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Stochastic Approximation: From Statistical

Origin to Big-Data, Multidisciplinary
Applications
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Abstract.  Stochastic approximation was introduced in 1951 to provide a
new theoretical framework for root finding and optimization of a regression
function in the then-nascent field of statistics. This review shows how it has
evolved in response to other developments in statistics, notably time series
and sequential analysis, and to applications in artificial intelligence, eco-
nomics and engineering. Its resurgence in the big data era has led to new
advances in both theory and applications of this microcosm of statistics and

data science.
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1. INTRODUCTION

The year 2021 will mark the seventieth anniversary
of the seminal paper of Robbins and Monro (1951)
on stochastic approximation. In 1946, Herbert Robbins
entered the then-nascent field of statistics somewhat
serendipitously. He had enlisted in the Navy during the
Second World War and was demobilized as a lieutenant
commander in 1945. His interest in probability theory
and mathematical statistics began during the war when
he overheard conversation between two senior naval offi-
cers about the effect of random scatter of bomb impacts.
Although he was prevented from pursuing the officers’
problem during his service because he lacked the appro-
priate security clearance, his eventual work on the prob-
lem led to his fundamental papers (Robbins, 1944, 1945)
in the field of geometric probability. These papers paved
the way for his recruitment by Hotelling to teach “mea-
sure theory, probability, analytic methods, etc.” as asso-
ciate professor in the new Department of Mathematical
Statistics at the University of North Carolina at Chapel
Hill, even though he first thought that Hotelling had called
the wrong person because he “knew nothing about statis-
tics” (Page, 1984, pp. 8—11). During the 6 years he spent
at Chapel Hill before moving to Columbia, he invented
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compound decision theory and empirical Bayes methods,
stochastic approximation and multiarmed bandit theory,
and also introduced new approaches to sequential anal-
ysis. These accomplishments and their impacts were re-
viewed by Efron (2003), Zhang (2003), Lai (2003) and
Siegmund (2003) in a memorial issue of the Annals of
Statistics after his death in 2002. They complemented the
review, by Lai and Siegmund (1986), of Robbins’ work
and its impact up to 1984.

Sutton Monro was born in Burlington, Vermont, in
1914, about a year before Robbins. He received B.S. and
M.S. degrees from MIT. He enlisted in the Navy dur-
ing the Second World War and taught mathematics at the
University of Maine at Orono from 1946 to 1948 after
he was demobilized. Then he became a Ph.D. student in
the Department of Mathematical Statistics at the Univer-
sity of North Carolina at Chapel Hill. There was substan-
tial interest during that period in the problem of finding
the maximum (or minimum) of a regression function M
and choosing design levels around the optimum, begin-
ning the work of Hotelling (1941) on “experimental at-
tainment of optimum conditions” in polynomial regres-
sion models; see Box and Wilson (1951). Monro was in-
terested in this problem, but after he arrived at Chapel
Hill, Hotelling was no longer working in this area and,
therefore, he chose Robbins to be his adviser. In Sec-
tion 2, we describe Monro’s work with Robbins that led to
the foundational statistical theory in their 1951 paper and
subsequent developments not only in statistics but also in
engineering and economics. Our review of these multi-
disciplinary developments dating back to the 1960s show
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how new analytical techniques, algorithms and applica-
tions have emerged and enriched stochastic approxima-
tion.

The turn of the millennium marks the onset of the big
data revolution that has changed the field of statistics in
both theory and practice. Section 3 revisits stochastic ap-
proximation in the big data era, in which gradient (in-
stead of Hessian) methods play a prominent role in ma-
chine/statistical learning of the maximum of a regression
function f(x), x € R? with p larger than the size of the
training sample. Besides reviewing important advances in
this area, Section 3 also describes some new theoretical
developments and applications of stochastic approxima-
tion. There has been much recent debate on statistics ver-
sus data science and on theory versus practice in statistics
in this big data era. Our discussion in Section 3.4 shows
that in the case of stochastic approximation which belongs
to both statistics and data science, the trajectory has been
“from theory to practice and back,” and the subject has re-
mained vibrant to this day, nearly 70 years after Robbins
and Monro’s foundational paper.

2. STOCHASTIC APPROXIMATION AND
OPTIMIZATION

2.1 The Robbins—Monro and Kiefer-Wolfowitz
Recursions

To derive key insights into the underlying issues,
Robbins and Monro (1951) considered univariate input
x so that finding the optimum of the regression function
amounts to solving the equation M (x) = 0, where M is
the derivative of the regression function. Under the as-
sumption that M is smooth with M’(0) # 0, if one uses
Newton’s scheme x,; = x, — Y,,/M’(x,), then since
Y, = M(x,) + €,, where the ¢, represent unobservable
random errors,

Xn+1 =Xpn — M(xn)/M/(xn) - En/M/(xn)v

which entails that ¢, — 0 if x,, should converge to 6
so that M(x,;) — 0 and M’'(x,) — M’'(9). Since this is
not possible if €, are i.i.d. with positive variance, the
Robbins—Monro scheme

Xnt1 =Xp — ap¥y

uses weights a, > 0 such that flozla,% < o0

and )_°° | a, = 0o to average out the errors €,. In fact,
the assumption Y-°°, a2 < oo ensures that Y 0%, aye,
converges in L, and a.s. for many stochastic models of
the random errors (including i.i.d. mean-zero €, with fi-
nite variance). Under certain regularity conditions, this
in turn implies that x, — 6 converges in L, and a.s.,
and the assumption Y o2, a, = oo then assures that the
limit of x, — 6 is 0. In their convergence analysis of
the recursive scheme, Robbins and Monro (1951) trans-
formed the recursion into a corresponding recursion for

E(xn4+1 — 6)? and thereby proved L;-convergence of the
recursive scheme.

Kiefer and Wolfowitz (1952) subsequently used this ap-
proach to prove Lj-convergence of the recursive scheme

w—m)

Xn+1 =Xp — an( 2
n

to find the minimum 6 of the regression function f(x)
(or, equivalently, the solution of M (x) = 0, where M =
df/dx). During the nth stage of the Kiefer—Wolfowitz
scheme, observations Y, and Y, are taken at x,, + ¢, and
Xn — cn, respectively, where ¢, and a, are positive con-
stants such that >0 | (ap /cn)? < oo and Y2 an = 00.
Such a scheme was what Monro had been working on
before he rejoined the U.S. military as naval officer in
the Korean War. Like Monro, Kiefer who was about 10
years younger had been interested in stochastic optimiza-
tion when he began his doctoral program in mathematical
statistics at Columbia. He had already written papers on
sequential search schemes when he was a master’s student
at MIT; these papers were later refined and published as
Kiefer, Kiefer (1953, 1957). He changed his thesis topic
to the new area of statistical decision theory and worked
with Wald, whose death in 1950 resulted in Wolfowitz be-
ing his thesis adviser. He moved with Wolfowitz to Cor-
nell in 1951 and his Ph.D. thesis Contributions to the
Theory of Games and Statistical Decision Functions at
Columbia was completed in 1952. After the Korean War,
Monro worked at Bell Labs from 1953 to 1959 and then
at Lehigh University as professor of industrial engineer-
ing until his retirement in 1985. He returned to live in
Burlington, Vermont after retirement, and died in 1989,
8 years after Kiefer’s death.

2.2 Adaptive Stochastic Approximation

The last sentence of Robbins and Monro (1951) says:
“One of us is investigating the properties of this and other
sequential designs as a graduate student; the senior au-
thor is responsible for the convergence proof.” Unlike
his graduate student Monro, Robbins was more inter-
ested in direct applications of the root-finding Robbins—
Monro algorithm than in indirect applications to regres-
sion function optimization. Robbins and Monro (1951)
gave a concrete application to recursive estimation of the
gth quantile 6, of a distribution function F', for which
M (x) = F (x) —q. They also discussed a linear regression
model M (x) =« + Bx with unknown regression param-
eters such that 8 # 0, for which M () = y* has solution
0 = (y* —a)/B, saying: “Instead of trying to estimate the
(regression) parameters (by least squares), we may try to
estimate the value 6 such that M(6) = y*, without any
assumption about the form of M (x),” by using a stochas-
tic approximation scheme “when M (x) satisfies the hy-
pothesis of (the convergence) theorem.” There was little
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progress in this problem until Lai and Robbins (1979)
developed a comprehensive theory of adaptive stochastic
approximation, which was motivated by a conjecture of
Anderson and Taylor (1976) and which we describe be-
low.

Robbins spent the 1975-1976 academic year as a
Guggenheim Fellow at Imperial College in London,
where he heard a lecture by Anderson on the “multi-
period control problem” in econometrics, which is con-
cerned with choosing the inputs xi, ..., xy sequentially
in the linear regression model Y; = o + fx; + €; (with
unknown parameters 8 # 0 and « and i.i.d. random er-
rors €; having mean 0 and variance o2) so that the out-
puts are as close as possible to a target value y*. As-
suming prior knowledge of bounds K; and K> such that
K| <60 :=(y*—a)/B < Ky, the Anderson—Taylor rule is
defined recursively by

X1 =K1 Vv {B\;l()’* — ) A Ko},

where @,, and En are the least squares estimates of « and
B at stage n. Based on the results of simulation stud-
ies, Anderson and Taylor (1976) conjectured that this rule
converges to 6 a.s. and that  /n(x, — 6) has a limiting
N(0, 02/B?%) distribution. They also raised the question
whether @,, and an are strongly consistent. Clearly, if the
x; should cluster around 6, then there would not be much
information for estimating the slope f. There is, there-
fore, an apparent dilemma between the control objective
of setting the design levels as close as possible to 8 and
the need for an informative design with sufficient disper-
sion to estimate f3.

To resolve this dilemma, Lai and Robbins (1979) be-
gan by considering the case of known S. Replacing Y;
by Y; — y*, it can be assumed without loss of general-
ity that y* = 0 so that ¥; = B(x; — 0) + €;. Let x, =
n-! Yo X, Y, =n""! >, Y. With known B, the least
squares certainty equivalence rule becomes x, 1 = X, —
Y,,/B, which turns out to be equivalent to the stochastic
approximation recursion X,y = X, — (nﬁ)_lYn. Since
Bn = Ya/B =0 = &/B. ECins1 — 0)> = 02/(np?) for
n > 1 and, therefore,

N N
E(Z Y,f) =Y E{B*(xn —0) +¢€;)
n=1 n=1

=0%(N +log N + 0(1)).

n=>?2,

Moreover, \/N(XN —0)= N(, az/ﬁz) and Z,I,v:1(xn —
0)% ~ (6%/B%*)log N a.s. As shown by Lai and Robbins
(1982a) who used dynamic programming after putting a
prior distribution on 6, the optimal control rule when the
€; are normal also has expected regret o> log N + O(1),
where BZYN_ (x, — 0)2(= XN, (Y, — €,)?) is called
the regret (due to ignorance of 6) of the design. Hence,
for normally distributed errors, this rule when § is known

yields both asymptotically minimal regret and an efficient
final estimate. The next step, therefore, is to try also to
achieve this even when g is unknown. An obvious way to
modify the preceding rule for the case of unknown g is
to use an estimate b, to substitute for § either in the re-
cursion x,41 = X, — Y, /B or in the equivalent stochastic
approximation scheme x,+1 = x, — Y,/ (nB). The equiv-
alence between the two recursive schemes, however, no
longer holds when g is replaced by b,. The second re-
cursion, called adaptive stochastic approximation, was
treated in Lai and Robbins, Lai and Robbins (1979, 1981)
and is described below.

Blum (1954) used martingale theory to prove a.s. con-
vergence of the Robbins—Monro scheme to 6 under the
following conditions on the regression function M that
are weaker than those of Robbins and Monro (1951): (a)
|M(x)| <c(]Jx —60]4+1) for all x and some ¢ > 0, and (b)
infe o, _g<c-1 {M(x)(x —0)} > 0forall 0 < e < 1. Under
these assumptions and also assuming that M’ (0) = 8 > 0,
Lai and Robbins (1979) consider adaptive stochastic ap-
proximation schemes of the form x,11 = x, — Y, /(nby,),
where b, is F,_i-measurable and lim, .~ b, = b > 0
a.s. By representing x, as a weighted sum of the i.i.d. ran-
dom variables ¢;, they proved limit theorems on xy — 6
and Zflvzl(xn — 60)2. In particular, for 0 < b < 2, they
proved that

N
@ B> (n—0)2~a’gb/B)logN as.,

n=1
) Ny —0)= N0, (c%/8%)g(b/B)),

where g(t) =1/{t(2 — 1)} for 0 < ¢t <2 and has a mini-
mum value of 1 at # = 1. Lai and Robbins (1981) showed
that by choosing b, to be a truncated version of the
least squares estimate in the adaptive stochastic approx-
imation scheme, one indeed has b, — B a.s. and, there-
fore, the adaptive scheme has the same asymptotic proper-
ties as the “oracle” stochastic approximation that assumes
known g. Instead of a step size of order 1/n, Nemirovski
and Yudin, Nemirovsky and Yudin (1978, 1983) and
subsequently Polyak (1990) and Ruppert (1991) have
proposed to take larger step sizes that are simpler to
implement and yet can still attain the asymptotic effi-
ciency result NGy —6) = N(0, 02/,82), where xy =
NI Zfl\':l Xpn. In other words, averaging “slowly conver-
gent” Robbins—Monro schemes can still yield asymptoti-
cally efficient estimates of 6, as in (b) above with b = 8;
see Ruppert (1991), p. 515. Note, however, that these
slowly convergent schemes x, have much larger regret
than the optimal order (6%/8%)log N in (a) above with
b=8.

Ruppert (1985) and Wei (1987) subsequently studied
adaptive stochastic approximation in multivariate regres-
sion models in which Y, and x, belong to R”. An ad-
vantage of using adaptive SA (stochastic approximation)
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instead of least squares for linear regression models, noted
by Lai and Robbins, Ruppert and Wei, is that the proce-
dure can be conveniently extended to nonlinear regression
models Y,, =f(x,) +€,, where f: RP — R” gatisfies cer-
tain regularity conditions. Wei uses a generalized Venter
estimate of the Jacobian matrix df/dx, which requires tak-
ing 2p measurements x, — Cu,Xpj + ¢, (j=1,...,p)
at stage n of the SA recursion. Ruppert reformulates the
problem as finding the minimum of ||f]|> and uses 2pm,,
observations at stage n of the Kiefer—Wolfowitz-type re-
cursion to estimate 9f/9x(x,) and [nY | observations to
estimate f(x,). Instead of using finite-difference approxi-
mations for multivariate SA, Spall (1992) introduced si-
multaneous perturbation (SP) gradient approximations,
which he and his coauthors subsequently developed fur-
ther in a series of papers. Whereas Ruppert’s and Wei’s
approaches require multiple measurements, of the order
of p or of higher order, at each stage of the SA recursion,
Spall (2000) argues that SPSA requires only 3 gradient
measurements at each stage of the recursion or 4 function
measurements for gradient-free SA schemes. Noting that
as with all stochastic search algorithms the performance
of SA schemes depends on the choice of the tuning pa-
rameters, he develops an adaptive SPSA algorithm that
is “based on the simple idea of using two parallel recur-
sions,” one for estimating the Hessian matrix, “while con-
currently estimating the (tuning) parameters of interest.”

2.3 Recursive Algorithms in Signal Processing and
Adaptive Control

From its statistical foundation reviewed in Section 2.1,
stochastic approximation flourished under multidisci-
plinary input and development. Sakrison (1967) and
Saridis and Stein (1968) described the use of stochas-
tic approximation for recursive system identification,
which Astrom and Wittenmark, Astom and Wittenmark
(1971, 1973) further developed for adaptive control of
linear stochastic systems. Ljung (1977) gave a unified
convergence analysis of recursive stochastic algorithms
for system identification and control, using stability anal-
ysis of an associated ordinary differential equation (ODE)
which defines the “asymptotic paths” of the recursive al-
gorithm that can only converge to the stable equilibrium
points of the ODE. Kushner and Clark (1978) elaborated
and refined this ODE approach in connection with ear-
lier work by Kushner and his collaborators on stochastic
approximation algorithms for constrained optimization.

An important problem in adaptive control of linear
stochastic systems after the seminal paper of Astém and
Wittenmark (1973) on self-tuning regulators was recur-
sive identification and adaptive control in the ARX and
ARMAX models. An ARX model (autoregressive model
with exogenous inputs) is a linear time series of the
form A(g~"Y, = B(g Dun—1 + €, where A(g™!) =

1 _a]q—l ——apq P, B(q_l) =b;+-- -—i—brq_(’_l)
and ¢~ ! is the unit delay operator (defined by ¢~ 'u, =
u,—1), and u; represents the input while Y; the output and
¢; the random disturbance at time . An ARMAX model
(in which MA stands for “moving average”) is a more
general model of the form A(g~")Y, = B(¢™ Dun—1 +
C(q_l)en, where C(q_l) =1+ clq_1 + -+ qu_k is
used to model moving average disturbances. Rewriting
the ARX model as a stochastic regression model y, =
BT x, + €, with B = (—ay,...,—ap,b1,...,b,)T and
Xp = Y-ty Yup,up—1, costn_r)T, the problem is
similar to the multiperiod control problem in economet-
rics that motivates the work of Lai and Robbins (1979)
on adaptive stochastic approximation summarized in Sec-
tion 2.2.

Besides adaptive stochastic approximation, Lai and
Robbins (1982b) also used a more direct recursion, origi-
nally proposed by Anderson and Taylor (1976) and de-
scribed in the second paragraph of Section 2.2. Call-
ing this recursion iterated least squares, they analyzed
the strong consistency of the least squares estimate
By = (X1 (i — %a)yi}/ Xjo (i — %,)* for sequen-
tially determined x;, as in iterated least squares which
they proved not to converge to 8 on an event with pos-
itive probability. Lai and Wei (1982) proved the follow-
ing result on strong consistency of the least squares es-
timate B, = (X'_; xx/ )~ >" | x;y, in the more gen-
eral stochastic regression model y; = #x; + ¢;, in which
x; € R? is F;_1-measurable and ¢, is a martingale differ-
ence sequence (with respect to a filtration {F;}) such that
sup, E(|& |73 Fi_1) < 00 as.:

-~

B,— B
2.1)

a.s. in the event {

Amin (Z?:l X,‘XiT)
- 7= —> 00,
log Amax (Q_7—; X;X; )

where Amax(+) and Apin(-) denote the maximum and min-

imum eigenvalues, respectively. A key tool used in their
proof is the recursive representation of §,,:

En = ﬁn—l + rnxn()’n - ﬂ,zllxn),
2.2) r r
Ly=T,-1 —T,_1x%, lqn—l/(l +X, rn—lxn),

where I',, = (3_7_, xixiT )~! has the above explicit recur-
sion using the matrix inversion lemma; see Kumar and
Varaiya (1986) who also show (2.2) to be a special case
(corresponding to V = 0) of the linear state-space model
with unobservable states 8, = f8,_; + W, in which w; are
independent with mean 0 and covariance matrix V, and
observations y; = ﬂ,T X; + €.

Lai (1989) generalized the aforementioned argument
used to prove (2.1) into the method of extended stochas-
tic Liapounov functions. A precursor of this work was the
nonnegative almost supermartingale V,, satisfying

(23) E(Vn|]:n—1) =< (1 +0(n—1)Vn—1 + ,Bn—l — VYn-1
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for some nonnegative JF;-measurable random variables
Vi,a;, B;i and y; such that Y o; + Y B; < 0o a.s., which
was introduced by Robbins and Siegmund (1971) who
showed that

o0
2.4) V,, converges a.s. and Z Yn < 00 a.s.,

n=1

generalizing the convergence theorem of nonnegative su-
permartingales (for which «; = 8; = y; = 0). For the
Robbins—-Monro scheme x,4+1 = x, — a,{M (x,) + €,}
with |M(x)| < ¢(]Jx — 8] + 1) for all x and some ¢ >
0, infs_ |y _gj<s-{M(x)(x — 6)} > 0 for all 0 <§ <
1, and with martingale difference sequence ¢, such
that sup,, E(e,%|]-"n,1) < 00 a.s., (2.3) holds for V, :=
(Xn41 — )% with y,—1 = 2a, M (x,) (xp —60) >0, @y =
2c¢%a? and B,_ = a>{2c®> + E(e2|F,_1)}. Hence by
(2.4), |x, — 6] = /V, converges as. and Y .r,_| =
2> anM(x,)(x, —6) < 00 a.s., implying that x, — 6 a.s.
since Y a, = oo in the Robbins—Monro scheme. Noting
that V,, = (x;4-1 — 0)? is closely related to the Liapounov
functions in the stability theory of ordinary differential
equations that feature in the ODE approach to the analy-
sis of recursive stochastic algorithms of Ljung (1977) and
Kushner and Clark (1978), Lai (1989) generalized (2.3)
to

Vi< +an—1)Vic1 +60 — &

+ w,—1€, a.s.,

(2.5)

where V;, «;, &, {; are nonnegative J;_|-measurable ran-
dom variables such that ) «o; < 00, w; is F;-measurable
and {€,,n > 1} is a martingale difference sequence satis-
fying sup,, E(e,%l]—'n_l) < 0o a.s. Then for every § > 0,

max(Vn, Z§i>

i=1
(2.6)

n n—1 %4‘5
= O(ZS,- + (Z wlz) ) a.s.,
i=1 i=1

V,, converges a.s. and Z E(i|Fi—1) <o

a.s. on [Z EE|Fio) < oo}.

Note that taking conditional expectation E(-|F;—1) on
both sides of (2.5) yields (2.3) with 8,—1 = E(&,|Fn—1)
and y,—1 = E(&y|Fn—-1), hence (2.7) is a “local conver-
gence” version of (2.4). On the other hand, V,, does not
converge on {Y_ E(&;|Fi—1) = oo} and (2.7) provides a
bound on its order of magnitude and that of >}, ¢;.
Lai and Wei, Lai and Wei (1982, 1986) bas1cally used
the extended stochastic Liapounov function V,, = (ﬂ n

ﬂ)TI' l(ﬂn B) or its modification for the ELS (ex-
tended least squares) recursive algorithm to prove (2.1)
for the least squares estimator in the stochastic regression

2.7)

model or its extension for ELS in ARMAX models that
satisfy certain stability and positive real conditions on the
moving average operator C (g™ ').

Widrow and Hoff (1960) introduced the LMS (least
mean squares) algorithm as an alternative to the Kalman
filter (2.2). It is basically a recursive stochastic gradient
algorithm which uses a scalar gain sequence y;, in lieu of
the matrix gain sequence I';,, in the Kalman filter. For the
ARMAX model A(g~ 1Y, = B(g Dx,—1 + C(g De,,
Fuchs (1982) used the LMS algorithm

0,=0,_1+ @/v)d,(Yn — 01 |¢,),
Vo =Yu_1 + 1§, 1°

for recursive estimation of the parameter vector 6 =
(—=ai,...,—ap,bi,...,by, ci,...,cx)T under stability
and positive real conditions on the ARMAX model, where

(2.8)

- T

€ = Yt — 0[71¢t and ¢n = (Ynfl,..., Yn,p,xnfl,...,
Xners €nelsevvs€ni) ! is a surrogate for ¢, = (Yy—1, .. .,
Yo—ps Xn—1, s Xn—r, €n—1, ...,en_k)T. He showed that

% (@ (¢, —0T¥,)%/yy < 00 as. and that the adap-
tive control rule 87 ¢, = y* satisfies the “self-tuning”
property

n! Z 2 — 0 a.s.and

t=1

yt - Gt
(2.9) ;
n I 7+ Y = 0() as.

=1

The second property is often called “bounded average en-
ergy” for the inputs and outputs, assuming the target val-
ues and random disturbances also have bounded average
energy. » /1 (Y; —y/— €:)? is called the regret of the con-
trol rule, since y;* is the target output and ¢; is the random
disturbance at time 7. A similar result was obtained earlier
by Goodwin, Ramadge and Caines (1981) after reparam-
eterizing the ARMAX model as C(g~ ) E(Y,y1|Fp) =
G(q*I)Yn + B(qfl)xn, where the polynomial division
algorithm was used to give C(z) = A(z) + zG(2). The
self-tuning property (2.9) is considerably weaker than the
order o2 logn for the regret established by Lai and Rob-
bins, Lai and Robbins (1979, 1981) for adaptive stochas-
tic regression. Lai and Ying, Lai and Ying (1991a, 1991b)
have shown how parallel recursive algorithms can be used
to develop recursive parameter estimates that are asymp-
totically efficient and adaptive control rules with regret of
the order of logn.

In practice the order of (p, r, k) of an ARMAX model
is unknown and is often used to approximate on infinite-
order model. Guo, Huang and Hannan (1990) considered
the ARX(0c0) model Y,, = 1 @i Yy_i +bixy_i) + €n,
in which Y; = 0 and x; _0 for t <0and Y72, (lai| +
|bi]) < oo, as a more realistic data generating mech-
anism for the observed time series {(x;,Y;),1 <t <
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T} than the finite-order ARX(p,r) model in the pre-
ceding paragraph, which could be used as an approx-
imation to the model, as Hannan (1987) had consid-
ered earlier for transfer function approximations by ra-
tional functions (associated with ARMA models). The
selected model ARX(pr,77r) depends on the sample,
and in particular the sample size, hence the notation
pr and 77 used to highlight this point. The assumption

2 1(ail + |bi]) < oo is similar to the /;-sparsity con-
straint on the stochastic regression model Y, = ﬂTxn +€,,
in which x, = (xnyl,...,xn,pn)T is J,_1-measurable
B =B, ....Bp)T with sup, >F" |Bi] < 00, and €, is
JFn-measurable with E (¢, |F,—1) =0 a.s. For p, <n and
pn<t<n,letw ,=(Y;,...
and

aY[—p,1+l7-x[7 R

t—1 —1r—1
Bin= <Zui,nul‘7:n + )/I> > Winyitl,
i=0 i=0
where y > 0 is arbitrarily chosen to ensure that the ma-
trix is invertible. Guo, Huang and Hannan (1990) actu-
ally consider multivariate Y; and x;, in which a; and b;
are replaced by matrices A; and B; with Y 2, (|A; || +
IB;|]) < oo and Y; and x; in the definition of w, , are
replaced by Yl-T and XiT, where ||C|| = (Amax(CCT))1/2

is the maximum singular value of C. Letting A(z) =
I— Y% Aiz" and B(z) = Y72, B;z’, they consider
the transfer function matrix G(Z) (A(Z) B(2)) « of the
ARX(00) model and its estlmate Gn (2) = (An (2), Bn (z))
in which An(z) =1- Al nzl Bu(z) = Z, 1Bz nZ's
and Al » and B, n are the Component matrices of ,Bn n=
(A1 Ry eees Apn,n,Bl,n,... puon)- They use truncation
and exponential bounds for double arrays of martingales
differences to derive bounds on the Hankel norm ||§n -
Glloo. Where [[Flloo = €55 5upge(o o) Artax (F(e/)F* (/%))
and F*(¢'®) is the conjugate transpose of the matrix
F(¢'?) with complex entries.

3. STOCHASTIC APPROXIMATION IN THE BIG DATA
ERA

3.1 High-Dimensional Sparse Linear Stochastic
Regression Models

Basu and Michailidis (2015) consider a linear stochas-
tic regression model of the form y, = BTX, + €, =
1,...,n, where x;, € R? and ¢, € R are “independent,
centered, Gaussian stationary processes”. Although ¢ can
be larger than n, they assume that B is k-sparse, that
1s, 2?21 Iig.+0y = k. In addition, like Guo, Huang and
Hannan (1990), they assume that the spectral density
function f of the stationary process x; exists and con-
sider its maximum singular value ||f||oo, the spectral
density function is defined by (27)~! E{(xg —

m——oo

T
xl—Pn-f—l)

n) Xy, — ;L)T}e_ime, where 1 = EXg. Based on observa-
tions (X1, ¥1), ..., (Xu, ¥n) from the stochastic regression

model, they use the Lasso estimate

n Pn
. 2
B,= argglelﬁ{r}) ;(y; - bTX;) + A Z |bj|

j=1

to approximate the k-sparse parameter vector B. Their
Section 3 shows that the “restricted eigenvalue condi-
tion (commonly assumed for consistent estimation of k-
sparse B by Lasso with appropriately chosen 1,) holds
with high probability when the sample size is sufficiently
large and the process of predictors X; is stable, with a full-
rank spectral density,” and that the concentration condi-

tion of } >/, (y; — ﬁ: x;)X; around 0 for consistent esti-
mation also holds for n of larger order of magnitude than
log p. Their Section 4 proves analogous results of high-
dimensional vector autoregressive (VAR) models. Central
to this development are exponential bounds of Ravikumar
etal. (2011), Peligrad et al. (2014) and Wu and Wu (2016)
for high-dimensional linear models with correlated errors.

Instead of Lasso used by Basu and Michailidis (2015),
Lai, Xu and Yuan (2020) use the orthogonal greedy al-
gorithm (OGA) in conjunction with a high-dimensional
information criterion (HDIC) to choose regressors in a
stochastic regression model Y; = ﬂTx, +€,1 <t <n,
with F;_j-measurable x; € R”" and martingale differ-
ence sequence (€, Fr)1<r<p,- Assuming that the x; and
Y; are centered so that X =0 and Y = 0 and letting
X; = (x1j,...,x;)" and X; = (X;, j € J), OGA is a
fast iterative procedure that chooses the set Ji. of indices
of the input variable after k iterations and applies least
squares to the residuals UF = Y, — IA/lk as described be-
low. First initialize with U° = (Y, ..., Y,)” and fo =g
For k =1 to m, (a) choose j = fk ¢ Ji—1 such that X is
most correlated with U1, (b) update fk = fk_l U {fk},
compute the projection )’Z of ka into the linear space

spanned by X Xl XL and let X% = X¢ — )A(jk
(c) compute /3" <2, 1Uk 1 )/z e A)Z
let YK = Ykl ,B" L f0r1<t<n andUk (Y] —

£k
Ylk, B Y,’l‘)T. Let Py (resp., Pf) denote the ma-
trix associated with orthogonal projection into the space
spanned by (resp., orthogonal to) X, j € J. Thus, P; =
X, XIX)7IXT, P+ =1—P;. Assuming the x, to be
i.i.d. and log p, = o(n), Ing and Lai (201 1) call the regres-
sion model weakly sparse if sup, - Z 2 1Bjojl < 0o,

where o2 ;= = Var(x;;), and show that under certain finite-

ness assumptions on moment generating functions,

E[{3;x)
= Op(nflmlog Pn)

_yf(x)}2|ylvxl’ ---»yn’Xn]
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if OGA terminates after m = m, = O(y/n/log p,) it-
erations, where J = {fl , e, fm} is the set of vari-
ables selected by OGA, y;(x) = XTE in which ﬁ is the
OGA estimate of 8, (x, y) is independent of (x;, y;) for
t =1,...,n but has the same distribution, and y;(x) =
Zj cjBjxj is the “semipopulation version” of OGA.
They also introduce a high-dimensional information crite-
rion (HDIC) to choose along the OGA path the model that
has the smallest HDIC. In this setting of i.i.d. x; that are
independent of i.i.d. ¢, they assume E (exp(se)) < oo for
|s| <soand maxj<j<p, E(exp(ssz.)) <oofor0<s < sy,
together with a variant of the restricted eigenvalue condi-
tion, and use exponential inequalities to bound Y7 /X,
and ||f;l(J) — F_I(J)||, where I'(J) is the covariance
matrix of (x;; j € J) and T,(J) is the corresponding
sample covariance matrix. Extending directly these ex-
ponential inequalities to JF;_j-measurable regressor X;
and martingale difference €; (with respect to ;) is much
more difficult. However, de la Pefa, Klass and Lai (2009)
have developed exponential and moment inequalities for
self-normalized locally square integrable martingales, for
which self-normalization consists of multiplying by the
inverse of its quadratic or predictable process (or some
linear combination thereof) which is a matrix. By mak-
ing use of these inequalities, Lai, Xu and Yuan (2020)
have recently extended Ing and Lai’s (2011) theory of
OGA+HDIC to stochastic regression models with F;_1-
measurable x; € RP and martingale difference sequence
{e, 1 <t < pu}.

3.2 Recursive Gradient Boosting for Nonlinear
Stochastic Regression

In Section 2.3, we have reviewed recursive stochastic
gradient algorithms beginning with Widrow and Hoff’s
LMS algorithm in 1960 as an alternative to the Kalman
filter, followed by the recursive stochastic gradient al-
gorithms for parameter estimation and associated adap-
tive control rules in ARMAX models by Goodwin, Ra-
madge and Caines (1981) and Fuchs (1982). We have
noted that although the adaptive control rules have the
self-tuning property, they do not have logarithmic regret
and the recursive parameter estimates are not as efficient
as the considerably more complicated matrix-gain recur-
sions. Here, we review recent developments in stochastic
gradient algorithms which can also achieve full asymp-
totic efficiency via a modification of Friedman’s gradi-
ent boosting machine, introduced in 2001, called “mod-
ified gradient boosting” (MGB). In regression or classi-
fication problems with high-dimensional covariate vec-
tors, one faces the problem of minimizing a loss func-
tion over a high-dimensional parameter space. When the
loss function is convex, regularization methods like Lasso
or elastic net are often used to find a sparse solution.

However, in a more general framework, the loss func-
tion may not be convex in the parameters and difficul-
ties arise for fitting the model. Boosting is a powerful tool
to circumvent this difficulty. The essence of boosting is
to combine many base learners in a greedy way to pro-
duce a powerful predictor. For classification problems, the
AdaBoost algorithm introduced by Freund and Schapire
(1997) takes votes from many weak classifiers to form
a boosted classifier using the majority vote. Friedman,
Hastie and Tibshirani’s (2000) Real AdaBoost procedure
is an extension to prediction problems and provides a sta-
tistical framework, via additive modeling and maximum
likelihood, to understand why AdaBoost can produce dra-
matic improvements in performance over the weak classi-
fiers (learners). The “gradient boosting machine” intro-
duced by Friedman (2001) represents a further gener-
alization that connects stagewise additive expansions to
steepest-descent minimization, for which “function esti-
mation/approximation is viewed from the perspective of
numerical optimization in function space, rather than pa-
rameter space.” This general paradigm can be “based on
any fitting criterion” via the use of loss functions of the
form L(Y;, f(x;)), in which Y; and x; are the observed
response and covariate vector for t = 1,...,n and f is
the regression function that has an additive expansion of
the form f(x) = o + Zle Brdr (x; by), in which ¢y is a
basis function that involves a nonlinear parameter vector
br € B and is linearly associated with a regression coef-
ficient Bj. Friedman assumes o = 0 and ¢y = ¢ and his
Gradient_Boost algorithm is initialized at f O(x) =0. It
carries out the following steps at the kth iteration:

@ i~ ==k, S o) =1,

(b) by = argminper. per Y [d7 ' — B (xi: D),
() B =argming X-1_; L(Yr, f*1 (%) + B (%12 i),
(d) S5 = £ + Brop (x: by).

It terminates after m iterations and outputs f ().

For the case L(y, f) = (y — f)?/2, Gradient_Boost re-
duces to the “pure greedy algorithm (PGA)” of Temlyakov
(2000), which is called “matching pursuit” by Mallat and
Zhang (1993) for the special case of “time-frequency”
dictionaries and also called “L;-boosting” by Biihlmann
(2006), who shows that for the linear regression model
with p, = exp(O(nf)) for some 0 < £ < 1, E{(f(x) —
f’” (X))2|y1,x1, ..., Yn, Xy} converges in probability to O
if m = m, — oo sufficiently slowly, where x is indepen-
dent of (x;, y;) and has the same distribution as x; which
are assumed to be i.i.d., but no results on how slowly m,
should grow have been derived. It is widely recognized
that early termination can avoid overfitting, and some
variable selection schemes such as AIC have been pro-
posed to choose m,, but a convergence theory of PGA
(or Ly-boosting) is lacking. On the other hand, there is a
definitive convergence theory of OGA that is summarized
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in the last paragraph of Section 3.3. A major difference
between OGA and PGA is that at each iteration OGA se-
lects a new input variable whereas PGA can select the
same input variable in multiple iterations. Thus termi-
nation of OGA after m, iterations implies inclusion of
my, regressors in the linear regression model whereas the
number of regressors included in PGA after m,, iterations
is unclear other than that it cannot be larger than m,,, con-
tributing to the difficulties in analyzing PGA. For OGA,
Ing and Lai (2011) have shown that optimal bias-variance
tradeoff in high-dimensional sparse linear models entails
that m,, should be O((n/log p,)'/?), suggesting termina-
tion of the OGA iterations with K,, = O((n/log pn)l/ 2)
input variables, assuming that log p, = o(n). Letting
y;(X) = X jes Bjxj, an important tool used by Ing
and Lai (2011) is an upper bound, due to Temlyakov
(2000), on the conditional mean squared prediction error
E{(yj(x) — ﬂTx)2|y1, X1, ..., Yn, Xp} for weak orthogo-
nal greedy algorithms that can be applied to analyze the
semipopulation version of OGA. By making use of mod-
erate deviation bounds for the least squares estimates of
the unknown regression coefficients in the sample version
of the procedure, Ing and Lai (2011) derive the desired
convergence rate from that of the semipopulation version.
For PGA, there is a corresponding Temlyakov bound for
the semipopulation version, which has been used in the
aforementioned work of Biilhmann. However, because the
same input variable can be used repeatedly in the PGA it-
erations, there are inherent difficulties in determining the
number of iterations and deriving the convergence rate of
PGA from the Temlyakov bound for the semipopulation
version of PGA. These difficulties become even more in-
tractable for gradient boosting in regression models with
nonlinear parameters in the basis functions.

Lai, Xia and Yuan (2020) have recently introduced
a modified gradient boosting (MGB) algorithm to cir-
cumvent these difficulties in the additive expansion and
for general loss functions L(Y;, f(X;)). Whereas Ing and
Lai’s OGA uses forward greedy inclusion of regressors
until K,, variables have been included, MGB modifies it
into a “less greedy” procedure that chooses (fk, f)k) with
the smallest number #];_1 of iterations up to stage k — 1,
over 1 < j < p, and b € B, that attains at least € times the
maximum squared correlation of (ﬁf - Qk—1)1<t<n and
¢ (Xt; b)1<t<n, with prescribed 0 < € < 1. Following Ing
and Lai (2011), MGB stops including new basis functions
at stage m, when K, distinct fk’s are included in the ba-
sis expansion. For k > m,, MGB continues the preceding
procedure with j restricted to the K, distinct fk’s until
stage m, when loss minimization converges within pre-
scribed tolerance limits. Under certain regularity condi-
tions, Lai, Xia and Yuan (2020) have developed an asymp-
totic theory of MGB as n — o0, parallel to that of OGA

in linear regression with squared error loss, for stochas-
tic minimization of general loss functions. Gradient de-
scent used in MGB obviates the need for the restricted
eigenvalue condition for OGA, and the weak greedy se-
lection of basis functions has much lower computational
cost than OGA+HDIC. This shows that a suitably cho-
sen scalar-gain sequence coupled with weak greedy selec-
tion of input variables (or basis functions) enables MGB
to attain the same asymptotic properties, as n — 00, as
OGA in linear regression models with squared error loss,
or more generally, in high-dimensional regression models
with nonlinear basis functions and general loss functions.

However, MGB is an off-line algorithm that depends
on a given training sample of size n, hence we have used
the notation p, and m, to denote the number of basis
functions to be considered and selected, respectively, for
a given sample size n. Lai, Xu and Yuan (2020) have
recently developed a recursive MGB algorithm by par-
allelizing the basis function selection and parameter up-
dating tasks of MGB (represented by steps (b) and (c),
respectively, for Gradient_Boost and their modifications
described above). Recursive MGB carries out basis func-
tion selection only for sample sizes n1 < ny < --- so that
when the sample size n reaches n;, m,, , basis func-
tions are selected on the basis of the first n;_; obser-
vations. With the set of basis functions unchanged for
n; <n < nj4+1, parameter updating can be carried out by a
scalar-gain stochastic approximation algorithm; note that
the minimization in step (c) of Gradient_Boost is over
B eR.

3.3 Stochastic Approximation in Particle Swarm
Optimization and Al

Artificial (or machine) intelligence (Al) is intelligence
demonstrated by machines, in contrast with natural in-
telligence displayed by humans and animals. Many Al
models and algorithms emulate those in natural intelli-
gence; neural networks, deep learning and computer vi-
sion are well-known examples. Another example that has
received much recent attention is particle swarm opti-
mization (PSO) because of its wide range of applications
in power systems, mechanical design, polymerization, bi-
ological sequence analysis, pharmacodynamics, robotics
and industrial engineering; see Yuan and Yin (2015) who
have developed a novel stochastic approximation (SA)
scheme in connection with the convergence of PSO opti-
mization algorithms. These algorithms involve optimiza-
tion in network or multiagent systems and in autonomous
systems, originating from the example of a swarm of birds
searching for food—how each bird adjusts the next search
direction in accordance with its current estimate of the
best position (of food) and the communicated best posi-
tion by its neighbors. Kennedy and Eberhart (1995) pro-
posed a seminal PSO algorithm that underwent many sub-
sequent refinements and developments; see Clerc (2006)
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and Bonyadi and Michalewicz (2016), in which “birds”
are replaced by “particles” for a particle swarm. Let M be
the size of the swarm and f : R — R be the cost func-
tion to be minimized. Letting Xx;(¢) € R? be the current
position and v; (¢) be the current velocity of particle i, the
dynamics of PSO can be expressed in terms of the recur-
sive algorithms

(3.1 xi(t+1)=x;(1)+vi(t+1),
vit+1) =0 —w)vi()
(3.2) +c1Upi () ® (%7 (1) — x; (1))
+ Ui (1) ® (X*(1) — x;(1)).

In (3.2), ® denotes the Kronecker product, and Uy ;(¢)
and Uy ;(¢) are independent random vectors in R?; the
components of Uy ;(¢) are i.i.d. with finite second mo-
ments and so are those of Uy ; (¢). Moreover,

x} (1) = argmin f (x; (s)),
O<s<t
(3.3) ’
x*(f)= argmin
1<j<M,0<s<t

f(x;(5))

represent the best position found by the ith particle and
the “global best” found by the whole swarm up to the ¢th
iteration.

After a review of previous works on convergence anal-
ysis of the PSO algorithm, Yuan and Yin (2015) point out
that most of them rely on overly restrictive assumptions
such as the swarm having “only one particle” and that
“there are no rigorous rates of convergence results avail-
able to date.” To address these issues, Choi et al. (2021)
introduce the following enhancements of PSO, which not
only can be guaranteed to converge to the global optimum
under mild regularity conditions but are also related to
stochastic approximation theory that provides the conver-
gence rate results. Smoothed PSO (sPSO) uses martingale
differences Z; (¢ + 1) and a tuning parameter 1 € (0, 1) to
convert the objective function into a regression function
and modify the PSO iterations (3.1) and (3.2) as

G4 xi(+1D=x;(t)+nvi(t+1),
vi(t +1) = (1 = nw)vi (1)

+ 11U (1) @ (xF (1) — x,(1))
(3.5)
+ncaUsi (1) @ (X* (1) — x, (1))

+nZ;(t+1).

Following Yuan and Yin (2015), p. 1761, we as-
sume d = 1 for the convergence proof of sPSO which
only entails convergence for each coordinate in the d-
dimensional case. Let x; = (x;(7),...,xp )T, v, =
WI@),com)T X = F@), . xO)TZ =
Z1@®), ..., Zu)T, e=(1,..., DT, 0, = xI',v)T,
and define the M x M diagonal matrices D;; =

diag(Uy,1(8), ..., U,m(t)), Do, = diag(Uz1(2),...,
Uz m(t)). Then we can combine (3.4) and (3.5) for the
case d = 1 into

(T n(I—nw)l
0‘“‘(0 (l—nwn)”’

2 2

n-ciDi, n7ceaDoy
3.6 + ’ ’
(36) (7761D1,z 77C2D2,t)

X;k —X; 772Zt+1
x <x*(t)e - x,) + (nz,+1 ) '

In the PSO literature, ¢; and ¢y are called “acceleration
constants” and U ; (¢), U3 i (¢) are often chosen to be uni-
form random variables, while 0 < n < 1 is called the
“step-size.” Unlike (3.6), Yuan and Yin (2015) do not ex-
plicitly describe how Z; 1 enter into their PSO algorithm.
Instead, they point out that in practice the form of f in
(3.3) is “not known precisely, or too complicated to com-
pute,” for which stochastic approximation methods are
“well suited” to convergence proofs and derivation of con-
vergence rates. However, since PSO is usually associated
with known f in the literature, the sPSO enhancement
(3.6) includes additional noise (2, )7 Z;,1 in the opti-
mization algorithm. The ODE approach used by Yuan and
Yin (2015), pp. 1762-1766, can be used to establish the
convergence of sPSO (as n — 0) to the global minimum
of f under certain regularity assumptions. This approach
embeds the discrete-time iterates @, into a continuous-
time process 0" (s) = 6, for nt <s < (n + 1)t and then
shows that with probability 1+ o0(1) as n — 0, the process
0", consisting of subvectors x”7 and v”, converges weakly
to the solution 6(-) of (d/dt)8(t) = CO(t) + b(01(¢)), in
which 01(¢) denotes the first M components of €(¢) and
Cis a 2M x 2M matrix whose first M rows form the
submatrix (0,I) and the remaining submatrix is (0, wl),
under the regularity conditions of Yuan and Yin (2015),
pp. 1762-1763. Moreover, its equilibrium (as t — ©0)
is given by x* = argmin, f(x) and v* = 0 under these
assumptions, showing the convergence of sPSO to the
global minimum of f. Under additional assumptions,
Yuan and Yin (2015), pp. 1766-1768, have shown that
(x"(t) — x*)//n converges weakly, as n — 0, to the so-
lution z of the stochastic differential equation

(3.7) dz= (A +B)zdt + ='? dw,

where B and X are related to the tuning parameters
w, c1, ¢z and the covariance matrices of Uy ;(¢), Uy ; (¢)
and Z;(t + 1) in (3.5).

Choi et al. (2021) also introduce adaptive PSO (aPSO)
that uses an adaptive choice of the parameters of sPSO. It
is widely recognized that the finite-sample performance of
PSO depends heavily on the choice of tuning parameters,
hence it is desirable to estimate the optimal tuning param-
eters for sSPSO sequentially so that this adaptive choice of
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tuning parameters can mimic the oracle procedure that has
a priori knowledge of the optimal parameters. They note
that important insights into this problem were provided by
adaptive stochastic approximation that we have reviewed
in Section 2.2. They also point out that PSO and its en-
hancements also use two parallel algorithms as Spall’s
adaptive SPSA procedure in the last paragraph of Sec-
tion 2.2, one for locating the optimum and the other for
determining the velocity, for each of M particles. An im-
portant difference between sPSO and SPSA is that SPSA
uses gain sequences a; and ¢; similar to Kiefer—Wolfowitz
scheme, whereas sPSO uses a step-size 1. Convergence
analysis and convergence rate results involve the selec-
tion of the gain sequences @; and ¢; for SPSA and the
step-size n for sPSO. Although the asymptotic theory re-
quires the choices to converge to 0, it does not provide
“practical guidelines” for such choices, as noted by Spall
(2000) who also gave some guidelines which he sub-
sequently modified to develop adaptive SPSA that uses
the data collected so far to estimate the tuning parame-
ters sequentially; see Spall (2003), Sections 7.5, 7.7, 7.8.
In particular, he suggests choosing a; = a/(A + t)* and
¢; = ¢/t with @ and y smaller than their asymptotically
optimal values « = 1 and y = 1/6 (specifically, « = 0.6
and y = 0.1). Since sPSO uses step-size 1 instead of
gain sequences with prescribed functional forms, adap-
tation can be done more simply by adaptive selection of
the tuning parameters in aPSO that mimics the “oracle
PSO,” which assumes knowledge of the distribution of the
martingale difference sequence {Z;(t),t > 0} for deter-
mining the step-size 7. Although the convergence theory
in the preceding paragraph requires sufficiently small 7,
the oracle sPSO initializes at a larger 1 that yields the
smallest mean of T = inf{s < T: F(x*(0) — f(x*(s)) <
S(f(x*(0) — f (x*(T)))}, in which § represents the de-
scent rate, T is the time horizon for using the larger step-
size 1 and the convention inf & = T is used. After this
fast descent of the cost function with an optimally cho-
sen 11, the oracle sPSO then chooses a sufficiently small
step-size 7 to minimize E|x*(T) — x*||?/n, where T is
the maximum number of recursions in the practical im-
plementation of sSPSO. Recalling that (x"/(T) —x*)/,/7 is
approximately N (0, X) for sufficiently small » and large
T by the asymptotic theory of sPSO, this amounts to find-
ing the step-size that minimizes X. Since particle swarm
optimization involves a swarm of birds (particles), it can-
not use multistart local search strategies for the optimal
tuning parameters w and c¢(= ¢ = ¢»). Instead, Choi et al.
(2021) use a group sequential e-greedy randomization
procedure from reinforcement learning to choose (w, ¢)
during the flight path of the swarm, and show by theoret-
ical analysis and simulation studies that aPSO has certain
oracle properties.

3.4 Discussion—from Theory to Practice and Back

“Theory versus Practice” is a topic that has attracted
much recent discussion in statistics in response to the
challenges and opportunities in the big data era, and
was the title of a panel discussion in the 2018 Joint
Statistical Meetings to address the following questions:
“What is the current balance between theory and ap-
plications in our field, in terms of how research is
received/perceived/valued/rewarded? Has this balance
changed in the last 20 years? 10 years? 5 years? Have we
struck an optimal balance or are we moving in the wrong
direction? What is the value of Theoretical work/Applied
work? What are some of the main challenges in today’s
Theory world/Applied world? What is the role of com-
putation and how does it fit in to all of this?” We have
demonstrated in the case of stochastic approximation that
theory has guided practice, which has in turn led to more
powerful and versatile theories, giving persistent vibrancy
to this multidisciplinary subject in which computation has
also played an increasingly important role.

In their article on “neuroscience inspired Al,” Hassabis
etal. (2017) discuss the usefulness of neuroscience, which
studies the “inner workings on the human brain” and “the
behaviors that it generates, and the mechanisms by which
it does so,” to “accelerate and guide” Al research. They
consider in particular deep learning and reinforcement
learning. Section 3.2 describes modified gradient boosting
that is closely related to deep learning, and its on-line ver-
sion (recursive MGB) which can be used in sequential or
time series settings and which is related to stochastic ap-
proximation via stochastic gradient algorithms pioneered
by Widrow and Hoff’s LMS algorithm. In their develop-
ment of efficient aPSO, Choi et al. (2021) use adaptive
stochastic approximation and reinforcement learning, as
noted in Section 3.3 that discusses the role of stochas-
tic approximation in recent developments in Al. An im-
portant area of reinforcement learning that also origi-
nated in statistical theory and has blossomed into big-
data, multidisciplinary applications is multiarmed ban-
dits and bandits with side information (or contextual ban-
dits); see Robbins (1952), Lai and Robbins (1985), Lai
(1987), Tewari and Murphy (2017), Luckett et al. (2020),
Tomkins et al. (2019), and Lai, Choi and Tsang (2019).
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