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ABSTRACT
Statistical inferences for quadratic functionals of linear regression parameter have found wide applications
including signal detection, global testing, inferences of error variance and fraction of variance explained.
Classical theory based on ordinary least squares estimator works perfectly in the low-dimensional regime,
but fails when the parameter dimension pn grows proportionally to the sample size n. In some cases, its
performance is not satisfactory even when n ≥ 5pn. The main contribution of this article is to develop
dimension-adaptive inferences for quadratic functionals when limn→∞ pn/n = τ ∈ [0, 1). We propose a
bias-and-variance-corrected test statistic and demonstrate that its theoretical validity (such as consistency
and asymptotic normality) is adaptive to both low dimension with τ = 0 and moderate dimension with
τ ∈ (0, 1). Our general theory holds, in particular, without Gaussian design/error or structural parameter
assumption, and applies to a broad class of quadratic functionals covering all aforementioned applications.
As a by-product, we find that the classical fixed-dimensional results continue to hold if and only if the
signal-to-noise ratio is large enough, say when pn diverges but slower than n. Extensive numerical results
demonstrate the satisfactory performance of the proposed methodology even when pn ≥ 0.9n in some
extreme cases. The mathematical arguments are based on the random matrix theory and leave-one-
observation-out method.
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1. Introduction

The linear regression model is one of the most widely used
statistical tools to discover the relation between a continuous
response and a class of explanatory variables in different scien-
tific areas. Specifically, we consider

Yi = XT
i β0 + εi, for i = 1, . . . , n, (1)

where β0 = (β0,1, . . . , β0,pn)
T ∈ R

pn is an unknown vector
of parameters, and {εi}n

i=1 are iid errors independent of {Xi}n
i=1

with E(εi) = 0 and var(εi) = σ 2
ε . We assume {Yi, Xi}n

i=1 are
iid observations with E(Xi) = 0pn and cov(Xi) = �, without
imposing any specific distributional assumption on either Xi or
εi throughout this article. Denoting Y = (Y1, . . . , Yn)T , X =
(X1, . . . , Xn)T , and ε = (ε1, . . . , εn)T , (1) can be re-expressed
as

Y = Xβ0 + ε.

For fixed dimension, statistical estimation and inference for
β0 and σ 2

ε have been well studied based on the ordinary least
squares (OLS) estimator,

β̂ = (XTX)−1XTY .

In the modern high-dimensional regime, the parameter
dimension pn is allowed to be much larger than n, for example,
(log pn)/n = o(1), but in most cases the number of nonzero
elements in β0 is a vanishing fraction of n. Such a sparsity
condition is commonly assumed in the high-dimensional
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literature, for example, Meinshausen and Yu (2009), van de Geer
(2008), and Zhang and Huang (2008) on oracle inequality and
parameter estimation; Tibshirani (1996), Fan and Lv (2008),
and Meinshausen and Bühlmann (2006) on variable selection,
and Javanmard and Montanari (2014), van de Geer et al. (2014),
and Zhang and Zhang (2014) on statistical inference. However,
in reality, pn may be moderately large, that is, of the same
magnitude as n, and β0 is not necessarily sparse. One example is
the genomic study, where the number of significantly identified
genes with association in trans, that is, pn = 108, is moderately
large compared with n = 270; see Stranger et al. (2007).

For moderate dimension with limn→∞ pn/n = τ ∈ (0, 1),
which is of major concern in this article, some classical statistical
inference procedures developed for fixed-dimensional data are
no longer valid. For example, when pn is fixed, we can test

H0 : ||β0||2 = c0 versus H1 : ||β0||2 �= c0, (2)

for a known constant c0 ≥ 0, by calculating the Z-score

Z0 = ||β̂||22 − c2
0

ζ̂0
, (3)

where

ζ̂ 2
0 = 4σ̂ 2

ε β̂
T
(XTX)−1β̂ and σ̂ 2

ε = ||Y − Xβ̂||22
n − pn

. (4)

Under the null hypothesis, Z0
D→ N(0, 1); see Theorem 4.

Hence, the p-value for testing (2) is 2�(−|z0|), where z0 is a
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Figure 1. p-values of Z0 (top panels) and Zn (bottom panels). The panels from left to right are for pn = 10/200/500/900.

realization of Z0 and �(·) is the cumulative distribution func-
tion of the standard normal distribution.

We next examine the empirical performance of the con-
ventional Z-test by setting n = 1000 with pn = 10 for fixed
dimension and pn = 200, 500, and 900 for moderate dimen-

sion. Consider Xi
iid∼ N(0pn , Ipn) and εi

iid∼ N(0, 1), where
Ipn denotes the pn × pn identity matrix. The true parameter
β0,j’s were generated independently from Unif(0, 1), and 40,000
replications were conducted in each setup. The plots of the
p-values under the valid null hypothesis are given in the top
panels of Figure 1. The uniform distribution of the p-values
when pn = 10 is consistent with the classical fixed-dimensional
theory. But for pn = 200, 500, and 900, p-values are relatively
concentrated around 0. We further test the uniform distribution
of the p-values by the formal Kolmogorov–Smirnov (KS) test
(Kolmogorov 1933; Smirnov 1939), and find that the p-values
for pn = 10, 200, 500, and 900 are 0.2518, 8.05 × 10−68, 0, and
0, respectively. Hence, the naive Z-score does not work under
moderate dimension, say even when n ≥ 5pn.

The main focus of this article is on the moderate-dimensional
inference without imposing any type of structural conditions
on β0 and �, while our results are also adaptive to the low-
dimensional case with τ = 0.1 Specifically, we conduct statisti-
cal inferences for a class of quadratic functionals such as ||β0||22
and σ 2

ε , which cover a wide range of applications including
signal detection and global testing. A related line of work is
the study of the signal strength βT

0 �β0 by Dicker (2014) and
Janson, Barber, and Candès (2017). However, their procedures
crucially rely on the fact that Yi ∼ N(0, βT

0 �β0 +σ 2
ε ), and their

theoretical results hold only when Xi and εi are both Gaussian.
Hence, their results are not readily carried over into our case,
for example, two-sample inference. Additionally, different tools
such as leave-one-observation-out method (El Karoui 2013,
2018) are used in our article. Please see more discussions in
the end of Section 3.4. As a side remark, we point out that
the classical fixed-dimensional inference may still be applied to

1We call it low-dimensional regime when pn → ∞ but pn/n → 0. Hence,
both fixed- and low-dimensional regimes correspond to that τ = 0.

the low-dimensional regime if and only if the signal-to-noise
ratio SNR := var(XT

i β0)/var(εi) = βT
0 �β0/σ

2
ε is large.

However, the strength of the SNR cannot be directly examined
in practice. Hence, the adaptiveness of our proposed method
(without relying on SNR) is practically important. In case of
interest, readers may refer to Figure B1 in Appendix B for the
precise relation between τ and SNR.

Our primary contribution is to propose a bias-corrected
estimator ˆ||β||22 for ||β0||22 in (10), based on which a bias-and-
variance-corrected test statistic Zn is developed in (12). The
bottom panels of Figure 1 plot the p-values of Zn for pn = 10,
200, 500, and 900. The p-values of the KS test for the uniformity
are 0.4755, 0.1175, 0.8972 and 0.2672 correspondingly. Figure 2
plots the amount of empirical corrections of bias and variance
needed in ˆ||β||22 under the same setting. It reveals that the bias
correction tends to −∞ as τ → 1, while the variance correction
diverges to ∞. The right panel of Figure 2 plots the relative
difference between Zn and Z0 versus τ . As τ deviates from zero,
the amount of correction rapidly increases to its largest value,
and then decreases and stabilizes around 1. As an immediate
application, global testing

H0 : β0 = βnull
0 versus H1 : β0 �= βnull

0 , (5)

can also be performed with a bias-and-variance-corrected
version of ||β̂ − βnull

0 ||22 as the test statistic. Please see Portnoy
(1985), Arias-Castro, Candès, and Plan (2011), Zhong and
Chen (2011), and Zhang and Cheng (2017) for low- and high-
dimensional results, respectively.

Our general moderate-dimensional theory can also be
applied to other statistical inference problems. For example,
we can detect the existence of signal by setting c0 = 0 in (2). By
formulating a sequence of alternatives H1n : ||β0||22 = δn, we
further show that δ∗

n := σ 2
ε

√pnn−1 is the smallest separation
rate such that successful detection of H1n is still possible, which
matches with the minimax detection rate in Ingster, Tsybakov,
and Verzelen (2010). As far as we are aware, the existing
results concerned with detection boundary only focus on either
Gaussian mean models with pn = n (e.g., Donoho and Jin 2004;
Cai, Jin, and Low 2007; Hall and Jin 2010), or high-dimensional
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Figure 2. Amount of empirical corrections of bias (left panel) and variance (middle panel) versus τ for ˆ||β||22 compared with ||β̂||22. The right panel plots |Zn − Z0|/|Z0|
versus τ .

data (e.g., Ingster, Tsybakov, and Verzelen 2010; Arias-Castro,
Candès, and Plan 2011).

New results of inference on the error variance will also be
established for moderate dimension. We still use the estimator
σ̂ 2

ε defined in (4) for low-dimensional data, but modify its
asymptotic variance as ζ 2

ε = {ν4 + σ 4
ε (3τ − 1)/(1 − τ)}/n with

ν4 = E(ε4
i ) to derive that

σ̂ 2
ε − σ 2

ε

ζε

D→ N(0, 1).

One related result is concerned with the fraction of variance
explained (and also SNR), defined as

ρ0 := βT
0 �β0

βT
0 �β0 + σ 2

ε

= SNR
SNR + 1

, (6)

which describes the proportion of the variance in the dependent
variable that is predictable from the independent variable. The
high-dimensional estimation of σ 2

ε , ρ0 and SNR can be found in
Sun and Zhang (2012), Fan, Guo, and Hao (2012), and Verzelen
and Gassiat (2018).

Our results can be naturally extended to two-sample infer-
ence. Here, we give two examples in Section S.4 in the supple-
mentary materials. Let γ 0 ∈ R

pn be the regression parameter
in another linear regression model independent of (1). The first
issue is to test the equality of γ 0 and β0, while the second is
concerned with the co-heritability, defined as

θ0 = γ T
0 β0

||γ 0||2||β0||2
. (7)

The measure θ0 is an important concept that characterizes the
genetic associations within pairs of quantitative traits, whose
high-dimensional estimation has recently been studied in Guo
et al. (2016). Besides, an immediate application of our argu-
ments is the inference for the linear functionals as discussed in
Appendix A.

As a summary, a list of hypotheses in consideration together
with potential applications is given below:

• Testing the quadratic functional: hypotheses in (2);
• Signal detection: hypotheses in (2) with c0 = 0;
• Global testing: hypotheses in (5);
• Inference for the error variance σ 2

ε using Proposition 1;

• Testing the fraction of variance explained (or SNR): hypothe-
ses in (6);

• Inference for the signal strength βT
0 �β0 using (16);

• Two-sample inferences: hypotheses in (S.4.2) and (S.4.3).

Our asymptotic normality result relies on the application of
the martingale difference central limit theorem (CLT) Heyde
and Brown (1970) to linear-quadratic forms, that is, εTAnε +
bT

n ε, where An ∈ R
n×n (bn ∈ R

n) is some random matrix
(vector) independent of ε. Although CLT has been studied for
quadratic and linear-quadratic forms, to the best of our knowl-
edge, those results cannot be directly applied to our problem.
For example, Dicker and Erdogdu (2017) provided the concen-
tration bounds and finite sample multivariate normal approxi-
mation for quadratic forms, but these results are not applicable
to the linear-quadratic forms. de Jong (1987) developed CLT for
“clean” quadratic forms requiring zero elements on the diagonal
(see Definition 2.1 therein), which however is not satisfied by
the linear-quadratic form in our article. A more related exam-
ple is the CLT for the linear-quadratic form in Kelejian and
Prucha (2001) with An and bn being deterministic. An impor-
tant assumption in Kelejian and Prucha (2001) is ||An||1 ≤
C < ∞ which is violated in our work (see Section S.1 in
the supplementary materials for detailed explanations). Besides,
two technical tools have been used in our article: random matrix
theory (Bai and Silverstein 2010) and leave-one-observation-
out method (El Karoui 2013, 2018). The former contributes
to bounding the eigenvalues of XTX/n from 0 and ∞ as in
Lemma 1, while the latter is employed here to demonstrate the
consistency of terms like tr{(XTX)−1} as in Lemma 2. Note
that no sparsity assumption on � is needed in our technical
analysis. It is worth pointing out that the theoretical results
above are adaptive to the low-dimensional regime, which makes
our proposed method concretely applicable in practice.

In the end, we conduct a real data analysis on the relationship
between gene expression and single nucleotide polymorphism
(SNP) with n = 377 and pn ranging from 33 to 87. Specifically,
confidence intervals for the fraction of variance explained, that
is, ρ0, are constructed using our proposed method, the con-
ventional method and the one in Dicker (2014) based on the
method of moment. We find that the conventional method may
falsely discover nonzero ρ0 for some genes due to the moderate
dimension and insufficient SNR, and that our confidence inter-
val is mostly narrower than that by Dicker (2014).
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1.1. Related Works

Some earlier studies, for example, Portnoy (1984, 1985), focused
on the quadratic functional (β̂ − β0)

TXTX(β̂ − β0), under
the low-dimensional regime, that is, τ = 0. In the moderate-
dimensional regime, El Karoui (2013, 2018), El Karoui et al.
(2013), and Donoho and Montanari (2016) studied the
consistency of ||β̂ − β0||2 for a general M-estimator β̂ . As far
as we are aware, these techniques and results for consistency
are not ready for deriving the asymptotic distributions of the
quadratic functionals, which is the main contribution of our
work. Another line of research is the element-wise inference
(Bai et al. 2013; Dobriban and Su 2018; Lei, Bickel, and
El Karoui 2018; Sur, Chen, and Candès 2019) whose strategies
for analyzing single-element estimation error cannot be easily
adapted for the analysis of aggregated estimation errors, for
example, quadratic functionals. To elucidate the difference
between the two types of inferences, we plot

√
n(β̂2

j −β2
0,j) versus

j and ||β̂||22 − ||β0||22 in Figure A1. In the high-dimensional
regime, a more recent result is Cai and Guo (2018) who
studied the point and interval estimations of ||β̂ − β0||2q with
1 ≤ q ≤ 2.

The rest of the article is organized as follows. Section 2
develops the bias-and-variance-corrected inference for ||β0||22
and demonstrates that the conventional procedure works if and
only if the SNR is large. Section 3 consists of important appli-
cations of inferences for the quadratic functionals, including
signal detection, global testing, inferences for the error variance
and fraction of variance explained. Simulations are conducted
in Section 4 and a real data analysis is performed in Section 5.
The proofs of some main theoretical results are included in
the Appendix while the remaining proofs are relegated to the
supplementary materials.

1.2. Notation

Let �·� be the floor function. For any set G, denote by Ḡ the
complement of G. Let I(·) be the indicator function. Denote by
Im the m × m identity matrix and by ej,m (j = 1, . . . , m) the jth
column of Im. Let 0m ∈ R

m and 1m ∈ R
m be the vectors of zeros

and ones, respectively. For a vector v = (v1, . . . , vm)T , the L1,
L2 and L∞ norms are ||v||1 = ∑m

i=1 |vi|, ||v||2 = (
∑m

i=1 v2
i )

1/2

and ||v||∞ = maxi≤m |vi|, respectively. For an m × m matrix
A = {aij}1≤i,j≤m, denote by λmax(A) and λmin(A) the maximum
and minimum eigenvalues of A, respectively. Let |A| be the
determinant of A. The L1, L2 and L∞ norms of A are defined
as ||A||1 = max1≤j≤m

∑m
i=1 |aij|, ||A||2 = {λmax(A′A)}1/2

and ||A||∞ = max1≤i≤m
∑m

j=1 |aij|, respectively. For sequences
{an}n≥1 and {bn}n≥1, we write an � bn (an � bn) if there exists
a constant C > 0 independent with n such that |an| ≤ C|bn|
(|an| ≥ C|bn|). Denote an = �(bn) if an = O(bn) and
bn = O(an). If {Un}n≥1 and {Vn}n≥1 are random sequences,
then Un = �P(Vn) denotes that Un = OP(Vn) and Vn =
OP(Un). Notation “S1 ⇐⇒ S2” means that statements S1 and
S2 are equivalent, while “S1 �⇒ S2” denotes that S1 implies
S2. In the following, C and c are generic finite constants which
may vary from place to place and do not depend on sample
size n.

2. Statistical Inference for Quadratic Functionals

This section establishes the dimension-adaptive inference for
||β0||22, which is the main theoretical result of this article. As a
by-product, we discover that the classical (fixed-dimensional)
statistical inference procedure continues to work in the low-
dimensional regime if and only if the signal-to-noise ratio is
large. As far as we are aware, this finding is new for quadratic
functional ||β0||22.

We start with an examination of the plug-in estimator ||β̂||22
for ||β0||22. The estimation error ||β̂||22−||β0||22 can be expressed
as a linear-quadratic form, that is, sum of a quadratic term and
a linear term, as follows

||β̂||22 − ||β0||22 = εTX(XTX)−2XTε + 2βT
0 (XTX)−1XTε. (8)

The linear term has zero mean and hence the bias of ||β̂||22 is

E(||β̂||22) − ||β0||22 = E{εTX(XTX)−2XTε}
= Etr{(XTX)−1}σ 2

ε > 0. (9)

For a special case that Xi
iid∼ N(0pn , Ipn), (XTX)−1 follows the

inverse Wishart distribution and hence

Etr{(XTX)−1} = pn/(n − pn − 1) → τ/(1 − τ), as n → ∞.

For low dimension with τ = 0, ||β̂||22 is asymptotically unbiased
and its asymptotic distribution can be established based on the
dominating linear term as in Theorem 4 to be introduced later.
However, when τ > 0, the bias (9) is nonignorable, leading to
failure of the conventional low-dimensional results.

The analysis above suggests a bias-corrected estimator for
||β0||22:

ˆ||β||22 = ||β̂||22 − tr{(XTX)−1}σ̂ 2
ε , (10)

where σ̂ 2
ε is defined in (4). Since X and ε are independent,

ˆ||β||22 is unbiased for ||β0||22. Before presenting the asymptotic
properties of ˆ||β||22, we first provide our assumptions below.

Condition A.

A1. Assume {Xi}n
i=1 are iid, Xi = �1/2Zi where Zi =

(zi1, . . . , zipn)
T , {zij}pn

j=1 are independent for each i ≤
n, E(zij) = 0, E(z2

ij) = 1 and there exists a constant c∗ > 0
such that for any n ≥ 1, i ≤ n, j ≤ pn, and t > 0,
P(|zij| ≥ t) ≤ 2 exp(−c∗t2).

A2. Suppose {εi}n
i=1 are iid and independent of {Xi}n

i=1, E(εi) =
0, E(ε2

i ) = σ 2
ε ≥ c > 0, and E(ε8

i ) = O(σ 8
ε ).

A3. There exist constants c and C, such that 0 < c < λmin(�) ≤
λmax(�) < C < ∞.

A4. There exists a constant C, such that ||β0||∞ ≤ C < ∞.

Conditions A1 and A2 only require sub-Gaussian tail for Xi
and moment conditions on ε, rather than impose any specific
distributional restriction. The independence between {εi}n

i=1
and {Xi}n

i=1 is crucial for applying the martingale difference CLT,
and is a standard assumption for inference of the quadratic func-
tionals in, for example, Dicker (2014) and Janson, Barber, and
Candès (2017). The error variance σ 2

ε could either be bounded
or diverging with n. Under Condition A4, ||β0||2 = O(

√pn),
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and will reach �(
√pn) when β0 is not sparse. Throughout this

article, both β0 and σ 2
ε are allowed to vary with n, except when

pn is fixed.
Under Condition A, β̂ is well defined, that is, the pn × pn

matrix (XTX)−1 exists with probability tending to 1. Lemma 1
shows that the eigenvalues of XTX/n are bounded away from
0 and ∞ with probability tending to 1 based on the random
matrix theory in Bai and Silverstein (2010). The proof is given
in Appendix C.

Lemma 1. If τ ∈ [0, 1) and Conditions A1 and A3 hold, then
for any � ∈ N, we have

P(||XTX/n||2 ≥ x1) = o(n−�),
P(||(XTX/n)−1||2 ≥ x−1

2 ) = o(n−�),

where x1 = 4(1+√
τ)2||�||2 and x2 = (1−√

τ)2/(4||�−1||2).

Define event K = H ∩ J, where H and J denote the events
||(XTX/n)−1||2 < x−1

2 and ||XTX/n||2 < x1, respectively.
Event K is introduced to truncate the eigenvalues of XTX/n.
Constants x1 and x−1

2 may not be the smallest for our analysis,
and can be replaced by any constants larger than them. From
Lemma 1, for any � ∈ N, we have P(K̄) = o(n−�).

We now present our main result: the asymptotic normality
and ratio consistency of ˆ||β||22.

Theorem 1. (a) Assume τ ∈ [0, 1) and Condition A for (1). If
either of the following conditions hold: (1) limn→∞ pn = ∞;
(2) pn is fixed and β0 �= 0pn , then,

ζ−1
n ( ˆ||β||22 − ||β0||22) D→ N(0, 1),

where

ζ 2
n = 4σ 2

ε βT
0 E{(XTX)−1I(K)}β0 + 2σ 4

ε Etr{(XTX)−2I(K)}
+2σ 4

ε [Etr{(XTX)−1I(K)}]2/(n − pn).

(b) Additionally, if p1/2
n /n = o(SNR), then

ˆ||β||22
||β0||22

P→ 1. (11)

The proof of Theorem 1 relies on the martingale difference
CLT Heyde and Brown (1970) and is provided in Appendix C.

A few remarks are in order: (i) After bias correction, ˆ||β||22 is
asymptotically normal under fixed, low or moderate dimension.
Hence, the proposed method is adaptive to dimension and
generally applicable for pn < n in practice. (ii) As ||β0||2
may vary with n, the ratio consistency of ˆ||β||22 in (11) is not
automatically implied by the asymptotic normality but requires
an additional assumption p1/2

n /n = o(SNR). (iii) Random
design is assumed in Theorem 1, but the result also holds for
fixed design, that is, conditioning on X. (The SNR is not well
defined for fixed design, and needs to be replaced by ||β0||22/σ 2

ε

in the condition of part (b).) As discussed in the end of the
proof of Theorem 1, there exists a set Xn ⊆ R

n×pn as in (C.13)
satisfying P(X ∈ Xn) → 1, such that for any x ∈ Xn, t ∈ R

and ε > 0, P(ζ−1
n ( ˆ||β||22 − ||β0||22) ≤ t|X = x) → �(t) and

P(| ˆ||β||22/||β0||22 − 1| ≥ ε|X = x) → 0. In the following, all
theoretical results (theorems, corollaries, and propositions) are
applicable to fixed design unless otherwise specified.

Remark 1. In Theorem 1, we assume homoscedasticity for the
error. Here, we consider heteroscedasticity, that is, εi are inde-
pendent with different variances σ 2

i = E(ε2
i ) for i = 1, . . . , n.

We first introduce a general result. For k ∈ N, denoting D =
diag(σ 2

1 , . . . , σ 2
n ), then

E{εTX(XTX)−kXTε} =
n∑

i=1
E{XT

i (XTX)−kXi}σ 2
i

= Etr{X(XTX)−kXT/n}tr(D) = Etr{(XTX)−k+1}tr(D)/n,

since E{XT
i (XTX)−kXi} are identical and equal Etr{X(XTX)−k

XT/n} for i = 1, . . . , n. From (8), the bias of ||β̂||22 becomes
E{εTX(XTX)−2XTε} = Etr{(XTX)−1}tr(D)/n. In Lemma 2,
tr{(XTX)−1} is ratio consistent for Etr{(XTX)−1} given event K,
while σ̂ 2

ε is unbiased for tr(D)/n because E(σ̂ 2
ε ) = E[εT{In −

X(XTX)−1XT}ε/(n − pn)] = {tr(D) − pn/ntr(D)}/(n − pn) =
tr(D)/n. Hence, ˆ||β||22 is still a bias-corrected estimator for
||β0||22 under heteroscedasticity. It will be an interesting future
work to derive the asymptotic distribution of ˆ||β||22 under het-
eroscedasticity, and derive consistent estimators for the param-
eters in the limiting distribution.

Remark 2. For ease of presenting the proofs, we assume E(Xi) =
0pn in Condition A1 and hence E(Yi) = 0. For the general form
of the linear model

Yi = α0 + XT
i β0 + εi, for i = 1, . . . , n,

where α0 is the intercept and E(Xi) = μ, our method is still
applicable to the centralized data {Yi − Ȳ , Xi − X̄}n

i=1 with Ȳ =
n−1 ∑n

i=1 Yi and X̄ = n−1 ∑n
i=1 Xi. Specifically, Theorem 1

together with the theorems, corollaries, and propositions below
still holds after data centralization. Please see Section S.2 in the
supplementary materials for a brief explanation.

Remark 3. From (4), the variance term of the conventional
inference procedure ζ̂ 2

0 = 4σ̂ 2
ε β̂

T
(XTX)−1β̂ is ratio consistent

for ζ 2
0 = 4σ 2

ε βT
0 E{(XTX)−1I(K)}β0 (see Theorem 4 to be

introduced later). Hence, the removal of bias in ||β̂||22 leads to a
larger variance ζ 2

n than ζ 2
0 . To see that more clearly, we consider

a special case that Xi
iid∼ N(0pn , Ipn). In this case, E{(XTX)−1} =

Ipn/(n − pn − 1) and nEtr{(XTX)−2} → τ/(1 − τ)3 based on
Letac and Massam (2004). From (9), we know that the amount
of theoretical correction of bias for ˆ||β||22 compared with ||β̂||22
is −τσ 2

ε /(1 − τ). Also,

ζ 2
n = ζ 2

0 + 2σ 4
ε

n
τ(1 + τ)

(1 − τ)3 {1 + o(1)}

for τ ∈ (0, 1). Both bias and variance corrections deviate from
zero significantly as τ → 1; see Figure 3 for n = 100 and σ 2

ε = 1.
The patterns in Figure 3 are consistent with the empirical ones
observed in Figure 2.



6 X. GUO AND G. CHENG

Figure 3. Amount of theoretical corrections of bias (left panel) and variance (right panel) versus τ for ˆ||β||22 compared with ||β̂||22.

Remark 4. We now discuss that ˆ||β||22 is not a uniformly
minimum variance unbiased estimator (UMVUE). Denote
by T(Y , X) a generic unbiased estimator of ||β0||22. If we

assume Xi
iid∼ N(0pn , �) and ε ∼ N(0n, σ 2

ε In), then the
joint probability density function of (Yi, Xi) is f (yi, xi) =
{(2π)pn+1σ 2

ε |�|}−1/2 exp{−(yi − xT
i β0)

2/(2σ 2
ε )− xT

i �−1xi/2}
implying that the Fisher information matrix with the full
data (Y , X) for β0 is I(β0) = n�/σ 2

ε . Using the Cramér–
Rao lower bound (see, e.g., Shao 2003, Theorem 3.3), we
have var{T(Y , X)} ≥ 4σ 2

ε βT
0 �−1β0/n. From the fact that

E{(XTX)−1} = �−1/(n − pn − 1), we know ζ 2
n >

4σ 2
ε βT

0 �−1β0/n and hence ˆ||β||22 may not be a UMVUE of
||β0||22.

As discussed in Remarks 3 and 4, the bias correction for
ˆ||β||22 leads to larger asymptotic variance and ˆ||β||22 is not a

UMVUE for ||β0||22. However, we can show that ˆ||β||22 achieves
the optimal rate of convergence in terms of the quadratic loss.

Theorem 2. Assume model (1) with Xi
iid∼ N(0pn , �), ε ∼

N(0n, σ 2
ε In), σ 2

ε = O(n), that {εi}n
i=1 are independent of

{Xi}n
i=1, and Conditions A3 and A4 hold. For any estimator

T of ||β0||22, we have

inf
T

sup
β∈Gβ0 (c)

E(Y ,X)|(β ,σ 2
ε ,�)(T − ||β||22)2 = �(ζ 2

n ),

where Gβ0(c) = {β ∈ R
pn : ||β||∞ ≤ C < ∞, ||β||2 ≤

c(||β0||2 + σε
√pn/

√
n)}, c > 1 is a generic constant and

E(Y ,X)|(β ,σ 2
ε ,�)(·) denotes taking expectation with respect to

(Y , X) given parameters (β , σ 2
ε , �).

Theorem 2 implies that, ˆ||β||22 achieves the optimal conver-
gence rate over all β ∈ Gβ0(c) under the quadratic loss. Since ζ 2

n
involves the true parameter β0, the set of parameters Gβ0(c) also
depends on β0, which covers a wide range of pn-dimensional
vectors including β0.

To estimate the variance term ζ 2
n , we need to estimate the

following four terms: σ 2
ε , II := βT

0 E{(XTX)−1I(K)}β0, III :=
Etr{(XTX)−2I(K)} and IV := Etr{(XTX)−1I(K)}. The error
variance σ 2

ε can be consistently estimated by σ̂ 2
ε as in Proposi-

tion 1 to be introduced in Section 3.3. For the other three terms,
we need to utilize the following general result.

Lemma 2. Assume τ ∈ [0, 1) and Conditions A1 and A3 for (1).
For any k ∈ N,

var[tr{(XTX/n)−k}I(K)] = o(p2
n),

var{βT
0 (XTX/n)−kβ0I(K)} = o(||β0||42).

The key strategy to prove Lemma 2 is the leave-one-
observation-out method. See Appendix C for the detailed proof.
According to Lemma 2, tr{(XTX)−2} and tr{(XTX)−1} are ratio
consistent for terms III and IV, respectively. It’s not necessary
to include I(K) in the estimators, since I(K)

P→ 1 due to
P(K) → 1. Lemma 2 further induces Lemma S.12 in the
supplementary materials that,

β̂
T
(XTX)−1β̂ − σ̂ 2

ε tr{(XTX)−2} − II = oP(ζ 2
n /σ 2

ε ).

Subsequently, the plug-in estimator of ζ 2
n is

ζ̂ 2
n = 4σ̂ 2

ε β̂
T
(XTX)−1β̂ − 2σ̂ 4

ε tr{(XTX)−2}
+ 2σ̂ 4

ε [tr{(XTX)−1}]2/(n − pn).

We summarize the above discussion into Theorem 3.

Theorem 3. Under the conditions in part (a) of Theorem 1, we
have

ζ̂ 2
n /ζ 2

n
P→ 1.

The proof of Theorem 3 is provided in Appendix C.
We are now ready to test the hypothesis in (2) by proposing

the following test statistic

Zn =
ˆ||β||22 − c2

0

ζ̂n
. (12)

Theorems 1 and 3 directly imply that the null limiting distri-
bution of Zn is standard normal, the p-value for testing (2) is
2�(−|zn|), where zn is a realization of Zn, and the asymptotic
power function is 1 − �{−(c2

1 − c2
0)/ζ̂n + �−1(1 − α/2)} +

�{−(c2
1 − c2

0)/ζ̂n − �−1(1 − α/2)} under the fixed alternative
H1 : ||β0||2 = c1 �= c0.

In the end, we point out that as long as the SNR is large
enough, the conventional estimator ||β̂||22 is still ratio consistent
and asymptotically normal. However, the strength of SNR is
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usually unknown in practice. Hence, this result highlights the
importance of our proposed adaptive method that works for
both moderate and low dimensions, regardless of weak or strong
signals.

Theorem 4. Assume τ ∈ [0, 1) and Condition A for (1). Then,

||β̂||22
||β0||22

P→ 1 ⇐⇒ pn/n = o(SNR)

⇐⇒ ζ̂ 2
0

ζ 2
0

P→ 1,

||β̂||22 − ||β0||22
ζ0

D→ N(0, 1) ⇐⇒ p2
n/n = o(SNR) �⇒ τ = 0,

where ζ 2
0 = 4σ 2

ε βT
0 E{(XTX)−1I(K)}β0 and ζ̂ 2

0 is defined in (4).

Theorem 4 verifies the asymptotic normality of Z0 in (3)
under valid null hypothesis. The proof is provided in the sup-
plementary materials.

3. Applications

This section consists of four important applications of our gen-
eral theory: signal detection, global testing, inferences for the
error variance, and fraction of variance explained. The results
on two-sample inference are postponed to the supplementary
materials.

3.1. Detection Boundary for ||β0||2
2

Hypothesis (2) can be used to perform signal detection by
setting c0 = 0. In this problem, the detection boundary is often
of interest, which is the smallest separation rate between the
null and a sequence of contiguous alternatives H1n indexed by
δn → 0, that is,

H1n : ||β0||22 = δn,

such that successful detection is still possible. From Theorem 1,
we propose the following test statistic for hypothesis (2) with
c0 = 0

Z
∗
n =

ˆ||β||22
ζ̂∗

,

where ζ̂ 2∗ = 2σ̂ 4
ε tr{(XTX)−2} + 2σ̂ 4

ε [tr{(XTX)−1}]2/(n −
pn). The difference between Z

∗
n and Zn lies in the variance

term ζ̂ 2∗ . Using Lemma 2, ζ̂ 2∗ is ratio consistent for ζ 2∗ =
2σ 4

ε Etr{(XTX)−2I(K)} + 2σ 4
ε [Etr{(XTX)−1I(K)}]2/(n − pn)

which equals ζ 2
n when β0 = 0pn . In other words, ζ̂ 2∗ is a refined

estimator of ζ 2
n under the null hypothesis (2) with c0 = 0. Then,

the asymptotic standard normality of Z∗
n under the null follows

directly from Theorem 1 for diverging pn. Corollary 1 presents
the detection boundary using Z

∗
n.

Corollary 1. Assume that τ ∈ [0, 1), limn→∞ pn = ∞,
Condition A holds for (1). If δn = �(σ 2

ε p1/2
n /n), then

Z
∗
n − ζ̂−1∗ δn

D→ N(0, 1),

where ζ̂−1∗ δn = �P(1). If δn = o(σ 2
ε p1/2

n /n), then

Z
∗
n

D→ N(0, 1).

Therefore, the detection boundary is σ 2
ε p1/2

n /n, which
matches with the minimax detection rate in Ingster, Tsybakov,
and Verzelen (2010) (see (1.2) therein). It is worth mentioning
that Corollary 1 requires diverging pn.

3.2. Global Inference for β0

This section is concerned with the global hypothesis (5)

H0 : β0 = βnull
0 versus H1 : β0 �= βnull

0 ,

by proposing a bias-and-variance-corrected test statistic based
on ||β̂ − βnull

0 ||22 as follows

Gn = ||β̂ − βnull
0 ||22 − tr{(XTX)−1}σ̂ 2

ε

ζ̂∗
. (13)

The construction of Gn is based on the fact that the distribution
of β̂ − βnull

0 under H0 in (5) is the same as that of β̂ with β0 =
0pn . Thus, the amount of bias correction −tr{(XTX)−1}σ̂ 2

ε and
the variance term ζ̂ 2∗ for Gn are the same as those for Z∗

n. From
the asymptotic results of Z∗

n, Gn is also asymptotically standard
normal under the null for diverging pn, and the smallest sepa-
ration rate for H1n : ||β0 − βnull

0 ||22 = δn is δ∗
n = σ 2

ε p1/2
n /n, the

same as that identified by Corollary 1.
From (13), we can construct 1 − α confidence regions for β0

using one-sided and two-sided strategies as

CR1 = {β : ||β̂ − β||22 − tr{(XTX)−1}σ̂ 2
ε ≤ �−1(1 − α)ζ̂∗};

CR2 = {β : |||β̂ − β||22 − tr{(XTX)−1}σ̂ 2
ε |

≤ �−1(1 − α/2)ζ̂∗}. (14)

Confidence region for high-dimensional sparse β0 was studied
in Cai and Guo (2020) and Nickl and van de Geer (2013).

3.3. Inference for σ 2
ε

This section is concerned with moderate-dimensional inference
for the error variance σ 2

ε .

Proposition 1. Assume τ ∈ [0, 1) and Conditions A1–A3 for (1).
Then

σ̂ 2
ε

σ 2
ε

P→ 1 and
σ̂ 2

ε − σ 2
ε

ζε

D→ N(0, 1),

where ζ 2
ε = n−1{ν4 + σ 4

ε (3τ − 1)/(1 − τ)} and ν4 = E(ε4
i ).

Our result is adaptive to data dimension by incorporating
τ in the variance term ζ 2

ε for both fixed and diverging pn.
Specifically, ζ 2

ε increases with τ . For a special case that εi ∼
N(0, σ 2

ε ), ζ 2
ε = 2σ 4

ε /{n(1 − τ)}.
To estimate ζ 2

ε , it suffices to provide a ratio consistent
estimator for ν4. We first examine a straightforward estimator
1/n

∑n
i=1 ε̂4

i where (ε̂1, . . . , ε̂n)T = Y − Xβ̂ . However, as
in the proof of Lemma S.15 in the supplementary materials,
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1/nE(
∑n

i=1 ε̂4
i ) = (1 − τ)4ν4 + 3σ 4

ε τ (1 − τ)2(2 − τ) + o(σ 4
ε ).

Although the naive estimator is biased, it induces an estimator
for ν4 after centering and rescaling

ν̂4 = (1 − pn/n)−4

×
{

1/n
n∑

i=1
ε̂4

i − 3σ̂ 4
ε (pn/n)(1 − pn/n)2(2 − pn/n)

}
.

Lemma S.15 demonstrates that ν̂4 is ratio consistent for ν4.
Hence, the plug-in estimator ζ̂ 2

ε = n−1{ν̂4 + σ̂ 4
ε (3pn/n −

1)/(1−pn/n)} is ratio consistent for ζ 2
ε . From Proposition 1, we

have (σ̂ 2
ε − σ 2

ε )/ζ̂ε
D→ N(0, 1), which can be used to conduct

inference for σ 2
ε .

3.4. Inference for ρ0

Consider the hypotheses

H0 : ρ0 ≥ ρnull
0 versus H1 : ρ0 < ρnull

0 , (15)

where 0 < ρnull
0 < 1 is a given constant. Recalling the definition

of ρ0 in (6), its conventional plug-in estimator can be obtained
by replacing η0 := βT

0 �β0 and σ 2
ε with β̂

T
(XTX/n)β̂ and

σ̂ 2
ε , respectively. The asymptotic normality of this estimator is

studied under τ = 0 in Theorem S.1 in the supplementary
materials followed by the low-dimensional inference for ρ0.

However, in the moderate-dimensional regime, the bias of
β̂

T
(XTX/n)β̂ for η0 is nonignorable, that is,

E{β̂T
(XTX/n)β̂} − η0

= E{βT
0 (XTX/n)β0} − η0 + 2n−1E(βT

0 XTε)

+n−1E{εTX(XTX)−1XTε}
= n−1E{εTX(XTX)−1XTε}
= σ 2

ε pn/n → σ 2
ε τ > 0.

Consequently, we propose an unbiased estimator for η0 as

η̂ = β̂
T
(XTX/n)β̂ − σ̂ 2

ε pn/n.

Hence, a new plug-in estimator for ρ0 is

ρ̂ = η̂

η̂ + σ̂ 2
ε

= β̂
T
(XTX/n)β̂ − σ̂ 2

ε pn/n

β̂
T
(XTX/n)β̂ + σ̂ 2

ε (1 − pn/n)

with the following asymptotic distribution.

Theorem 5. Assume τ ∈ [0, 1), ρ0 ∈ [C1, C2] for some
constants 0 < C1 ≤ C2 < 1 and Condition A holds for (1).
Then, ρ̂ − ρ0 = oP(1) and

ρ̂ − ρ0
σρ̂

D→ N(0, 1),

where σ 2
ρ̂

= n−1(η0 + σ 2
ε )−4[2σ 8

ε τ/(1 − τ) − {2 + 4τ/(τ −
1)}σ 6

ε η0 + σ 4
ε {E(Y4

1 ) − ν4 + η2
0(4τ − 2)/(1 − τ)} + η2

0ν4].

Simple calculation implies that ρ̂ = 1 − (1 − pn/n)−1||Y −
Xβ̂||22/||Y||22 = 1 − (1 − pn/n)−1(1 − R2), where R2 is the
coefficient of determination. Therefore, if τ = 0, then R2 is
asymptotically unbiased for ρ0, but when τ > 0, a rescaled R2,
that is, ρ̂, is required for the inference of ρ0. The definition of
SNR is not applicable to fixed design, and hence the results of
Theorem 5 and Proposition 2 are not available for fixed design.

For the variance term σ 2
ρ̂

, the plug-in estimator σ̂ 2
ρ̂

is
obtained by replacing E(Y4

1 ), η0, σ 2
ε , ν4, and τ in σ 2

ρ̂
with

n−1 ∑n
i=1 Y4

i , η̂, σ̂ 2
ε , ν̂4, and pn/n, respectively, and its

consistency is demonstrated below.

Proposition 2. Assume the conditions in Theorem 5. Then, σ 2
ρ̂

=
�(1/n) and

σ̂ 2
ρ̂

− σ 2
ρ̂

= oP(1/n).

Hence, (15) can be tested by σ̂−1
ρ̂

(ρ̂−ρnull
0 ), whose null limit-

ing distribution is standard normal. Also the smallest separation
rate for contiguous alternative is n−1/2.

For the inference of η0, the proof of Theorem 5 immediately
implies that

σ−1
η̂

(η̂ − η0)
D→ N(0, 1), (16)

with σ 2
η̂

= n−1{E(Y4
1 )−ν4−2σ 2

ε η0−η2
0+2σ 4

ε pn/(n−pn)} which
is consistently estimated by the plug-in estimator following the
proof of Proposition 2.

In the end, we comment on related works concerned with
signal strength (i.e., Dicker 2014; Dicker and Erdogdu 2016,
2017; Janson, Barber, and Candès 2017; Verzelen and Gassiat
2018). The first three works, that is, Dicker and Erdogdu (2016),
Janson, Barber, and Candès (2017), and Dicker (2014), conduct
statistical inference for moderate-dimensional fixed effect mod-
els. However, our OLS-based methods are essentially different
from their methods in the following aspects: parameters of
interest and weak assumptions.

First, the parameter of interest in the aforementioned three
works is βT

0 �β0, and their procedures crucially rely on the fact
that Yi ∼ N(0, βT

0 �β0 + σ 2
ε ) and that βT

0 �β0 is a part of the
variance term. Therefore, their results are not readily translated
into inference for our parameter of interest, that is, ||β0||22,
unless � is identity. In contrast, our strategy depends on the OLS
estimator. This flexibility also allows us to conduct inference for
βT

0 �β0 based on a bias-corrected version of β̂
T
(XTX/n)β̂ as

in (16), and even two-sample inferences, for example, the co-
heritability (7), to which it is unclear how their methods can be
applied.

Second, some assumptions of our article are weaker due
to the use of different technical tools. Specifically, the proofs
as well as the development of the estimation and inference
procedures in the aforementioned three works rely heavily on
the Gaussian assumption of the design matrix X and error ε.
For example, among other implications, the Gaussian design
is important in deriving the invariant distribution of X under
orthogonal transformations in Dicker and Erdogdu (2016), the
Haar distribution of the right-singular vectors from the singular
value decomposition of X in Janson, Barber, and Candès (2017)
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and the Wishart distribution of XTX in Dicker (2014). However,
our OLS-based result is derived using the martingale difference
CLT without requiring any specific distributional assumption
of X or ε. Also, our results can be easily extended to fixed
design. Besides, the three works above need � = Ipn to conduct
inference for ||β0||22. Even for the inference of βT

0 �β0, they still
require strong conditions on �, for example, known or con-
sistently estimable �. And, some further sparsity assumptions
need to be imposed if � will be estimated. Our inference meth-
ods for ||β0||22 and βT

0 �β0 neither need known or a consistent
estimator of � nor require any sparsity assumption on �. From
the simulations in the end of Section 4, our method performs
better than or at least as well as those in Dicker (2014) and
Dicker and Erdogdu (2016).

As for Dicker and Erdogdu (2017) and Verzelen and Gassiat
(2018), the former conducted inference for the variance of the
regression parameter by considering the “random effect” model
conditioning on the design matrix, and hence is different from
the setup of fixed effect model in our article; the latter derives the
minimax estimators of ρ0 under Gaussian design and error, but
they did not derive the asymptotic distribution of the estimators
and hence their results cannot be applied to the inference for ρ0.

4. Simulations

Numerical studies are conducted to support the proposed sta-
tistical inference procedures. Set n ∈ {400, 800} and pn =
4, �n/6�, n/4, n/2.5 corresponding to fixed dimension (pn = 4),
low dimension (pn = �n/6�) and moderate dimension (pn =
n/4, n/2.5), unless otherwise specified. In the simulations, we
consider a general form of the linear model Yi = 1 + XT

i β0 + εi

with E(Xi) = μ = (μ1, . . . , μpn)
T generated by {μi}pn

i=1
iid∼

Unif[1, 2]. Both Y and {Xi}n
i=1 are centralized before conducting

inference for the quadratic functionals. To generate data, we
consider the following four cases representing various situations
in reality:

I. Gaussian design with � = Ipn : Xi
iid∼ N(μ, Ipn) for i =

1, . . . , n, ε ∼ N(0n, In) and β0 = β̃/||β̃||2 with {β̃j}pn
j=1

iid∼
Unif[1, 2];

II. Gaussian design with general �: Xi
iid∼ N(μ, �) for i =

1, . . . , n and ε ∼ N(0n, In), where � = �∗T�∗/λmax

(�∗T�∗) + diag(d1, . . . , dpn), �∗
ij

iid∼ Unif[−0.5, 0.5] for

1 ≤ i, j ≤ pn and {di}pn
i=1

iid∼ Unif[0.4, 1]. Here β0 = cpnβ
∗

where β∗ is the normalized eigenvector of � corresponding
to the smallest eigenvalue and cpn = 1 for pn = 4, cpn = 2
for pn = �n/6�, n/4 and cpn = 5 for pn = n/2.5;

III. t-distributed design: Xij − μj
iid∼ t5/

√
5/3 for i =

1, . . . , n; j = 1, . . . , pn, εi
iid∼ t16/

√
8/7 and β0 =

(1, 1, 1, 0, . . . , 0)T ;
IV. fixed design: X is identical for all replications and generated

by Xi
iid∼ N(μ, Ipn), while ε ∼ N(0n, In) are independently

generated for each replication, and β0 is the normalized
eigenvector of

∑n
i=1(Xi − X̄)(Xi − X̄)T corresponding to

the largest eigenvalue.

In Case II, � is not necessarily sparse and allows different
diagonal elements. Case III is for non-Gaussian design and Case
IV corresponds to fixed design matrix. In what follows, QQ plots
(for the 1st to 99th percentiles) under the valid null hypotheses
and confidence intervals were obtained with 1000 replications,
while the power function was computed using 500 replications
for each setup.

First, consider hypothesis (2) with c0 = 0. Data are generated
by Cases I–IV with β0 = 0pn . From Figure 4, under low and
moderate dimensions, Z∗

n follows standard normal distribution
under the null hypothesis. The fixed-dimensional results are not
reported as the signal detection is only conducted for diverging
pn. The empirical power of Z∗

n is given in Figure 5 by varying
β0 = 1pnδσε/(n1/2p1/4

n ) with δ = 0, 0.5, 1, 1.5, . . . , 6. This
choice of alternative values is supported by the derived detection
boundary δ∗

n = σ 2
ε p1/2

n /n for signal detection. From Figure 5, we
can tell that the empirical rejection rate grows from the nominal
level to one as δ increases from zero.

We also check the coverage probability of the two-sided
(CR2) and one-sided (CR1) confidence regions of β0 based
on (14), with 1000 replications at α = 0.05. Table 1 reveals
that both CR1 and CR2 are satisfactory while the latter slightly
outperforms the former. The coverage probabilities of CR2 are
around 0.95 while those of CR1 are generally below 0.95. Hence,
we suggest to use CR2 in practice. Note that our proposed
method particularly works for diverging pn, but when pn is fixed,
the finite-sample performance is still satisfactory.

Testing error variance:

H0 : σ 2
ε = 1 versus H1 : σ 2

ε �= 1 (17)

is performed by test statistic (σ̂ 2
ε − 1)/ζ̂ε . Figure 6 provides

the QQ plots of the test statistic under the null hypothesis.
Clearly, the proposed test statistic well adapts to fixed-, low-
, and moderate-dimensional regimes. The empirical powers
under σ 2

ε − 1 = δ/n1/2 are provided in Figure 7 with δ =
−10, −8, . . . , 0, . . . , 8, 10. Again, the power behaviors are satis-
factory.

We compare the performance of the conventional (in Section
S.3) and proposed test statistics for testing H0 : ρ0 ≥ ρnull

0 ,
that is, (15). Figures 8 and 9 provide the QQ plots of the
conventional and proposed test statistics, respectively. We find
that both the conventional and proposed tests perform well for
the fixed dimension. Under low and moderate dimensions, the
conventional method fails but the proposed test continues to
perform satisfactorily.

In the end, we consider the performance of the confidence
intervals for three parameters βT

0 �β0, σ 2
ε and ρ0 in Tables 2–4,

respectively. The averaged coverage probability and length of the
confidence intervals are calculated using the proposed method,
the MLE method in Dicker and Erdogdu (2016), the method of
moment for � = Ipn (MM1) in Dicker (2014) (see Corollary 1
therein) and its alternative version for unknown � (MM2) (see
Proposition 2 therein). The MLE and MM1 methods are applied
by assuming that � = Ipn , that is, � is correctly identified
in Cases I and III but misidentified in Cases II and IV. Since
the EigenPrism method in Janson, Barber, and Candès (2017)
is particularly proposed for pn > n, it is not compared with
our methods. For all three parameters, in Case I with Gaussian
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Figure 4. QQ plots for testing H0 in (2) with c0 = 0 using Z
∗
n . Panels from top to bottom are for Cases I–IV, respectively, while panels from left to right are for pn =

�n/6�, n/4, n/2.5, respectively.

design and � = Ipn , all methods are satisfactory with coverage
probability close to the nominal level 95%. For Cases II–IV, our
method still performs well with the coverage probability close
to 95% for all three parameters. But, due to the misidentified �

or non-Gaussian design, the coverage probabilities of the MLE
method are away from 95% for βT

0 �β0 and ρ0 in Case II and for
σ 2

ε in Cases III and IV, while the MM1 and MM2 methods result
in invalid confidence intervals in most situations. Since βT

0 �β0
and ρ0 are not defined for fixed design, the corresponding
results for Case IV are not reported.

5. Real Data

We study a dataset from the International HapMap Project to
investigate the relationship between gene expression and single
nucleotide polymorphism (SNP). In Stranger et al. (2007),

it is revealed that the expression levels of certain genes are
associated with its nearby SNPs. Specifically, they identified
803 genes that were significantly associated with certain SNPs
located within 1-Mbp of the gene midpoint using 30 Caucasian
trios of northern and western European origin (CEU), 45
unrelated Chinese individuals from Beijing University (CHB),
45 unrelated Japanese individuals from Tokyo (JPT), and 30
Yoruba trios from Ibadan, Nigeria (YRI). We select 9 genes
among these 803 genes and investigate the relationship between
each gene and its nearby SNPs from n = 377 individuals (80
individuals in CHB population, 82 from JPT, 107 from CEU,
and 108 from YRI). We use the gene expression dataset from
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-264/
and https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
198/. The SNP data were obtained from the International
HapMap Project (https://www.ncbi.nlm.nih.gov/variation/news/
NCBI_retiring_HapMap/), release 28.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-264/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-198/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-198/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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Figure 5. Empirical rejection rates versus δ for testing H1 in (2) using Z
∗
n . Panels from top to bottom are for Cases I–IV, respectively, while panels from left to right are for

pn = �n/6�, n/4, n/2.5, respectively. The dotted line indicates the true significance level α = 0.05.

Table 1. Coverage probability of 95% confidence regions for β0.

(n, pn) Case I Case II Case III Case IV

CR2

(400, 4) 0.943 0.946 0.950 0.932
(400, 66) 0.945 0.946 0.941 0.945
(400, 100) 0.949 0.948 0.951 0.953
(400, 160) 0.950 0.940 0.946 0.942
(800, 4) 0.944 0.960 0.964 0.948
(800, 133) 0.958 0.945 0.959 0.951
(800, 200) 0.944 0.961 0.947 0.957
(800, 320) 0.952 0.943 0.957 0.954

CR1

(400, 4) 0.913 0.921 0.936 0.908
(400, 66) 0.925 0.931 0.920 0.928
(400, 100) 0.933 0.933 0.944 0.916
(400, 160) 0.941 0.923 0.936 0.911
(800, 4) 0.929 0.938 0.942 0.923
(800, 133) 0.951 0.935 0.953 0.937
(800, 200) 0.936 0.940 0.953 0.941
(800, 320) 0.922 0.928 0.942 0.934

For each selected gene, we only focus on the SNPs that are
significantly associated with this gene. A list of these signifi-
cant SNPs for each identified gene is provided in Supplemen-
tary Table S2 of Stranger et al. (2007). Furthermore, among
these significant SNPs, we only choose those with minor allele
frequency greater than 5% and missingness no larger than 20%.
For the selected SNPs included in the analysis, we impute the
missing values by the marginal mean. The minor allele counts
are assigned as the numerical values for the SNPs.

For each gene, we aim to regress the gene expression levels
on the minor allele counts of its related SNPs. We first center the
gene expression levels and SNP minor allele counts, and hence
each variable has mean 0. Denote by Yik the centered expression
level for the kth gene (k = 1, . . . , 9) and ith individual (i =
1, . . . , n = 377), and by Xijk the centered minor allele count
for the jth SNP (j = 1, . . . , pk) corresponding to the kth gene
and ith individual. For the kth gene, if the design matrix Xk =
{Xijk}i=1,...,n,j=1,...,pk does not have full column rank, then we will
randomly delete one column which is linearly correlated with
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Figure 6. QQ plots for testing H0 in (17) using the proposed test statistics. Panels from top to bottom are for Cases I–IV, respectively, while panels from left to right are for
pn = 4, �n/6�, n/4, n/2.5, respectively.

Figure 7. Empirical rejection rates versus δ for testing H1 in (17) using the proposed test statistics. Panels from top to bottom are for Cases I–IV, respectively, while panels
from left to right are for pn = 4, �n/6�, n/4, n/2.5, respectively. The dotted line indicates the true significance level α = 0.05.
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Figure 8. QQ plots for testing H0 in (15) using the conventional method. Panels from top to bottom are for Cases I–III, respectively, while panels from left to right are for
pn = 4, �n/6�, n/4, n/2.5, respectively.

Figure 9. QQ plots for testing H0 in (15) using the proposed method. Panels from top to bottom are for Cases I–III, respectively, while panels from left to right are for
pn = 4, �n/6�, n/4, n/2.5, respectively.
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Table 2. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
for βT

0�β0.

Proposed MLE MM1 MM2

n pn Cov Len Cov Len Cov Len Cov Len

Case I

400 4 0.941 0.478 0.940 0.395 0.943 0.681 0.959 0.682
66 0.939 0.489 0.947 0.440 0.949 0.712 0.951 0.712

100 0.946 0.504 0.950 0.468 0.933 0.729 0.934 0.730
160 0.957 0.529 0.948 0.514 0.960 0.762 0.960 0.763

800 4 0.950 0.338 0.949 0.278 0.939 0.479 0.953 0.479
133 0.940 0.350 0.940 0.312 0.951 0.506 0.954 0.506
200 0.947 0.356 0.954 0.332 0.955 0.517 0.952 0.517
320 0.948 0.373 0.948 0.363 0.932 0.536 0.933 0.536

Case II

400 4 0.946 0.317 0.015 0.456 0.070 0.275 0.024 0.275
66 0.942 0.767 0.000 0.887 0.008 0.808 0.004 0.811

100 0.954 0.812 0.000 0.895 0.023 0.923 0.005 0.888
160 0.927 3.625 0.000 2.658 0.000 4.690 0.000 4.689

800 4 0.938 0.284 0.117 0.263 0.405 0.327 0.002 0.279
133 0.928 0.546 0.000 0.640 0.000 0.568 0.000 0.579
200 0.932 0.556 0.000 0.646 0.000 0.600 0.000 0.599
320 0.946 2.563 0.000 1.890 0.000 3.283 0.000 3.298

Case III

400 4 0.938 1.265 0.945 0.686 0.871 1.804 0.936 1.796
66 0.938 1.260 0.948 0.756 0.872 1.852 0.868 1.844

100 0.944 1.285 0.951 0.796 0.870 1.888 0.876 1.880
160 0.933 1.290 0.937 0.875 0.867 1.943 0.860 1.935

800 4 0.931 0.912 0.939 0.483 0.848 1.274 0.913 1.270
133 0.933 0.914 0.954 0.532 0.850 1.315 0.850 1.312
200 0.947 0.919 0.955 0.561 0.870 1.334 0.868 1.331
320 0.942 0.925 0.937 0.617 0.862 1.364 0.855 1.361

the others and repeat this procedure until the design matrix is
of full column rank. With a slight abuse of notation, denote by
pk the number of eventually selected SNPs for the kth gene. The
list of the selected genes and the corresponding pk are provided
in Table 5. Our strategy for selecting the 9 genes in this study is
that their corresponding pk is large enough, that is, at least 33,
such that τ ranges from 0.088 to 0.231.

The linear model for regressing Yk = (Y1k, . . . , Ynk)
T on

Xk is fitted for each gene and the confidence intervals for ρ0
are given in Table 5 using the conventional method in Section
S.3 in the supplementary materials, our proposed method and
the MM2 method in Dicker (2014) (see Proposition 2 therein)
proposed for general covariance matrix �. The MLE method
in Dicker and Erdogdu (2016) and MM1 in Dicker (2014) are
not designed for general �, and hence are not compared here.
We observe that the upper bounds of the confidence intervals
of ρ0 by our method are bounded away from 1, which indicates
that the SNRs are not exploding. Specifically, using (6), we can
calculate the confidence intervals for SNR directly by those of
ρ0, and we find that the largest value of the upper bounds of
the confidence intervals for SNR is 2.9526. Also, the values
of p2

k/n range from 2.8886 to 20.0769, and hence, the strong
signal condition (as in Theorem 4) that p2

k/n = o(SNR) is

Table 3. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
for σ 2

ε .

Proposed MLE MM1 MM2

n pn Cov Len Cov Len Cov Len Cov Len

Case I

400 4 0.940 0.276 0.944 0.278 0.953 0.398 0.973 0.398
66 0.938 0.299 0.944 0.301 0.951 0.452 0.953 0.453

100 0.938 0.318 0.938 0.319 0.951 0.483 0.953 0.483
160 0.913 0.354 0.921 0.350 0.967 0.529 0.966 0.529

800 4 0.952 0.196 0.956 0.196 0.962 0.279 0.978 0.279
133 0.941 0.213 0.941 0.214 0.953 0.321 0.956 0.321
200 0.946 0.226 0.946 0.226 0.948 0.341 0.949 0.341
320 0.956 0.252 0.959 0.249 0.951 0.372 0.953 0.372

Case II

400 4 0.952 0.276 0.956 0.278 0.144 0.357 0.088 0.379
66 0.936 0.299 0.946 0.305 0.000 0.698 0.000 0.721

100 0.951 0.317 0.949 0.326 0.000 0.759 0.000 0.786
160 0.935 0.352 0.938 0.361 0.000 3.489 0.000 3.574

800 4 0.945 0.196 0.944 0.196 0.209 0.259 0.001 0.285
133 0.951 0.214 0.954 0.216 0.000 0.495 0.000 0.510
200 0.942 0.224 0.936 0.231 0.000 0.525 0.000 0.538
320 0.948 0.253 0.937 0.258 0.000 2.456 0.000 2.513

Case III

400 4 0.926 0.304 0.906 0.277 0.883 0.868 0.968 0.894
66 0.942 0.328 0.925 0.303 0.879 0.958 0.889 1.005

100 0.940 0.345 0.919 0.319 0.878 1.004 0.896 1.060
160 0.921 0.377 0.912 0.355 0.892 1.076 0.891 1.147

800 4 0.943 0.218 0.920 0.196 0.853 0.622 0.957 0.627
133 0.938 0.233 0.920 0.214 0.859 0.697 0.869 0.707
200 0.944 0.245 0.929 0.226 0.890 0.734 0.892 0.742
320 0.936 0.271 0.927 0.251 0.892 0.785 0.895 0.800

Case IV

400 4 0.945 0.277 0.951 0.277 0.978 0.407 0.877 0.411
66 0.941 0.301 0.940 0.300 0.000 0.004 0.000 1.141

100 0.936 0.315 0.912 0.309 0.000 0.001 0.000 1.212
160 0.931 0.351 0.812 0.326 0.000 0.000 0.000 1.773

800 4 0.932 0.195 0.935 0.196 0.960 0.286 0.951 0.285
133 0.946 0.214 0.936 0.212 0.000 0.000 0.000 0.748
200 0.945 0.225 0.900 0.219 0.000 0.000 0.000 0.924
320 0.948 0.251 0.725 0.231 0.000 0.000 0.000 1.383

not satisfied by this data. From Table 5, for most genes, the
confidence intervals of ρ0 do not cover 0, indicating that these
selected SNPs are indeed significantly associated with the genes,
which supports the findings in Stranger et al. (2007). How-
ever, for gene AKAP10, 0 is covered by the confidence interval
using our proposed method but excluded by the conventional
method. This discrepancy may be due to the failure of the
conventional method under moderate dimension and insuffi-
cient SNR. More importantly, we can see that the confidence
intervals for ρ0 using our method are narrower than those using
MM2 in Dicker (2014) for most genes, which means that our
method is more accurate in the moderate-dimensional case with
τ ∈ [0, 1).
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Table 4. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
for ρ0.

Proposed MLE MM1 MM2

n pn Cov Len Cov Len Cov Len Cov Len

Case I

400 4 0.944 0.138 0.940 0.121 0.949 0.241 0.970 0.241
66 0.955 0.150 0.958 0.142 0.945 0.264 0.950 0.264

100 0.942 0.160 0.950 0.154 0.938 0.275 0.941 0.276
160 0.959 0.178 0.948 0.176 0.966 0.296 0.966 0.296

800 4 0.955 0.098 0.942 0.085 0.951 0.170 0.970 0.170
133 0.945 0.107 0.939 0.100 0.964 0.187 0.963 0.187
200 0.961 0.113 0.951 0.109 0.951 0.195 0.952 0.195
320 0.948 0.127 0.947 0.125 0.937 0.209 0.942 0.209

Case II

400 4 0.935 0.150 0.026 0.135 0.008 0.159 0.000 0.164
66 0.951 0.115 0.001 0.069 0.000 0.230 0.000 0.234

100 0.951 0.117 0.023 0.077 0.000 0.251 0.000 0.248
160 0.947 0.033 0.000 0.015 0.000 0.287 0.000 0.291

800 4 0.936 0.103 0.203 0.083 0.211 0.146 0.000 0.134
133 0.938 0.082 0.000 0.049 0.000 0.162 0.000 0.167
200 0.939 0.085 0.001 0.055 0.000 0.173 0.000 0.175
320 0.933 0.024 0.000 0.011 0.000 0.203 0.000 0.206

Case III

400 4 0.938 0.098 0.919 0.068 0.876 0.268 0.960 0.270
66 0.954 0.102 0.934 0.076 0.868 0.289 0.873 0.285

100 0.940 0.106 0.931 0.083 0.868 0.300 0.881 0.294
160 0.930 0.113 0.914 0.095 0.874 0.319 0.874 0.307

800 4 0.946 0.070 0.939 0.048 0.842 0.190 0.950 0.191
133 0.930 0.073 0.937 0.054 0.848 0.205 0.857 0.205
200 0.948 0.076 0.939 0.058 0.872 0.213 0.870 0.213
320 0.954 0.081 0.941 0.067 0.880 0.226 0.885 0.224

Table 5. 90% confidence intervals of ρ0 for gene data.

Gene Probe pk Conventional Proposed MM2 (Dicker 2014)

AKAP10 ILMN_1718808 33 [0.071, 0.161] [0.000, 0.092] [0.000, 0.040]
CPNE1 ILMN_1670841 35 [0.293, 0.524] [0.244, 0.504] [0.259, 0.474]
NUDT13 ILMN_1680420 59 [0.366, 0.467] [0.294, 0.422] [0.274, 0.482]
PIGN ILMN_1691112 36 [0.225, 0.325] [0.162, 0.280] [0.183, 0.376]
PKHD1L1 ILMN_1717886 87 [0.680, 0.747] [0.640, 0.747] [0.831, 1.000]
SPG7 ILMN_1675583 38 [0.265, 0.375] [0.212, 0.328] [0.208, 0.406]
ST7L ILMN_1659926 40 [0.548, 0.637] [0.521, 0.627] [0.522, 0.796]
TGM5 ILMN_1699925 39 [0.298, 0.406] [0.243, 0.368] [0.232, 0.441]
TSGA10 ILMN_1674645 44 [0.512, 0.613] [0.479, 0.599] [0.496, 0.761]

Appendix A: Inference for Single Element and Linear
Functional of β0

We provide a brief discussion of the element-wise inference for β0,j and
β2

0,j (j = 1, . . . , pn). The estimator for β0,j is

β̂j = eT
j,pn β̂ = β0,j + eT

j,pn(XTX)−1XTε.

If σ 2
ε = o(n), then σ−1

β̂j
(β̂j − β0,j)

D→ N(0, 1), where σ 2
β̂j

=
σ 2
ε eT

j,pn
E{(XTX)−1I(K)}ej,pn = �(σ 2

ε /n). If σ 2
ε = �(1) and Xi ∼

N(0pn , Ipn), the bias of β̂2
j is

E(β̂2
j ) − β2

0,j = σ 2
ε eT

j,pn E{(XTX)−1}ej,pn = �(1/n).

Therefore, the bias of β̂2
j is ignorable if n−1 = o(β2

0,j). Inference for

β2
0,j can be conducted using (2β0,jσβ̂j

)−1(β̂2
j − β2

0,j)
D→ N(0, 1). The

√
n(β̂2

j − β2
0,j) versus j and the bias for ||β̂||22 are plotted in Figure A1.

Figure A1. Plots of
√

n(β̂2
j − β2

0,j) versus j (solid line) and bias for ||β̂||22 (dash-
dotted line) under the same setting as in Figure 1 with pn = 500.

We then discuss the inference for linear functionals cTβ0 where
c ∈ R

pn is deterministic. The estimator for cTβ0 is cT β̂ =
cTβ0 + cT(XTX)−1XTε. Following the proof of Theorem 1, its
limiting distribution is σ−1

L (cT β̂ − cTβ0)
D→ N(0, 1) where

σ 2
L = σ 2

ε cTE{(XTX)−1I(K)}c with a ratio consistent estimator
σ̂ 2

L = σ̂ 2
ε cT(XTX)−1c.

Appendix B: Relation Between τ and SNR

According to Theorem 4, define

• strong SNR: p2
n/n = o(SNR);

• weak SNR: SNR � p2
n/n.

Figure B1 describes the precise relation between τ and the signal
strength under mild conditions. In particular, τ = 0/τ > 0 may imply
strong/weak signals unless we allow ||β0||2 or σ 2

ε to diminish.

Appendix C: Proofs of Main Theoretical Results

This section includes the proofs of Lemmas 1 and 2 and Theorems 1
and 3. In all the proofs, we only consider the case that σ 2

ε is fixed. The
results for diverging σ 2

ε can be simply obtained by replacing Yi, ε and
β0 with Yi/σε , ε/σε and β0/σε , respectively, in the proofs.

We introduce some notations and equations. Let X(i) = (X1, . . . ,
Xi−1, Xi+1, . . . , Xn)T for i = 1, . . . , n, that is, the design matrix
without the ith observation. Similarly, X(i,j) denotes the design matrix
without the ith and jth observations for 1 ≤ i �= j ≤ n. From the
Sherman–Morrison formula (Sherman and Morrison 1950),

(XTX)−1 = (XT
(1)X(1) + X1XT

1 )−1 = (XT
(1)X(1))

−1

−
(XT

(1)
X(1))

−1X1XT
1 (XT

(1)
X(1))

−1

1 + XT
1 (XT

(1)
X(1))

−1X1
, (C.1)

and hence,

(XTX)−2 = (XT
(1)X(1))

−2 − (XT
(1)X(1))

−2X1XT
1 (XT

(1)X(1))
−1/

{1 + XT
1 (XT

(1)X(1))
−1X1} (C.2)

− (XT
(1)X(1))

−1X1XT
1 (XT

(1)X(1))
−2/



16 X. GUO AND G. CHENG

Figure B1. Relation between τ = 0/τ > 0 and strong/weak signal.

{1 + XT
1 (XT

(1)X(1))
−1X1} (C.3)

+ {(XT
(1)X(1))

−1X1XT
1 (XT

(1)X(1))
−1}2/

{1 + XT
1 (XT

(1)X(1))
−1X1}2. (C.4)

Therefore,

(XTX)−1X1 =
(XT

(1)
X(1))

−1X1

1 + XT
1 (XT

(1)
X(1))

−1X1
, (C.5)

(XTX)−2X1 =
(XT

(1)
X(1))

−2X1

1 + XT
1 (XT

(1)
X(1))

−1X1

−
(XT

(1)
X(1))

−1X1XT
1 (XT

(1)
X(1))

−2X1

{1 + XT
1 (XT

(1)
X(1))

−1X1}2 , (C.6)

XT
1 (XTX)−2X1 =

XT
1 (XT

(1)
X(1))

−2X1

{1 + XT
1 (XT

(1)
X(1))

−1X1}2 . (C.7)

The following are the proofs of the main results in this article.

Proof of Lemma 1. For Zi = (zi1, . . . , zipn)T defined in Condition A1,
let z∗

ij = zijI(|zij| ≤ √
n/

√
log n) − E{zijI(|zij| ≤ √

n/
√

log n)}, z̃ij =
zij−z∗

ij = zijI(|zij| >
√

n/
√

log n)+E{zijI(|zij| ≤ √
n/

√
log n)}, Z∗

i =
(z∗

i1, . . . , z∗
ipn

)T , Z̃i = (z̃i1, . . . , z̃ipn)T , Z∗ = (Z∗
1, . . . , Z∗

n)T =
(z∗

ij)i≤n,j≤pn and Z̃ = (Z̃1, . . . , Z̃n)T = (z̃ij)i≤n,j≤pn .
Then, E(z∗

ij) = 0 and by Cauchy–Schwarz inequality and Cheby-
shev’s inequality,

1 − E(z∗2
ij )

= 1 − E{z2
ijI(|zij| ≤ √

n/
√

log n)} + [E{zijI(|zij| ≤ √
n/

√
log n)}]2

= 1 − 1 + E{z2
ijI(|zij| >

√
n/

√
log n)}

+[E{zijI(|zij| >
√

n/
√

log n)}]2

≤ 2E{z2
ijI(|zij| >

√
n/

√
log n)} ≤ 2{E(z4

ij)P(|zij| >
√

n/
√

log n)}1/2

� {P(|zij| >
√

n/
√

log n)}1/2 ≤ {E(z4
ij)/(

√
n/

√
log n)4}1/2

� (log n)/n,

which implies that maxj≤pn
∑n

i=1 |1 − E(z∗2
ij )| � log n = o(n). Also,

sup
i≤n,j≤pn,n≥1

E(z∗4
ij )

� sup
i≤n,j≤pn,n≥1

(
E{zijI(|zij| ≤ √

n/
√

log n)}4

+[E{zijI(|zij| ≤ √
n/

√
log n)}]4)

� sup
i≤n,j≤pn,n≥1

E{zijI(|zij| ≤ √
n/

√
log n)}4 + C

≤ sup
i≤n,j≤pn,n≥1

E(z4
ij) + C ≤ 2C < ∞.

It is easy to see |z∗
ij| ≤ 2

√
n/

√
log n. From Theorem 9.13 of Bai and

Silverstein (2010), for any s1 > (1 + √
τ)2, s2 < (1 − √

τ)2 and any
� > 0, we have

P(||Z∗TZ∗/n||2 > s1) = o(n−�),

P(||(Z∗TZ∗/n)−1||2 > 1/s2) = o(n−�).

Since Z = Z∗+Z̃, we have ZTZ/n = Z∗TZ∗/n+Z̃TZ∗/n+Z∗TZ̃/n+
Z̃TZ̃/n. We know that

||Z̃TZ̃/n||2 ≤ ||Z̃TZ̃/n||1 = max
i≤pn

pn∑
j=1

∣∣∣
n∑

t=1
z̃tiz̃tj/n

∣∣∣. (C.8)

Note E(z̃ti) = 0, E(z̃tiz̃tj) = 0 for i �= j, and, for any integer k > 0,
from Cauchy–Schwarz inequality,

E|z̃ti|k = E|ztiI(|zti| >
√

n/
√

log n) + E{ztiI(|zti| ≤ √
n/

√
log n)}|k

= E|ztiI(|zti| >
√

n/
√

log n) − E{ztiI(|zti| >
√

n/
√

log n)}|k
� E|ztiI(|zti| >

√
n/

√
log n)|k

≤ {E|zti|2kP(|zti| >
√

n/
√

log n)}1/2

� {P(|zti| >
√

n/
√

log n)}1/2.

Therefore, for any integer � > 0, taking x = 1/
√

n, from (C.8) and
Markov’s inequality,

P(||Z̃TZ̃/n||2 > x)

≤ P
(

max
i≤pn

pn∑
j=1

∣∣∣
n∑

t=1
z̃tiz̃tj/n

∣∣∣ > x
)

≤ pnP
( pn∑

j=1

∣∣∣
n∑

t=1
z̃tiz̃tj/n

∣∣∣ > x
)

≤ p2
nP

(∣∣∣
n∑

t=1
z̃tiz̃tj/n

∣∣∣ > x/pn
)

≤ p2
nP

(∣∣∣
n∑

t=1
z̃2

ti/n
∣∣∣
∣∣∣

n∑
t=1

z̃2
tj/n

∣∣∣ > x2/p2
n
)

� p2
nP

(∣∣∣
n∑

t=1
z̃2

ti/n
∣∣∣ > x/pn

)
≤ p2

nE
(∣∣∣

n∑
t=1

z̃2
ti/n

∣∣∣2�)/
(x/pn)2�
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= p2�+2
n x−2�n−2�E

(∣∣∣
n∑

t=1
z̃2

ti

∣∣∣2�)

� p2�+2
n x−2�n−2�n2�E|z̃2

ti|2� � p2�+2
n x−2�E|z̃ti|4�

� p2�+2
n x−2�{P(|zti| >

√
n/

√
log n)}1/2

� p2�+2
n x−2�{E|zti|28�/(

√
n/

√
log n)28�}1/2

� p2�+2
n x−2�(

√
log n/

√
n)14�

≤ (log n)7�n−5�+2x−2� = (log n)7�n−4�+2 = o(n−�).

Then, for n large enough,

P(||Z̃TZ∗/n||2 > 1/log n) ≤ P(||Z̃T ||2||Z∗||2/n > 1/log n)

= P(||Z̃TZ̃/n||2||Z∗TZ∗/n||2 > 1/(log n)2)

≤ P(||Z̃TZ̃/n||2 > n−1/4/ log n) + P(||Z∗TZ∗/n||2 > n1/4/ log n)

= o(n−�).

Therefore, taking μ1 = 4(1 + √
τ)2 and μ2 = (1 − √

τ)2/4, we have

P(||ZTZ/n||2 ≥ μ1)

≤ P(||Z∗TZ∗/n||2 > μ1/2) + P(||Z̃TZ∗/n||2 > μ1/8)

+P(||Z∗TZ̃/n||2 > μ1/8) + P(||Z̃TZ̃/n||2 > μ1/8) = o(n−�),

and

P(||(ZTZ/n)−1||2 ≥ 1/μ2) = P(λmin(ZTZ/n) ≤ μ2)

≤ P(λmin(Z∗TZ∗/n) − ||Z̃TZ∗/n||2 − ||Z∗TZ̃/n||2
−||Z̃TZ̃/n||2 ≤ μ2)

≤ P(λmin(Z∗TZ∗/n) < 2μ2) + P(||Z̃TZ∗/n||2 ≥ μ2/4)

+P(||Z∗TZ̃/n||2 ≥ μ2/4) + P(||Z̃TZ̃/n||2 ≥ μ2/4)

= P(||(Z∗TZ∗/n)−1||2 > 1/(2μ2)) + o(n−�) = o(n−�).

Then, taking x1 = ||�||2μ1 and x2 = μ2/||�−1||2, we have

P(||XTX/n||2 ≥ x1) ≤ P(||�||2||ZTZ/n||2 ≥ x1)

= P(||ZTZ/n||2 ≥ x1/||�||2) = o(n−�),
P(||(XTX/n)−1||2 ≥ x−1

2 ) ≤ P(||�−1||2||(ZTZ/n)−1||2 ≥ x−1
2 )

= P(||(ZTZ/n)−1||2 ≥ (x2||�−1||2)−1)

= o(n−�).

Proof of Theorem 1. We first consider the situation that limn→∞ pn =
∞ for part (a). From Lemma 2 that tr{(XTX)−1} − Etr{(XTX)−1

I(K)} = oP(pn/n). Under event K, the eigenvalues of XTX/n are
bounded away from 0 and infinity. Hence, Etr{(XTX)−1I(K)} =
�(pn/n). Therefore, we have tr{(XTX)−1} = Etr{(XTX)−1I(K)}{1 +
oP(1)}. From

||β̂||22 − ||β0||22 − tr{(XTX)−1}σ̂ 2
ε

= ||β̂ − β0||22 + 2βT
0 (β̂ − β0) − tr{(XTX)−1}σ̂ 2

ε

= [||β̂ − β0||22 − tr{(XTX)−1}σ 2
ε ] − tr{(XTX)−1}(σ̂ 2

ε − σ 2
ε )

+2βT
0 (β̂ − β0)

≡ I1 − Etr{(XTX)−1I(K)}{1 + oP(1)}I2 + 2I3,

we first demonstrate the asymptotic normality of ζ−1
n (c1I1 + c2I2 +

c3I3)I(K) for any constants c1 = �(1), c2 = �(pn/n) and c3 = �(1).
For notational simplicity, denote M1 = X(XTX)−2XT , M2 = {In−

X(XTX)−1XT}/(n − pn) and vT = βT
0 (XTX)−1XT . Then,

I1 = εTM1ε − tr{(XTX)−1}σ 2
ε

= 2
∑

1≤i<j≤n
M1(i, j)εiεj +

n∑
j=1

M1(j, j)ε2
j − tr{(XTX)−1}σ 2

ε

= 2
∑

1≤i<j≤n
M1(i, j)εiεj +

n∑
j=1

M1(j, j)(ε2
j − σ 2

ε ),

I2 = εTM2ε − σ 2
ε = 2

∑
1≤i<j≤n

M2(i, j)εiεj +
n∑

j=1
M2(j, j)(ε2

j − σ 2
ε ),

I3 = vTε =
n∑

j=1
vjεj,

where Mk(i, j) is the (i, j)th element of Mk (k = 1, 2) and v =
(v1, . . . , vn)T . Hence,

c1I1 + c2I2 + c3I3
= 2

∑
1≤i<j≤n

{c1M1(i, j) + c2M2(i, j)}εiεj

+
n∑

j=1
{c1M1(j, j) + c2M2(j, j)}(ε2

j − σ 2
ε ) + c3

n∑
j=1

vjεj

=
n∑

j=1

[ ∑
1≤i<j

2{c1M1(i, j) + c2M2(i, j)}εiεj

+{c1M1(j, j) + c2M2(j, j)}(ε2
j − σ 2

ε ) + c3vjεj
]

≡
n∑

j=1
Uj.

Note that UjI(K), j = 1, 2, . . . , is a martingale difference, with

E(UjI(K)|X, ε1, . . . , εj−1) = 0

and
n∑

j=1
E[{UjI(K)}2|X, ε1, . . . , εj−1]

= I(K)

n∑
j=1

E
([ ∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}εiεj

+{c1M1(j, j) + c2M2(j, j)}(ε2
j − σ 2

ε ) + c3vjεj
]2∣∣∣X, ε1, . . . , εj−1

)

= I(K)

n∑
j=1

E
([ ∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}εi

]2
ε2

j

+{c1M1(j, j) + c2M2(j, j)}2(ε2
j − σ 2

ε )2 + c2
3v2

j ε2
j

+2
∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}εiεj{c1M1(j, j) + c2M2(j, j)}

×(ε2
j − σ 2

ε )

+2
∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}εiεjc3vjεj

+2{c1M1(j, j) + c2M2(j, j)}(ε2
j − σ 2

ε )c3vjεj
∣∣∣X, ε1, . . . , εj−1

)

= I(K)

n∑
j=1

([ ∑
1≤i<j

2{c1M1(i, j) + c2M2(i, j)}εi
]2

σ 2
ε

+{c1M1(j, j) + c2M2(j, j)}2var(ε2
j ) + c2

3v2
j σ 2

ε

+2
∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}{c1M1(j, j) + c2M2(j, j)}E(ε3

j )εi
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+2
∑

1≤i<j
2{c1M1(i, j) + c2M2(i, j)}εic3vjσ

2
ε

+2{c1M1(j, j) + c2M2(j, j)}E(ε3
j )c3vj

)

≡ I(K)

n∑
j=1

(II1,j + II2,j + II3,j + II4,j + II5,j + II6,j).

Denote tn = ||β0||2/
√

n + √pn/n. Lemmas S.6–S.11 imply

var
{ n∑

j=1
IIk,jI(K)

}
= o(t4

n), for k = 1, . . . , 6. (C.9)

Lemma S.5 indicates
n∑

j=1
E{UjI(K)}4 = o(t4

n). (C.10)

From Lemmas S.12–S.14, we have

n∑
j=1

3∑

k=1
E{IIk,jI(K)} = O(t2

n). (C.11)

Lemmas S.9–S.11 imply that

n∑
j=1

6∑

k=4
E{IIk,jI(K)} = o(t2

n). (C.12)

Checking conditions (2) and (4) with δ = 1 in the theorem of
Heyde and Brown (1970), from (C.9)–(C.12), taking c1 = 1, c2 =
−Etr{(XTX)−1I(K)}, and c3 = 2,

ζ−1
n (c1I1 + c2I2 + c3I3)I(K)

D→ N(0, 1),

where, from Lemmas S.12–S.14,

ζ 2
n = 4σ 2

ε βT
0 E{(XTX)−1I(K)}β0 + 2σ 4

ε Etr{(XTX)−2I(K)}

+ 2σ 4
ε

n − pn
[Etr{(XTX)−1I(K)}]2

= �(σ 2
ε ||β0||22/n + σ 4

ε pn/n2 + σ 4
ε p2

n/n3)

= �(σ 2
ε ||β0||22/n + σ 4

ε pn/n2) = �(t2
n).

For part (b), if p1/2
n /n = o(SNR), then ζ 2

n = o(||β0||42). Then, ˆ||β||22 −
||β0||22 = OP(ζn) = oP(||β0||22).

Last, we consider the case for fixed pn. Since β0 and σ 2
ε do not

change with n and β0 �= 0pn , we have n−1 = o(SNR). Note

||β̂||22 − ||β0||22 − tr{(XTX)−1}σ̂ 2
ε

= ||β̂ − β0||22 + 2βT
0 (β̂ − β0) − tr{(XTX)−1}σ̂ 2

ε

= εTX(XTX)−2XTε + 2βT
0 (β̂ − β0) − tr{(XTX)−1}σ̂ 2

ε .

Following the proof for I3, we have 2βT
0 (β̂ − β0)/[4σ 2

ε βT
0 E{(XTX)−1

I(K)}β0]1/2 D→ N(0, 1) and hence 2βT
0 (β̂−β0) = �P(σε ||β0||2/

√
n).

From E{εTX(XTX)−2XTεI(K)} = �(σ 2
ε pn/n), tr{(XTX)−1}σ̂ 2

ε =
σ 2
ε OP(pn/n) and n−1 = o(SNR), we have the following results

ζ 2
n = �[4σ 2

ε βT
0 E{(XTX)−1I(K)}β0] and ( ˆ||β||22 − ||β0||22)/[4σ 2

ε βT
0

E{(XTX)−1I(K)}β0]1/2 D→ N(0, 1). Hence, ( ˆ||β||22 − ||β0||22)/ζn
D→

N(0, 1). The proof for part(b) is similar to that for diverging pn.
In the end, we will discuss the extension to fixed design. From the

proofs for (C.9)–(C.12) with c1 = 1, c2 = −Etr{(XTX)−1I(K)} and
c3 = 2, there exists a sequence of positive real numbers {ωn}n≥1 with

ωn = o(1) and constants 0 < C1 < C2 < ∞, such that P(X ∈ Xn) →
1 where Xn ⊆ R

n×pn is a collection of all x ∈ R
n×pn satisfying

6∑

k=1
var

{ n∑
j=1

IIk,jI(K)

∣∣∣X = x
}

≤ ωnt4
n,

n∑
j=1

E[{UjI(K)}4|X = x] ≤ ωnt4
n,

n∑
j=1

3∑

k=1
E{IIk,jI(K)|X = x} ∈ [C1t2

n, C2t2
n],

n∑
j=1

6∑

k=4
E{IIk,jI(K)|X = x} ≤ ωnt2

n

∣∣∣4σ 2
ε βT

0 (xTx)−1β0 + 2σ 4
ε tr{(xTx)−2}

+ 2σ 4
ε

n − pn
[tr{(xTx)−1}]2 − ζ 2

n
∣∣∣ ≤ ωnt2

n, (C.13)

while the last equation above is due to Lemma 2. Then, using the
martingale difference CLT in Heyde and Brown (1970), the asymptotic
standard normality holds for ( ˆ||β||22 − ||β0||22)/ζn conditioning on X
= x for any x ∈ Xn. The consistency result in part (b) can be derived
using similar arguments.

Proof of Lemma 2. We provide the proof given event H. The results
given event K can be similarly derived.

From Efron–Stein inequality in Efron and Stein (1981), if W is a
function of n independent random variables and W(i) is any function
of all those random variables except the ith, then

var(W) ≤
n∑

i=1
var(W − W(i)) ≤

n∑
i=1

E(W − W(i))
2. (C.14)

First, we use (C.14) with

W = nk/pntr{(XTX)−k}I(H),

W(i) = nk/pntr{(XT
(i)X(i))

−k}I(H(i)),

where H(i) denotes the event that ||(XT
(i)X(i)/n)−1||2 ≤ 1/x2. Note

n∑
i=1

E(W − W(i))
2 = nE(W − W(i))

2

� nE[nk/pntr{(XTX)−k}{I(H) − I(H(i))}]2

+nE[nk/pntr{(XTX)−k}I(H(i)) − nk/pntr{(XT
(i)X(i))

−k}I(H(i))]2

= I + II.

Since XTX � XT
(i)X(i), we know ||(XTX)−1||2 ≤ ||(XT

(i)X(i))
−1||2 and

hence H ⊇ H(i). Then, I(H) − I(H(i)) = I(H ∩ H̄(i)) = I(H)I(H̄(i)).
From Lemma 1,

I ≤ n(nk/pn)2(pnn−k)2P(H̄(i)) = O(1/n).

Next, given H(1), we will show that

n2k+1/p2
nE[tr{(XTX)−k} − tr{(XT

(1)X(1))
−k}]2 = O(1/n).

From (C.1), we have

(XTX)−k = (XT
(1)X(1))

−k + �,
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where � is a sum of 2k − 1 terms, each of which can be expressed as
A1 × A2 × · · · × Ak with Ai = (XT

(1)
X(1))

−1 or Ai = B (i = 1, . . . , k)
where

B = −(XT
(1)X(1))

−1X1XT
1 (XT

(1)X(1))
−1/{1 + XT

1 (XT
(1)X(1))

−1X1},

and at least one of A1, . . . , Ak is B. It suffices to show that for each of
the 2k − 1 terms in �, E{tr(A1A2 · · · Ak)}2 = O(p2

nn−2k−2). Without
loss of generality, if A1 = B, then from Lemmas 1 and S.1, given event
H(1),

E{tr(A1A2 · · · Ak)}2 ≤ E{XT
1 (XT

(1)X(1))
−1A2 · · · Ak(XT

(1)X(1))
−1X1}2

= O(p2
nn−2k−2).

Next, we prove the second result of this lemma. Without loss of
generality, assume ||β0||2 = 1, and we will use (C.14) again with
W = nkβT

0 (XTX)−kβ0I(H) and W(i) = nkβT
0 (XT

(i)X(i))
−kβ0I(H(i))

to show that, for each of the 2k − 1 terms in �,

n2k+1E{βT
0 A1A2 · · · Akβ0I(H(i))}2 = O(1/n).

We only give the proof of a special case that A1 = A2 = B, and
A3 = · · · = Ak = (XT

(1)
X(1))

−1. From Lemma S.1,

E{βT
0 A1A2 · · · Akβ0I(H(1))}2

≤ E{βT
0 (XT

(1)X(1))
−1X1XT

1 (XT
(1)X(1))

−2X1XT
1 (XT

(1)X(1))
−1

×(XT
(1)X(1))

−k+2β0I(H(1))}2

= E{(βT
0 (XT

(1)X(1))
−1X1)2(XT

1 (XT
(1)X(1))

−2X1)2

×(XT
1 (XT

(1)X(1))
−k+1β0)

2I(H(1))}
≤ [E{(βT

0 (XT
(1)X(1))

−1X1)
4I(H(1))}]1/2

×[E{(XT
1 (XT

(1)X(1))
−2X1)8I(H(1))}]1/4

·[E{(XT
1 (XT

(1)X(1))
−k+1β0)

8I(H(1))}]1/4

� {E||βT
0 (XT

(1)X(1))
−1I(H(1))||42}1/2

×[E{XT
1 (XT

(1)X(1))
−2X1I(H(1))}8]1/4

·{E||(XT
(1)X(1))

−k+1β0I(H(1))||82}1/4

� n−2n−2n−2k+2 = O(n−2k−2).

The proofs for the other terms are similar. We complete the proof.

Proof of Theorem 3. First, we consider pn → ∞. Following the proof
of Theorem 1, if c1 = 1, c2 = −Etr{(XTX)−1I(K)}, c3 = 2, we
have ζ̂ 2

n − ζ 2
n = oP(t2

n) using the results in Lemmas S.12–S.14 and
Proposition 1, where tn is defined in the proof of Theorem 1.

For fixed pn, we first show that β̂
T
(XTX)−1β̂/B P→ 1, where B =

βT
0 E{(XTX)−1I(K)}β0 = �(||β0||22/n). Note

β̂
T
(XTX)−1β̂ = βT

0 (XTX)−1β0 + 2βT
0 (XTX)−2XTε

+εTX(XTX)−3XTε.

From Lemma 2, βT
0 (XTX)−1β0/B P→ 1. Since 2βT

0 (XTX)−2XTε =
OP(σε ||β0||2n−3/2) = oP(B) and εTX(XTX)−3XTε = OP(σ 2

ε

n−2) = oP(B), we claim that β̂
T
(XTX)−1β̂/B P→ 1.

Recall ζ̂ 2
n = 4σ̂ 2

ε β̂
T
(XTX)−1β̂ − 2σ̂ 4

ε tr{(XTX)−2} + 2σ̂ 4
ε

[tr{(XTX)−1}]2/(n − pn). Then 2σ̂ 4
ε tr{(XTX)−2} = OP(σ 4

ε n−2) =
oP(σ 2

ε B) and 2σ̂ 4
ε [tr{(XTX)−1}]2/(n−pn) = OP(σ 4

ε n−3) = oP(σ 2
ε B).

Therefore, from Proposition 1, we have ζ̂ 2
n /(4σ 2

ε B)
P→ 1.

Following the proof of Theorem 1, we have ζ 2
n /(4σ 2

ε B)
P→ 1, which

implies that ζ̂ 2
n /ζ 2

n
P→ 1. We complete the proof.

Supplementary Materials

The supplementary material includes a discussion of the conditions in
Kelejian and Prucha (2001), extension of our results to centralized data,
conventional inference for the fraction of variance explained, two-sample
inferences, and the proofs for the rest of the main theoretical results as well
as the technical lemmas.
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