laplace workflows fail to
run at (8192, 4096) on Cori, which uses the dynamic RDMA
credentials (DRC) [36] to allow for the shared access between
applications. If configured with RDMA, the workflow runtime
needs to access the DRC service to acquire RDMA credentials
prior to the communication. For a large-scale run that issues
large amounts of parallel requests, the DRC server can be
overwhelmed and result in failures. We will elaborate more
on the impact of dimension mismatch in Section III-B4.

In Figure 3, we further examine the scalability by varying
the problem size of the Laplace workflow from 512 KB
(256x256) to 128 MB (4096x4096) per processor. It is
observed that the end-to-end time increases proportionally
with the problem size. We note that at the problem size of
128 MB, DataSpaces and DIMES are out of RDMA memory
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on Titan. Therefore, in this figure we double the amount of
the staging servers in order to make the runs successful. As
a matter of fact, a key obstacle to scaling up the problem
size on Titan is the RDMA memory constraint. DataSpaces
and DIMES adopt a low-level Cray RDMA interface uGNI
to synchronously acquire and release RDMA memory. If
requesting more RDMA resources than what is available in
the system, then the acquire operation will fail and crash the
application. What happened in the Laplace workflow is that
two staging servers are launched on each node and each server
handles 8 analytics and 16 simulation processors. A simula-
tion or analytics processor calls the DataSpaces/DIMES API
(datapspaces/DIMES_put() and datapspaces/DIMES_get()) to
send/receive 128/256 MB data to/from the servers. When all
simulation or analytics processors perform data movement
concurrently, 2 GB RDMA memory is needed on each server
and this exceeds the maximum RDMA capacity per node
on Titan. Additionally, the RDMA resources on Titan are
constraint not only by the total capacity, but also the number of
RDMA memory handlers. The latter leads to the DataSpaces
and DIMES failure at (8192, 4096) in Figure 2a, even with a
reduced problem size (e.g., 20 MB).

To further quantify the limitation of RDMA resources, we
run a synthetic test on Titan to acquire and release RDMA
memory by varying the request size and concurrency, as shown
in Figure 4. If the request size is less than 512 KB, the
run can concurrently register at most 3,675 RDMA memory
handlers. If the request is larger than 512 KB, the maximum
concurrency of RDMA memory requests is constraint by the
RDMA memory capacity (1,843 MB per node on Titan).

2) Memory Usage: As compared to persistent storage,
memory is a precious resource on HPC systems. This is
particularly true in the context of in-memory computing where
the simulation and data analytics may share the same physical
memory space, and sophisticated highly optimized data move-
ment can further consume memory space. In light of the out
of memory issues we experienced as well as the trend that the
memory has become increasingly bottlenecked as compared
to compute, we aim to further understand the memory usage
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Fig. 2: End-to-end time of scientific workflows (LAMMPS and Laplace) on different architectures (Titan and Cori KNL). The x-axis
represents the the number of processors assigned to the simulation and analytics, respectively. For example, the notation of (32,16) represents
the case that 32 and 16 processors are assigned to the simulation and analytics, respectively. LAMMPS and Laplace produce 20 MB and

128 MB per processor, respectively.
patterns of in-memory computing.

In Figure 5, we profile the memory usage of each library
using the profiling tool, Valgrind, with millisecond resolution.
In particular, we measure the memory usage at the simulation,
data analytics, and staging servers (if any), respectively. For
Flexpath, there are no stand-alone staging servers, and for
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DIMES, a staging server only manages metadata and there-
fore incurs a small memory consumption on the server side.
Carefully note that the total memory consumption includes
those consumed by the main calculation as well as those by
calling the in-memory libraries. For DataSpaces, DIMES and
Flexpath, LAMMPS uses approximately 400 MB of memory
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per MPI processor (Figure 5a, 5b and 5c), of which 173 MB
is consumed by the numerical calculation and 227 MB is
consumed by the in-memory libraries to perform data move-
ment and staging. In contrast, Decaf needs 40% more memory
(Figure 5d) due to the extra overhead incurred by flattening
and buffering high dimensional data. Both DataSpaces and
Decaf allocate up to 560 MB to stage the LAMMPS output.
We note that in Figure 5a and Se, the spike at 40 second marks
the creation of DataSpaces staging servers.

To further diagnose the memory consumption, we break
down the memory usage of the Laplace workflow in Figure 7.
With each DataSpaces server handling 16 processors in the
Laplace simulation, each of which generating 128 MB data,
we expect 2 GB data in total to be staged in a server. However,
in our measurement, we observe the total consumption is more
than 2 GB due to the additional buffering used by DataSpaces.
For Decaf, each Decaf server stages the output from two
Laplace processors totaling 256 MB. As a result of extra data
transformation between raw data and the internal object with
rich semantic information, the total memory consumption of
Decaf is 7 times that of the raw data size.

Finding 2: The raw data transformation to high-level
data abstraction with rich metadata and semantics can be
overly expensive with regard to the memory consumption,
and therefore needs to be carefully managed.

3) Cost of Indexing: To identify the location of target
data, DataSpaces and DIMES build a spatial index to serve
the queries from data analytics. Figure 6 shows the memory
usage using the Hilbert space-filling curve (SFC) [37] to index
data. When the problem size scales to 64 MB (4096 x 2048)
per processor, each DataSpaces server allocates around 6 GB
memory to index and stage data from 16 Laplace processors.
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Fig. 6: Memory usage of the Laplace workflow.

Such a quadratic trend of memory usage is partially due to the
construction of SFC index, which requires an n-dimensional
index space with the size of each dimension being 2*, where
n is the number of dimensions of the raw data and k is
the smallest integer that satisfies 2* greater than the size of
longest dimension. Each dimension is then divided into smaller
buckets, which are mapped to DataSpaces servers evenly. For
example, for the problem size of 4096 x 2048 per processor
(i.e., with the global problem size of 4096 x (64 x 2048) for 64
Laplace processors), SFC will construct a mapping between
the 2D data and index space with the size of 262144 x 262144,
which is then evenly mapped to DataSpaces servers. This leads
to a high indexing cost. In contrast, the DIMES servers use
much smaller memory (about 154 MB) than DataSpaces due
to the fact that DIMES stores the index at the simulation
processors, rather than the metadata servers.

4) Data Decomposition and In-memory N-to-1 Access: In
our experiments, data decomposition is observed to be another
factor that substantially affects the performance. As aforemen-

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 29,2021 at 23:13:04 UTC from IEEE Xplore. Restrictions apply.



2500

=3
3

2000
Data staging [l 2 E
Transmission & 1500
buffer = £
1000
Transformation [J & z

500
Application used [ E

Other (MPI, 0
dynamic link)

N oA @ ®
o & 5 & &

Memory usage (percentage)

3
DataSpaces DIMESFlexpa\h Decaf DataSpacesDIMES Flexpalh Decaf

Fig. 7: Memory usage breakdown (Laplace).

Data access direction
S-1
S-2
S-3
S—4 :

e

S-1 S-2 S-3 S-4

m .ﬂ .m" -. ,ﬂ. »E i

. SlagmlT servers .-

A-1 A-2

(a) Mismatch

(b) Match

Fig. 8: Data layout in the staging area. The suffixes “S-" and “A-”
denote a processor in the simulation and data analytics, respectively.

tioned in Figure 2a, the end-to-end time of the LAMMPS
workflow increases by up to 2X using DataSpaces/DIMES,
when the processor count scales up to (4096, 2048). This
performance degradation is attributed to the data decomposi-
tion at simulation side, which enforces N processors accessing
one staging node. In particular, the domain decomposition of
LAMMPS occurs in the second dimension, and the global
dimensions of the LAMMPS output are 5 x nprocs x 512000.
However, DataSpaces/DIMES decomposes the problem do-
main into 2/%°9(")1 regions in the longest dimension, where n
is the number of staging servers. This decomposition strategy
can result in a mismatch between the decomposition and
processor scaling, with an example illustrated in Figure 8a.
Internally each processor of simulation and analytics accesses
its data region from begin to end in each iteration, without
enabling multi-threads to split and concurrently access that
region. As such, the regions are decomposed into sub-regions,
which are mapped to the staging servers sequentially. Then
all processors must access the corresponding staging servers
in the same sequence as that of the sub-regions, leaving
other staging servers in idleness. Thus, this results in the
expensive N-to-1 communications. For example in Figure 8a,
since the first sub-regions of all 4 ‘S-’ processors are placed
on staging server 1, the 4 processors have to concurrently
access server 1 with other three servers idle. By adjusting the
domain decomposition, all processors can access all staging
servers (N-to-N access), as shown in Figure 8b. Figure 9
shows that by matching the decomposition dimension to the
processor scaling dimension, e.g. 5 x 512 x (1000 x nprocs),
the performance of the synthetic workflow can be improved
by up to 5.3X.
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Finding 3: The mismatch between staging data layout and
the decomposition strategy can result in the unexpected
N-to-1 access to data staging area. This can introduce
a significant performance penalty at scale (5.3X perfor-

mance degradation in our experiments).

5) Transport Layer: Data movement is a critical step within
an in transit workflow. In Figure 10, we compare the per-
formance of using different transport layers for moving data
between the simulation and analytics. As expected, RDMA
results in a shorter end-to-end time than TCP sockets. The
average performances of the LAMMPS and Laplace workflows
are improved by 15.8% and 3.82% using Flexpath with NNTI,
and by 8.4% and 17.3% using DataSpaces with Cray uGNIL.
The performance loss incurred by socket is mainly due to the
cost of memory copy across the network stack [38], which is
well acknowledged in the literature [38], [39], [40], [41].

Note that when using socket beyond (1024, 512),
workflows failed to establish socket connections between the
staging servers and simulation/analytics. This is attributed to
out of socket descriptors on the server side. After digging
into the system logs and source code, we found that the
socket connections are requested by the following operations:
1) simulation staging data to DataSpaces/DIMES servers; 2)
analytics retrieving data from the servers; and 3) servers
updating metadata among peers. As a result, even if we try
to increase the number of data staging servers to reduce the
connection load per server from simulation and analytics, a
server still needs to establish more socket connections with its
peers to manage distributed metadata.
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Finding 4: While using high-level protocols, e.g., RPC and |
sockets over RDMA, is more convenient and portable,
proprietary low-level RDMA implementations, such as
Cray uGNI, yield substantial performance gains, e.g., up
to 17.3% in DataSpaces. The accompanied challenge is
that the non-trivial engineering effort on adapting the low-
level implementations to various application scenarios.

6) Number of Staging Servers: Intuitively, by increasing
the number of staging servers in Decaf and DataSpaces,
one would expect higher performance and lower memory
usage per server. To quantify the impact of the number of
staging server, we run a set of experiments by varying the
number of staging servers. For Decaf, as shown in Figure 11,
the memory usage per server is proportionally decreased by
83.5%, when the number of servers increases from 8 to 64.
However, the end-to-end time of the Laplace workflow is only
reduced by 5.5%, quite insensitive to the number of servers.
Figure 12 shows the end-to-end time of the Laplace workflow
under different number of DataSpaces servers. The overall
performance improvement by doubling the number staging
servers is about 5.4% and the performance gain on data staging
(versus computation) can be up to 20.1%.

7) Shared Memory: Figure 13 shows the results of running
the LAMMPS and Laplace workflows using shared memory
on Cori. Compared to the results of Figure 2b, the performance
of using Flexpath improves by 12.7% and 17.0%, respectively,
for LAMMPS and Laplace. Similarly, the performance of
using DataSpaces improves by 11.0% and 8.9%, respectively.
The gain is attributed to the shortened I/O path from off-
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Fig. 13: Running workflows in the shared mode (Cori).

node data movement to local memory copy. Nevertheless,
two executables sharing memory on a node is not universally
supported on HPC systems. For example, Titan does not allow
multiple jobs running on the same compute node. Even though
Cori supports multiple jobs sharing one node, it does not
support heterogeneous running, which wraps multiple jobs
in one MPI communicator and allocates resources to each
job. Without this capability, Decaf cannot allocate compute
resources to the MPI wrapped workflow. In addition, the DRC
service may prohibit some workflows from running in the
shared mode. By default, DRC does not allow multiple jobs
on the same node to use the same credential to access a shared
network domain, unless its node-insecure option is enabled. As
a result, in Figure 13, we had to run DataSpaces using socket
rather than uGNI in order to avoid acquiring and releasing
DRC on Cori.

Finding 5: Despite the substantial performance improve-

ment (about 10%), shared memory is a restricted running

mode on some leadership HPC systems due to security.

IV. LIBRARY QUALITY ASSESSMENT

In this section, we further evaluate in-memory computing

more broadly regarding usability, portability, and robustness.
A. Usability

In-memory computing ultimately needs to be in the hands
of domain scientists to allow analytics to be done more
efficiently for science productions. Therefore, the aspect of
software usability, for long being ignored and less favored as
compared to the software performance and robustness, would
matter for the broad adoption of in-memory computing. For
example, ADIOS is a framework that incorporates a number
of third party libraries to accommodate a broad spectrum of
science scenarios, making it nontrivial for domain scientists to
configure and build ADIOS properly on their local systems. As
of now, most of these in-memory libraries still need extensive
support from HPC administrators or library developers in order
to be seamlessly integrated in science production. Herein we
thoroughly examine the complexity of their build systems and
software interfaces, two key factors to the overall usability of
in-memory libraries.
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TABLE III: Lines of code for configuration and API invocation.
LOC | Functionality

D: and DIMES (ADIOS)
Enable RDMA, socket and etc.
Define staging area: dimensions, size, offset and etc.
Data description in ADIOS: dimensions, size, offset and etc.
Server and client init, put/get data, and finalize
DataSpace and DIMES (native)
Enable RDMA, socket and etc.
Define staging area: dimensions, size, offset and etc.
Server and client init, lock/unlock, put/get data, and finalize

Flexpath
RDMA API options, compiler and flags.
Data description in ADIOS: dimensions, size, offset and etc.
Init, put/get data and finalize
Decaf

Enable transport layers, e.g. MPI
Define and link producer, consumer and staging processes
Init, dynamical load libs, data transformation, staging and finalize

Category

Build options 13
Runtime config. 8

ADIOS XML config. 18
ADIOS data staging API | 30

Build options 13
Runtime config. 8
Data staging API 81

Build options 5
ADIOS XML config. 18
Data staging API 30

Build options 8
Bootstrap script 21
Data staging API 32

By and large, there are dozens of building options and
switches to properly configure these libraries, and some of
these options require users to be knowledgeable about the
HPC hardware, such as the details of HPC interconnect,
or the library internals, such as the hashing scheme used.
Additionally, they may require domain scientists to compose
the library configuration files (e.g. XML file for Flexpath), or
write nontrivial code (for Decaf) for application integration.
In particular, DataSpaces, DIMES and Flexpath connect sim-
ulation, staging servers and analytics via the communication
APIs, while Decaf adopts python or C++ to wrap them
into one MPI communicator. The engineering efforts involved
can be substantial, e.g., defining and accessing staging area
and defining staging object (dimensions, size and data type)
and etc. Therefore, unless the I/O cost of an application is
prohibitively high, in-memory computing may see resistance
from domain scientists for production usage. In Table III,
we summarize the number of lines of code for build and
runtime configurations as well as calling the APIs to perform
in-memory computing on Cori and Titan.

Finding 6: In terms of usability, in-memory libraries are
still far from being plug-and-play for domain scientists,
and most of them require substantial support from HPC
administrators or library developers, e.g. choosing the
optimal build options and runtime I/O configurations.

B. Portability

The HPC systems have become increasingly diverse in
terms of the architecture, hardware and software. The ability
to be able to function seamlessly across platforms and fully
exploit the hardware and software ecosystem is crucial for
production science. This is particularly true for in-memory
computing as it needs to deal with the interconnect and
memory subsystem which are often different across machines.

At the hardware level, we investigate the portability of
in-memory libraries between CPUs and GPUs. We found
that GPU is mostly not supported by the current in-memory
libraries, and data staging is assumed to be done at main
memory between compute nodes, rather than at GPU memory.
As a result, GPU-enabled workflows are required to take
care of the movement between GPU and CPU memory. We
comment that, given the recent development in new intercon-
nects, e.g., NVLink, between GPUs, we believe this will an
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attractive area for future research and development for in-
memory computing.

At the transport layer, DataSpaces, DIMES and Flexpath
support both TCP sockets as well as high performance proto-
cols including RDMA, Cray Gemini via Sandia NNTI [22] and
uGNI [23]. In contrast, Decaf wraps the workflow components
into an MPI communicator and thus the communication is
done through MPI message passing. Therefore, Decaf relies on
MPI to be portable. For all the in-memory computing libraries,
we have not seen official releases that explicitly support new
memory devices, such as non-volatile memory and die-stacked
memory, for memory allocation and migration. In the libraries,
the usage of new memory devices are mainly handled by
the operating system and are used no differently from the
conventional disks and DRAM.

At the application layer, both DataSpaces and DIMES can
be configured as services to applications through generic API
calls. Additionally, DataSpaces, DIMES and Flexpath are inte-
grated into the ADIOS framework as transport method, which
allows them to interact with a range of analytics packages,
such as FastBit, Paraview, Vislt, using the ADIOS API as
the interface of choice [14]. Rather than providing generic
APIs, Decaf is designed to build a dataflow system for coupled
scientific workflows and rely on MPI for communications.
Therefore, Decaf is applicable to any MPI-based (versus
socket-based) scientific workflows.

r

Finding 7: To achieve high performance and portability
for expert users, most of in-memory libraries can be con-
figured to reduce the layers of I/O stack and ported to low-
level APIs. For non-expert users without the knowledge
of performance tuning, these libraries can be ported to
high-level abstraction API, e.g. TCP socket over RDMA,
so as to hide the low-level API complexity.

. J

C. Robustness

We view robustness as an area that needs continued invest-
ment and improvement in order for in-memory computing to
be fully production ready. This is attributed to the following: 1)
compared to the enterprise sector, the HPC user communities
are much smaller, particular for those who are supercomputer
users. As a result, the opportunities of leveraging the user
communities to provide feedback and potentially have them
contribute to the code development are insignificant. We
looked into some of the library repositories and noticed that
the code contributions are dominated by the library developers,
with occasional bug fixes initiated from domain scientists.
2) HPC systems are rapidly evolving with new architectures
and hardware, and in some cases the hardware interfaces
are proprietary, such as the Cray interconnect. 3) Resilience
mechanisms for machine failures have not been constructed in
existing in-memory computing libraries. This is vital to large-
scale runs of workflows, since we know the machine failures
are quite common in the extreme-scale cluster. In conjunction
with the complexity in scale and application, this results in
substantial engineering challenges associated with hardening
the software infrastructure on HPC systems.
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TABLE IV: Lessons of running in-memory workflows.

Issue Description Suggested resolve
Out of | Data movement between 1. Better error handing, e.g.,
RDMA simulation and data an- | adding wait and re-try.
memory | alytics can deplete the | 2. Add a layer of indirec-
shared RDMA resources | tion that manages the re-
on a compute node. quests from applications so
that the RDMA resource con-
straint can be checked and
observed in advance.
Data di- | The dimension size can | Switch to 64-bit unsigned
mension be overflown, if it is set | long int.
overflow | to 32-bit unsigned integer
Out of | In-memory libraries | 1. Better understand the mem-
main might incur huge | ory consumption through pro-
memory | memory footprint (e.g., 7 | filing so that we can allocate
times the size of analysis | sufficient memory resources.
data (1.8 GB versus | 2. Optimize memory usage
256 MB)), resulting | by freeing the memory region
in unexpected out of | that may not be used immedi-
memory aborts. ately.
Out of | A reader in data analyt- | 1. If possible, adjust the com-
sockets ics may read data from | munication pattern so that a
all processors in the stag- | reader only reads data from a
ing servers. In this case, | small number of processors.
the socket descriptors can | 2. Alternatively, we can de-
be depleted on a compute | sign a socket pool that is re-
node. sponsible for communication
so that only a small number
of sockets are used. However,
this may compromise the data
movement efficiency.
Out of | If uGNI is used as the | 1. Add a layer of indirection
DRC RDMA layer, an appli- | that manages requests to the
cation need to access | DRC service.
the DRC service to ac- | 2. Re-sign the DRC service
quire RDMA credentials | to be distributed so that it
prior to communication. | can handle a large amount of
A large scientific work- | requests at a time.
flow may overwhelm the
DRC.

Table IV lists the robustness-related issues we encountered
in deploying and running these workflows on Titan and Cori.
In addition to the out of RDMA memory issue as aforemen-
tioned, there are a handful of hardware and software issues.
First, while the data dimension overflow issue is not erroneous
from the library level, we note that this often results in ugly
crashes that may not be easily debugged. Second, the out
of memory error appears much more often than one would
expect. This is mainly due to the optimizations that these
libraries employ to trade space for improving usability and
robustness via high-level abstraction. In Decaf, we observed
in our runs that memory consumption can be as high as 7
times the raw data size. For extreme-scale dataset, this can
result in unexpected out of memory errors. In addition to the
capacity related issues, resource descriptors for both RDMA
and sockets can also run out quickly for large runs. Last but
not the least, a single entity, such as the DRC server, in a
massively parallel environment, can be easily overwhelmed.

Finding 8: Using sophisticate high-level abstractions, e.g.,
wrapping all components into MPI or using TCP over
RDMA, dose not always improve usability and robust-
ness. In an extreme run, available resources, e.g. memory
and socket capacity, might be overwhelmed by high
abstraction overhead and lead to crash, particularly while
running those data intensive workflows.
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TABLE V: Qualitative summary. ‘+’ denotes that the finding is
relevant to a particular library, while ‘-’ denotes otherwise and ‘+/-’
denotes being conditionally relevant.

Findings | DataSpaces DIMES Flexpath Decaf
Finding 1 | + - - -
Finding 2 | +/- - - +
Finding 3 | + - - -
Finding 4 | + + + -
Finding 5 | +/- +/- +/- -
Finding 6 | + + + -
Finding 7 | + + + -
Finding 8 | - - - +

D. Qualitative Analysis of Findings

Herein, we conduct a qualitative analysis on the above
findings in Table V. This qualitative analysis can further reveal
the challenges and opportunities of using in-memory comput-
ing to potential users including both domain scientists and
library developers. Note that some findings are conditionally
relevant to in-memory libraries. For example, finding 2 is
relevant to DataSpaces on the condition of using SFC to
index staging data. Finding 5 needs supports from HPC job
scheduler and system administrators. To avoid the undesirable
situations in finding 1 and 3, users need to understand the
inner mechanisms of how application data is decomposed
and moved into the staging servers, so as to lower the cost
of data movement. Finding 2 can be a lesson learned for
library developers - simply using high-level abstractions can
be overly expensive. Finding 4 can be beneficial to both library
developers and domain scientists. Although using sockets and
RPC is more convenient and productive for code development,
using proprietary low-level RDMA implementations can result
in substantial performance gains. This is an area that needs
continued investment so that proprietary RDMA can be fully
exploit and hardened. Similarly in finding 5, shared memory
is not well supported on HPC systems and needs to hardened.
Finding 6, 7 and 8 evaluate in-memory libraries beyond the
common performance metrics, and reveal the design trade-offs
among usability, portability and robustness.

V. CONCLUSION

This paper conducts a comprehensive study of in-memory
computing on two large supercomputers, Titan and Cori, using
two realistic scientific workflows. Our results suggest that
in general, in-memory computing offers much higher scala-
bility and performance than the traditional post-processing.
However, the scalability of in-memory is often constrained
by the availability of resources on HPC systems, such as
RDMA memory and sockets. These libraries generally have
excellent portability across platforms, leveraging the sophis-
ticated software stack, such as MPI, and open frameworks,
such as ADIOS. Usability and robustness are the two areas
that need continued investment and improvement due to the
complexity of HPC systems and the design trade-off among
usability, portability and performance. Furthermore, we assess
the memory usage, the impact of data layout, transport layer,
sharing mode and etc, for in-memory computing.
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