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The interplay between thermal and quantum fluctuations controls the competition between phases of
matter in strongly correlated electron systems. We study finite-temperature properties of the strongly
coupled two-dimensional doped Hubbard model using the minimally entangled typical thermal states
method on width-four cylinders. We discover that a phase characterized by commensurate short-range
antiferromagnetic correlations and no charge ordering occurs at temperatures above the half-filled stripe
phase extending to zero temperature. The transition from the antiferromagnetic phase to the stripe phase
takes place at temperature 7'/¢ =~ 0.05 and is accompanied by a steplike feature of the specific heat. We find
the single-particle gap to be smallest close to the nodal point at k = (z/2,z/2) and detect a maximum in
the magnetic susceptibility. These features bear a strong resemblance to the pseudogap phase of high-
temperature cuprate superconductors. The simulations are verified using a variety of different unbiased
numerical methods in the three limiting cases of zero temperature, small lattice sizes, and half filling.
Moreover, we compare to and confirm previous determinantal quantum Monte Carlo results on
incommensurate spin-density waves at finite doping and temperature.
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I. INTRODUCTION

Understanding the physics and phase diagram of copper-
oxide high-temperature superconductors is arguably one of
the most fundamental and challenging problems in modern
condensed matter physics [1-5]. Especially fascinating is
the normal state of the hole-doped materials, which dis-
plays highly unusual but rather universal features such as
the formation of a “pseudogap” at an elevated temperature
[6-11] and, upon further cooling, the formation of charge-
density wave order for a range of doping levels [12,13].

Early on in the field, this fundamental problem was
phrased in the theoretical framework of the two-
dimensional Hubbard model [14-16]. Even though the
degree of realism of the single-band version of this model
for cuprates can be debated, it has become a paradigmatic
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model embodying the complexity of the “strong correlation
problem.” Establishing the phase diagram and physical
properties of this model is a major theoretical challenge and
a topic of intense current effort.

Controlled and accurate computational methods which
avoid the biases associated with specific approximation
schemes are invaluable to address this challenge, both
because of the strongly interacting nature of the problem
and because it is essential to establish the physical proper-
ties of this basic model beyond preconceptions. Recently,
the community has embarked on a major effort to combine
and critically compare different computational methods,
with the aim of establishing some properties beyond doubt
and delineating which questions remain open [17-20].

Among the many methods that have been developed and
applied to approach the problem, it is useful to emphasize
two broad classes. On the one hand, wave-function-
based methods using tensor network representations and
extensions of the density-matrix renormalization-group
algorithm (DMRG) [21-24] have been successful at estab-
lishing the ground-state properties of systems with a
cylinder geometry of infinite length but finite transverse
size. On those systems, the ground state has been
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established to display inhomogeneous “stripe” charge
and spin ordering [18,25-30]. Substantial support for this
picture has come from ground-state quantum Monte Carlo
methods with approximations to control the sign problem
[31-33], density-matrix embedding methods [34-36], and
finite-temperature determinantal quantum Monte Carlo
simulations [37,38]. For an early discussion and a review
of stripes in the Hubbard model and cuprates, see
Refs. [39-42]. Furthermore, recent studies have established
that these states are favored over a possible uniform
superconducting ground state by a tiny energy difference
for the unfrustrated model with zero next-nearest-neighbor
hopping [19].

Cluster extensions of dynamical mean-field theory
(DMFT) [43-46], on the other hand, address the problem
from a different perspective. These methods use the degree
of spatial locality as a control parameter and, starting from
the high-temperature limit in which the physics is highly
local, follow the gradual emergence of nonlocal physics as
spatial correlations grow upon reducing the temperature.
These methods have established the occurrence of a
pseudogap (PG) upon cooling [47-60] and related this
phenomenon to the development of short-range antiferro-
magnetic correlations [61-67]. This picture is supported by
unbiased quantum Monte Carlo methods without any
fermion sign approximations, although these methods are
limited to relatively high temperature [65,68—70].

These two ways of looking at the problem (ground state
T =0 versus finite 7 starting from high T), leave the
intermediate-7 regime as uncharted territory and, crucially,
leave a major question unanswered: How does the emer-
gence of the PG at high temperature eventually evolve into
the charge inhomogeneous ground states revealed by
DMRG and other recent studies?

In this article, we bridge this gap and answer this
question for the weakly doped Hubbard model at strong
coupling on a specific lattice geometry. We consider long
cylinders of width four and length up to 32 sites: This is
close to the current limit of ground-state DMRG studies,
such as the extensive study recently presented in Ref. [30].
To study this challenging system at finite temperature, we
refine and further develop the minimally entangled typical
thermal states (METTS) method [71,72]. This allows us to
follow the full evolution of the system as the temperature is
increased from the ground state exhibiting stripes. We
monitor this evolution through the calculation of several
observables, such as the spin and charge structure factors,
the momentum distribution function, as well as thermody-
namic observables. We determine the onset temperature of
the ground-state stripe phase. We find that as the system is
heated above this onset temperature, a new phase with
short-range antiferromagnetic correlations is found, which
shares many features with the experimentally observed
pseudogap phase. In contrast to the incommensurate
correlations observed in the stripe phase, the magnetic
correlations are commensurate in this regime. We identify
the pseudogap onset temperature, which is distinctly higher
than the temperature at which the stripes form.

Finite-temperature simulations using DMRG or tensor
network techniques beyond ground-state physics were
developed early on but seemed practical mostly for one-
dimensional systems. The purification method [73,74] is
particularly attractive for its simplicity [75-77], but in the
limit of low temperatures, its representation of the mixed
state carries twice the entanglement entropy of the ground
state, making it unsuitable for wide ladders, although
techniques have been developed to reduce the entanglement
growth [78]. The METTS method [71,72] was developed to
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FIG. 1.

Hole densities and spin correlations of a typical METTS state |y;) for U/t = 10 at hole doping p = 1/16 on a 32 x 4 cylinder.

The diameter of black circles is proportional to the hole density 1 — (n;) = 1 — (w;|n;y;), and the length of the red and blue arrows is

proportional to the amplitude of the spin correlation <§0 .S )= <1//,~|§0 .S ilyi). The black cross indicates the reference site of the spin

correlation. Red and blue squares indicate the sign of the staggered spin correlation (—1)x+y(§0 .S ) (@ T/t =0.025. We observe
antiferromagnetic domain walls of size approximately six to eight bounded by maxima in the hole density. This indicates a fluctuating
stripe phase realized. (b) T/t = 0.100. We observe extended antiferromagnetic domains. No regular stripe patterns are formed.
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overcome this obstacle. To simulate finite temperatures,
several matrix-product states (MPSs) are randomly
sampled in a specified way. The computation of a single
such MPS (also called a METTS), which has entanglement
entropy similar to or less than the ground state, can be
performed with the same computational scaling with
system size as ground-state DMRG [71,72,79]. However,
the METTS algorithm requires imaginary-time evolution
rather than DMRG’s more efficient sweeping to find the
ground state, and also a certain amount of random
sampling, both of which increase the calculation time
significantly. It has been argued that for certain one-
dimensional systems, where entropy scaling is less impor-
tant than the sampling error, the METTS algorithm does not
outperform the purification approach [80]. In this manu-
script, we develop and refine the METTS methodology and
demonstrate that it can be successfully applied to study the
finite-temperature properties of the doped Hubbard model
in the strong-coupling limit on a width-four cylinder.

The manuscript is organized in two major parts. In
Secs. II-VI, we discuss our physical results. We define
the model, establish basic notations, and give a minimal
explanation of the METTS method in Sec. II. The METTS
method allows us to investigate typical states at a given
temperature, which we show in Sec. III. The results on
charge and magnetic ordering are then presented in Sec. IV.
We discuss the nature of the spin and charge gaps in Sec. V
and present the results on the specific heat and magnetic
susceptibility in Sec. VI. In the second part in Secs. VII-XI,
we explain and demonstrate the more technical aspects of
our simulations. We explain the details of the algorithms we
employ for our simulations in Sec. VII. We discuss the
accuracy of the imaginary-time-evolution algorithms we
employ in Sec. VIII and investigate the METTS entangle-
ment in Sec. IX. We demonstrate that we can achieve
agreement with different numerical methods within their
respective limits in Secs. X and XI. Finally, we discuss
the physical implications of our results and the perspectives
opened by our work in Secs. XII and XIII. The statistical
properties of the METTS time series are discussed in the
Appendix A. There, we give the reason why these simu-
lations can actually be performed at a reasonable computa-
tional cost. We demonstrate that the variance of several
estimators quickly decreases when lowering temperatures
as well as increasing system sizes.

II. MODEL AND METHOD

We consider the single-band Hubbard model on the
square lattice,

H=—1) (clcjs+chei) + UZ"WM’ (1)
(i.j)o i

where 6 = 1, | denotes the fermion spin, ¢/, and ¢;, denote
the fermionic creation and annihilation operators, and

Ny = cj'gc,-(, denotes the fermion number operator. The
system is studied on a cylinder with open boundary
conditions in the long direction and periodic boundary
conditions in the short direction. We denote the length of
the cylinder L, the width W, with the number of sites
N = L x W. The cylindrical geometry is adopted since our
computations are performed using MPS techniques. When
studying the system using METTS, we employ the canoni-
cal ensemble with fixed particle number N,. Thermal
expectation values of an observable O are given by

(0) = %Tr(e‘/”{(’)). (2)

Here, = 1/kgT denotes the inverse temperature and
Z = Tr(e M) denotes the partition function. We hence-
forth set kz = 1. The results are presented depending on the
hole doping,

p=1-n, (3)

where n = N, /N denotes the particle number density.

We study the finite-temperature properties of the
Hubbard model Eq. (1) on an L = 32 and W = 4 square
cylinder in the strong-coupling regime at U/t = 10 and
focus on the hole-doped case p = 1/16. We also perform
simulations at half filling for comparison. Simulations are
performed for a temperature range

T/t =0.0125,0.0250, ..., 0.5000. 4)

To evaluate thermal expectation values, the METTS
algorithm averages over expectation values of pure
states |w;),

(O) = (w:|Olyy). (5)

Here, === denotes averaging over random realizations of
lw;), which are called METTS. We discuss the METTS
algorithm in detail in Sec. VII A. While in principle,
the basic METTS algorithm is unbiased and exact, the
computation of the states |y;) amounts to an imaginary-
time evolution of product states, which is performed using
tensor network techniques. As shown in Sec. VIII, this
operation can be performed to a high precision using
modern MPS time-evolution algorithms. The accuracy is
controlled by the maximal bond dimension D, of the
MPS representation of each METTS |y;) and by the
number of METTS sampled. Our implementation is based
on the ITENSOR library [81].

III. METTS SNAPSHOTS AT FINITE
TEMPERATURE

The METTS |w;) can be considered “snapshots” of the
thermal state at a given temperature. It is therefore
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informative to study the properties of individual METTS.
The METTS naturally separate the fluctuations of the system
into mostly quantum and mostly thermal. The mostly
quantum, higher-energy fluctuations are contained within
individual METTS, while long-distance low-energy fluctua-
tions tend to appear via the sampling over different METTS.
At zero temperature, all METTS are identically the ground
state. At infinite temperature, they are classical product states
with each site randomly in one of the four basis states of a
single site. We illustrate some typical METTS on the 32 x 4
square cylinder at U/t = 10 and p = 1/16 in Fig. 1. Hole
densities at site /, I — (y;|n,|y;), where n; = n;y + ny, are

shown as black circles. Spin correlations (z//i|§ S, vi)
are shown as red and blue arrows. We choose a reference
site / = 0 indicated by the black cross in the middle of the
lattice. For states at temperature 7/t = 0.025, like the
state shown in Fig. 1(a), we observe regular charge-
density wave patterns with a wavelength of six to eight
lattice sites. This charge modulation is accompanied by
the staggered spin correlations changing their sign, as
indicated by the blue and red squares. We thus observe
antiferromagnetic domains of the size of the charge
wavelength. The number of observed charge stripes on
the 32 x 4 cylinder is four. Since hole doping p = 1/16
corresponds to eight holes on this lattice, we have two
holes per stripe and thus observe a half-filled stripe on the
width-four cylinder. We show a typical METTS state at
temperature 7/t = 0.100 in Fig. 1(b). At this temperature,
we do not find regular charge-density wave patterns.
However, we observe enhanced antiferromagnetic corre-
lations with larger antiferromagnetic domains.

IV. MAGNETIC AND CHARGE ORDERING

To quantify these observations, we investigate the
magnetic structure factor,
1 &

Z eik-(r,—rm)<§l ' 5:m> (6)

Here, r; denotes the coordinate of the /th lattice point, and
k = (k. k,) denotes the quasimomentum in reciprocal
space. The width W =4 cylinders we focus on resolve

four momenta in the y direction,

k, =0, %7/2,7. (7)

Furthermore, we investigate the charge structure factor,
1
elk.(r[_rm)«nl - n)(nm

I,m=1

—n). (8

We show the magnetic structure factors with y momen-
tum ky, =7z for p =0 and p = 1/16 for several select
temperatures in Figs. 2(a) and 2(b). The METTS simu-
lations shown are performed with D, = 2000. The

convergence of these results as a function of the bond
dimension for specific values of k is shown in Fig. 3.
Ground-state DMRG calculations are performed to obtain
results for 7= 0 shown as the gray line. The DMRG
results are performed using 30 sweeps at maximal
bond dimensions up to D, = 5000. We observe con-
vergence in the displayed quantities. At half filling p = 0,
in Fig. 2(a) we observe a prominent peak at wave vector
k = (#,7), which corresponds to the antiferromagnetic
ordering vector. We observe convergence of the structure
factor at temperatures 7/t = 0.050, 0.025 for 7 — 0
toward the DMRG results.

At hole doping p = 1/16 in Fig. 2(b), we observe that at
temperatures below T/t~ 0.050 the peak in the magnetic
structure factor is shifted by 6 = z/8 away from k = (z, 7)
toward k = (7z/8, ). This feature is a signature of the
formation of stripes, where the shift in the antiferromag-
netic ordering vector is induced by the antiferromagnetic
domains of opposite polarization, as observed in Fig. 1(a).
The accompanying charge modulation is quantified by the
charge structure factor shown in Fig. 2(d). We observe a
peak at wave vector k = (z/4,0) = (25,0). Hence, the
charge modulations occur at half the wavelength of
the antiferromagnetic modulations. We again find that

p=1/16

ky =7

(a) p=0 (b)
k.

0203,

10 05 00 05 10 10 05 00 05 10
k7 ko /m

m— T/t =0 (DMRG) —— T/t =0.050 T/t = 0.200

—I— 7/t=002 —J— T/t =0.100

FIG. 2. Magnetic and charge structure factors S,, (k) and S, (k)
of the 32 x 4 square cylinder at U/t = 10 for p = 0 (left) and
p =1/16 (right). We compare different temperatures from
METTS with D, = 2000 and ground-state DMRG with
D ax = 5000. (a) Magnetic structure factor for p =0 and
ky, = x. The peak atk = (x, z) indicates the antiferromagnetism.
(b) Magnetic structure factor for p = 1/16 and k, = z. The peak
at k = (7z/8,x) (gray dashed line) indicates the stripe order
illustrated in Fig. 1(a). (c) Charge structure factor for p = 0 and
ky, = 0. The quadratic behavior at k, = 0 indicates a gap to
charged excitations. (d) Charge structure factor for p = 1/16 and
k, = 0. We observe a peak at k = (z/4,0) (gray dotted line).
This indicates a half-filled stripe phase at low temperatures. The
approximately linear behavior at k, = 0 indicates a small or
vanishing charge gap. In all cases, we find the METTS results
converging toward the DMRG results in the limit 7 — 0.
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FIG. 3. Magnetic and charge structure factors at the ordering

vectors of the 32 x 4 square cylinder at U/t = 10 for p = 1/16.
We compare results from METTS with D, = 2000, 3000,
4000. (a) Magnetic structure factor S,, (k). The antiferromagnetic
ordering vector k = (7, z) is shown in blue. The ordering vector
of the half-filled stripes k = (7x/8, x) is shown in red. (b) Charge
structure factor S.(k) at stripe ordering vector k = (7/4,0). A
transition from stripe order to short-range antiferromagnetic order
takes place at 7/r ~ 0.05. We find agreement between simula-
tions at different bond dimensions.

the METTS results tend toward the 7 = 0 DMRG results
as T — 0.

Above T/t=~0.050, we notice that the peak in the
magnetic structure factor is shifted back toward the anti-
ferromagnetic ordering vector k = (x,z), as shown for
T/t =0.100. We show the temperature dependence of
the magnetic structure factor for both ordering vectors in
Fig. 3(a). We find that above 7'/1 ~ 0.050, k = (z, =) is the
dominant ordering vector with a maximum in the structure
factor attained at 7/t~ 0.100. Below T/t~ 0.050, the
stripe ordering vector k = (7z/8,x) is dominant. This
suggests a transition or crossover from the stripe phase
to a new phase with antiferromagnetic correlations. The
realization of the stripe phase at low temperatures is also
apparent in the behavior of the charge structure factor at
ordering vector k = (z/4,0) in Fig. 3(b). We observe a
sharp increase below T/t~ 0.050. We also compare the
structure factors from METTS simulations at different bond
dimensions D,,,, in Fig. 3 and observe agreement within
error bars for most parameters. The peak height of the
magnetic structure factor at k = (7, ) is slightly decreased
for D . = 2000.

V. GAPS AND CORRELATIONS
IN THE DOPED SYSTEM

We now focus on the charge and spin excitations in the
hole-doped case, p = 1/16. Generally, the behavior of a
particular type of correlation function is tied to the presence
or absence of an associated gap. Consider the density
structure factor in the vicinity of k = (0,0) in Figs. 2(c)
and 2(d). Its behavior differs significantly between the
half-filled case in Fig. 2(c) and the p = 1/16 hole-doped
case in Fig. 2(d). We observe that for p = 0,

S.(ky,0) ~ const k2. 9)

This behavior is expected for a system with a charge gap
[33,82-85]. The charge gap in question is defined (at
T =0) as

1
NS =5 [Eo(m+ Lm +1) + Eg(m = 1.m = 1)

—2Ey(m, m)], (10)

where Ey(N, N ) is the ground-state energy with N+ and
N, up and down particles. A charge gap in the thermo-
dynamic limit implies that the system favors that particular
doping compared to states differing by two particles.
Typically, this happens only at commensurate fillings (such
as half filling) where the filling is a small-denominator
simple fraction. We do not expect a doping of p = 1/16 to
have a charge gap. For charge-gapless systems, the behav-
ior of the charge structure factor close to k = (0,0) is
expected to be [33,83,84]

S.(ky,0) ~ const |k,]|. (11)

We observe this behavior for hole doping p = 1/16 in
Fig. 2(d), consistent with the absence of a charge gap.
We also define the single-particle gap

1
AE”ZE[EO(mH,m)JrEO(m—1,m)—2E0(m,m)] (12)
and the spin gap

A, =Eq(m+1,m—1)— Ey(m,m). (13)

In Fig. 4, we show these three types of gaps for p = 1/16
evaluated using DMRG with fixed-particle and spin quan-
tum numbers on cylinders of length 8, 16, 24, and 32.
We check that the computed gaps correspond to bulk
excitations by investigating the density distribution upon
adding and removing particles. This shows that additional
particles or holes are indeed inserted in the bulk of the

system. The single-particle gap Aél) approaches a finite

value AEI) /t =~ 0.25, and the spin gap A, approaches a finite
value of A/t~ 0.07. In contrast, the charge gap decreases
approximately as 1/L for L = 16, 24, 32, consistent with a
vanishing charge gap in the L — oo limit, in agreement
with previous DMRG results on the width-four cylinder
[30]. Our observations on the stripe phase agree well with
the Luther-Emery 1 (LE1) phase in Ref. [30]. In particular,
a finite single-particle gap has analogously been reported.

The single-particle gap is closely tied to the behavior of
the momentum distribution function
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FIG. 4. Gaps for U/t = 10 at hole doping p = 1/16 on L x 4
cylinders for different cylinder lengths L from DMRG using
Egs. (10), (12), and (13). We find that for large cylinder lengths,
the single-particle gap A. and the spin gap A, approach finite
values Af,l)/t ~0.25 and A;/r~0.07. The charge gap AP
vanishes o 1/L despite being of order 0.1 on the finite-size
lattices. The dashed and dotted lines are a guide to the eye.

1N
n,(k) = N Z e* ) (c] ¢,0) (14)

I,m=1

as one varies k. Of course, our single-particle gap computed
from Eq. (12) is the minimum gap as one varies the
momentum. Gaps at other momenta could be obtained
from spectral functions, but these are beyond the scope of
this work. However, we can observe very different behavior
in n,(k) for different k. The results for different k and also
several temperatures are shown in Fig. 5. For a system with
a Fermi surface, the momentum distribution function is
expected to be discontinuous at the Fermi momentum [86].
Although for DMRG at finite length and bond dimension,
this discontinuity is usually not directly observed, the slope
of the momentum distribution function as a function of the
bond dimension can be investigated to diagnose a Fermi
surface [85]. We find the maximal slope of the momentum
distribution function n, (k) to remain finite for all values
of ky, consistent with a single-particle gap. The steepest
slope of n,(k) is observed at y momentum k, = 7/2.
There, we observe that n,(k) at different temperatures

054 @ 10~ {(0)

D = 2000
—— D =3000
— s —— D =4000
064 §10 — D =5000
X = N
£ 04 — o | S 107 W\V\
——T1/t=005 | &
—+ 1/t=0.10 1077
0.21 —J— T/t=020
T T T T T 10794+ T . T
-1.0 —-0.5 0.0 0.5 1.0 0 10 20 30
ky/m z
—+ k=0 —I— k,=7/2 —+ k=7

FIG.5. (a) Momentum distribution function n4 (k) of the 32 x 4
square cylinder at U/t =10 for p = 1/16. (b) Ground-state
single-particle correlation function from DMRG after Fourier
transform in the y direction, F(x;, x,,.k,). At k, = /2, we
observe a slow exponential decay hinting toward a small charge
gap at this wave vector.

intersect at a specific value close to the nodal point
k = (n/2,7/2). We do not observe such an intersection
for k, = 0. The small slope for k, = 0 and k, = 7 suggests
a large single-particle gap at these lines in the Brillouin
zone, while the larger slope close to the nodal point
suggests a smaller single-particle gap.

A spectral gap implies exponentially decaying ground-
state correlation functions in real space [87], where a slow
exponential decay is a signature of a small gap. We display
the single-particle correlation function at p =1/16
from DMRG after Fourier transform in the y direction in
Fig. 5(b). The quantity shown is

LA
Fy(_xl’x’n’ky) = W Z elky(yn_ym)<C.(}-x[’yn)C(_xm’ym)>, (15)

n,m=1

where W = 4 denotes the width of the cylinder. The results
are shown for k, =0, /2,7, and as a function of the
bond dimension. We find the slowest decay is found for
ky, = x/2, with fast exponential decay for k, =0 and
ky, = m. This demonstrates that the gap to charged excita-
tions is smallest at k, = 7/2.

It is interesting to compare the magnitude of the single-
particle gap and the spin gap, both with each other and with
the temperatures associated with the onset of short-range
antiferromagnetic order and the onset of stripes. The onset
of local antiferromagnetic correlations is associated with
the peak in the specific heat and maximum of the uniform
susceptibility, discussed in the next section, which is
slightly above 0.2¢. This is close in magnitude to the
single-particle gap 0.25¢, and so it is tempting to tie them
together. One could consider a linkage of these energy
scales through pair binding. A simple picture of pair
binding is that two holes together disrupt the local anti-
ferromagnetic correlations less than two separate holes.
This mechanism could occur only below the onset temper-
ature of local antiferromagnetism.

It is also tempting to tie the spin gap (about 0.07¢) to the
onset temperature of stripes, 0.05¢. However, this linkage is
not so clear. The spin gap is probably strongly influenced
by the finite width of the cylinder. At half filling, in the
Heisenberg limit, even-width cylinders have a spin gap
which vanishes exponentially with the width, and the 2D
limit is gapless. It is also not clear that a striped state should
have a spin gap, so the similarity in the spin gap and stripe
energy scales for the N, = 4 system may be a coincidence.

VI. THERMODYNAMICS

Finally, we discuss the basic thermodynamics quantities
for half filling and p = 1/16. The specific heat is given by

dE 2 2 2
C=—r=F[H") - (H)] (16)
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When using the METTS algorithm, we compute the
numerical derivative of measurements of the total energy
E = (H). We perform a total-variation regularization of the
differentiation as explained in Appendix B. We find this
approach advantageous in evaluating the fluctuation of
energy as in the second expression of Eq. (16). We observe
that evaluating the energy fluctuation requires larger MPS
bond dimensions to achieve convergence. The magnetic
susceptibility is given by

amM

=S =AU (s ()

Am

where M = (S;) denotes the total magnetization and H an
applied magnetic field. In contrast to the specific heat, we
find that the fluctuation in the second expression of Eq. (17)
can be evaluated efficiently.

The results for the specific heat and magnetic suscep-
tibility at half filling and p = 1/16 are shown in Fig. 6.
At half filling shown in Fig. 6(a), we find that the specific
heat is well converged at D, = 2000. At low temper-
ature, we observe a behavior C « T2, which is expected
for an antiferromagnetic insulator from spin-wave theory
[88-90]. The thermodynamics at half filling closely resem-
bles the thermodynamics of the square lattice Heisenberg
model [91-94]. Previous quantum Monte Carlo studies
[91-93] have shown that the two-dimensional antiferro-
magnetic square lattice exhibits a maximum in the specific
heat at T/J ~ 0.5. The energy scale exchange interaction in
the Hubbard model is given by J = 4¢> /U, which for t = 1
and U = 10 evaluates to J = 0.4. Hence, the observed
maximum in the specific heat at 7/t~ 0.2 = J/2 agrees
well with the Heisenberg case. The magnetic susceptibility
at half filling shown in Fig. 6(c) is also converged at a
bond dimension D,,, = 2000. It exhibits a maximum at
T*/t ~0.29, which indicates the onset of antiferromag-
netic correlations. In the Heisenberg antiferromagnet, the
magnetic susceptibility exhibits a maximum at 7/J =~ 1.0.
We find that in our case, this maximum is shifted to slightly
lower temperatures, as can analogously be observed in
previous quantum Monte Carlo results of the Heisenberg
model on finite-width ladders [95].

Turning to the thermodynamics at hole doping
p = 1/16, we also find the specific heat Fig. 6(b) to be
well converged at D, = 2000. It exhibits a broad
maximum around 7/t~ 0.2 at a similar temperature as
the half-filled case. But at temperatures around 7'/ ~ 0.07,
we also observe a small steplike feature. This temperature
corresponds well with the onset temperature of stripe
order from Fig. 3 as well as the spin gap shown in
Fig. 4. Between the steplike feature and the maximum
from T/t~ 0.08 to T/t~0.175, we observe a regime
where the specific heat is approximately linear in
temperature, C < 7. Also, below the steplike feature at

p=0 p=1/16
Py (b)
0.4 2 .
= |
Z T T
© 02 S e
. - —
0.0
| (c ~ d T* /t ~ 0.25
oa{O Pz | @O _Lason
P ~—— ; |
2 02] o4 13
I @
= -4
0.1
0.0 — —
0.0 01 02 03 04 05 00 01 02 03 04 05
T/t T/t
—#— AFQMC == Duax =2000  —f— Dypax = 3000 Dipax = 4000

FIG. 6. Specific heat C and magnetic susceptibility y,, at U/t =
10 of a 32 x 4 square cylinder for hole dopings p = 0 (left) and
p =1/16 (right). We compare results with METTS using
different maximal bond dimensions D,,,, = 2000, 3000, 4000.
(a) Specific heat p = 0. The results from all maximal bond
dimensions agree. We find a C « T? behavior at low temperature
predicted from spin-wave theory of an antiferromagnet. We also
show exact auxiliary-fi eld quantum Monte Carlo (AFQMC) data
on the same system, which agrees within error bars (b) Specific
heat p = 1/16. We observe a steplike feature around 7'/t = 0.05,
where we locate the transition to the stripe phase in Fig. 2. In the
range T/t~ 0.075 to T/t ~ 0.175, we observe an approximately
linear behavior. (c) Magnetic susceptibility at p = 0. We observe
a maximum at 7%/r~0.29. (d) Magnetic susceptibility at
p = 1/16. A maximum is located at 7% /1 =~ 0.25.

T/t = 0.07, our data suggest a linear temperature regime,
although this observation is based only on a few data
points. The magnetic susceptibility in Fig. 6(d) is well
converged at D.,, = 3000, where we observe a slight
uptick at D,,,, = 2000 at lower temperatures. The magnetic
susceptibility attains a maximum at 7%/t~ 0.25. This
compares well to previous results from the finite-temper-
ature Lanczos method [96] on small lattice sizes that also
detected a maximum in the magnetic susceptibility at a
comparable temperature and doping. It is also in agreement
with calculations of the uniform susceptibility with cluster
extensions of DMFT [51,97]. In underdoped cuprate
superconductors, the pseudogap was indeed first identified
experimentally as a suppression of the magnetic suscep-
tibility below a temperature 7 larger than the super-
conducting 7', [98,99].

VII. METTS SIMULATIONS OF THE
TWO-DIMENSIONAL HUBBARD MODEL

In this second part, we demonstrate that the METTS
method can indeed be successfully performed for the
Hubbard model approaching two-dimensional geometries.
We show that several quantities of interest, like specific
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heat, magnetic susceptibility, structure factors, and momen-
tum distribution functions, can be reliably computed with
reasonable computational effort over a wide range of
temperatures. We discover several interesting facts about
the METTS algorithm. A key practical question is how
many METTS have to be random sampled? This depends
on the variance of the estimator, where a small variance
implies that fewer METTS are needed to achieve a certain
statistical error. Interestingly, we find for several quantities
that both decreasing the temperature as well as increasing
the system size decreases the variance significantly. The
METTS algorithm involves computing an imaginary-time
evolution of product states. Modern MPS algorithms allow
for performing this time evolution with high accuracy. Our
mapping of the linear MPS chain onto the two-dimensional
square cylinder geometry is shown in Fig. 8. We employ a
combination of the time-dependent variational principle
(TDVP) [100,101] and the time-evolving block decimation
(TEBD) [102,103] algorithms and demonstrate the accu-
racy of this approach by comparing to numerically exact
Lanczos time evolution on a smaller system size. The
algorithms we choose come with several control parame-
ters. We find some of them can be chosen highly accurate
without impacting performance or, otherwise, allow for an
optimal choice. We identify the maximal bond dimension
for performing the TDVP algorithm to be the main control
parameter for the accuracy of the imaginary-time evolution.

We assess the accuracy by comparing results to two other
state-of-the-art methods. First, we compare to the method
of thermal pure quantum (TPQ) states [104-106], which
allows us to simulate smaller systems in a statistically exact
way, also at finite doping. Second, we compare to an
auxiliary-field quantum Monte Carlo (AFQMC). At half
filling, this method is also statistically exact and allows for
simulating larger system sizes. Away from half filling, the
method cannot be applied without encountering a sign
problem, although they can be performed using the con-
strained-path approximation [107]. At finite doping, we
study our results as a function of the maximal bond
dimension and find that several quantities can be con-
verged. The bond dimensions required to do so are
significantly smaller than the bond dimensions reported
to converge ground-state DMRG calculations.

We focus on the technical and algorithmic aspects of
these simulations. The METTS algorithm [71,72,79] com-
bines the advantages of Monte Carlo simulation and tensor
network algorithms to simulate finite-temperature quantum
many-body systems.

A. Basic METTS algorithm

We briefly review the basic steps of the METTS
algorithm. For more details, we refer to Refs. [71,72,79].
Given an orthonormal basis {|o;)} of the Hilbert space, the
thermal average in Eq. (2) can be written as

1
(0) = 3D (aile 20 gy (18)

1
== _pilwilOly). (19)
where we introduce

——e P2 6. (20)

i

pi = (o;le P |o;) and |y;) =

The so-called typical thermal states |y;) are normalized
((wily;) = 1), and the weight p; defines a probability
distribution, i.e.,

1
pi 20, zzpi =1 (21)

The thermal average as defined in Eq. (19) is thus amenable
to Monte Carlo sampling. Notice that all weights p; are
manifestly real and non-negative. Therefore, one does not
encounter a sign problem when using such an ensemble.
The trade-off is that the states |y;) are entangled, and
one must find a way to represent and manipulate them
efficiently.

To construct a Markov chain with stationary distribution
pi» Refs. [71,72] introduced the transition probability

Ti—»j = |<l//i\5j> 2, (22)

which fulfills the detailed balance equations

piTisj=p;Tj. (23)
According to Markov chain theory, the average of the
sequence of measurements

O; = (wilOly;), i=1,...,R (24)

converges to the thermal expectation value, i.e.,

Jim © > 0;,=1(0), (25)

almost surely, provided ergodicity. R denotes the length of
the measurement sequence, i.e., the number of METTS
computed.

The algorithm as described above does not make any
reference to tensor networks yet. However, its individual
steps can be efficiently performed within the framework
of MPSs if the basis states |o;) are only weakly entangled.
We take the |o;) to be product states of the form

lo1) = loj)o?)...|at). (26)

1
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FIG. 7. Illustration of the METTS algorithm. Red arrows
indicate imaginary-time evolution of product states |o;) into
METTS |y;). Green arrows indicate the collapse step, and blue
arrows indicate performing measurements of observables. This
procedure yields a time series of measurements (y;|Oly;)
indicated by gray arrows.

which are states with zero entanglement. With this choice,
the typical thermal states |y;) are in a certain sense
minimally entangled, hence, referred to as METTS.
We illustrate the METTS algorithm in Fig. 7. It consists
of the following basic steps.
(i) Initial state: Choose a suitable first state of the
Markov chain |6,) set i < 1.
(i) Time evolution: Evolve the state |o;) in imaginary
time by an amount /2 and normalize to compute
the state

——eM2g). (27)

VPi

(iii) Measurement: Measure an observable (y;|Oly;).
(iv) Collapse: Choose a new basis state |, ;) according
to the probability distribution |{y;|c;,()[*>. Set
i « i+ 1 and iterate from step (ii).
The sequence of measurements {(y;|O|y;)} is then ana-
lyzed using standard time-series analysis techniques to
compute an (error) estimate for the thermal average

(O)=1/R Z{e:l (yilOlw).

lyi) =

B. Initial state

The choice of the initial product state in the METTS
algorithm is rather important and can result in numerical
difficulties if improperly chosen. We begin with a random
product state. It is chosen according to a uniform distri-
bution on the space of product configurations with a given
particle number. Such a state is, in general, not related to the
low-energy physics of the system. Directly starting the
METTS procedure from this state can result in long
thermalization times, especially at higher temperatures.
Also, such unphysical random states can result in large
bond dimensions if time evolved with given accuracy and
can therefore complicate computations. To circumvent this
problem, we perform several initial DMRG sweeps on the
uniform random initial state to obtain a more physical state.
This state is then collapsed to a new product state |oy),
which is then taken as the initial state of the METTS

algorithm. These initial DMRG sweeps are not performed
until convergence. We typically choose to do five sweeps
at maximum bond dimension D = 100. We also add a
noise term [108] of 10~%, which further randomizes the
starting state.

C. Imaginary-time evolution

The computation of the imaginary-time evolution
lwi) = ePHa) (28)

poses the key algorithmic challenge in the METTS algo-
rithm. Time-evolution algorithms for matrix-product states
are the subject of current research and several accurate
methods have been proposed [100-103,109-112]. The
recent review article by Paeckel er al. [113] summarizes
and compares a variety of these methods. Among those, the
TDVP [100,101] method has been shown to have favorable
properties in various scenarios, including imaginary-time
evolution.

The TDVP algorithm is closely related to DMRG [101].
Instead of solving an effective local eigenvalue problem, a
time evolution of the effective Hamiltonian is performed,
followed by a backward time evolution on one less site. We
refer the reader to Refs. [101,113] for a detailed description
of the algorithm. Similar to DMRG, it comes in a two-site
variant and a single-site variant. The two-site variant allows
for increasing the bond dimension of the MPS gradually
when evolving further in time. The single-site algorithm, on
the other hand, keeps the MPS bond dimension fixed. The
scaling computational resources of both algorithms is

O(ND?*dp) (single-site TDVP), (29)

O(ND3d?p) (two-site TDVP), (30)
where N denotes the number of sites, D the MPS bond
dimension, and d the site-local dimension. In the case of the
Hubbard model, d = 4. We therefore expect the single-site
TDVP algorithm to be approximately 4 times faster than the
two-site variant, given a fixed maximal bond dimension
D« We choose a time-evolution strategy, where we first
increase the MPS bond dimension using two-site TDVP up
to a maximal bond dimension D,,,,. Afterward, we switch
to a single-site TDVP algorithm at fixed bond dimension
D, for speed. Our implementation is based on the
ITENSOR library and is available online [114].

There is, however, a caveat to directly applying the two-
sitt. TDVP algorithm in the context of METTS. TDVP
suffers from a projection error onto the manifold of MPS at
given bond dimension [100,101,113]. This error becomes
non-negligible for MPS of small bond dimension. In
particular, time evolution of product states as in Eq. (26)
will suffer from a substantial projection error.
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L

FIG. 8. Square cylinder geometry. We consider open boundary
conditions in the long direction of length L and periodic
boundary conditions in the short direction of width W. The
black line shows the ordering of the sites when mapping to a
matrix-product state. In this manuscript, we focus on the case
W =4.

We circumvent this problem by starting the time evo-
Iution with a different method, the TEBD [102,103]
algorithm. This method has been widely used in a variety
of numerical studies, including applications in the context
of METTS [71,72,79]. The TEBD algorithm we apply uses
a second-order Suzuki-Trotter decomposition

—tH

e — e_T/ZhI e_7/2h2 .

ceTPhe=t2h L O(73),  (31)
where H =), h; denotes a decomposition of the
Hamiltonian into local interaction terms. When interaction
terms connect sites that are not adjacent in the MPS
ordering, swap gates are applied [72]. In the two-
dimensional cylinder geometry shown in Fig. 8, this
decomposition is done for all hopping terms in the long
direction and hopping terms “wrapping” the cylinder in the
short direction. For details on implementing swap gates for
two-dimensional systems, we refer the reader to Ref. [72].

We summarize our time-evolution strategy in Fig. 9.
Initially, we apply the TEBD with high accuracy up to an
imaginary time zrggp to obtain a MPS with a suitably large
bond dimension. Thereafter, we employ the two-site TDVP
algorithm to further increase the bond dimension as we
go lower in temperature. The TDVP time evolution can
decrease the bond dimension obtained after TEBD at
intermediate times since it is usually performed with a

|2TDVP | |1TDVP ]

L ¢
TTEBD ﬂ/Q’ T
FIG. 9. Sketch of the MPS time-evolution strategy and bond
dimension D as a function of the imaginary time z. An initial
TEBD up to z1gpp is followed by a two-site TDVP evolution.
Once the MPS reaches a maximum bond dimension D we
apply the single-site TDVP algorithm until time /2.

max>

lower cutoff €. Once we encounter maximum bond dimen-
sion D, we switch to single-site TDVP for computa-
tional efficiency.

Several parameters control the accuracy of our time-
evolution strategy. We perform an extensive investigation
of their behavior, which we discuss in Sec. VIIL
Summarily, we find that most parameters can be kept at
a fixed value. The initial TEBD parameters can be chosen
highly accurately to not yield any substantial error. For the
TDVP time step Az, there appears to be an optimal choice.
We find that a choice of

Ar= 002, E= 10_12, TTEBD — 0.1 (TEBD) (32)
yields a negligible time evolution, as well as a TDVP
projection error. The two-site TDVP algorithm comes with
two control parameters: the time-step size Ar and the
singular value decomposition cutoff e. We analyze the
accuracy of the time evolution when varying these two
parameters over several orders of magnitude in Fig. 10. We

@ . Tt=050.p=0_ _ (©) T/t=050p=1/6
1073 4 —8 4
<
1076 1 .
109 T T T T T
© o T/t=010.p=0 @& T/t=0.10p=1/6
) 5
1071
<
1076 4
109 T T T T
© o Tt=002p=0 (O _T/t=002p=1/6
P] P
1071
<
1076 4
1079 4 T T T T
102 10~1 10° 1072 101 10°
T
—— c=10"* —— =106 e=10"%

—o— c=10"° e=10""

FIG. 10. Accuracy of imaginary-time evolution. We compare
the overlap defect A for different choices of the TDVP cutoff ¢
and time step 7. We investigate temperatures 7T/r = 0.50
(#/2 =1)in (a),(b), T/t =0.10 (/2 = 5) in (c),(d), and T/t =
0.02 (/2 = 25) in (e),(f). The left (resp. right) panels show time
evolutions of the state |6,_) (resp. |6,_1/6)), Wwhere we choose
U/t = 10. The defect is directly related to the cutoff . A choice
of 7 = 0.5 is optimal in most circumstances. The accuracy does
not appear to deteriorate at lower temperatures.
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find that the cutoff parameter ¢ is directly related to the
accuracy. Remarkably, we find that for most choices of the
cutoff &, a time-step size of

Az =05 (TDVP) (33)
yields optimal accuracy and is also favorable in terms
of computational efficiency. Different studies have
analogously reported that TDVP allows for rather large
time steps [113,115]. The final control parameter is given

by the maximal bond dimension D,,,, used in the single-
site TDVP.

D. Collapse

After performing measurements on the state |y;), we
choose a new product state |6, ;) in step (iv) of the METTS
algorithm. |6, ;) is chosen according to the probability
distribution |{y;|6,,1)|>. The algorithm we use for sam-
pling a random product state from a MPS is described in
detail in Ref. [72]. The computational cost of the collapse
step is

O(ND?d) (collapse), (34)
where N denotes the number of sites, D the MPS bond
dimension, and d the site-local dimension. This is a
subleading computational cost as compared to the time
evolution, whose computational cost scales as O(ND?d).

There is a freedom of choice of the product state basis.
Here, we consider two bases. The local $¢ basis is given by
the states,

lof) € {19).11). ). 11 1)} (35)

A collapse into this basis will conserve particle number
and total magnetization. Since also the imaginary-time
evolution conserves all quantum numbers, the METTS will
always stay in the same particle number and magnetization
sector if the METTS |y;) is collapsed into this basis. For
simulating the canonical ensemble, we have to allow for
fluctuations in the magnetization. This can be achieved by
projecting into the local S* basis

lof) € {19). 14). |-).

2 (36)

where

1 1

V2 V2

Since $* and S$° do not commute, the magnetization in
the §* direction can fluctuate for a state with fixed §°
magnetization. Since the full Hubbard Hamiltonian is
SU(2) invariant, the state projected into the S* can be
rotated into a state in the S° basis. Therefore, we can

+) I +N». = (=N 37

reinterpret the S* basis as the S¢ basis with a fixed total
magnetization. This allows us to employ S* conservation in
the time-evolution algorithm again.

Apart from allowing fluctuations in magnetization, the
S* updates yield favorable mixing properties for the
Markov chain. We discuss this in detail in Appendix A.
We find that the collapse into the S* basis not only allows
for fluctuation of the magnetization but also reduces
autocorrelation effects considerably.

VIII. TIME-EVOLUTION ACCURACY

Several parameters set the accuracy of the imaginary-
time evolution method we describe in Sec. VIIC. We
denote the METTS state computed using the MPS tech-
niques by |yMPS). In order to assess their accuracy, we
compute overlaps with METTS states |wEP), which are
computed using exact diagonalization (ED). We choose a
cylindrical system with L = 3 and W = 4. Although this
lattice is rather small, it already introduces longer-range
interactions that are present in W = 4 cylinders and thus
already poses a nontrivial problem for MPS time-evolution
techniques. This system is also already too large to easily
perform full ED. Therefore, we use a Lanczos method
[116,117] to compute the exact reference state |yEP).
We apply the algorithm and convergence criterion sug-
gested in Ref. [118]. We compute the state |yEP) up to a
precision of 10712, in the sense that

1-— |<V/ED|Wexact>|2 < 10—12' (38)

Hence, the state |yFP) can be considered as quasiexact. We
choose the defect A,

A=1-[yMytP)

? (39)

as a figure of merit to assess the accuracy of the MPS time
evolution. For a given MPS state [y™MPS), we compute this
overlap exactly by computing the coefficients in the
computational basis of the ED code.

We study two different initial product states. We consider
the Néel antiferromagnetic state at half filling p = 0, and an
antiferromagnetic state with two holes in the center of the

system p = 1/6,

(40)

|6p:0> =

> and |o,-1/6) =

— = =
=« >«
— = >
— = >
-> | .| <«
— 5« =

We focus on METTS |y™MPS) at temperatures 7/t = 0.50,
0.10, 0.02 and choose U/t = 10.
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In order to avoid the projection error of TDVP when
directly applied to product states, we start with a precise
TEBD time evolution up to time = 0.1. For doing so,
we choose a time step zrggp = 0.02 and a cutoff
ergp = 10712, These parameters are chosen such that
the time-evolved state at # = 0.1 is highly accurate, albeit
with a potentially large bond dimension. The large bond
dimension, however, is beneficial for decreasing the TDVP
projection error [113].

The total defect A in Eq. (39) comprises the error from
the initial TEBD evolution Arggp, the TDVP projection
error Ay, and the error of the bulk TDVP evolution
ATDVP' Hence,

A~ Atgpp + Aproj T Atpvp- (41)

As shown in Fig. 10, we achieve total defects smaller
than A < 1078, The total defect is directly related to the
TDVP parameters 7 and €. Therefore, we conclude that both
the initial TEBD evolution error Atggp and the TDVP
projection error A, are negligible as compared to the bulk
TDVP evolution error.

We now focus on the two remaining control parameters
of the two-site TDVP algorithm. We consider the step size 7
for one TDVP sweep and the cutoff parameter &, which is
used both as the magnitude of the discarded weight and
the accuracy of the local effective time evolution;
cf. Sec. VIIC. The results for the obtained defect A over
a broad range of step sizes and cutoffs are presented in
Fig. 10. We observe that for all temperatures and hole
dopings, choosing small time steps does not improve the
error. In fact, in several cases, a time step of Az = 0.01
yields the largest defect. This behavior is explained by the
fact that smaller time steps require more time steps to be
performed. Since at every time step, an additional trunca-
tion of the MPS is performed, more time steps accumulate
more truncation errors. Interestingly, we find that a choice
of At = 0.5 yields optimal results for most temperatures,
cutoffs, and dopings. Larger time steps then again decrease
accuracy. Remarkably, we do not observe that the accuracy
deteriorates strongly for longer time evolutions of the states
we choose. The defect is directly related to the cutoff €. In
several cases for Az = 0.2 and Az = 0.5, we find that the
defect is of the same order of magnitude as e.

These observations let us conclude that a Az = 0.5 for
TDVP is optimal in the present context and that the
accuracy of the time-evolved state can be precisely con-
trolled by the cutoff. When using single-site TDVP in the
final step of our time-evolution strategy, the truncation error
is controlled by a maximal bond dimension D,,,. A priori,
we cannot predict the required value of D, to achieve
converged results. Therefore, we always compare results
from different values of D,,,, to show convergence.

IX. METTS ENTANGLEMENT

The accuracy of MPS techniques is determined by the
entanglement of the wave functions which are represented
as a MPS. In our case, the METTS states |y;) are MPS, and
it is thus interesting to investigate their entanglement. We
use the von Neumann entanglement entropy

Sin(pa) = —Trlpa log pa] (42)
as an entanglement measure, where p, = Trglyap) (Was|
denotes the reduced density matrix in the subregion A of the
lattice. At infinite temperature, the METTS are product
states, and hence, their entanglement entropy vanishes.
At lowest temperature, the METTS states approach the
ground state, which implies that the METTS entanglement
becomes comparable to the ground-state entanglement. At
intermediate temperatures, the behavior of the METTS
entanglement is not a priori clear. The entanglement
entropy upon imaginary time evolving five different initial
product states for p = 1/16 of the 32 x 4 cylinderat U/t =
10 is shown in Fig. 11(a). We observe a smooth increase of
the entanglement entropy when lowering the temperature.
Interestingly, for several initial product states, the entan-
glement entropy decreases below a temperature of 7'/t =
0.05 again, while it remains growing for others. This
behavior is likely the result of the product states defining
the METTS having varying overlap with the ground state.
Some product states with lower overlap could be sampling
the slightly larger entanglement of some low-lying excited

00 05 10 15
T T

20 0.0 01 02 03 04 05

FIG. 11. METTS entanglement entropy S5 on the 32 x4
cylinder at U/t = 10 (a) entanglement growth upon time evolv-
ing five different product states for p = 1/16 with D,,,, = 4000.
(b) Average entanglement entropy S,y of the METTS state as a
function of the temperature for p = 0 and p = 1/16. Increas-
ing opacity signifies increasing maximal bond dimensions
D .« = 2000, 3000, 4000. We observe a small peak in the
entanglement entropy in the hole-doped case at 7/f ~ 0.05. The
entanglement entropy is converged as a function of the bond
dimension. The dashed (dotted) lines indicate the entanglement
entropy from ground-state DMRG with D, = 4000 at p =
1/16 (p = 0).
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FIG. 12. Comparison of thermodynamics from METTS with TPQ on a4 X 4 cylinder for hole dopings p = Oand p = 1/8. ForTPQ, we
use R = 200 random vectors to obtain the statistical error indicated by the error tubes. (a) Internal energy E = (H) as a function of the
temperature. (b) Specific heat C = dE/dT obtained from numerical differentiation of the energy. We apply a Tikhonov regularization with
a = 0.1 to compute the derivative. (c) Magnetic susceptibility y,,. We find agreement within error bars. We use a cutoff of ¢ = 107 and a

maximum bond dimension D,,,, = 2000 for imaginary-time evolution in METTS.

states. As one goes to zero temperature, this overlap factor
become unimportant.

We show the average entanglement entropy of the
METTS used in our simulations of the 32 x 4 cylinder at
U/t = 10 in Fig. 11(b). The subregion A is chosen to be the
left half of the cylinder. As expected, we find the half-filled
case p = 0 to be less entangled at any temperature. For both
values of doping, we find the entanglement entropy increas-
ing with decreasing temperature. The entanglement entropy
is computed from runs with different maximal bond dimen-
sions D, = 2000, 3000, 4000. We find across the full
range of temperatures that the entanglement entropy is
converged T/t = 0.05, which is the approximate temper-
ature where the transition from the antiferromagnetic regime
to the stripe regime at low temperatures takes place.

While the maximal value of S, <2.5 at p=1/16
constitutes considerable entanglement, it is very well
within reach of current MPS techniques. The behavior in
Fig. 11 also demonstrates that the METTS states |y;) are
very different from Hamiltonian eigenstates at higher
temperatures, for which we would expect an increase in
entanglement when increasing the energy.

X. VALIDATION WITH TPQ AND AFQMC

To assess the validity of the METTS calculations across a
broad range of temperatures and different dopings, we
compare to current state-of-the-art methods. First, we focus
on computing the thermodynamic energy E, specific
heat C, and magnetic susceptibility y,,. The method of
TPQ states [104,105] has been proven effective to extend
the range of system sizes accessible via exact diagonaliza-
tion techniques [106,119-121]. It is also closely related to
the finite-temperature Lanczos method [122].

The main idea of the TPQ method is that the trace of any
operator O can be evaluated by

D(r|O|r). (43)

Here, D denotes the dimension of the Hilbert space, and =
denotes averaging over normalized random vectors |r). The

Tr(0) =

coefficients of |r) are independent and normally distrib-
uted. Equation (43) is used to evaluate thermal averages as

(0) = (B1OIB)/{BIB), (44)

where the TPQ state |) is given by
B) = ePH2]r). (45)

We notice that this state closely resembles the METTS |w;)
in Eq. (20). The random states |r), however, are not product
states and are highly entangled in general. The TPQ state
|#) can be evaluated using Lanczos techniques [116,117].
Interestingly, the statistical error when random sampling
over a finite number R of states is related to the free-energy
density at a given temperature [123,124] and can be shown
to become exponentially small when increasing the system
size [104,105]. We refer the reader to Refs. [106,125] for an
in-depth explanation of the method.

Apart from a statistical error, the TPQ method has no
systematic error and does not apply approximations. It is,
however, limited to system sizes for which the Lanczos
algorithm can be currently applied. Here, we compare data
from METTS and TPQ obtained on a W =4 and L =4
cylinder. This system size is beyond the reach of numerical
full diagonalization of the Hamiltonian matrix. The choice of
a W = 4 cylinder poses a challenge to the METTS calcu-
lations due to the long-range nature of the interactions. We
think that this benchmark addresses the key difficulties to be
overcome in order to simulate longer length cylinders. Also,
the case of p = 1/8 hole doping is afflicted by a sign
problem when investigated using conventional QMC meth-
ods. We show the results in Fig. 12. The METTS calcu-
lations are performed with a cutoff ¢ = 107% and maximum
bond dimension D,,,, = 2000. We find agreement within
error bars between TPQ and METTS. For TPQ, we use
R = 200 random vectors.

When comparing to exact results from TPQ, we are
limited in system size. At half filling, however, the AFQMC
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FIG. 13. Comparison of spin-correlation functions (Sj - S%)

along one leg of a 32 x 4 cylinder at half filling and internal
energy density E/N between METTS and AFQMC. We use a
cutoff of £ = 107® and a maximum bond dimension D, =
2000 for imaginary-time evolution in METTS. Both quantities
agree within error bars. A comparison of the specific heat is
shown in Fig. 6(a).

method [126—-131] can be applied without encountering a
sign problem that allows for investigating larger lattice
sizes. AFQMC at half filling also performs any approxi-
mation. We compare spin-correlation functions from
METTS and AFQMC at various temperatures on a
32 x4 cylinder in Fig. 13. Again, we employ a cutoff
€ = 107° and a maximum bond dimension D,,, = 2000 to
perform the time evolution in METTS. We find agreement
within error bars.

The comparisons in Figs. 12 and 13 show that METTS
agrees with current state-of-the-art unbiased numerical
methods whenever they are applicable. We also find that
a maximum bond dimension D,,,, = 2000 and a cutoff
£ =107% in the TDVP time evolution are sufficient to
obtain consistent results. The comparison between METTS
and TPQ shows that METTS is reliable at finite doping.
The comparison to AFQMC, on the other hand, shows that
our implementation of METTS yields consistent results
when considering larger lattices.

XI. INCOMMENSURATE SPIN CORRELATIONS
AT U/t=6,p=1/8, ¢ /t= =025, AND T/t=0.22

DQMC simulations of the hole-doped Hubbard model in
the strong-coupling regime have been reported for the
single-band [38] and three-band [37] cases. These studies
have demonstrated the presence of incommensurate spin
correlations in the intermediate temperature regime, sug-
gestive of fluctuating stripes. In Ref. [38], a 16 x4
cylindrical geometry was studied for an interaction strength
of U/t=6, hole doping p =1/8, and temperature
T/t = 0.22. In addition to nearest-neighbor hopping ¢, a
second-nearest-neighbor hopping of size ¢/t = —0.25 was
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FIG. 14. Observation of incommensurate spin correlations at
U/t=6,p=1/8,¢/t=-025,and T/t = 0.22 on the 16 x 4
cylinder. (a)—(c) Staggered spin correlations for three different
reference sites. d, denotes the offset in the y direction. The insets
show the sign structure of the staggered spin correlations. The
spin correlation is considered to have positive or negative sign if it
is nonzero by 2 standard deviations. (d) Number density n; along
the length of the cylinder. Our results confirm the findings
presented in Fig. 4 of Ref. [38].

considered. This geometry and parameter regime is directly
accessible with our METTS simulations. Hence, this
yields an ideal test case, since the DQMC is exact, aside
from statistical and Trotter errors. Also, this particular
set of parameters is in the interesting regime of finite
doping, strong coupling, and intermediate temperatures.
The results of our simulations are shown in Fig. 14.
Indeed, we confirm the presence of incommensurate spin
correlations consistent with the DQMC. The sign changes
which are observed here are in the tails of the rapidly
decaying correlation function, and thus, they require
substantial statistical averaging of the METTS to
observe—here, we use 15000 samples. We find that
the width of the antiferromagnetic “domains” (in the
correlation function) is five, which is exactly what has
been found in Ref. [38]. Moreover, we show the density
profile along the cylinder in Fig. 14(d). Here, we observe
the same boundary density fluctuations as reported in
Fig. 4 of Ref. [38]. In agreement with their findings, the
density profile does not exhibit a charge-density wave
pattern. We like to point out that Refs. [37,38] referred to
the incommensurate spin correlations as stripes, while our
definition of a stripe refers to intertwined spin and charge
ordering. Incommensurate charge correlations are not
observed for this particular set of parameters.
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XII. DISCUSSION

The results from the METTS simulations presented in
the previous sections yield several interesting new insights
into the physics of the Hubbard model in the strong-
coupling regime at U/t = 10 at finite temperature.

For the hole-doped case at p = 1/16, we find three
different regimes as a function of the temperature. At
temperatures 7'/t < 0.05, we find a stripe-ordered phase. A
typical METTS state in this phase is shown in Fig. 1(a).
We observe antiferromagnetic domains whose domain
walls coincide with peaks in the wavelike hole density
modulation. In the present situation, the stripes are half
filled. On a width-four cylinder, there are two holes per
stripe wavelength. This leads to a magnetic ordering vector
of k= (7z/8,n) = (x—x/8,x) and a charge ordering
vector of k = (z/4,0) (hence, k. = 25k;). This observa-
tion agrees well with recent DMRG results on the
width-four cylinders [30]. Even though the exact value
of U/t = 10 and p = 1/16 is not included in the results of
these authors, their phase diagrams suggest that this point
realizes what is referred to as the LE1 phase at 7 = 0.
The LE1 phase is shown to exhibit half-filled stripes,
in agreement with our findings. The phase diagrams in
Ref. [30] have been established using DMRG with bond
dimensions D = 5000, which is also the maximal bond
dimension we use in our DMRG calculations. Both the
magnetic and the charge structure factors shown in Figs. 2
and 3 clearly indicate the occurrence of stripe order below
T/t £0.05. We like to mention that a similar crossover
from an incommensurate to an antiferromagnetic regime
has been found to occur in the three-dimensional Hubbard
model [132].

At temperatures above the stripe order, we find enhanced
antiferromagnetic correlations. As shown in Fig. 4, the spin
gap is estimated as A/t = 0.07, which approximately
coincides with the onset temperature of the stripe order.
Around this temperature, the peak in the magnetic structure
factor shifts from k = (72/8,x) to k = (=, x). The tran-
sition or crossover between the two phases is further
signaled by a steplike feature of the specific heat in
Fig. 6(b). Hence, we identify several quantities that indicate
a transition or crossover between the stripe-ordered phase
and a phase with enhanced antiferromagnetic correlations
but no charge ordering.

The system at p = 1/16 differs significantly from the
antiferromagnetic insulator at half filling. The density
structure factor at zero temperature in Fig. 2(c) indicates
a small or vanishing charge gap by exhibiting approx-
imately linear behavior at k = (0,0) [33,82-85]. We

distinguish between the single-particle gap A(C]) and the
charge gap Agz). While the single-particle gap is shown in

Fig. 4 to attain a finite value of AV /t~ 0.25 for infinite
cylinder length, the charge gap is shown to vanish

as A£2>/t x 1/L.

Because of the finite single-particle gap, the system does
not exhibit a Fermi surface. This is also evident in the
momentum distribution function n,(k) shown in Fig. 5(a),
whose slope at 7 =0 remains finite for p = 1/16, as
expected for a system without a Fermi surface [86]. We find
that for momentum k, = /2, the slope of n, (k) becomes
largest close to the nodal point k = (z/2, z/2), indicating
that the single-particle gap is smallest in this region. To
further corroborate this finding, we find that the real-space
electronic correlations Fourier transformed along the y
direction F,(x;, x,,, k) in Fig. 5(b) exhibit fast exponential
decay at k, =0,7. At k, = /2, a slower exponential
decay is observed. Therefore, we conclude that while the
single-particle gap is still sizeable, the smallest gap to
single-particle excitations is realized in the nodal region
around k = (z/2,7/2).

The novel short-range antiferromagnetic phase shares
many features with the experimentally observed pseudogap
region, which is characterized by a partial suppression
of low-energy excitations [6,7,10]. In particular, angle-
resolved photo-emission-spectroscopy measurements [133]
typically detect a suppression of single-particle excitations
close to the antinode k = (7, 0). Similarly, we find in Fig. 5
that the single-particle gap in our case is largest for y
momenta k, =0 and k, =, while it is smallest at
ky = /2.

The onset temperature 7 of the pseudogap phase was
originally identified experimentally as a decrease of the
uniform magnetic susceptibility upon cooling below T*
[98,99]. In our simulations at U/t = 10 and p = 1/16, we
indeed detect a maximum in the magnetic susceptibility at
T*/t ~0.25 in Fig. 6. Below this temperature, the onset of
antiferromagnetic correlations with (ir, ) wave vector in
Fig. 3 agrees well with previous results from cluster
extensions of DMFT [62-64,66,97] and diagrammatic
Monte Carlo [65], which indicate emerging short-range
antiferromagnetic correlations in the pseudogap phase.
However, these approaches also point at metallic behavior
in the pseudogap regime, with gapless quasiparticles in the
nodal region of the Brillouin zone. Gapless quasiparticles
at the node are also expected for superconducting order
with d2_» symmetry. In contrast, we find a nonvanishing
single-particle gap which, although smallest close to the

node, has a rather large magnitude Agl) /t~0.25. This is
also the temperature scale below which we observe the
onset of antiferromagnetism. Hence, the short-range anti-
ferromagnetic correlations in the system that we simulate
are not associated with a metallic state hosting gapless
single-particle excitations. However, we like to emphasize
that our method is limited by being only able to simulate
small-width cylinders. It would be very interesting to
learn how the single-particle gap evolves with cylinder
circumference. Currently, ground-state DMRG studies
of the Hubbard model are possible on width-six
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cylinders [19,28], so some additional information on the

evolution of the gap with width should be available soon.

An investigation of pairing (correlations) in both the
stripe phase and the pseudogap regime would give addi-
tional insights. Since this study requires further technical
improvements of our method, this question will be
addressed in future work. While the single-particle gap
we detect might vanish in the full two-dimensional limit,
there are also scenarios where the single-particle gap
remains finite while the charge gap vanishes. This behavior
is expected for superconductors with a nodeless gap
function. Another intriguing possibility is an exotic met-
allic state, where the electrons fractionalize into chargons
and spinons [134,135]. In this case, the single-particle gap
would correspond to the spinon gap, while chargons are
still gapless.

We also investigate the half-filled case at U/t = 10. We
find that the magnetic structure factor converges smoothly
toward the DMRG result when lowering the temperature in
Fig. 2(a). It exhibits a clear peak at k = (z, z) indicating
antiferromagnetism. We use the maximum of the static
magnetic susceptibility in Fig. 6 at 7>/t ~ 0.29 to define an
onset temperature of antiferromagnetic correlations. The
quadratic behavior we observe for the specific heat at low
temperatures is in agreement with thermodynamics derived
from antiferromagnetic spin-wave theory [88-90]. We also
find that the thermodynamics at half filling matches closely
with quantum Monte Carlo results of the square lattice
Heisenberg antiferromagnet [91,93]. In particular, the
temperature of the maximum in the specific heat in
Fig. 6 agrees well with those QMC results [91,93].

To the best of our knowledge, this work constitutes the
first application of the METTS algorithm to study the
Fermi-Hubbard model on geometries approaching the two-
dimensional limit. Therefore, we investigate the behavior of
the algorithm in proper detail. We present the statistical
properties of the measurement time series in Appendix A.
As METTS is a Markov chain Monte Carlo algorithm, it is
crucial to understand autocorrelation and thermalization
properties. As we show in Fig. 15, the time series can
indeed take rather long times to thermalize. At half filling,
we find that there can be metastable states with multiple
antiferromagnetic domains that are realized before the
system becomes thermalized. Interestingly, we find that
upon hole doping the system, the measurement time
series equilibrate faster. We also investigate autocorrelation
effects. We find that applying the S$* instead of the S°
updates described in Sec. VII D reduces the autocorrelation
times significantly, as shown in Fig. 16. For the temper-
atures and observables O investigated in this manuscript
using the $* update, we find autocorrelation time z[O] ~ 1.
We find that for 7/t < 0.5 for U/t =10 and a 32 x4
cylinder, the autocorrelation effects are negligible for most
observables. A noticeable exception is the charge-density
structure factor at temperatures above 7'/t = 0.20 shown in

Fig. 3(b) where moderate autocorrelation effects have to be
taken into account to compute proper error estimates.

The statistical error estimate, apart from the number of
samples and the autocorrelation time, also depends on the
variance of the time series. We investigate the behavior of
the variance of several observables as a function of the
temperature in Figs. 17 and 18 and find rather remarkable
behavior. The variance of several estimators decreases
rapidly when lowering temperatures. Also, increasing the
system size decreases the variance of the energy density
estimators. This observation is likely related to the phe-
nomenon called quantum typicality [124]. For the related
TPQ, which we use to validate the METTS results in
Sec. X, a theory of their statistical properties has been
developed in Refs. [104,105]. The TPQ and METTS states
are obtained by imaginary-time-evolving states drawn from
some class of random initial states. Whereas for a METTS,
the random initial states are product states, the initial state
of a TPQ state is state with (normally distributed) random
coefficients in an arbitrary orthonormal basis of the Hilbert
space. For TPQ states, we find that the statistical error when
averaging over several states becomes exponentially small
in the system size, under mild assumptions on the system
and observables. It would be interesting to arrive at a
similar understanding of the variance of METTS states
to explain our observations. Several methods have been
proposed to further improve upon the variance of the
estimators [136—138]. References [136,137] proposed a
hybrid approach interpolating between purification and
METTS sampling. While using additional auxiliary sites
for purification is likely to increase the necessary bond
dimensions of the MPS to achieve convergence, they are
favorable in the sense that fewer random states have
to be sampled. Especially at higher temperatures, these
approaches might yield a significant computational
speed up. Also, approaches to incorporate additional
symmetries in the METTS algorithm have been proposed
[139,140]. We also like to mention that several other
tensor network approaches to finite-temperature simula-
tions have recently been applied successfully to a variety of
problems [141-145].

Apart from the statistical analysis, the METTS method
relies on accurate imaginary-time-evolution algorithms.
We find that the TDVP algorithm for time-evolving
matrix-product states is an appropriate choice. However,
the projection error when applying TDVP directly to MPS
of small bond dimension, especially product states, is not
negligible. We circumvent this problem by applying an
initial TEBD time evolution up to a certain imaginary time,
thus increasing the bond dimension before applying the
TDVP algorithm. We find that this approach yields very
accurate results compared to numerically exact Lanczos
time evolutions. Also, when fixing a maximal bond
dimension, we apply single-site TDVP, which has favorable
computational costs. We like to point out that recently a
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different approach to solving the projection error problem
of TDVP has been proposed [112], which employs a
subspace expansion using a global Krylov basis.

Simulating the doped Fermi-Hubbard model at finite
temperature poses a challenging problem for numerical
methods. To demonstrate the accuracy of our simulations,
we perform comparisons to four different well-established
exact numerical methods in their respective limits. First, the
limit 7/t — 0 is compared to ground-state DMRG calcu-
lations in Fig. 2. We find that the METTS simulations of the
structure factors at 7/t = 0.025 very closely resemble the
ground-state result from DMRG. This also shows that for
the investigated system, our METTS simulations can
essentially cover the temperature range down to temper-
atures which can be considered to realize ground-state
physics. Second, we compare the thermodynamics at half
filling and finite hole doping on a 4 x 4 cylinder to the TPQ
method [104-106] over a large range of temperatures. The
TPQ method is an extension of exact diagonalization,
where traces over statistical density matrices are replaced
by random averages of random vectors. The method is
considered to be statistically exact. Also, here we find
perfect agreement to METTS shown in Fig. 12. Together
with the comparison to DMRG, this comparison shows that
METTS yields accurate results at finite hole doping over
the full range of temperatures that we investigate. Finally,
we also demonstrate in Fig. 13 that at half filling, METTS
simulations of spin correlations agree within error bars to
statistically exact AFQMC simulations on larger system
sizes. Finally, we confirm the previous results [38] by a
determinantal quantum Monte Carlo obtained in the chal-
lenging parameter set U/t =6, p=1/8, ¢/t = —0.25,
and 7/t = 0.22 on a 16 x 4 cylinder. We correctly repro-
duce the incommensurate spin correlations and boundary
density fluctuations found earlier.

XIII. CONCLUSION

Using the numerical METTS method, we investigate
finite-temperature properties of the doped Hubbard model
in the strong-coupling regime on a width-four cylinder. We
focus on hole doping p = 1/16 and half filling. In the
doped case, we find that the ground-state half-filled stripe
phase extends up to a temperature 7'/t < 0.05. Above this
temperature, a phase with strong antiferromagnetic corre-
lations is realized. In this regime, the specific heat exhibits
behavior linear in 7. The onset temperature of the short-
range stripe order coincides with the spin gap, which is
shown to attain a finite value. A closer inspection of
electronic correlations reveals that no full electronlike
Fermi surface is realized, however. Instead, we find a
vanishingly small gap to paired charge excitations, while

the single-particle gap of size AV /t~0.26 is still sizeable.
By investigating the momentum distribution function
and electron correlation functions, we establish that the

single-particle gap is smallest in the nodal region close to
k= (z/2,7/2). The magnetic susceptibility realizes a
maximum at temperature 7% = 0.25¢. These features are
strongly reminiscent of the pseudogap phase realized in
the cuprates. These findings are made possible by combin-
ing recent tensor network techniques to simulate finite-
temperature quantum systems and perform imaginary-time
evolution of matrix-product states. We find that both
increasing the system size as well as lowering the temper-
ature significantly reduces the variance of the METTS
estimators, hence, reducing the need to average over many
random samples. Apart from benchmarking the time
evolution with numerical exact diagonalization, we validate
our simulations by comparing to four different numerical
methods: DMRG, TPQ, AFQMC, and DQMC. These
comparisons demonstrate that systems of strongly corre-
lated fermions at low temperatures, finite-hole doping, and
on large lattice sizes can now be reliably simulated using
the METTS method.
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APPENDIX A: TIME-SERIES ANALYSIS

In this section, we discuss the statistical properties of
the METTS sampling. As we describe in Sec. VII A, the
METTS algorithm is an example of a Markov chain
Monte Carlo simulation. As such, thermalization and
autocorrelation properties of the resulting time series have
to be investigated to derive (error) estimates of physical
observables. We find that the behavior of the METTS
algorithm as a function of the temperature is quite opposite
to usual quantum Monte Carlo simulations. Thermalization
and autocorrelation times decrease when lowering the
temperature. Eventually, using the S*-basis collapse instead
of the S*-basis collapse, as we discuss in Sec. VIID, we
find that autocorrelation effects can be neglected for the
temperature range we study. We also show that the variance
of several quantities decreases quickly for lower temper-
atures. This allows us to reach a higher statistical precision
at lower temperatures, where imaginary-time evolution is
more computationally expensive.

For an observable O, the METTS algorithm yields a time
series of measurements,

O; = (wiOlyy),

i=1,..R. (A1)
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The thermal average (O) in Eq. (2) is then estimated by

(0) ~ E[0] = %Z o,

i=1

(A2)

The individual samples O; are, in general, correlated.
Averages in Eq. (A2) are computed after the initial
thermalization of the measurements. An estimate of the
standard error ¢[O] of Eq. (A2) is given by [146,147]

7]0]

o[O] ~ TVar[O}. (A3)
Here, Var[O] denotes an estimator for the variance
L
- o 2
Varl0] = >0, - ElO)%, (A4

i=1

7[O] denotes an estimator for the integrated autocorrelation
time

M
plOI()
Ol=1+2 , A5
I=1422 00) "
and the estimated autocorrelation function p[O](/) is given
by [147]

R-I
PlOI() = = 2_(O:i = E[O])(Os ~ E[0]).  (A6)
i=1
The autocorrelation function p[O](!) is typically exponen-
tially decaying in /. The cutoff value M  7[O] is chosen
such to assure convergence of the sum in Eq. (A5) but small
enough not to include numerical noise. For a proper choice
of M, see Ref. [146].

We show examples of the measurement time series for
different quantities in Fig. 15. We choose a temperature
of T/t =0.300 and Hubbard interaction U/t = 10 on a
32 x 4 cylinder. The imaginary-time evolution is performed
with TDVP cutoff ¢ = 10~ and maximum bond dimension
D ax = 3000. We use the S*-basis collapse scheme. For
energy measurements in the half-filled case in Fig. 15(a),
we see that several hundred steps can be required to
thermalize the system. Before reaching equilibrium, the
METTS algorithm is temporarily stuck in metastable states.
By a closer inspection of these states, we find that they
typically contain several antiferromagnetic domains instead
of a uniform antiferromagnetic state, which is realized once
the system is thermalized at this temperature 7'/t = 0.300.
We consistently find this behavior for temperatures
T/t > 0.200. We observe that the time for thermalization
decreases when lowering the temperature. This is explained
by the fact that a longer imaginary-time evolution con-
stitutes a more thorough update to the Monte Carlo
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FIG. 15. Time series of energy and magnetic structure factor
measurements from five different random initial states. Data
shown for a 32 x4 cylinder with parameters 7/t = 0.300,
U/t =10. We use time-evolution parameters D, = 3000
and € = 107 and S* collapses. After initial thermalization, no
autocorrelation effects are apparent. (a) Energy measurements at
half filling p = 0. We observe several initial plateaus in the
energy before thermalization. These plateaus are metastable
states that correspond to antiferromagnetic domains. (b) Energy
measurements at hole doping p = 1/16. (c),(d) Measurements
of the magnetic structure factor S(k) evaluated at ordering
vector k = (z,7) at p = 0 and p = 1/16. We observe a skewed
distribution, fast thermalization, and no apparent autocorrelation
effects.

algorithm, hence, improving the mixing properties of the
Markov chain. Similarly, the measurements of the magnetic
structure factor S(k) evaluated at ordering vectork = (7, )
in Fig. 15(c) exhibit prolonged thermalization at half filling,
although less pronounced than for the energy measure-
ments. Figure 15(b) shows the energy measurement time
series for a 32 x 4 cylinder with 7/t = 0.300, U/t = 10,
L = 32 at hole doping p = 1/16. Interestingly, no initial
metastable plateaus are observed, and the system thermal-
izes more rapidly than in the half-filled case. This could be
explained by the additional charge fluctuations “smooth-
ing” the energy landscape around the metastable antiferro-
magnetic domain states. Figure 15(d) shows measurements
of S(k) at k = M for p = 1/16. Also, for this observable,
the system is quickly thermalized. The distributions of the
magnetic structure factors in Figs. 15(c) and 15(d) are
skewed.

After an initial period of thermalization, we do not
observe apparent autocorrelation effects in all time series
shown in Fig. 15. This is owed to the fact that the S*-basis
collapses reduce the autocorrelation time substantially
as compared to S°-basis updates. In Fig. 16, we compare
the two collapse strategies for 7/t = 0.400, U/t = 10,
L =16, and W = 4 at half filling. As shown in Figs. 16(a)
and 16(b), the energy time series shows significant
autocorrelation effects when applying the S*-basis collapse.
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FIG. 16. Comparison of energy time series and autocorrelation
functions p[H](I) obtained using S¢ and S* collapses for T/t =
0.400, U/t = 10 at half filling on a 16 x 4 cylinder. We use time-
evolution parameters D,,,, = 2000 and ¢ = 1075, (a),(b) S*-basis
collapse. Autocorrelation effects are visible in the raw data. (c),(d)
S*-basis collapse. No autocorrelation effects are apparent in the time
series. The autocorrelation function quickly decays to numerical
noise. Subsequent measurements are essentially uncorrelated.

The autocorrelation time is estimated as 7[H] = 9.46.
Using S*-basis collapses instead, we find that sub-
sequent samples are essentially uncorrelated, as shown
in Figs. 16(c) and 16(d). There, we estimate an autocorre-
lation time of z[H| ~ 1.08.

Apart from the autocorrelation time and the number of
random samples R, the statistical error estimate in Eq. (A3)
is determined by the variance of the measurements, Var[O].
While the number of random samples R can be adjusted to
achieve a fixed statistical error 6][O], both the autocorre-
lation time and the variance are intrinsic properties of the
observable and the METTS algorithm. We investigate the
behavior of the variance for several quantities in Figs. 17
and 18. We estimate a 95% confidence interval for the
variance estimator Eq. (A4) using bootstrap resampling
[148]. Figure 17 compares variances for different system
sizes and temperatures at hole doping p=1/8.
Remarkably, we find that both decreasing temperature as
well as increasing the system size decreases the variance of
the energy density considerably; cf. Fig. 17(a). Low
temperatures and large system sizes are of course the more
challenging regimes to perform the MPS time evolution.
Hence, in order to achieve comparable statistical error
estimates, fewer MPS time evolutions have to be per-
formed. Similarly, we observe in Figs. 17(b) and 17(c) that
the variance of the magnetic structure factor evaluated at
k= (0,0) and k = (z, ) decreases as a function of the
temperature. Also, for the momentum distribution function
at k = (x,0) in Fig. 17(d), we observe that increasing the
system size decreases the variance.

We compare estimators of variances at different hole
dopings in Fig. 18. The energy and magnetic structure
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FIG. 17. Lattice size and temperature dependence of the
variance of time series of METTS measurements for U/r = 10
and hole dopings p = 1/8 cylinder for L = 4, 16, 32. We use
time-evolution parameters D,,,, = 2000 and & = 10~°. Error bars
indicate a 95% confidence interval. (a) Energy measurements. We
observe a fast decrease of the variance as lowering temperature.
(b) Magnetic structure factor S(k) at ordering vector k = (z, ).
(c) Magnetic structure factor S(k) at k = (0,0). (d) Momentum
distribution function ny (k) at k = (x,0).

factor of k = (0,0) variances in Figs. 18(a) and 18(c)
do not depend strongly on the filling fraction. We observe
a rapid decrease of the variance when lowering the temper-
ature. In contrast, the variance of the magnetic structure
factor evaluated at M = (#,7) in Fig. 18(b) does not
rapidly decrease at half filling. This can be attributed to
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FIG. 18. Variance of time series of METTS measurements

for U/t = 10 for hole dopings p =0,1/16,1/8 on a 32 x4
cylinder. We use time-evolution parameters D, = 3000 and
e = 107, Error bars indicate a 95% confidence interval. (a) En-
ergy measurements. We observe a fast decrease of the variance as
lowering temperature. (b) Magnetic structure factor S(k) at
ordering vector k = (xz, x). (c) Magnetic structure factor S(k)
at ordering vector k = (0, 0). (d) momentum distribution function
n(k) at reciprocal vector k = (z,0).
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the fact that S(k) develops a peak at k = (7, 7) at low
temperatures indicating the development of strong anti-
ferromagnetic correlations. The variance of the momentum
n(k) distribution function evaluated at k = (7,0) also
shows interesting behavior in Fig. 18(d). The variance is
largest for hole doping p = 1/8, contrary to the magnetic
structure factor.

APPENDIX B: NUMERICAL DIFFERENTIATION
USING TOTAL-VARIATION REGULARIZATION

In the main text, we compute the specific heat as
the derivative of the total energy with respect to the
temperature

dE
S dr’
The energy is computed using METTS sampling and is
hence afflicted by a statistical error 6. When performing a
numerical finite difference with spacing A, the straightfor-
ward error estimate is proportional to §/h and hence
diverges as h — 0.

An established way to estimate derivatives of noisy data
is to perform total-variation regularization [149]. Crudely
speaking, the total variation of a function is a measure of
how rapidly it oscillates. More precisely, the total variation
of a differentiable function of one variable u is given by

TV[u] :/|u’|,

where the prime denotes its derivative. We like to point out
that TV [u] corresponds to the L' norm of the derivative of u
and not the more conventional Z? norm. Thermodynamic
observables, like the specific heat, are not expected to
rapidly oscillate. Therefore, it can be assumed that their
total variation is of small magnitude.

We describe the method proposed by Ref. [149]. Given a
function f, we seek to find a regularized derivative u, of f
minimizing the functional

Flu :a/|u’| +%/|Au—f|2.

Here, Au(x) = [} u denotes the operator of antidifferen-
tiation [assuming f(0) = 0]. The prefactor « is the regu-
larization parameter. A minimizing function u, of F is thus
in balance between closely integrating to f and having
small total variation. Reference [149] proposes an efficient
algorithm to solve this minimization problem based on
the lagged-diffusivity algorithm [150]. In our application,
f=E and u,= C.

We are given data points {f(x;)}%., with corresponding
error estimates {5f(x;)}.,. To derive an estimate for
the regularized derivative {u,(x;)}, and its standard
deviation {Su(x;)}Y_,, we apply a simple bootstrap idea.
We randomly sample data points according to normal

c (B1)

(B2)

(B3)

distributions with mean f(x;) and standard deviation
8f(x;). For every random sample, we compute the regu-
larized derivative by minimizing Eq. (B3). From those
samples of regularized derivatives, we then estimate the
mean and standard deviation. We use R = 100 random
samples to perform these estimates.
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