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Time-dependent variational principle with ancillary Krylov subspace
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We propose an improved scheme to do the time-dependent variational principle (TDVP) in finite matrix
product states (MPSs) for two-dimensional systems or one-dimensional systems with long-range interactions.
We present a method to represent the time-evolving state in a MPS with its basis enriched by state averaging
with global Krylov vectors. We show that the projection error is significantly reduced so precise time evolution
can still be obtained even if a larger time step is used. Combined with the one-site TDVP, our approach provides
a way to dynamically increase the bond dimension while still preserving unitarity for real-time evolution. Our
method can be more accurate and exhibit slower bond dimension growth than the conventional two-site TDVP.
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I. INTRODUCTION

At the heart of the success of the density matrix renormal-
ization group (DMRG) [1,2] for approximating the ground
states of one- and two-dimensional lattice systems is the ma-
trix product state (MPS) representation underlying it. MPSs
are ideal for one-dimensional gapped ground states [3,4]
and are also a powerful approximation for one-dimensional
gapless ground states and ground states of finite-width two-
dimensional [5] cylinders and strips.

MPSs are also useful in solving the time-dependent
Schrödinger equation. Vidal’s time-evolving block decima-
tion (TEBD) method [6–8] can be framed as a slight
change to the DMRG sweeping algorithm, called the time-
dependent DMRG method (tDMRG) [9]. Since the invention
of TEBD, a number of variations have been developed and
have been widely used, for example in computing spectral
functions [10] and in simulating the dynamics of cold atom
systems [11].

Treating the time evolution of systems with long-range in-
teractions is more difficult. In its original form, TEBD handles
only nearest-neighbor interactions. A simple modification,
exploiting swap gates to move sites which are not next to
each other to be temporarily adjacent, is effective for sys-
tems with only a modest number of beyond-nearest-neighbor
interactions. Alternatively, an approach [12] to approximate
the time evolution operator in terms of a matrix product op-
erator (MPO) was developed to treat long-range interactions
efficiently, and has proven successful in calculating the re-
sponse function of the spin-1/2 Haldane-Shastry model [12].
Another approach [13] allowing the simulation of dynamics
with long-range interactions is based on Runge-Kutta and an
improved version of it was recently found useful in treating
the dynamics of chemical systems [14].

Some of the most attractive MPS time evolution methods
which can deal with long-range interactions are based on the
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time-dependent variational principle (TDVP) [15,16], where
the time-dependent Schrödinger equation is projected to the
tangent space of the MPS manifold of fixed bond dimension
at the current time. The manifold of all possible MPSs with a
particular bond dimension can be thought of as a constraining
surface for the time evolution, which in the case of real time
can be thought of analogously to classical motion under a
constraint. As in classical mechanics, which possesses a sym-
plectic structure, the probability and energy is automatically
conserved and so are the other integrals of motion, provided
that the corresponding symmetry transformation does not take
the state out of the manifold [17]. Energy and probability are
not conserved in most other time-dependent MPS methods
due to the necessity of truncation to keep an efficient MPS
representation.

The initial implementation [16] of TDVP simultaneously
updates all MPS tensors and suffers from numerical insta-
bility. The difficulties were later overcome by an alternative
integration scheme [18] based on a Lie-Trotter decomposition
of the tangent space projector. This algorithm, in the imagi-
nary time case, as the time step goes to infinity, is equivalent
to DMRG. The integration scheme, like DMRG, can be based
either on one site or two sites. In the one-site method, the
symplectic property is retained, but the bond dimension of
the MPS cannot increase to accommodate increased entan-
glement. The two-site scheme involves a truncation process
that allows evolution to a manifold with higher or lower bond
dimensions, although the symplectic property is lost.

A highly desirable feature of TEBD methods is that, aside
from well-understood Trotter decomposition errors, the errors
in the evolution all stem from the singular value decompo-
sition (SVD) truncation of an MPS bond, which is precisely
quantified and controlled. This is a much better situation than
in ground-state DMRG, where the search for the ground state
may get stuck in a local minimum [19–21].

Unfortunately, TDVP methods can fail in an uncontrolled
manner, in some ways similar to DMRG. This failure in
a simple situation is illustrated in Fig. 1(c). The system
is a rung-decoupled Heisenberg ladder—when starting the
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FIG. 1. (a) Interactions in the rung-decoupled Heisenberg lad-
der after mapping the lattice to a one-dimensional geometry by
using zigzag or snake path. Black (white) circles are sites in the
first (second) leg. Only circles connected by lines have interactions
between them. (b) Interactions in the rung-coupled Heisenberg lad-
der. (c) Failure of the one-site TDVP (TDVP1) and two-site TDVP
(TDVP2) for the imaginary time evolution of the rung-decoupled
Heisenberg ladder of leg length 100. GSE-TDVP1 is our method.
The zigzag path is used.

time evolution in a product state, both the one- and two-site
schemes fail to time evolve at all.

This example illustrates some of the significant projec-
tion errors that can arise in TDVP. In the one-site scheme,
TDVP evolution of a product state stays in a product state for
any Hamiltonian. In addition, after being mapped to a one-
dimensional geometry by using the zigzag (or snake) path,
there exist two subsets of sites that are disconnected by inter-
actions [Fig. 1(a)]. The two sites involved in the local update
at each bond (or each odd bond for the snake path) belong to
the two disconnected subsets, respectively, so two-site TDVP
fails to build up the intraleg entanglement unless the tangent
space of the MPS manifold already contains the necessary
degrees of freedom. When the initial state is a product state,
i.e., an MPS of bond dimension one, the limitations of the
tangent space are the most severe. In a more typical system,
e.g. with the rung coupling turned on, as shown in Fig. 1(b),
no disconnected subsets exist—although the two sites at even
bonds are not directly connected by nearest-neighbor interac-
tions, they are connected through a remote site. Therefore, in
such situations, the errors of two-site TDVP can be reduced
by using a smaller time step.

There have been some tricks to enlarge the bond dimen-
sion of the product state to be time evolved by the one-site
TDVP. The original MPS can be embedded in a MPS with
larger bond dimension by filling up zeros [22,23], but this
approach does not help to immediately reduce the projection
errors [17]. Another way is to use several DMRG sweeps
to introduce some noise which artificially increases the bond
dimension [24]. But our test shows that for two-dimensional
systems and long-range interactions, large errors emerge af-
ter a short time even though the bond dimension has been
enlarged substantially. Increasing the bond dimension to a
large value at the beginning and keeping it through the whole
time evolution is in fact very inefficient, since the bond
dimension needed for the initial time might otherwise be
much smaller than at later times. So it is suggested [24,25]
to first use two-site TDVP to increase the bond dimension
for the initial sweeps and then switch to the one-site TDVP.
However, in the example in Fig. 1(c), two-site TDVP also
fails.

In this paper, we provide an effective way to fix the pro-
jection errors in TDVP methods, which works for both the
extreme case above and other systems with long-range inter-
actions even if a large time step is used. We show how one
can expand the MPS manifold, thereby enlarging the tangent
space before a TDVP time step, to make it contain the true
direction of motion. This enlargement is based on a subspace
expansion [26,27] by global Krylov vectors. Unlike in the
exact diagonalization [28,29], in our algorithm the global
Krylov vectors serve as ancillary MPSs to enrich the basis
of the time-evolving MPS through the gauge degree of free-
dom, thus avoiding the problems of loss of orthogonality and
production of unnecessarily highly entangled states [24]. Our
method has a modest computational cost compared to that of
a TDVP time step. Also, it is easy to turn off the tangent space
enlargement in regimes where ordinary TDVP methods work
well.

II. ALGORITHMS

Normally, in working with MPSs, we always seek the
smallest MPS to represent a particular state. Here, we find
that it is very useful to temporarily create an inefficient MPS
representation of the current time-evolved state by expand-
ing the MPS to represent both the current state and a short
Krylov expansion of it. The Krylov expansion is generated
with a standard MPS algorithm [24,30] which is capable of
producing nonlocal entanglement. With the expanded mani-
fold coming from this inefficient representation, a subsequent
TDVP time step is accurate and reliable.

In this section, we first introduce the basis extension of an
MPS by another one and discuss the trick to exactly preserve
the information of the original time-evolved state. Then we
discuss several issues of generating the global Krylov vectors.
The algorithm is summarized in Sec. II C.

A. Basis extension

The MPS representation of a physical state is not unique.
We can utilize the gauge degrees of freedom to extend the
basis at each bond so as to get an MPS with enlarged bond
dimension without changing the physical state. Specifically,
this property is used in our method to yield an MPS with
its basis extended by other MPSs, which is reminiscent of
the multistate targeting [10,31] approach frequently used in
the early days of DMRG to deal with excited states simulta-
neously with the ground state. In the old DMRG language,
targeting more than one state (also called state averaging) is
like having a mixed state, and one averages density matrices
at each DMRG step. In the modern MPS language, the state
averaging is done by creating an extra index to label the states
involved. In the description of our algorithm, we incorporate
both formulations, which are equivalent.

Suppose we have an MPS of a state |ψ〉, and we wish to
extend the MPS bond basis of |ψ〉 by that of another state
|ψ̃〉. Suppose both states are in left-canonical form (Fig. 2),

|ψ〉 =
∑

s1···sN

As1
1 · · · AsN−1

N−1C
sN
N |s1 · · · sN 〉, (1)
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FIG. 2. Basis extension of |ψ〉 by |ψ̃〉. The diamond Ci(C̃i) is the
orthogonality center of |ψ〉(|ψ̃〉) at site i. The triangle pointing to
the right (left) is left (right) orthonormal. The red dashed rounded
rectangle means forming a direct sum of the tensors inside it. The
bolder bond has the larger bond dimension.

and similarly for |ψ̃〉. Here As1
1 is a 1 × m1 matrix and CsN

N is
a mN−1 × 1 matrix, where mi is the bond dimension between
site i and i + 1. First, we write the direct sum formally,[|ψ〉

|ψ̃〉
]

=
∑

s1···sN

A′s1
1 · · · A′sN−1

N−1C′sN
N |s1 · · · sN 〉

=
∑

s1···sN

[
As1

1 0
0 Ãs1

1

]
· · ·

[
AsN−1

N−1 0
0 ÃsN−1

N−1

][
CsN

N
C̃sN

N

]

× |s1 · · · sN 〉, (2)

where the second line defines the primed matrices in the first
line. Now A′s1

1 is 2 × (m1 + m̃1), and the product of matrices
gives a 2 × 1 coefficient matrix (for each set of s1 · · · sN ). The
extra two-dimensional index, attached to the first site, picks
either |ψ〉 or |ψ̃〉. We can now compress the expanded MPS
by doing SVD with truncation iteratively from the right end to
the left. At site i, we perform C′si

i = U ′
i S′

iB
′si
i . We continue at

the next site i − 1 with

C′
i−1 =

[
Ci−1

C̃i−1

]
=

[
Ai−1CiB

′†
i

Ãi−1C̃iB
′†
i

]
, (3)

where the local physical indices have been omitted. Note
that it is unnecessary to explicitly implement the form in
Eq. (2). Because of the block diagonal form of A′

i−1, it will be
more efficient to move the orthogonality center to site i − 1
separately for |ψ〉 and |ψ̃〉 as in Eq. (3) than simply doing
C′

i−1 = A′
i−1U

′
i S′

i . Eventually we will end up with
[|ψ〉
|ψ̃〉

]
=

∑
s1···sN

[
Cs1

1
C̃s1

1

]
B′s2

2 · · · B′sN
N |s1 · · · sN 〉. (4)

Note that this common representation for both states can be
used to sum them, with arbitrary coefficients, a|ψ〉 + b|ψ̃〉,
by performing the same operation on Cs1

1 and C̃s1
1 . (One would

then want to reorthogonalize from left to right, if one were
only interested in the sum.) In our case, we want only |ψ〉,
so we simply throw out C̃s1

1 , which gives us a right-canonical
MPS of |ψ〉 with its bond basis extended by |ψ̃〉 and its
orthogonality center C1 not full column rank.

However, the algorithm in this form has a drawback—it
is not convenient to treat |ψ̃〉 less accurately than |ψ〉 or, in
particular, to retain |ψ〉 exactly. To solve this problem, at each
site i, instead of simply SVDing and truncating C′

i , we select
the most important basis from |ψ̃〉 and orthogonalize them
against the existing basis of |ψ〉 before combining them.

In the following, we explain the reformed algorithm in
more generic settings, with more than just two states—
suppose we have k MPSs now and want to use the latter k − 1
MPSs, |ψ̃l〉, to extend the basis of the first one, |ψ〉. The extra
time complexity to deal with k MPSs will be larger by O(k).
At site i (suppressing the index i below), we first SVD the
site tensor of |ψ〉 without truncation, i.e., C = USB, and form
the null-space projection operator P = 1 − B†B. We sum the
reduced density matrices of the other k − 1 MPSs,

ρ̃ =
k−1∑
l=1

ρ̃l , (5)

where ρ̃l = C̃†
l C̃l . If P �= 0, we then project ρ̃ by P:

ρ̄ ≡ Pρ̃P. (6)

Diagonalizing and truncating, ρ̄ = B̄†S̄2B̄. (This is equivalent
to projecting each C̃l by P and SVDing the direct sum of
them.) The rows of B̄ are orthogonal to those of B, i.e.,
B̄B† = 0, so we can enlarge the row space of B by the direct
sum

B′ =
[

B
B̄

]
, (7)

forming the new right-orthonormal MPS tensor at site i in
Eq. (4).

B. Krylov subspace

What states do we use to enlarge the basis for |ψ〉? It is
natural to consider the time evolution which TDVP is imple-
menting. Consider the wave function evolved for a short time:

|ψ (t +�t )〉=exp (−iĤ�t )|ψ (t )〉 ≈
k−1∑
l=0

(−i�t )l

l!
Ĥ l |ψ (t )〉,

(8)

where t + �t can be either imaginary or real. A problem with
utilizing Eq. (8) directly for the time evolution is that the
expression converges slowly in k. Instead, we use only a few
of the terms appearing in Eq. (8) to extend the basis set of
|ψ (t )〉 before time evolution by a following TDVP sweep.
Specifically, in the algorithm presented here we consider an
MPS extended to represent the Krylov subspace of order k,

Kk (Ĥ, |ψ〉) = span{|ψ〉, Ĥ |ψ〉 . . . , Ĥk−1|ψ〉}, (9)

where the order k of the Krylov subspace is quite small.
There are three technical issues which need further elabo-

ration. First, since the norm of Ĥ l |ψ (t )〉 grows exponentially
with l , for numerical stability, we either normalize each MPS
separately or, motivated by the first-order expansion of the
time evolution operator, replace them by

(1 − iτ Ĥ )|ψ (t )〉, . . . , (1 − iτ Ĥ )k−1|ψ (t )〉, (10)
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where τ is a small parameter to be tuned to make sure the
norm of (1 − iτ Ĥ )l |ψ (t )〉 do not blow up. For imaginary time
evolution, we can choose iτ to be λ−1, where λ is approxi-
mately the highest energy of the excited states. For real-time
evolution, the choice of τ does not matter as much and we can
simply set τ = �t . Note the states in Eq. (10) still span the
Krylov subspace.

The second issue is, how do we apply Ĥ efficiently? When
the bond dimension of the MPO of Ĥ is small, we can use
the density matrix approach [30] (which is exact); otherwise
we can use the variational approach [24]. The complexity
of applying Ĥ at each site is comparable to one Lanczos
iteration used to integrate the local effective equations at a site
in TDVP. Usually, the number of iterations needed at a site in
TDVP is much larger than k, so the time cost of the application
of Ĥ is subleading.

The third issue is, how do we control the bond dimension
of Ĥ l |ψ (t )〉, which grows fast with increasing l? Fortunately,
we have found that for a reasonable choice of time step size,
k = 3 can already provide good accuracy. Furthermore, we
do not need as high an accuracy in Ĥ l |ψ (t )〉 as compared to
|ψ (t )〉 itself. Therefore, we utilize a considerable truncation
cutoff εK in applying Ĥ l .

There are a few other places in our algorithm where trunca-
tion is necessary. When diagonalizing the projected mixing of
reduced density matrices in Eq. (6), we use a truncation cutoff
εM . This truncation controls the number of states added into
|ψ (t )〉. We also define a truncation cutoff ε which is applied
during the TDVP time step. This cutoff is only used when we
do not require the time evolution to be exactly unitary, such as
in imaginary time evolution.

C. Subspace expansion

We now describe our global subspace expansion (GSE)
TDVP algorithm. Because of the Krylov subspace expansion,
we do not need to use a two-site method. Combined with the
one-site TDVP, one time step of our algorithm (GSE-TDVP1)
consists of

(1) Construct the MPO for 1 − iτ Ĥ , and apply it k − 1
times to |ψ (t )〉 and get the set of MPS’s in Eq. (10). (Con-
trolled by εK .)

(2) Do basis extension for |ψ (t )〉 as described in Sec. II A,
ending with the orthogonality center at the first site. (Con-
trolled by εM .)

(3) From left to right, do a conventional one-site TDVP
sweep, and then sweep from right to left. (Controlled by ε.)

Let the bond dimension of |ψ (t )〉 before step 1 be m and
the bond dimension of the MPO for 1 − iτ Ĥ be w. Usually,
we choose εK to make the bond dimension of each of the
Krylov vectors in Eq. (10) no bigger than m. Then, if we
apply the MPO variationally [24], the complexity of step 1
is O(km3wd ). Let the bond dimension of |ψ (t )〉 after step 2
be m′. Then the complexity of step 2 is O(km′3d2 + m′3d3).
The one-site TDVP has a complexity O(lm′3wd ), where l is
the number of Lanczos steps used at each local update. As
described in the last section, usually l � k, so the cost of
steps 1 and 2 will be comparable to or less than step 3. In
our benchmarks for real-time evolution, we find that if we use
k = 5 and get m′ ≈ 3m, the time taken for steps 1 and 2 is

FIG. 3. Benchmark results of the imaginary time evolution for
the rung-decoupled Heisenberg ladder. In all methods, ε = 10−10.
For MPO W I , ε is the truncation error in applying the MPO. For
GSE-TDVP1, we use the optimal settings iτ = 1/40, k = 3, εM =
10−8, and ε is the truncation error in the follow-up TDVP1 sweep.
(a) Absolute energy error �E = E − Eexact scaled by the ground-
state energy E0, where the reference energy Eexact is obtained by
doubling the energy of a single chain from TDVP2 with �t = 0.01.
(b) Bond dimension growth versus time. All methods except TDVP2
(which stays in a product state) show similar bond dimension growth.

about 1/3 of that for step 3; given the same bond dimension
m′, the time taken for one GSE-TDVP1 time step is about 36%
of that for a conventional two-site TDVP step.

III. BENCHMARKS

A. Imaginary time evolution

We first consider imaginary time evolution of the rung-
decoupled spin-1/2 Heisenberg ladder of Fig. 1, with
Hamiltonian

Ĥ =
∑
r,〈i, j〉

Ŝr,i · Ŝr, j, (11)

where r ∈ {1, 2} denotes which leg it is and 〈i, j〉 denotes the
nearest-neighbor sites along each leg.

We evolve in imaginary time starting from a Neel (product)
state |ψ (0)〉. Measuring the energy versus time provides a
reasonable test of the evolution. In Fig. 3, we show a com-
parison of our method with two other methods. The first one
is an MPO method of Ref. [12], specifically, the W I method,
where complex time steps have been used to make the error
second order. The second is the conventional TDVP2. In our
method, we use εK = 10−12 when applying 1 − iτ Ĥ with the
density matrix approach [32]. We show results for iτ = 1/40,
k = 3, and εM = 10−8, which turn out to be near-optimal
parameter settings in this case. We found that higher order
k or smaller truncation εM in the subspace expansion do not
improve the accuracy (not shown). While TDVP2 fails as
expected, GSE-TDVP1 (with ε = 10−10) has an accuracy ten
times better than the MPO W I method with a comparable
bond dimension growth. We also show GSE results with a
larger time step �t = 0.4, which exhibit a still reasonable
error of 10−3. Not shown are results for ε = 10−12, which are
slightly more accurate than ε = 10−10, but which also exhibit
faster bond dimension growth.
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FIG. 4. Benchmark results of the real-time evolution for the OAT
model for a variety of methods, versus exact results (solid grey lines).
(a) shows 〈Ŝx (t )〉. GSE-TDVP1 is the most accurate method. The
apparent accuracy of one of the MPO W II calculations appears to
be accidental. TDVP2 becomes more accurate with a smaller time
step. (b) shows the spin squeezing parameter. Again, GSE-TDVP1
is the most accurate. (c) shows relative errors in the energy. Curves
for GSE-TDVP1 and for TDVP2 with ε = 10−15 are all below 10−10

and are not shown. Errors for the MPO W II are particularly large.
(d) shows the bond dimension growth. The smallest bond dimensions
come from the MPO W II methods but this is due to their large errors.
TDVP2 with smaller time step has particularly large bond dimension
growth. Note that in both (a) and (b) the TDVP2 data points for ε =
10−15 (not shown) and ε = 10−7 coincide.

B. Real-time evolution

The one-axis twisting (OAT) model [33] has been widely
studied for the use of quantum metrology [34]. This model
has infinite-range interactions, making it a challenge for MPS
methods, but it also has an exact solution. We study the real-
time evolution of N = 100 spin-1/2’s with the Hamiltonian

Ĥ = χ (Ŝz )2, (12)

where Ŝz = ∑N
i=1 Ŝz

i and we set the energy scale χ = 1. The
MPO representation of the Hamiltonian is rather simple, with
a bond dimension w = 3. We take as an initial state all spins
polarized in the +x direction. During the time evolution, the
spin is squeezed [35]. The exact solution for the x moment is

〈Ŝx(t )〉 = N

2
cosN−1(t ), (13)

with 〈Ŝy〉 = 〈Ŝz〉 = 0.

An important property is the spin-squeezing parameter,
defined [36] as

ξ 2 = N min
n⊥

〈(Ŝ · n⊥)2〉 − 〈Ŝ · n⊥〉2

〈Ŝ〉2
, (14)

where Ŝμ = ∑
i Ŝμ

i and n⊥ is a unit vector perpendicular to
〈Ŝ〉 = 〈Ŝx〉nx. Minimizing over n⊥, ξ 2 can be expressed in
terms of correlation functions,

ξ 2

N
=

σ 2
yy + σ 2

zz −
√(

σ 2
yy − σ 2

zz

)2 + (
σ 2

yz + σ 2
zy

)2

2〈Ŝx〉2
, (15)

where σ 2
xy ≡ 〈Ŝx(t )Ŝy(t )〉, etc. The optimal spin squeezing

ξ 2
opt is expected to appear at topt = 12

1
6 (N/2)−

2
3 /2 ≈ 0.05. We

continue the time evolution to t = 0.25, or about 5topt.
In Fig. 4, we compare our method with TDVP2 and MPO

W II (which is expected to work better than W I here). To
preserve exact unitarity, for GSE-TDVP1 we set ε = 0, which
turns out to have a minimal extra cost in bond dimension, with
the bond dimension already controlled by εK and εM . Since
w is small, we use the density matrix approach to apply the
MPO. For time step �t = 0.025, we find optimal parameters
τ = �t , k = 3, εK = 10−4, and εM = 10−4, which balance
cost and accuracy. For time step �t = 0.05, we use τ = �t ,
k = 5, εK = 10−4, and εM = 10−8. Our method is the most
accurate and preserves unitarity exactly, while also having
slower bond dimension growth than TDVP2. For MPO W II,
the conservation of energy is very poor and the overall shape
of ξ 2 is wrong. Reducing the time step size to �t = 0.0005
(yellow curves in Fig. 4) helps initially, but the evolution soon
becomes unstable after topt ≈ 0.05.

IV CONCLUSIONS

In this paper, we discussed how TDVP can fail in sim-
ple situations, and present an algorithm, a modification of
TDVP, which appears to work in all situations, including
long-range interactions. The key modification is the enlarge-
ment of the tangent space before each time step using global
Krylov vectors. The enlarged space introduces the degrees
of freedom for the correct time evolution, allowing us to
combine it with the single-site TDVP method. For real-
time evolution, we can maintain exact unitarity, even as the
bond dimension is allowed to grow. (The two-site TDVP
method can be viewed as a simpler attempt to enlarge the
tangent space, which may not work well with non-nearest-
neighbor interactions.) The method does not require the
time step to be made particularly small, and works cor-
rectly for evolutions starting with a product state. Finally,
our method has excellent efficiency, with a calculation-
time cost between that of one- and two-site conventional
TDVP. We expect it to be a valuable tool for out-of-
equilibrium dynamics and finite-temperature simulations in
systems with long-range interactions and in two-dimensional
systems.
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The algorithms are implemented using the ITensor [37] library and the codes are available under the ITensor/TDVP
repository.
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