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Abstract—This paper aims to mitigate straggler effects in
synchronous distributed learning for multi-agent reinforcement
learning (MARL) problems. Stragglers arise frequently in a
distributed learning system, due to the existence of various
system disturbances such as slow-downs or failures of compute
nodes and communication bottlenecks. To resolve this issue,
we propose a coded distributed learning framework, which
speeds up the training of MARL algorithms in the presence
of stragglers, while maintaining the same accuracy as the
centralized approach. As an illustration, a coded distributed
version of the multi-agent deep deterministic policy gradient
(MADDPG) algorithm is developed and evaluated. Different
coding schemes, including maximum distance separable (MDS)
code, random sparse code, replication-based code, and regular
low density parity check (LDPC) code are also investigated.
Simulations in several multi-robot problems demonstrate the
promising performance of the proposed framework.

I. INTRODUCTION

Many real-life applications involve interaction among mul-
tiple intelligent systems, such as collaborative robot teams
[1], internet-of-things devices [2], agents in cooperative or
competitive games [3], and traffic management devices [4].
Reinforcement learning (RL) [5] is an effective tool to opti-
mize the behavior of intelligent agents in such applications
based on reward signals from interaction with the environ-
ment. Traditional RL algorithms, such as Q-Learning [6]
and policy gradient [3], can be scaled to multiple agents by
simultaneous application to each individual agent. However,
learning independently for each agent performs poorly as
the environment is non-stationary from the perspective of a
single agent due to the actions of the other agents [3], [7].
Multi-agent reinforcement learning (MARL) [6] focuses on
mitigating these challenges by adding other agents’ policy
parameters to the Q function [8] or relying on importance
sampling [9]. Yang et al. [10] propose a mean-field Q
learning algorithm, which uses Q functions defined only
with respect to an agent’s own action and those of its
neighbors instead of all agent actions. The multi-agent deep
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deterministic policy gradient (MADDPG) [3] is an extension
of the deep deterministic policy gradient (DDPG) algorithm
[11] to a multi-agent setting. MADDPG uses a Q function
that depends on all agent observations and actions but local
control policies, defined over the observation and action of
an individual agent. One key challenge faced by MARL
approaches is that the training computational complexity
scales with the number of agents in the environment. For
large-scale MARL applications, the traditional centralized
training mechanism that runs in a single compute node could
thus be cost-prohibitive.

Distributing the training workload to multiple compute
nodes is a promising solution for accelerating RL and MARL
training, which has attracted a lot of attention recently.
The first massively distributed architecture for deep RL is
presented in [12]. It relies on an off-policy deep Q network
algorithm that uses multiple actors and learners running
in parallel. The asynchronous advantage actor-critic (A3C)
algorithm [13] allows decorrelating the training data from
multiple environments executed asynchronously and thus can
be used for either on-policy or off-policy learning. Multiple
variants of A3C have been developed, including GPU A3C
(GA3C) [14], that allows A3C to be trained on a hybrid
CPU-GPU architecture, and advantage actor-critic (A2C)
[15], which achieves decorrelation with synchronous training.
Distributed learning has received much less attention in the
MARL setting. Simões et al. [16] extend the A3C framework
to multi-agent systems by running multiple compute nodes
in parallel to update the parameters asynchronously, with
each node simulating multiple agents interacting with the
environment. In [4], a multi-agent version of A2C with
synchronous learning is investigated to address a traffic signal
control problem.

In the aforementioned distributed MARL algorithms,
learning is performed either synchronously or asyn-
chronously, with a central controller distributing tasks and
collecting the results. A major challenge for synchronous
learning is its vulnerability to system disturbances, such
as slow-downs or failures of individual learner nodes and
communication bottlenecks in the network traffic, which are
prevalent in mobile cloud computing and mobile fog/edge
computing systems [17]. Learners that suffer from such issues
become stragglers that can significantly delay the learning
process. Asynchronous learning [18], [19] can help mitigate
the impact of stragglers but suffers from other limitations,
including slower convergence rate, lower accuracy, and more
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challenging analysis and debugging [6], [15].
We propose coding theory strategies [20], [21] to miti-

gate straggler effects in synchronous distributed learning for
MARL problems. Coding techniques have been successful
in improving the resilience of communication, storage, and
cache systems to uncertain system disturbances [22]–[24].
Such techniques have recently been applied to speed up
distributed computation tasks in the presence of stragglers,
including matrix-vector [20], [25] and matrix-matrix [21]
multiplication, linear inverse problems [26], multivariate
polynomials [27], [28], convolution [29], and gradient de-
scent [30]–[32]. Nevertheless, the merits of coding techniques
remain to be explored in the RL and MARL settings.

The main contribution of this work is a coded distributed
learning framework that can be applied with any policy
gradient method to solve MARL problems efficiently despite
possible straggler effects. As an illustration, we apply the
proposed framework to create a coded distributed version
of MADDPG [3], a state-of-the-art MARL algorithm. Fur-
thermore, to gain a comprehensive understanding of the
benefits of coding in distributed MARL, we investigate
various codes, including the maximum distance separable
(MDS) code, random sparse code, replication-based code,
and regular low density parity check (LDPC) code. Simula-
tions in several multi-robot problems, including cooperative
navigation, predator-prey, physical deception and keep away
tasks [3], indicate that the proposed framework speeds up
the training of policy gradient algorithms in the presence
of stragglers, while maintaining the same accuracy as a
centralized approach.

II. MULTI-AGENT REINFORCEMENT LEARNING

This section introduces the MARL problem and reviews
the class of policy gradient algorithms for MARL problems.

A. Problem Formulation

In MARL, multiple agents learn to achieve specific goals
by interacting with the environment. Let M be the number
of agents. Denote the state and action of agent i ∈ [M ] :=
{1, . . . ,M} at time t by si,t ∈ Si and ai,t ∈ Ai, respectively,
where Si and Ai are the corresponding state and action
spaces. Let st := (s1,t, . . . , sM,t) ∈ S :=

∏
i∈[M ] Si and

at := (a1,t, . . . , aM,t) ∈ A :=
∏
i∈[M ]Ai denote the joint

state and action of all agents. At any time t, a joint action
at applied at state st triggers a transition to a new state
st+1 ∈ S according to an (unknown) conditional probability
density function (pdf) p(st+1|st,at). After each transition,
each agent i receives a reward ri(st,at) ∈ R, where the
reward functions ri may be different for different agents.

Given a joint state s, the objective of each agent i is to
choose a stochastic policy, specified by a pdf πi(ai|s) over
the agent’s action spaceAi, such that the expected cumulative
discounted reward:

V π
i (s) := E st∼p

at∼π

[ ∞∑
t=0

γtri(st,at)|s0 = s

]
(1)

is maximized. In (1), γ ∈ (0, 1] is a discount factor,
π := (π1, . . . , πM ) denotes the joint policy of all agents.
The function V π

i (s) is known as the value function of agent
i associated with joint policy π. Alternatively, an optimal
policy π∗i for agent i can be obtained by maximizing the
action-value function:

Qπ
i (s, a) := E st∼p

at∼π

[ ∞∑
t=0

γtri(st,at)|s0 = s, a0 = a

]
and setting π∗i (ai|s) ∈ argmaxai maxa−i Q

∗
i (s, a), where

Q∗i (s, a) := maxπ Q
π
i (s, a) and a−i denotes the actions of

all agents except i.

B. Policy Gradient Methods

There are two major classes of MARL algorithms: value-
based and policy-based. Value-based algorithms aim to ap-
proximate the optimal action-value function Q∗i (s, a). Ex-
amples include extensions of Q-learning [33], DQN [34],
and SARSA [5] to multi-agent settings, such as Independent
Q-learning [6], Inter-Agent Learning [35], and multi-agent
SARSA [36]. Policy-based algorithms directly optimize over
the space of policy functions. A general approach, known as
policy gradient [5], is to define parametric policy functions
πi(ai|s; θi), using linear feature or neural network parameter-
ization, and update the parameters along the gradient of the
value function: θi ← θi + α∇θiV π

i (s). The value function
gradient is obtained via the policy gradient theorem [5]:

∇θiV π
i (s) = E st∼p

at∼π

[
∇θi log πi(ai,t|st; θi)Qπ

i (st,at)
]
.

Different approaches exist for estimating Qπ
i (st,at) in the

above equation, such as the REINFORCE algorithm [37],
which uses sample returns

∑T
t=0 γ

tri(st,at) from several
episodes of length T , critic methods [38] that parameter-
ize and approximate Qπ

i (s, a) in addition to the policy,
or the trust region policy optimization (TRPO) algorithm
[39], which ensures that a policy improvement condition is
satisfied.

III. CODED DISTRIBUTED LEARNING FOR MARL

In this section, we introduce a coded distributed learning
framework that can be incorporated with any general policy
gradient method to solve the aforementioned MARL problem
efficiently in the presence of stragglers. Before we describe
this framework, we first overview a distributed learning
framework for MARL without coding.

A. Uncoded Distributed Learning for MARL

A distributed learning system (see Fig. 1 for an illustration)
for RL/MARL consists of a central controller and multiple
learners. The central controller is a server that maintains all
agent parameters, and uses them to construct policies for
the agents. In each training iteration, it executes multiple
episodes and sends both the collected environment data and
the parameters of all agents to the learners. Once a learner
receives these data, it updates the agent parameters and then
sends the result back to the central controller.
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Fig. 1: Illustration of uncoded distributed learning for MARL.

Suppose there are N learners in the system, where N ≥M
and M is the number of agents. We use a matrix C ∈ RN×M
to describe the agent-to-learner assignment. In particular,
learner j will update the parameters for agent i if the (j, i)-th
entry of the assignment matrix C, denoted as cj,i, satisfies
cj,i 6= 0. Let θ′i be the parameters for agent i after the update
with gradient ascent along ∇θiV π

i (s). Each learner will send
y′j =

∑M
i=1 cj,iθ

′
i back to the central controller.

In an uncoded distributed learning system, each learner
updates the parameters for a single agent. In other words,
different learners are responsible for different agents and only
M out of the N learners are used. The assignment matrix
CUncoded ∈ RN×M has entries:

cj,i =

{
1, if i = j,

0, else.

In this paper, we focus on synchronous learning systems.
Therefore, the central controller does not update the agent
policies until all updated parameters have been received. The
learning efficiency is thus bounded by the slowest learner at
each training iteration. Any node or link failure may affect
the whole task. In the following subsection, we introduce a
coded distributed learning framework to address this problem.

B. Coded Distributed Learning for MARL
To enhance the resilience of a distributed learning system

to uncertain stragglers, our idea is to introduce redundancies
into the computation by assigning one or more agents to
each learner. This is achieved by applying coding schemes
to construct an assignment matrix C that satisfies rank(C) =
M and has one or more non-zero entries in each row.

In this coded learning framework, the central controller
will be able to recover all updated parameters, denoted as
θ′ = [θ′T1 , . . . , θ

′T
M ]T with results received from only a subset

of the learners. Particularly, let I = {j | y′j is received}
represent the set of learners whose results are received by the
central controller by a certain time. Also let CI ∈ R|I|×M
be a submatrix of C formed by the j-th rows of C, ∀j ∈ I.
Then θ′ can be recovered when rank(CI) =M via:

θ′ = (CT
ICI)

−1CT
Iy
′
I , (2)

where y′I is the aggregate result derived by concatenating
y′j , ∀j ∈ I. In the following subsection, we introduce four
different coding schemes and explain how they can be used
to construct a coded assignment matrix C.

C. Coding Schemes

1) Replication-based Code: Using a replication-based
coding scheme [40], agents are assigned to the learners in
a round-robin fashion and each agent is assigned to at least
bNM c learners. The (j, i)-th entry of its assignment matrix
CReplication is then given by

cj,i =

{
1, if i = (j mod M) +M1(j mod M)=0

0, else

where (j mod M) finds the remainder when j is divided by
M , and 1 is the indicator function.

2) MDS Code: An MDS code [41] specifies the assign-
ment matrix such that any M rows have full rank, by using,
e.g., a Vandermonde matrix [42] as follows

CMDS =


1 1 · · · 1
α1 α2 · · · αM
α2
1 α2

2 · · · α2
M

...
...

...
...

αN−11 αN−12 · · · αN−1M


where αi, i ∈ [M ], can be any non-zero real number. Note
that all entries of CMDS are non-zero, meaning that each
learner needs to compute parameters for all the agents.

3) Random Sparse Code: A random sparse code [40]
enables a sparser assignment matrix CRandom with (j, i)-
th entry randomly generated from a Gaussian distribution
N (0, 1) with probability pm, i.e., P(cj,i = ε) = pm, where
ε ∼ N (0, 1). Otherwise, cj,i = 0 with P(cj,i = 0) = 1−pm.
Note that, by choosing an appropriate pm, we can control the
sparsity of the assignment matrix CRandom.

4) Regular LDPC Code: The regular LDPC based coding
scheme [43] constructs an assignment matrix CLDPC in
three steps. The first step constructs a permutation matrix:

A =


0 1 0 · · · 0
0 0 1 · · · 0

· · · · · · · · ·
. . . · · ·

0 0 0 · · · 1
1 0 0 · · · 0

 ∈ Fw×w2 ,

where F2 represents the binary field and w is a prime number
that satisfies N

w ∈ Z+, where Z+ represents positive integers.
The second step constructs a parity check matrix:

H=


Iw Iw Iw · · · Iw
Iw A Aw · · · Aw−1

· · · · · · · · · · · · · · ·
Iw Aw−2 A2(w−2) · · · A(w−2)(w−1)

Iw Aw−1 A2(w−1) · · · A(w−1)(w−1)

∈FY×N2

where Y satisfies Y
w ∈ Z+ and Y ≤ N and Iw ∈ Rw×w is an

identity matrix. Finally, the assignment matrix is constructed
by CLDPC = [IM ,P]

T ∈ FM×N2 , where P is extracted
from the parity check matrix with H =

[
−P>, IN−M

]
. A

positive feature of this coding scheme is that it can be quickly
decoded by an iterative algorithm introduced in [44]. The
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complexity of this algorithm is O (M), while the decoding
complexity of other schemes is O

(
M3
)
.

IV. CODED DISTRIBUTED MADDPG
In this section, we apply the coded distributed learning

framework to enhance the training efficiency of MADDPG
[3] and its resilience to stragglers. Unlike the general for-
mulation of MARL described in Sec. II, MADDPG adopts a
deterministic policy πi(si) for each agent i ∈ [M ], which
only depends on the local state si. The value function
Qπ
i (s, a) of agent i still depends on the joint state s and joint

action a. Moreover, for each agent i, four neural networks
are used to approximate its policy πi(si; θp,i), value function
Qπ
i (s, a; θq,i), target policy π̂i(si; θ̂p,i), and target value

function Qπ̂
i (s, a; θ̂q,i), respectively. π̂ = (π̂1, π̂2, ..., π̂M )

denotes the concatenated target policy. Therefore, θi =
[θp,i, θq,i, θ̂p,i, θ̂q,i]. To optimize these parameters using the
coded distributed learning framework, a central controller and
multiple learners need to be implemented, whose interactions
are described in detail as follows.

A. Central Controller

In each training iteration, the central controller generates
policies for the agents based on the current parameters θ.
The agents then execute these policies for several episodes
and store the transitions {(s, a, r, s′)} into a replay buffer D,
where r = [r1, r2, . . . , rM ]. The central controller samples a
random mini-batch B from the replay buffer D and broadcasts
the mini-batch B and current parameters θ to the learners.
After that, it waits for the learners to update the parameters
and return back the results. As soon as the central controller
receives sufficient results, it recovers the updated parameters
θ′, sends acknowledgements to the learners and then pro-
ceeds to the next iteration. This procedure is summarized in
Algorithm 1 (Line 1-15).

B. Learners

When each learner j receives parameters θ and mini-batch
B from the central controller, it updates the parameters θi
for each agent i assigned to it, where i ∈ [M ], cj,i 6= 0.
Specifically, the value function parameters θq,i are updated
by minimizing the temporal-difference error:

J(θq,i) =
1

|B|
∑

(s,a,s′,r)∈B

(
Lπ̂
i (s
′, ri)−Qπ

i (s, a; θq,i)
)2

(3)

where Lπ̂
i (s
′, ri) = ri+ γQ

π̂
i (s
′, π̂(s′)). The policy parame-

ters θp,i are updated using gradient ascent, according to the
policy gradient theorem [5]:

∇θp,iJ(θp,i) ≈
1

|B|
∑

(s,a,s′,r)∈B

∇θp,iπi(si; θp,i)∇aiQπ
i (s, a) .

(4)

The target policy and value function parameters are updated
via Polyak averaging:

θ̂p,i ← τ θ̂p,i + (1− τ)θp,i
θ̂q,i ← τ θ̂q,i + (1− τ)θq,i,

(5)

Algorithm 1: Coded Distributed MADDPG

// Central controller:
1 Initialize θ for all agents
2 for k = 1 : max iteration do
3 for ` = 1 : max episode number do
4 for t = 1 : max episode length do
5 For each agent i, select a`i,t=πi(s

`
i,t; θp,i).

6 Execute joint action a`t and receive new
state s′`t+1 and reward r`t+1.

7 Store (s`t,a
`
t, r

`
t+1, s

′`
t+1) in replay bufferD.

8 Sample a random minibatch B from D.
9 Broadcast B and θ to the learners.

10 y′ ← [ ]
11 do
12 Listen to the channel and collect results y′j

from the learners: y′ ← [y′; y′j ], j ∈ [N ]
13 while θ′ is not recoverable
14 Send acknowledgements to learners.
15 Recover θ′ using (2) and let θ ← θ′

// Learner j:
16 for k = 1 : max iteration do
17 Listen to the channel.
18 if receiving B and θ from central controller then
19 yj ← 0; i← 1
20 while i ≤M and no acknowledgement

received do
21 if cj,i 6= 0 then
22 Update θp,i using gradient ascent with

gradient computed using (4).
23 Update θq,i by minimizing the loss in

(3) with gradient descent.
24 Update θ̂p,i and θ̂q,i using (5).

y′j ← y′j + cj,iθi

25 i← i+ 1

26 Send y′j to the central controller.

where τ ∈(0, 1) is a hyperparameter. Note that learner j does
not update the parameters of the agents not assigned to it. In
contrast, in the original MADDPG algorithm, each learner
updates all agents’ parameters at each training iteration.
The procedure followed by the learners is summarized in
Algorithm 1 (Line 16-26).

V. EXPERIMENTS

We conduct a variety of experiments in the robotics
environments proposed in [3] to evaluate the performance of
our coded distributed MADDPG algorithm. We first describe
the environments and then present the results.

A. Environments

The following four environments are considered. The agent
interactions are either cooperative, competitive or mixed.
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• Cooperative navigation: In this environment, M agents
aim to cooperatively reach M landmarks, while avoid-
ing collisions with each other. The landmarks are not
assigned to the agents explicitly. Therefore, the agents
must learn to reach all landmarks by themselves (see
Fig. 2(a)).

• Predator-prey: In this environment, M−K good agents
with restricted speed of motion aim to cooperatively
chase K faster adversary agents while avoiding static
obstacles (see Fig. 2(b)).

• Physical deception: In this environment, any of M − 1
good agents needs to reach a single known target among
L landmarks. One adversary agent also desires to reach
the target landmark but does not know which one is the
target and must infer it from the movements of the good
agents. Therefore, good agents must learn to spread out
to cover all landmarks so as to confuse the adversary
(see Fig. 2(c)).

• Keep away: This environment is similar to the physical
deception, but with M−K good agents and K adversary
agents. Additionally, the adversaries can get in the way
to prevent the good agents from reaching the target (see
Fig. 2(d)).

B. Training Reward Comparison

To demonstrate the effectiveness of the proposed coded
distributed learning framework, we compare the coded dis-
tributed MADDPG with the original centralized MADDPG.
The total number of agents is set to M = 8. In the
competitive environments, the number of adversary agents is
set to K = 4. The cumulative rewards of all agents averaged
over 250 training iterations for each environment is shown in
Fig. 3(a)-3(d). As we can see, in all environments, the coded
distributed MADDPG is able to generate the same quality of
policies as the original MADDPG and converges within the
same number of iterations.

C. Training Time Comparison

To evaluate the efficiency of the proposed coded dis-
tributed learning framework, we compare the training time
of the coded distributed MADDPG with the uncoded dis-
tributed MADDPG. Different coding schemes, including the
replication-based code, MDS code, random sparse code and
regular LDPC are evaluated.

To implement the distributed learning systems, we used
Amazon EC2 and chose m5n.large [45] instances to imple-
ment the central controller and learners. To simulate uncertain
stragglers, we randomly pick k learners at each training
iteration as stragglers, which delay returning the results for ts
seconds. The specific experimental settings adopted for each
environment are summarized as follows:
• Cooperative navigation: k ∈ {0, 1, 2}, ts = 0.25s.
• Predator prey: k ∈ {0, 2, 4}, ts = 1s.
• Physical deception: k ∈ {0, 5, 8}, ts = 1s.
• Keep away: k ∈ {0, 5, 8}, ts = 1.5s.

Besides varying the value of k in each environment, we also
vary the total number of agents M . Results obtained when
M = 8 and M = 10 are shown in Fig. 4 and Fig. 5,
respectively. Each value represents the training time of an
algorithm averaged over 5 iterations, with the total number
of iterations set to 50. In all experiments, the total number
of learners is set to N = 15, and the parameter pm in the
random sparse code is set to 0.8.

Analyzing the two figures, we can make the following ob-
servations. First, when there are no stragglers or the straggler
effect, indicated by the amount of delay ts introduced by
the stragglers, is small (e.g., in the cooperative navigation
scenario), the uncoded distributed MADDPG achieves the
best performance in all experiments. This demonstrates the
good performance of the traditional uncoded distributed
learning framework when the influence of stragglers is small.

When the straggler effect is relatively large, we can ob-
serve that the performance of the uncoded scheme degrades
significantly and achieves worse performance than most
coding schemes. Furthermore, its performance remains stable
as the number of stragglers increases. This is because each
straggler is delayed by the same amount of time, ts, such that
each iteration is always delayed by ts no matter how many
stragglers are present. In contrast, the coding schemes are
generally more robust to stragglers, except when the number
of stragglers exceeds the limit that the coding schemes can
tolerate.

Next, we analyze the performance of different coding
schemes. We can observe that the MDS code (orange bars)
is very robust to stragglers when the number of stragglers
k does not exceed the maximum tolerable number N −M .
However, when k > N−M , the MDS performance degrades
significantly, as shown in Fig. 4(c)-4(d) and Fig. 5(c)-5(d).
Furthermore, we can observe that when k < N−M and when
the straggler effect is relatively large, MDS outperforms the
uncoded scheme, as well as the replication-based and regular
LDPC codes, as shown in Fig. 4(b)-4(d) and Fig. 5(b)-5(d).
However, when the straggler effect is relatively small, the
MDS code has the worst performance, as shown in Fig.
4(a) and 5(a), due to the high computational redundancies
it introduces through the dense assignment matrix.

The random sparse code (green bars) shows a similar
performance to the MDS code. This is because when its
parameter pm takes a large value (pm = 0.8 in our experi-
ments), the assignment matrix generated by this type of code
has a similar density as the one generated by the MDS code.

Finally, both the replication-based code (red bars) and
regular LDPC code (purple bars) are more affected by an
increase in the stragglers, as their assignment matrices are
sparser. However, they achieve better performance than MDS
and random sparse codes when the straggler effect is small,
as shown in Fig. 4(a) and 5(a), and when there are many
stragglers, as shown in Fig. 4(c)-4(d) and Fig. 5(c)-5(d).

The above studies suggest guidelines for selecting an
appropriate coding scheme in different scenarios. If the strag-
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(a) (b) (c) (d)

Fig. 2: Illustration of the experimental environment for (a) cooperative navigation, (b) predator-prey, (c) physical deception,
and (d) keep away.

(a) (b) (c) (d)
Fig. 3: Average cumulative training reward on (a) cooperative navigation, (b) predator-prey, (c) physical deception, and (d)
keep away.

(a) (b) (c) (d)
Fig. 4: Average training time on (a) cooperative navigation, (b) predator prey, (c) physical deception, and (d) keep away,
when M = 8, N = 15.

(a) (b) (c) (d)
Fig. 5: Average training time on (a) cooperative navigation, (b) predator prey, (c) physical deception, and (d) keep away,
when M = 10, N = 15.

gler effect is small, uncoded, replication-based or a regular
LDPC scheme should be preferred. If the straggler effect is
relatively large but the number of stragglers is small, the
regular LDPC or replication-based schemes are suggested.
Finally, if the straggler effect is large and many stragglers
are present, the MDS code or a random sparse code with pm
set to a large value should be chosen.

VI. CONCLUSION

This paper introduces a coded distributed learning frame-
work for MARL, which improves the training efficiency of
policy gradient algorithms in the presence of stragglers while
not degrading the accuracy. We applied the proposed frame-
work to a coded distributed version of MADDPG, a start-
of-the-art MARL algorithm. Simulations on several multi-

robot problems demonstrate the high training efficiency of the
coded distributed MADDPG, compared with the traditional
uncoded distributed learning approach.

The results also show that the coded distributed MADDPG
generates policies of the same quality as the original cen-
tralized MADDPG and converges within the same number
of iterations. Furthermore, we investigated different coding
schemes including replication-based, MDS, random sparse,
and regular LDPC codes. Simulation results show that the
MDS and random sparse codes can tolerate more stragglers
but introduce larger computation overhead. Additionally, the
replication-based and regular LDPC codes produce less over-
head but are more susceptible to stragglers.
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