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ABSTRACT

Statistical inferences for quadratic functionals of linear regression parameter have found wide applications
including signal detection, global testing, inferences of error variance and fraction of variance explained.
Classical theory based on ordinary least squares estimator works perfectly in the low-dimensional regime,
but fails when the parameter dimension p, grows proportionally to the sample size n. In some cases, its
performance is not satisfactory even when n > 5pp,. The main contribution of this article is to develop
dimension-adaptive inferences for quadratic functionals when limp—, oo pn/n = t© € [0, 1). We propose a
bias-and-variance-corrected test statistic and demonstrate that its theoretical validity (such as consistency
and asymptotic normality) is adaptive to both low dimension with 7 = 0 and moderate dimension with
T € (0,1). Our general theory holds, in particular, without Gaussian design/error or structural parameter
assumption, and applies to a broad class of quadratic functionals covering all aforementioned applications.
As a by-product, we find that the classical fixed-dimensional results continue to hold if and only if the
signal-to-noise ratio is large enough, say when p,, diverges but slower than n. Extensive numerical results
demonstrate the satisfactory performance of the proposed methodology even when p, > 0.9n in some
extreme cases. The mathematical arguments are based on the random matrix theory and leave-one-
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observation-out method.

1. Introduction

The linear regression model is one of the most widely used
statistical tools to discover the relation between a continuous
response and a class of explanatory variables in different scien-
tific areas. Specifically, we consider

Yi=X/Bo+e, fori=1,...,n, (1)

where B, = (Bo1,--- ,ﬁo,p")T € RPr is an unknown vector
of parameters, and {e;}?_; are iid errors independent of {X;}_,
with E(¢;) = 0 and var(¢;) = af. We assume {Y;, X}, are
iid observations with E(X;) = 0,, and cov(X;) = X, without
imposing any specific distributional assumption on either X; or
€; throughout this article. Denoting Y = (Y3,..., Yol X =
X1,...X)T, and € = (e1,...,€x)T, (1) can be re-expressed
as

YZXﬂ0+€.

For fixed dimension, statistical estimation and inference for
B, and o2 have been well studied based on the ordinary least
squares (OLS) estimator,

B=x"x)"'x"y.

In the modern high-dimensional regime, the parameter
dimension p,, is allowed to be much larger than #, for example,
(logpn)/n = o(1), but in most cases the number of nonzero
elements in B is a vanishing fraction of n. Such a sparsity
condition is commonly assumed in the high-dimensional

literature, for example, Meinshausen and Yu (2009), van de Geer
(2008), and Zhang and Huang (2008) on oracle inequality and
parameter estimation; Tibshirani (1996), Fan and Lv (2008),
and Meinshausen and Biithlmann (2006) on variable selection,
and Javanmard and Montanari (2014), van de Geer et al. (2014),
and Zhang and Zhang (2014) on statistical inference. However,
in reality, p, may be moderately large, that is, of the same
magnitude as n, and B, is not necessarily sparse. One example is
the genomic study, where the number of significantly identified
genes with association in trans, that is, p, = 108, is moderately
large compared with n = 270; see Stranger et al. (2007).

For moderate dimension with lim,_, pn/n = T € (0,1),
which is of major concern in this article, some classical statistical
inference procedures developed for fixed-dimensional data are
no longer valid. For example, when p,, is fixed, we can test

Ho : [|Boll2 = co Hy @ [|Boll2 # cos (2)

for a known constant cp > 0, by calculating the Z-score

versus

IBIZ — ¢
Zo = M, (3)
o
where
. R . Y — XB| |2
£2=4628" (xXTX)"'p and &2 = %. (4)
n—>DPpn

Under the null hypothesis, Zj B N(0,1); see Theorem 4.
Hence, the p-value for testing (2) is 2®(—|zg|), where zg is a
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Figure 1. p-values of Zg (top panels) and Zp, (bottom panels). The panels from left to right are for p, = 10/200/500,/900.

realization of Zg and ®(-) is the cumulative distribution func-
tion of the standard normal distribution.

We next examine the empirical performance of the con-
ventional Z-test by setting n = 1000 with p, = 10 for fixed
dimension and p, = 200, 500, and 900 for moderate dimen-

sion. Consider X; i N(0,,,1p,) and ¢; i N(0, 1), where
I, denotes the p, x p, identity matrix. The true parameter
Bo ,j’s were generated independently from Unif(0, 1), and 40,000
replications were conducted in each setup. The plots of the
p-values under the valid null hypothesis are given in the top
panels of Figure 1. The uniform distribution of the p-values
when p, = 10 is consistent with the classical fixed-dimensional
theory. But for p,, = 200, 500, and 900, p-values are relatively
concentrated around 0. We further test the uniform distribution
of the p-values by the formal Kolmogorov-Smirnov (KS) test
(Kolmogorov 1933; Smirnov 1939), and find that the p-values
for p, = 10, 200, 500, and 900 are 0.2518, 8.05 x 107, 0, and
0, respectively. Hence, the naive Z-score does not work under
moderate dimension, say even when n > 5p,,.

The main focus of this article is on the moderate-dimensional
inference without imposing any type of structural conditions
on 8, and X, while our results are also adaptive to the low-
dimensional case with T = 0.! Specifically, we conduct statisti-
cal inferences for a class of quadratic functionals such as || 8| |§
and o2, which cover a wide range of applications including
signal detection and global testing. A related line of work is
the study of the signal strength 81 %8, by Dicker (2014) and
Janson, Barber, and Candés (2017). However, their procedures
crucially rely on the fact that Y; ~ N(0, B =8, +02), and their
theoretical results hold only when X; and ¢; are both Gaussian.
Hence, their results are not readily carried over into our case,
for example, two-sample inference. Additionally, different tools
such as leave-one-observation-out method (El Karoui 2013,
2018) are used in our article. Please see more discussions in
the end of Section 3.4. As a side remark, we point out that
the classical fixed-dimensional inference may still be applied to

"We call it low-dimensional regime when p, — oo but pp/n — 0. Hence,
both fixed- and low-dimensional regimes correspond to that ¢ = 0.

the low-dimensional regime if and only if the signal-to-noise
ratio SNR := Var(Xfﬂo)/var(e,') = ﬂgZﬂo/of is large.
However, the strength of the SNR cannot be directly examined
in practice. Hence, the adaptiveness of our proposed method
(without relying on SNR) is practically important. In case of
interest, readers may refer to Figure Bl in Appendix B for the
precise relation between 7 and SNR.

Our primary contribution is to propose a bias-corrected

estimator ||B| |% for || Bl |% in (10), based on which a bias-and-
variance-corrected test statistic Z, is developed in (12). The
bottom panels of Figure 1 plot the p-values of Z, for p, = 10,
200, 500, and 900. The p-values of the KS test for the uniformity
are 0.4755, 0.1175, 0.8972 and 0.2672 correspondingly. Figure 2
plots the amount of empirical corrections of bias and variance

needed in ||B| |% under the same setting. It reveals that the bias
correction tends to —oo as T — 1, while the variance correction
diverges to co. The right panel of Figure 2 plots the relative
difference between Z,, and Z versus 7. As T deviates from zero,
the amount of correction rapidly increases to its largest value,
and then decreases and stabilizes around 1. As an immediate
application, global testing

Ho: By =B versus H: B, # B, (5)

can also be performed with a bias-and-variance-corrected
version of | |}§ - B 3“11| |§ as the test statistic. Please see Portnoy
(1985), Arias-Castro, Candes, and Plan (2011), Zhong and
Chen (2011), and Zhang and Cheng (2017) for low- and high-
dimensional results, respectively.

Our general moderate-dimensional theory can also be
applied to other statistical inference problems. For example,
we can detect the existence of signal by setting ¢o = 0 in (2). By
formulating a sequence of alternatives Hy, : ||B] |§ = §,, we
further show that §* := 02./p,n"" is the smallest separation
rate such that successful detection of Hy,, is still possible, which
matches with the minimax detection rate in Ingster, Tsybakov,
and Verzelen (2010). As far as we are aware, the existing
results concerned with detection boundary only focus on either
Gaussian mean models with p,, = # (e.g., Donoho and Jin 2004;
Cai, Jin, and Low 2007; Hall and Jin 2010), or high-dimensional
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Figure 2. Amount of empirical corrections of bias (left panel) and variance (middle panel) versus t for ||ﬂA| |§ compared with ||[§| |%. The right panel plots |Z, — Zo|/|Zo|

versus t.

data (e.g., Ingster, Tsybakov, and Verzelen 2010; Arias-Castro,
Candeés, and Plan 2011).

New results of inference on the error variance will also be
established for moderate dimension. We still use the estimator
62 defined in (4) for low-dimensional data, but modify its
asymptotic variance as 4‘62 ={w+ ‘754(37 —1)/(1 —1)}/nwith
Vg = E(ef) to derive that

~2 2
%e "% B N, 1).
€
One related result is concerned with the fraction of variance
explained (and also SNR), defined as

o e PO ZBo
BiXB, + o2

SNR

= , 6
SNR +1 ©)

which describes the proportion of the variance in the dependent
variable that is predictable from the independent variable. The
high-dimensional estimation of 5.2, pg and SNR can be found in
Sun and Zhang (2012), Fan, Guo, and Hao (2012), and Verzelen
and Gassiat (2018).

Our results can be naturally extended to two-sample infer-
ence. Here, we give two examples in Section S.4 in the supple-
mentary materials. Let y, € RP" be the regression parameter
in another linear regression model independent of (1). The first
issue is to test the equality of y, and B, while the second is
concerned with the co-heritability, defined as

Vgﬂo

= oll2liBoll @)

)

The measure 6 is an important concept that characterizes the
genetic associations within pairs of quantitative traits, whose
high-dimensional estimation has recently been studied in Guo
et al. (2016). Besides, an immediate application of our argu-
ments is the inference for the linear functionals as discussed in
Appendix A.

As a summary, a list of hypotheses in consideration together
with potential applications is given below:

o Testing the quadratic functional: hypotheses in (2);
« Signal detection: hypotheses in (2) with ¢y = 0;
+ Global testing: hypotheses in (5);

o Inference for the error variance o2

£ using Proposition 1;

o Testing the fraction of variance explained (or SNR): hypothe-
ses in (6);

« Inference for the signal strength 1 =8, using (16);

« Two-sample inferences: hypotheses in (S.4.2) and (S.4.3).

Our asymptotic normality result relies on the application of
the martingale difference central limit theorem (CLT) Heyde
and Brown (1970) to linear-quadratic forms, that is, eTAe +
b,Tle, where A, € R"™" (b, € R") is some random matrix
(vector) independent of €. Although CLT has been studied for
quadratic and linear-quadratic forms, to the best of our knowl-
edge, those results cannot be directly applied to our problem.
For example, Dicker and Erdogdu (2017) provided the concen-
tration bounds and finite sample multivariate normal approxi-
mation for quadratic forms, but these results are not applicable
to the linear-quadratic forms. de Jong (1987) developed CLT for
“clean” quadratic forms requiring zero elements on the diagonal
(see Definition 2.1 therein), which however is not satisfied by
the linear-quadratic form in our article. A more related exam-
ple is the CLT for the linear-quadratic form in Kelejian and
Prucha (2001) with A, and b, being deterministic. An impor-
tant assumption in Kelejian and Prucha (2001) is |[A,|l1 <
C < oo which is violated in our work (see Section S.1 in
the supplementary materials for detailed explanations). Besides,
two technical tools have been used in our article: random matrix
theory (Bai and Silverstein 2010) and leave-one-observation-
out method (El Karoui 2013, 2018). The former contributes
to bounding the eigenvalues of X' X/n from 0 and oo as in
Lemma 1, while the latter is employed here to demonstrate the
consistency of terms like tr{(XTX)~1} as in Lemma 2. Note
that no sparsity assumption on X is needed in our technical
analysis. It is worth pointing out that the theoretical results
above are adaptive to the low-dimensional regime, which makes
our proposed method concretely applicable in practice.

In the end, we conduct a real data analysis on the relationship
between gene expression and single nucleotide polymorphism
(SNP) with n = 377 and p,, ranging from 33 to 87. Specifically,
confidence intervals for the fraction of variance explained, that
is, po, are constructed using our proposed method, the con-
ventional method and the one in Dicker (2014) based on the
method of moment. We find that the conventional method may
falsely discover nonzero pg for some genes due to the moderate
dimension and insufficient SNR, and that our confidence inter-
val is mostly narrower than that by Dicker (2014).
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1.1. Related Works

Some earlier studies, for example, Portnoy (1984, 1985), focused
on the quadratic functional (ii — ﬁO)TXTX([i — By), under
the low-dimensional regime, that is, T = 0. In the moderate-
dimensional regime, El Karoui (2013, 2018), El Karoui et al.
(2013), and Donoho and Montanari (2016) studied the
consistency of || ﬂ Boll2 for a general M-estimator ,B As far
as we are aware, these techniques and results for consistency
are not ready for deriving the asymptotic distributions of the
quadratic functionals, which is the main contribution of our
work. Another line of research is the element-wise inference
(Bai et al. 2013; Dobriban and Su 2018; Lei, Bickel, and
El Karoui 2018; Sur, Chen, and Candeés 2019) whose strategies
for analyzing single-element estimation error cannot be easily
adapted for the analysis of aggregated estimation errors, for
example, quadratic functionals. To elucidate the difference
between the two types of inferences, we plot Jn(B jz - ,33 ,j) versus

j and ||}§||% — ||ﬁ0||% in Figure Al. In the high-dimensional
regime, a more recent result is Cai and Guo (2018) who
studied the point and interval estimations of || B — /30||é with
1<g=<2

The rest of the article is organized as follows. Section 2
develops the bias-and-variance-corrected inference for ||ﬂ0||%
and demonstrates that the conventional procedure works if and
only if the SNR is large. Section 3 consists of important appli-
cations of inferences for the quadratic functionals, including
signal detection, global testing, inferences for the error variance
and fraction of variance explained. Simulations are conducted
in Section 4 and a real data analysis is performed in Section 5.
The proofs of some main theoretical results are included in
the Appendix while the remaining proofs are relegated to the
supplementary materials.

1.2. Notation

Let |-] be the floor function. For any set G, denote by G the
complement of G. Let I(-) be the indicator function. Denote by
I, the m x midentity matrix and by e;,, (j = 1,...,m) the jth
column of I,,,. Let 0,, € R™ and 1,,, € R™ be the vectors of zeros
and ones, respectively. For a vector v = (vy,..., V)T, the Ly,
L, and Lo norms are |[v|[; = Z —1 vils [Ivll2 = (Z, 1V 1)1/2
and ||v||coc = max;<,, |vi|, respectively. For an m X m matrix
A = {ajj}1<ij<m> denote by Amax(A) and Amin(A) the maximum
and minimum eigenvalues of A, respectively. Let |A| be the
determinant of A. The Ly, L, and Ly, norms of A are defined
as [|Alll = maxi<jcm Y oimy lagl |[Allz = {Amax(A’A)}/?
and [[A]|ec = maXj<i<m Z]'il |ajj|, respectively. For sequences
{an}n>1 and {b,,},>1, we write a, < by, (a, 2 by) if there exists
a constant C > 0 independent with # such that |a,| < C|b,|
(lJay] = C|by]). Denote a, = K(b,) if a, = O(b,) and
b, = O(ay). If {Uy}n>1 and {V,},>1 are random sequences,
then U, = Qp(V,) denotes that U, = Op(V,) and V,, =
Op(U,). Notation “S; <= S,” means that statements S; and
S, are equivalent, while “S; = §,” denotes that S; implies
S». In the following, C and ¢ are generic finite constants which
may vary from place to place and do not depend on sample
size n.

2. Statistical Inference for Quadratic Functionals

This section establishes the dimension-adaptive inference for
||ﬂ0||§, which is the main theoretical result of this article. As a
by-product, we discover that the classical (fixed-dimensional)
statistical inference procedure continues to work in the low-
dimensional regime if and only if the signal-to-noise ratio is
large. As far as we are aware, this finding is new for quadratic
functional ||B,] |%.

We start with an examination of the plug-in estimator ||B | |§
for ||8,||2. The estimation error || B2 —||8,||3 can be expressed
as a linear-quadratic form, that is, sum of a quadratic term and
a linear term, as follows

118115 — 11Boll3 = " X(X"X) X e + 285 (X" %) 'xe. (8)
The linear term has zero mean and hence the bias of || B| |% is

1Boll3 = E{e " X(X"X)*X "€}
= Etr{(XTX) V)02 > 0. 9)

E(|1B13) —

iid
For a special case that X; ~N (0p,,1p,), XTX)~! follows the
inverse Wishart distribution and hence

Etr{(XTX)_l} =pa/(n—py—1) —>7t/(1—71), asn— oo.

For low dimension with 7 = 0, || ,@ | |% is asymptotically unbiased
and its asymptotic distribution can be established based on the
dominating linear term as in Theorem 4 to be introduced later.
However, when T > 0, the bias (9) is nonignorable, leading to
failure of the conventional low-dimensional results.

The analysis above suggests a bias-corrected estimator for

11Bol13:

18112 = 118113 — tr{(XTX)"1}62, (10)

where a is defined in (4). Since X and € are independent,
||/3 |13 is unbiased for ||B,||3. Before presenting the asymptotic
properties of | |/§ |13, we first provide our assumptions below.
Condition A.

»127; where Z; =
{zl]}_1 are independent for each i <

Al. Assume {X;} | are iid, X; =

(zi1, - - :Zzpn)
n, E(z;) = 0, E(zz) = 1 and there exists a constant ¢* > 0
suchthatforanyn > 1,i<mnj<ppandt > 0,
P(|zij| > 1) < 2exp(—c*?).

A2. Suppose {e,}” , areiid and independent of {X;}_ ;, E(¢;) =
0, E(elz) = a > ¢ > 0,and E(els) = 0(08)

A3. There exist constantscand C,suchthat0 < ¢ < Apin(X) <
Amax(X) < C < o0.

A4. There exists a constant C, such that ||B4]|cc < C < 0.

Conditions Al and A2 only require sub-Gaussian tail for X;
and moment conditions on €, rather than impose any specific
distributional restriction. The independence between {e;}
and {X;}_, is crucial for applying the martingale difference CLT,
and is a standard assumption for inference of the quadratic func-
tionals in, for example, Dicker (2014) and Janson, Barber, and
Candeés (2017). The error variance 03 could either be bounded
or diverging with n. Under Condition A4, [|By|l2 = O(/Pn)>



and will reach 2 (,/p») when B, is not sparse. Throughout this
article, both B, and o2 are allowed to vary with 1, except when
P is fixed.

Under Condition A, B is well defined, that is, the DPn X Pa
matrix (XTX) ! exists with probability tending to 1. Lemma 1
shows that the eigenvalues of X7 X/n are bounded away from
0 and oo with probability tending to 1 based on the random
matrix theory in Bai and Silverstein (2010). The proof is given
in Appendix C.

Lemma 1. If T € [0,1) and Conditions Al and A3 hold, then
for any £ € N, we have

P(|IX"X/n||5 = x1) = o(n™"),
POIXTX/m) 2 = x5 = o(n™Y),

where x; = 4(1+/7)*[| 2]z and x; = (1= /T)*/AIIZ 7 ]2).

Define event K = H N J, where H and J denote the events
NXTX/m)~ Y, < x2_1 and || XTX/nll, < xi1, respectively.
Event K is introduced to truncate the eigenvalues of X7 X/n.
Constants x; and x; ' may not be the smallest for our analysis,
and can be replaced by any constants larger than them. From
Lemma 1, for any £ € N, we have P(K) = o(n™%).

We now present our main result: the asymptotic normality

and ratio consistency of || 8| I%.

Theorem 1. (a) Assume T € [0,1) and Condition A for (1). If
either of the following conditions hold: (1) lim,—, o pn = 003
(2) pn is fixed and B # 0,,, then,

& IBIR — 118112 3 N, 1),
where

¢y = 402 BJE((XTX) "' I(K)) By + 20 Er{(XTX) "*1(K))
+20 2 [Etr{(XTX) T I(K)}I/ (1 — py).

(b) Additionally, if pil/ 2 /n = o(SNR), then

I1BlI3 P
—

11Bol13

The proof of Theorem 1 relies on the martingale difference
CLT Heyde and Brown (1970) and is provided in Appendix C.

A few remarks are in order: (i) After bias correction, ||| |§ is
asymptotically normal under fixed, low or moderate dimension.
Hence, the proposed method is adaptive to dimension and
generally applicable for p, < n in practice. (ii) As ||Bll2

(11)

may vary with 7, the ratio consistency of ||B|[3 in (11) is not
automatically implied by the asymptotic normality but requires
an additional assumption p,l/ 2/11 = 0(SNR). (iii) Random
design is assumed in Theorem 1, but the result also holds for
fixed design, that is, conditioning on X. (The SNR is not well
defined for fixed design, and needs to be replaced by ||8,]|3/02
in the condition of part (b).) As discussed in the end of the
proof of Theorem 1, there exists a set X, € R"*Pr a5 in (C.13)
satistying P(X € X,) — 1,such thatforanyx € X, t € R

and & > 0, P(¢; ' (18113 = 11Bol13) < tIX = x) — ®(t) and
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P([1B12/11Bol2 — 1] > €|X = x) — 0. In the following, all
theoretical results (theorems, corollaries, and propositions) are
applicable to fixed design unless otherwise specified.

Remark 1. In Theorem 1, we assume homoscedasticity for the
error. Here, we consider heteroscedasticity, that is, €; are inde-

pendent with different variances oiz = E(eiz) fori=1,...,n
We first introduce a general result. For k € N, denoting D =
diag(o?,...,02), then

Efe"X(X"X)*Xx"e} = Y EIX] (X"X) " Xi}o?
i=1
= Etr{XX"X)*XT /n}tr(D) = Etr{ (X" X) " * e (D) /n,

since E{XiT(XTX)_kXi} are identical and equal Etr{X xTx)~*k
XT/n} for i = 1,...,n. From (8), the bias of ||ﬁ||% becomes
E{eTX(X"X)2XTe} = Etr{(XTX)"!}tr(D)/n. In Lemma 2,
tr{(XTX)~1} is ratio consistent for Etr{(XTX)~!} given event K,
while 62 is unbiased for tr(D)/n because E(62) = EleT{I, —
XXX X e/ (n = pp)] = {tr(D) — pa/ntr(D)}/(n — pn) =
tr(D)/n. Hence, || ﬁ||§ is still a bias-corrected estimator for
||1Bol|3 under heteroscedasticity. It will be an interesting future

work to derive the asymptotic distribution of || 8] |§ under het-
eroscedasticity, and derive consistent estimators for the param-
eters in the limiting distribution.

Remark 2. For ease of presenting the proofs, we assume E(X;) =
0,, in Condition Al and hence E(Y;) = 0. For the general form
of the linear model
Y; =a0+XiTﬂ0+ei, fori=1,...,n,

where « is the intercept and E(X;) = p, our method is still
applicable to the centralized data {Y; — Y, X; — )_(};’:1 with ¥ =
n~13"  Yiand X = n 'Y, X;. Specifically, Theorem 1
together with the theorems, corollaries, and propositions below
still holds after data centralization. Please see Section S.2 in the
supplementary materials for a brief explanation.

Remark 3. From (4), the variance term of the conventional
inference procedure 602 = 4&62 ﬁT(X TX)’lﬁ is ratio consistent
for g“oz = 4062ﬂgE{(XTX)*II(K)},BO (see Theorem 4 to be
introduced later). Hence, the removal of bias in || ﬁ| |§ leads to a
larger variance ¢? than ¢Z. To see that more clearly, we consider

iid
a special case that X; ~ N(0p,,I,,). In this case, E{(XTX) 7!} =
I,,/(n—py—1) and nEtr{(XTX)72} — 1/(1 — 1)> based on
Letac and Massam (2004). From (9), we know that the amount

of theoretical correction of bias for ||| |§ compared with ||f! | |§
is —t02/(1 — 7). Also,

20'64 (14 1)
" m{l +o(D)}

tr=¢3+

for T € (0, 1). Both bias and variance corrections deviate from
zero significantly as T — 1; see Figure 3 for n=100and 02 = 1.
The patterns in Figure 3 are consistent with the empirical ones
observed in Figure 2.
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bias correction for ||3]|2

-100

variance correction for || 3|3

3000

2000 ¢

1000 |

0 0.5 1

T

Figure 3. Amount of theoretical corrections of bias (left panel) and variance (right panel) versus 7 for || 8] |§ compared with ||/§ | @,

Remark 4. We now discuss that ||B ||% is not a uniformly
minimum variance unbiased estimator (UMVUE). Denote
by T(Y,X) a generic unbiased estimator of ||/30||%. If we

assume X; ad N(0p,,%) and € ~ N(On,oezl,,), then the
joint probability density function of (Y;,X;) is f(yi,xi)) =
(@)PH102|2)) 72 exp(— (i — 27 Bo)?/(202) — %1 £ 1xi/2)
implying that the Fisher information matrix with the full
data (Y,X) for B, is I(B;) = nX/o2. Using the Cramér-
Rao lower bound (see, e.g., Shao 2003, Theorem 3.3), we
have var{T(Y,X)} > 403,352_%0/11. From the fact that
E{XTX)~1} Y (m — py — 1), we know (2 >
4062/3(?271;30/71 and hence ||ﬁ||% may not be a UMVUE of
1Bol 13-

As discussed in Remarks 3 and 4, the bias correction for
I ﬂ||% leads to larger asymptotic variance and || ﬂ||2 is not a

UMVUE for ||| |2. However, we can show that ||| |2 achieves
the optimal rate of convergence in terms of the quadratic loss.

Theorem 2. Assume model (1) with X; i N(0p,, %), € ~
N(O,,,Ufln), 0‘62 = O(n), that {¢;}} , are independent of
{Xi}’_,, and Conditions A3 and A4 hold. For any estimator
T of ||Bol5, we have

inf sup E(YX)|(ﬂaZ>:)(T—||ﬁ||2) = Q(¢D),

T geg Bo(c
where Gg (c) = {B € RP" : [|B]loc = C < o0,[|Bll2 <
c(1Bollz + 0c/Pu//m)} ¢ > 1 is a generic constant and
Eyx)/(.02.%)(-) denotes taking expectation with respect to
(Y, X) given parameters (8 ,03, %)

Theorem 2 implies that, ||| |§ achieves the optimal conver-
gence rate over all B € Gg, (c) under the quadratic loss. Since ¢
involves the true parameter By, the set of parameters Gg, (c) also
depends on B, which covers a wide range of p,-dimensional
vectors including 8.

To estimate the variance term ;n, we need to estimate the
following four terms: a , 1= B E{(XTX)flI(K)}ﬂO, III :=
Etr{(XTX)21(K)} and IV = Etr{(XTX)_II(K)}. The error
variance 62 can be consistently estimated by 62 as in Proposi-
tion 1 to be introduced in Section 3.3. For the other three terms,
we need to utilize the following general result.

Lemma 2. Assume T € [0, 1) and Conditions A1 and A3 for (1).
Foranyk € N,

var[tr{(X"X/n) MI(K)] = o(p}),
var(B5 (X X/n) " Bo1(K)} = o(||Bol13).
The key strategy to prove Lemma 2 is the leave-one-
observation-out method. See Appendix C for the detailed proof.

According to Lemma 2, tr{(X TX)~2} and tr{(XTX)~!} are ratio
consistent for terms III and IV, respectively. It's not necessary

to include I(K) in the estimators, since I(K) E 1 due to
P(K) — 1. Lemma 2 further induces Lemma S.12 in the
supplementary materials that,

B XTX) B — 62u((XTX) ) — 11 = 0p(¢2/0).

Subsequently, the plug-in estimator of ¢? is

£2 = 4628  (XTX)" 1B — 26t ((XTX)2)
262 1tr((XTX) ")/ (n — pa).

We summarize the above discussion into Theorem 3.

Theorem 3. Under the conditions in part (a) of Theorem 1, we
have

&2 5

The proof of Theorem 3 is provided in Appendix C.
We are now ready to test the hypothesis in (2) by proposing
the following test statistic

||ﬂ||2_co
Cn

Theorems 1 and 3 directly imply that the null limiting distri-
bution of Z, is standard normal, the p-value for testing (2) is
2®(—|zy|), where z, is a realization of Z,, and the asymptotic
power function is 1 — CD{—(C% — c%)/g’n + o711 —a/2)} +
CD{—(C% - c%)/g:n — ®71(1 — «/2)} under the fixed alternative
Hy :||Boll2 = c1 # co-

In the end, we point out that as long as the SNR is large

Ly = (12)

enough, the conventional estimator || B | |% is still ratio consistent
and asymptotically normal. However, the strength of SNR is



usually unknown in practice. Hence, this result highlights the
importance of our proposed adaptive method that works for
both moderate and low dimensions, regardless of weak or strong
signals.

Theorem 4. Assume t € [0, 1) and Condition A for (1). Then,

2112
”’3”22 2 1 <= pu/n = o(SNR)
11Boll2
22
=2 E,
0

a2 2
- D
18113 = 11Boll3 D
o

where {02 = 4(762,85E{(XTX)*1I(K)},BO and 502 is defined in (4).

N(0,1) <= p/n=0(SNR) = 1 = 0,

Theorem 4 verifies the asymptotic normality of Zg in (3)
under valid null hypothesis. The proof is provided in the sup-
plementary materials.

3. Applications

This section consists of four important applications of our gen-
eral theory: signal detection, global testing, inferences for the
error variance, and fraction of variance explained. The results
on two-sample inference are postponed to the supplementary
materials.

3.1. Detection Boundary for ||B,||3

Hypothesis (2) can be used to perform signal detection by
setting ¢p = 0. In this problem, the detection boundary is often
of interest, which is the smallest separation rate between the
null and a sequence of contiguous alternatives Hj, indexed by
8, — 0, that is,

Hyy - ||ﬁ0||% = &,

such that successful detection is still possible. From Theorem 1,
we propose the following test statistic for hypothesis (2) with
) = 0

~

118113
Zh= 2,

Cx

where 22 = 26tr{(XTX)72) + 262[te{(XTX) "1} 2/(n —
pn). The difference between Z} and Z, lies in the variance
term ;A‘f Using Lemma 2, Z‘f is ratio consistent for {2 =
202Etr{(XTX)T2(K)} + 202[Etr{(XTX) (K} /(n — pu)
which equals ¢? when 8, = 0p,. In other words, 2*2 is a refined
estimator of C,% under the null hypothesis (2) with ¢o = 0. Then,
the asymptotic standard normality of Z? under the null follows
directly from Theorem 1 for diverging p,. Corollary 1 presents
the detection boundary using Z.

Corollary 1. Assume that © € [0,1), lim,,00pn = 00,
Condition A holds for (1). If 8, = Q(02p)/>/n), then
15, 2 N, 1),

*

Zy—t
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where 2*_18,1 = Qp(1).If§, = o(aezpi,/z/n), then
z: B N, 1).

Therefore, the detection boundary is o2 p,lq/ 2/ n, which
matches with the minimax detection rate in Ingster, Tsybakov,
and Verzelen (2010) (see (1.2) therein). It is worth mentioning
that Corollary 1 requires diverging p,.

3.2. Global Inference for 3

This section is concerned with the global hypothesis (5)

Hy: By = ﬁguu versus Hj: B, # ﬂguu,

by proposing a bias-and-variance-corrected test statistic based
on || — ,BguHH% as follows

1B = BB — r{(XTX) )82
s
The construction of G, is based on the fact that the distribution

ofi? — ﬂg“u under Hj in (5) is the same as that ofﬁ with 8, =
0,,. Thus, the amount of bias correction —tr{(XTX)_l}8E2 and

the variance term 2 for G, are the same as those for Z*. From
the asymptotic results of Z, G, is also asymptotically standard
normal under the null for diverging p,, and the smallest sepa-
ration rate for Hy, : || — ﬂguHH% =68,i86; = oezpi/z/n, the
same as that identified by Corollary 1.

From (13), we can construct 1 — « confidence regions for 8,

using one-sided and two-sided strategies as

Gn (13)

CR; = {B: 1B — Bl — tr{(X"X)"1}62 < 711 — )& )s
CR; = {B: |IIB — Bl — tr{(XTX) 1162
< o711 — a/2)é). (14)

Confidence region for high-dimensional sparse 8, was studied
in Cai and Guo (2020) and Nickl and van de Geer (2013).

3.3. Inference for o2

This section is concerned with moderate-dimensional inference
for the error variance 03.

Proposition 1. Assume 7 € [0, 1) and Conditions A1-A3 for (1).
Then

>
Mo

22 2
—0; D
< ¢ 5 N(O, 1),

€

f)l and

Ny

where ;62 =n"Yys + 064(31 — 1)/ —-1)}and vy = E(ef).

Our result is adaptive to data dimension by incorporating
T in the variance term ¢2 for both fixed and diverging p,.
Specifically, ¢2 increases with 7. For a special case that ¢; ~
N(O, 03), {62 = 2(764/{11(1 — 1)}

To estimate ¢2, it suffices to provide a ratio consistent
estimator for v4. We first examine a straightforward estimator
1/ny L, é? where (¢1,...,é)T = Y — XB However, as
in the proof of Lemma S.15 in the supplementary materials,
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1/nEQCL €H = (1 — D+ 30211 — 1)?2 — 1) + 0(c)).
Although the naive estimator is biased, it induces an estimator
for vy after centering and rescaling

by = (1= pa/m~*

n

x {1/nY" & =362 (pu/m (1 — pu/m?@ = pa/m)|.

i=1

Lemma S.15 demonstrates that D4 is ratio consistent for vy.
Hence, the plug-in estimator {2 = n~'{dy + 62(3pn/n —
1)/(1 —pn/n)} is ratio consistent for {62. From Proposition 1, we

N A D )
have (062 — 03) /Ze — N(0,1), which can be used to conduct
inference for o2

3.4. Inference for po

Consider the hypotheses
Hy: po > p(‘}“u versus Hj:pg < ,o{)‘“ll, (15)

where 0 < pf%! < 1is a given constant. Recalling the definition
of pg in (6), its conventional plug-in estimator can be obtained

by replacing no := ﬂgZﬂo and o with ﬁT(XTX/n)ﬁ and
62, respectively. The asymptotic normality of this estimator is
studied under t = 0 in Theorem S.1 in the supplementary
materials followed by the low-dimensional inference for py.
However, in the moderate-dimensional regime, the bias of

f}T(XTX / n)ﬁ for no is nonignorable, that is,

E(B" (XTX/mB) — no
= E{(B3 (X"X/n)Bo} — no +2n'E(BX"€)
+n 'E{eTX(XTX) "1 X €}
=nTE{e"X(XTX) ' XT€}

= fpy,/n — o2

.7 >0.

Consequently, we propose an unbiased estimator for g as

i =B (XTX/m)B — 62pu/n.

Hence, a new plug-in estimator for py is

BT XTX/mB — 62pa/n
BT XTX/m)B + 6201 — pu/n)

with the following asymptotic distribution.

Theorem 5. Assume T € [0,1), po € [Ci,C,] for some
constants 0 < C; < C; < 1 and Condition A holds for (1).
Then, p — pg = op(1) and

L= 2 N0, ),

95

where (75 = n"t(no + o) 2087/l — 1) — {2+ 47/(r —
D}alno + oHE(Y]) — va + n5(4t — 2)/(1 = )} + ngval.

Simple calculation implies that p = 1 — (1 — p,,/n) ~'||Y —
XBIB/NY[Z = 1 — (1 — pa/m)~'(1 — R?), where R is the
coefficient of determination. Therefore, if T = 0, then R? is
asymptotically unbiased for pg, but when 7 > 0, a rescaled R?,
that is, p, is required for the inference of py. The definition of
SNR is not applicable to fixed design, and hence the results of
Theorem 5 and Proposition 2 are not available for fixed design.

For the variance term ag, the plug-in estimator &5 is

obtained by replacing E(Y7}), no, 0

2, Vg, and T in aﬁ with
n UYL Y A, 62, D4 and pu/n, respectively, and its

consistency is demonstrated below.

Proposition 2. Assume the conditions in Theorem 5. Then, aé =
Q(1/n) and
Ag - (75 = op(1/n).

Hence, (15) can be tested by 6/3_1 (p— p(‘;“u), whose null limit-
ing distribution is standard normal. Also the smallest separation
rate for contiguous alternative is n~1/2.

For the inference of 1o, the proof of Theorem 5 immediately
implies that

o7 G = o) > N, 1), (16)
with 07% = n_l{E(Yf)—V4—2<762770—n%—}—Zafpn/(n—p,,)} which
is consistently estimated by the plug-in estimator following the
proof of Proposition 2.

In the end, we comment on related works concerned with
signal strength (i.e., Dicker 2014; Dicker and Erdogdu 2016,
2017; Janson, Barber, and Candés 2017; Verzelen and Gassiat
2018). The first three works, that is, Dicker and Erdogdu (2016),
Janson, Barber, and Candés (2017), and Dicker (2014), conduct
statistical inference for moderate-dimensional fixed effect mod-
els. However, our OLS-based methods are essentially different
from their methods in the following aspects: parameters of
interest and weak assumptions.

First, the parameter of interest in the aforementioned three
works is 8L E B, and their procedures crucially rely on the fact
that Y; ~ N(O, ﬁgZ,BO + 02) and that ﬂgZﬂo is a part of the
variance term. Therefore, their results are not readily translated
into inference for our parameter of interest, that is, ||| |%,
unless ¥ is identity. In contrast, our strategy depends on the OLS
estimator. This flexibility also allows us to conduct inference for

/3({ ¥ B, based on a bias-corrected version of ﬁ T(XTX /n) [9 as
in (16), and even two-sample inferences, for example, the co-
heritability (7), to which it is unclear how their methods can be
applied.

Second, some assumptions of our article are weaker due
to the use of different technical tools. Specifically, the proofs
as well as the development of the estimation and inference
procedures in the aforementioned three works rely heavily on
the Gaussian assumption of the design matrix X and error e.
For example, among other implications, the Gaussian design
is important in deriving the invariant distribution of X under
orthogonal transformations in Dicker and Erdogdu (2016), the
Haar distribution of the right-singular vectors from the singular
value decomposition of X in Janson, Barber, and Candeés (2017)



and the Wishart distribution of X” X in Dicker (2014). However,
our OLS-based result is derived using the martingale difference
CLT without requiring any specific distributional assumption
of X or €. Also, our results can be easily extended to fixed
design. Besides, the three works above need ¥ = I, to conduct
inference for || 8| |% Even for the inference of g ¥ B, they still
require strong conditions on X, for example, known or con-
sistently estimable X. And, some further sparsity assumptions
need to be imposed if ¥ will be estimated. Our inference meth-
ods for ||B0||% and ﬂg ¥ B, neither need known or a consistent
estimator of X nor require any sparsity assumption on ¥. From
the simulations in the end of Section 4, our method performs
better than or at least as well as those in Dicker (2014) and
Dicker and Erdogdu (2016).

As for Dicker and Erdogdu (2017) and Verzelen and Gassiat
(2018), the former conducted inference for the variance of the
regression parameter by considering the “random effect” model
conditioning on the design matrix, and hence is different from
the setup of fixed effect model in our article; the latter derives the
minimax estimators of pp under Gaussian design and error, but
they did not derive the asymptotic distribution of the estimators
and hence their results cannot be applied to the inference for py.

4. Simulations

Numerical studies are conducted to support the proposed sta-
tistical inference procedures. Set n € {400, 800} and p, =
4,|n/6],n/4,n/2.5 corresponding to fixed dimension (p, = 4),
low dimension (p, = [n/6]) and moderate dimension (p, =
n/4,n/2.5), unless otherwise specified. In the simulations, we
consider a general form of the linear model Y; = 1+ X! B + €

with EX)) = 0 = (u1,... ,/,Lpn)T generated by {p.i}fil i

Unif[1, 2]. Both Y and {X;}} , are centralized before conducting
inference for the quadratic functionals. To generate data, we
consider the following four cases representing various situations

in reality:

iid
I Gaussian design with ¥ = I,,: X; ~ N, I,,) fori =
L....n, € ~ N(0,1,) and By = B/IIBll> with (B}, ~
Uniff 1, 2];
iid
II. Gaussian design with general ¥: X; ~ N, X) fori =
l,...,nand € ~ N(0,1,), where & = Z*TS*/A.x
o
(=*T5*) + diag(dy, ..., dp,), T} ~ Unif[—0.5,0.5] for
id
1 <i,j < pnand {d;}", = Unif[0.4, 1]. Here B, = c,, 8"
where B* is the normalized eigenvector of ¥ corresponding

to the smallest eigenvalue and ¢;, = 1 forp, = 4, ¢y, = 2
for p, = [n/6],n/4and ¢y, = 5 for p, = n/2.5;

IMI. t-distributed design: Xj — u; ad ts/+/5/3 for i
tis/+/8/7 and B

. iid
L....m;j = L,....pn, €& ~
(1,1,1,0,...,007;

IV. fixed design: X is identical for all replications and generated

by X; i N(u,1p,), while € ~ N(0,,1,) are independently
generated for each replication, and B is the normalized
eigenvector of Y 1, (X; — XX, — x)T corresponding to
the largest eigenvalue.
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In Case II, ¥ is not necessarily sparse and allows different
diagonal elements. Case III is for non-Gaussian design and Case
IV corresponds to fixed design matrix. In what follows, QQ plots
(for the 1st to 99th percentiles) under the valid null hypotheses
and confidence intervals were obtained with 1000 replications,
while the power function was computed using 500 replications
for each setup.

First, consider hypothesis (2) with ¢y = 0. Data are generated
by Cases I-1V with B, = 0,,. From Figure 4, under low and
moderate dimensions, Z}; follows standard normal distribution
under the null hypothesis. The fixed-dimensional results are not
reported as the signal detection is only conducted for diverging
Pn. The empirical power of Z}, is given in Figure 5 by varying
Bo = 1,,80./(n"/?py/*) with § = 0,05,1,15,...,6. This
choice of alternative values is supported by the derived detection
boundary§} = Gezpi/ ?/n for signal detection. From Figure 5, we
can tell that the empirical rejection rate grows from the nominal
level to one as 8 increases from zero.

We also check the coverage probability of the two-sided
(CRz) and one-sided (CR;) confidence regions of B, based
on (14), with 1000 replications at « = 0.05. Table 1 reveals
that both CR; and CR; are satisfactory while the latter slightly
outperforms the former. The coverage probabilities of CR; are
around 0.95 while those of CR| are generally below 0.95. Hence,
we suggest to use CR; in practice. Note that our proposed
method particularly works for diverging p,,, but when p,, is fixed,
the finite-sample performance is still satisfactory.

Testing error variance:

Hy : GEZ =1 versus H; :062 #1 (17)
is performed by test statistic (52 — 1)/Z.. Figure 6 provides
the QQ plots of the test statistic under the null hypothesis.
Clearly, the proposed test statistic well adapts to fixed-, low-
, and moderate-dimensional regimes. The empirical powers
under 62 — 1 = §/n'/? are provided in Figure 7 with § =
—10,-8,...,0,...,8,10. Again, the power behaviors are satis-
factory.

We compare the performance of the conventional (in Section
S.3) and proposed test statistics for testing Hy : po > pguu,
that is, (15). Figures 8 and 9 provide the QQ plots of the
conventional and proposed test statistics, respectively. We find
that both the conventional and proposed tests perform well for
the fixed dimension. Under low and moderate dimensions, the
conventional method fails but the proposed test continues to
perform satisfactorily.

In the end, we consider the performance of the confidence
intervals for three parameters 8 g ¥ By, 02 and po in Tables 2-4,
respectively. The averaged coverage probability and length of the
confidence intervals are calculated using the proposed method,
the MLE method in Dicker and Erdogdu (2016), the method of
moment for ¥ = I, (MM) in Dicker (2014) (see Corollary 1
therein) and its alternative version for unknown X (MM,) (see
Proposition 2 therein). The MLE and MM methods are applied
by assuming that ¥ = 1I,, that is, ¥ is correctly identified
in Cases I and III but misidentified in Cases II and IV. Since
the EigenPrism method in Janson, Barber, and Candes (2017)
is particularly proposed for p, > n, it is not compared with
our methods. For all three parameters, in Case I with Gaussian
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proposed, case I, p, = [n/6]

proposed, case I, p, = n/4

* n = 400
4 & n = 800

* n = 400
+ n = 800

proposed, case II, p, = |n/6]

proposed, case 11, p, = n/4

* n = 400
t n = 800

proposed, case 111, p,, = n/4

* n = 400

4 t n = 800
*x
2
0
2t %
-2 -1 0 1 2
proposed, case III, p,, = [n/6]

* n = 400

4 +  n=800

proposed, case IV, p, = [n/6]

%  n =400
4 +  n =800

proposed, case I, p, = n/2.5

* n = 400
5 n = 800

proposed, case II, p, = n/2.5

£ 3 n = 400
t n = 800

proposed, case III, p,, = n/2.5

* n = 400 * n = 400

- n = 800 4 + n = 800
5 3
0
-2

-2 -1 0 1 2 -2 -1 0 1 2
proposed, case IV, p, = n/4 proposed, case IV, p, = n/2.5
* n = 400 * n = 400
= n = 800 4 <t n = 800

-2 -1 0 1 2 -2 -1

Figure 4. QQ plots for testing Hp in (2) with co = 0 using Zj;. Panels from top to bottom are for Cases |-V, respectively, while panels from left to right are for p, =

Ln/6],n/4,n/2.5, respectively.

design and ¥ = I, all methods are satisfactory with coverage
probability close to the nominal level 95%. For Cases II-IV, our
method still performs well with the coverage probability close
to 95% for all three parameters. But, due to the misidentified ¥
or non-Gaussian design, the coverage probabilities of the MLE
method are away from 95% for 8 g 2B, and pg in Case IT and for
052 in Cases III and IV, while the MM and MM, methods result
in invalid confidence intervals in most situations. Since 8 g 2B
and po are not defined for fixed design, the corresponding
results for Case IV are not reported.

5. Real Data

We study a dataset from the International HapMap Project to
investigate the relationship between gene expression and single
nucleotide polymorphism (SNP). In Stranger et al. (2007),

it is revealed that the expression levels of certain genes are
associated with its nearby SNPs. Specifically, they identified
803 genes that were significantly associated with certain SNPs
located within 1-Mbp of the gene midpoint using 30 Caucasian
trios of northern and western European origin (CEU), 45
unrelated Chinese individuals from Beijing University (CHB),
45 unrelated Japanese individuals from Tokyo (JPT), and 30
Yoruba trios from Ibadan, Nigeria (YRI). We select 9 genes
among these 803 genes and investigate the relationship between
each gene and its nearby SNPs from n = 377 individuals (80
individuals in CHB population, 82 from JPT, 107 from CEU,
and 108 from YRI). We use the gene expression dataset from
https://www.ebi.ac.uk/arrayexpress/experiments/E- MTAB-264/
and https://www.ebi.ac.uk/arrayexpress/experiments/E- MTAB-
198/. The SNP data were obtained from the International
HapMap Project (https://www.ncbi.nlm.nih.gov/variation/news/
NCBI_retiring_HapMap/), release 28.


https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-264/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-198/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-198/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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Figure 5. Empirical rejection rates versus 8 for testing Hy in (2) using Z};. Panels from top to bottom are for Cases I-1V, respectively, while panels from left to right are for
pn = |n/6],n/4,n/2.5, respectively. The dotted line indicates the true significance level « = 0.05.

For each selected gene, we only focus on the SNPs that are

Table 1. Coverage probability of 9% confidence regions for . significantly associated with this gene. A list of these signifi-

(n, pn) Casell Casell Caselll Case IV cant SNPs for each identified gene is provided in Supplemen-
CRy tary Table S2 of Stranger et al. (2007). Furthermore, among
200,4) 0.943 0946 0.950 0932 these significant SNPs, we only cbopse those with minor allele
(400, 66) 0.945 0.946 0.941 0.945 frequency greater than 5% and missingness no larger than 20%.
(400, 100) 0.949 0.948 0.951 0.953 For the selected SNPs included in the analysis, we impute the
Eggg: JSO) 8:2451?1 8:328 g:ggi g:gié missing values by the marginal mean. The minor allele counts
(800, 133) 0.958 0.945 0.959 0.951 are assigned as the numerical values for the SNPs.
(800, 200) 0.944 0.961 0.947 0.957 For each gene, we aim to regress the gene expression levels
(800, 320) 0952 0-943 0.957 0.954 on the minor allele counts of its related SNPs. We first center the
CRy gene expression levels and SNP minor allele counts, and hence
(400,4) 0913 0.921 0.936 0.908 each variable has mean 0. Denote by Y the centered expression
(400, 66) 0.925 0.931 0.920 0.928 level for the kth gene (k = 1,...,9) and ith individual (i =
Eigg: 128; g:gi? 8:33; 8:3;‘2 8231? L,...,n = 377), and by Xjj the centered minor allele count
(800,4) 0.929 0.938 0.942 0.923 for the jth SNP (j = 1,...,px) corresponding to the kth gene
(800, 133) 0.951 0.935 0.953 0.937 and ith individual. For the kth gene, if the design matrix X =
Eggg: ;gg; 8232 gzggg g:gi?z’ g:ggl {Xijk}i=1,...nj=1,...p, does not have full column rank, then we will

randomly delete one column which is linearly correlated with



12 (&) X.GUOAND G.CHENG

proposed, case I, p, =4 proposed, case I, p, = [n/6] proposed, case I, p, = n/4 proposed, case I, p, = n/2.5
4 4 4
2 2 2
0 0 0
2t -2 -2
* * *
2 A 0 1 2 2 A 0 1 2 2 A 0 1 2 2 A 0 1 2
proposed, case II, p, = 4 proposed, case II, p, = [n/6] proposed, case I, p, = n/4 proposed, case II, p, = n/2.5
4 o[ *
2 2 P
0 0
2t
*

%

00
2 A 0 1 2

proposed, case III, p, = 4 proposed, case III, p, = [n/6] proposed, case 11, p, = n/2.5

proposed, case IV, p, =4 proposed, case IV, p, = [n/6] proposed, case IV, p, = n/4 proposed, case IV, p, = n/2.5
4 00 4 4
2 2 2 S
0 0 0
-2 > 2 2

* *
-4

2 A 0 1 2 2 A 0 1 2 2 A 0 1 2

Figure 6. QQ plots for testing Hg in (17) using the proposed test statistics. Panels from top to bottom are for Cases |1V, respectively, while panels from left to right are for
pn = 4,1n/6],n/4,n/2.5, respectively.
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Figure 7. Empirical rejection rates versus § for testing Hq in (17) using the proposed test statistics. Panels from top to bottom are for Cases -1V, respectively, while panels
from left to right are for py = 4, |n/6],n/4,n/2.5, respectively. The dotted line indicates the true significance level « = 0.05.
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Figure 8. QQ plots for testing Hg in (15) using the conventional method. Panels from top to bottom are for Cases I-lll, respectively, while panels from left to right are for
pn = 4,|n/6],n/4,n/2.5, respectively.
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Figure 9. QQ plots for testing Hg in (15) using the proposed method. Panels from top to bottom are for Cases I-Ill, respectively, while panels from left to right are for
pn =4,|n/6],n/4,n/2.5, respectively.
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Table 2. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
for 8] % Bo.

Table 3. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
fora2.

Proposed MLE MM, MM, Proposed MLE MM, MM,
n pn Cov Len Cov Len Cov Len Cov Len n pn  Cov Len Cov Len Cov Len Cov Len
Casel Casel
400 4 0941 0478 0.940 0.395 0.943 0.681 0.959 0.682 400 4 0940 0.276 0.944 0.278 0.953 0.398 0.973 0.398
66 0.939 0.489 0.947 0.440 0.949 0.712 0951 0.712 66 0.938 0.299 0.944 0.301 0.951 0.452 0.953 0.453
100 0.946 0.504 0.950 0.468 0.933 0.729 0.934 0.730 100 0.938 0.318 0.938 0319 0.951 0.483 0.953 0.483
160 0.957 0.529 0.948 0514 0.960 0.762 0.960 0.763 160 0913 0.354 0.921 0.350 0.967 0.529 0966 0.529
800 4 0.950 0.338 0.949 0.278 0.939 0479 0.953 0.479 800 4 0952 0.196 0.956 0.196 0.962 0.279 0.978 0.279
133 0940 0.350 0940 0.312 0.951 0.506 0.954 0.506 133 0.941 0.213 0941 0.214 0.953 0.321 0.956 0.321
200 0.947 0.356 0.954 0.332 0.955 0.517 0952 0.517 200 0.946 0.226 0.946 0.226 0.948 0.341 0949 0.341
320 0.948 0373 0.948 0.363 0.932 0.536 0933 0.536 320 0.956 0.252 0.959 0.249 0.951 0.372 0.953 0.372
Casell Casell
400 4 0946 0317 0.015 0.456 0.070 0.275 0.024 0.275 400 4 0952 0.276 0.956 0.278 0.144 0.357 0.088 0.379
66 0.942 0.767 0.000 0.887 0.008 0.808 0.004 0.811 66 0.936 0.299 0.946 0.305 0.000 0.698 0.000 0.721
100 0.954 0.812 0.000 0.895 0.023 0.923 0.005 0.888 100 0951 0.317 0.949 0.326 0.000 0.759 0.000 0.786
160 0.927 3.625 0.000 2.658 0.000 4.690 0.000 4.689 160 0935 0.352 0.938 0.361 0.000 3.489 0.000 3.574
800 4 0938 0.284 0.117 0.263 0.405 0.327 0.002 0.279 800 4 0.945 0.196 0.944 0.196 0.209 0.259 0.001 0.285
133 0928 0.546 0.000 0.640 0.000 0.568 0.000 0.579 133 0951 0.214 0.954 0.216 0.000 0.495 0.000 0.510
200 0.932 0.556 0.000 0.646 0.000 0.600 0.000 0.599 200 0.942 0.224 0936 0.231 0.000 0.525 0.000 0.538
320 0.946 2563 0.000 1.890 0.000 3.283 0.000 3.298 320 0.948 0.253 0.937 0.258 0.000 2.456 0.000 2513
Caselll Caselll
400 4 0938 1.265 0.945 0.686 0.871 1.804 0936 1.796 400 4 0926 0304 0.906 0.277 0.883 0.868 0.968 0.894
66 0.938 1.260 0.948 0.756 0.872 1.852 0.868 1.844 66 0.942 0.328 0.925 0.303 0.879 0.958 0.889 1.005
100 0.944 1.285 0.951 0.79 0.870 1.888 0.876 1.880 100 0.940 0.345 0919 0.319 0.878 1.004 0.896 1.060
160 0.933 1.290 0937 0875 0.867 1.943 0.860 1.935 160 0.921 0.377 0912 0.355 0.892 1.076 0.891 1.147
800 4 0931 0912 0.939 0.483 0.848 1.274 0913 1.270 800 4 0943 0.218 0.920 0.196 0.853 0.622 0.957 0.627
133 0.933 0.914 0.954 0.532 0.850 1.315 0.850 1.312 133 0938 0.233 0920 0.214 0.859 0.697 0.869 0.707
200 0.947 0919 0.955 0.561 0.870 1.334 0.868 1.331 200 0.944 0.245 0.929 0.226 0.890 0.734 0.892 0.742
320 0.942 0.925 0937 0617 0.862 1.364 0.855 1.361 320 0.936 0.271 0.927 0.251 0.892 0.785 0.895 0.800
Case IV
400 4 0945 0.277 0951 0.277 0.978 0.407 0.877 0411
. . . .. 66 0.941 0.301 0.940 0.300 0.000 0.004 0.000 1.141
the others and repeat this procedure until the design matrix is
£ full col k. With a slight ab f R d b 100 0.936 0.315 0912 0.309 0.000 0.001 0.000 1.212
of full column rank. With a slight abuse of notation, denote by 160 0931 0351 0812 0326 0000 0000 0000 1773
Pk the number of eventually selected SNPs for the kth gene. The
. . . 800 4 0932 0.195 0935 0.19 0.960 0.286 0.951 0.285
list of the selected genes and the corresponding py are provided
in Table 5. O trat f lecting the 9 in this studv i 133 0.946 0.214 0936 0.212 0.000 0.000 0.000 0.748
1 lable 5. Lur strategy for selecting the 7 genes in this study 15 200 0945 0225 0900 0219 0000 0000 0000 0.924
that their corresponding py is large enough, that is, at least 33, 320 0948 0251 0725 0231 0000 0000 0000 1383

such that t ranges from 0.088 to 0.231.

The linear model for regressing Yy = (Yik,..., Y0l on
Xy is fitted for each gene and the confidence intervals for pg
are given in Table 5 using the conventional method in Section
S.3 in the supplementary materials, our proposed method and
the MM, method in Dicker (2014) (see Proposition 2 therein)
proposed for general covariance matrix . The MLE method
in Dicker and Erdogdu (2016) and MM, in Dicker (2014) are
not designed for general ¥, and hence are not compared here.
We observe that the upper bounds of the confidence intervals
of pp by our method are bounded away from 1, which indicates
that the SNRs are not exploding. Specifically, using (6), we can
calculate the confidence intervals for SNR directly by those of
po, and we find that the largest value of the upper bounds of
the confidence intervals for SNR is 2.9526. Also, the values
of pi/ n range from 2.8886 to 20.0769, and hence, the strong
signal condition (as in Theorem 4) that pi /n = 0o(SNR) is

not satisfied by this data. From Table 5, for most genes, the
confidence intervals of py do not cover 0, indicating that these
selected SNPs are indeed significantly associated with the genes,
which supports the findings in Stranger et al. (2007). How-
ever, for gene AKAP10, 0 is covered by the confidence interval
using our proposed method but excluded by the conventional
method. This discrepancy may be due to the failure of the
conventional method under moderate dimension and insuffi-
cient SNR. More importantly, we can see that the confidence
intervals for pg using our method are narrower than those using
MM, in Dicker (2014) for most genes, which means that our
method is more accurate in the moderate-dimensional case with
T €[0,1).



Table 4. Coverage probabilities (Cov) and length (Len) of 95% confidence intervals
for pg.

Proposed MLE MM, MM,
n pn  Cov Len Cov Len Cov Len Cov Len

Casel

400 4 0944 0.138 0.940 0.121 0.949 0.241 0.970 0.241

66 0.955 0.150 0.958 0.142 0.945 0.264 0.950 0.264

100 0.942 0.160 0.950 0.154 0.938 0.275 0.941 0.276

160 0.959 0.178 0.948 0.176 0.966 0.296 0.966 0.296

800 4 0.955 0.098 0.942 0.085 0.951 0.170 0.970 0.170

133 0.945 0.107 0.939 0.100 0.964 0.187 0.963 0.187

200 0.961 0.113 0.951 0.109 0.951 0.195 0.952 0.195

320 0.948 0.127 0.947 0.125 0.937 0.209 0.942 0.209
Casell

400 4 0935 0.150 0.026 0.135 0.008 0.159 0.000 0.164

66 0951 0.115 0.001 0.069 0.000 0.230 0.000 0.234

100 0.951 0.117 0.023 0.077 0.000 0.251 0.000 0.248

160 0.947 0.033 0.000 0.015 0.000 0.287 0.000 0.291

800 4 0936 0.103 0.203 0.083 0.211 0.146 0.000 0.134

133 0.938 0.082 0.000 0.049 0.000 0.162 0.000 0.167

200 0.939 0.085 0.001 0.055 0.000 0.173 0.000 0.175

320 0.933 0.024 0.000 0.011 0.000 0.203 0.000 0.206
Case lll

400 4 0.938 0.098 0.919 0.068 0.876 0.268 0.960 0.270

66 0.954 0.102 0.934 0.076 0.868 0.289 0.873 0.285

100 0.940 0.106 0.931 0.083 0.868 0.300 0.881 0.294

160 0.930 0.113 0.914 0.095 0.874 0.319 0.874 0.307

800 4 0946 0.070 0.939 0.048 0.842 0.190 0.950 0.191

133 0.930 0.073 0.937 0.054 0.848 0.205 0.857 0.205

200 0.948 0.076 0.939 0.058 0.872 0.213 0.870 0.213

320 0.954 0.081 0.941 0.067 0.880 0.226 0.885 0.224

Table 5. 90% confidence intervals of pg for gene data.

Gene Probe pkx Conventional  Proposed  MM; (Dicker 2014)
AKAP10  ILMN_1718808 33 [0.071,0.161] [0.000,0.092] [0.000, 0.040]
CPNE1 ILMN_1670841 35 [0.293,0.524] [0.244,0.504] [0.259, 0.474]
NUDT13  ILMN_1680420 59 [0.366,0.467] [0.294,0.422]  [0.274,0.482]
PIGN ILMN_1691112 36 [0.225,0.325] [0.162,0.280] [0.183,0.376]
PKHD1L1 ILMN_1717886 87 [0.680,0.747] [0.640,0.747] [0.831, 1.000]
SPG7 ILMN_1675583 38 [0.265,0.375] [0.212,0.328]  [0.208, 0.406]
ST7L ILMN_1659926 40 [0.548,0.637] [0.521,0.627] [0.522,0.796]
TGM5 ILMN_1699925 39 [0.298,0.406] [0.243,0.368]  [0.232,0.441]
TSGAT0  ILMN_1674645 44 [0.512,0.613] [0.479,0.599] [0.496,0.761]

Appendix A: Inference for Single Element and Linear
Functional of 8,

We provide a brief discussion of the element-wise inference for foj and
ﬂ&j (j=1L,...,pn). The estimator for fy,; is

a. T p__ . T Tyxn—1+T
ﬂ]—ej’PnB—ﬁOJ—l—ej’pn(X X)) X'e.

If 062 = o(n), then a'é_l(ﬁj = Boy) 2 N(0, 1), where aﬁ% =
; )

]
oge]?pnE{(XTX)—II(K)}ej,pn = Q(a2/n). If 02 = Q(1) and X; ~

N(0p,,,1p,), the bias of Ejz is
E(,éf) - /33)]- = afe]?an{(XTX)_l}ej,pn = Q(1/n).
Therefore, the bias of ,éjz is ignorable if n~1 = o(ﬁgj), Inference for

ﬂg,j can be conducted using (Zﬁo)jaﬁj)*l(ﬁjz — /3(%,]‘) E N(0,1). The
ﬁ(B ].2 - ,Bg j) versus j and the bias for ||ﬁ | |% are plotted in Figure Al.
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Figure A1. Plots of ﬁ(sz - 631.) versus j (solid line) and bias for Hf!ll% (dash-
dotted line) under the same setting as in Figure 1 with p, = 500.

We then discuss the inference for linear functionals ¢! 8, where

¢ € RPr is deterministic. The estimator for cTﬂO is CTB =
CTBO + CT(XTX)_IXTG. Following the proof of Theorem 1, its
limiting distribution is o} 1(CTB — cTﬂO) —D> N(0,1) where
0L2 = chTE{(XTX)_ll(K)}c with a ratio consistent estimator
6L2 = 6’62€T(XTX)_IC.

Appendix B: Relation Between 7 and SNR

According to Theorem 4, define

o strong SNR: p%l /n = o(SNR);
« weak SNR: SNR < p?/n.

Figure B1 describes the precise relation between t and the signal
strength under mild conditions. In particular, 7 = 0/t > 0 may imply
strong/weak signals unless we allow || 8|2 or (752 to diminish.

Appendix C: Proofs of Main Theoretical Results

This section includes the proofs of Lemmas 1 and 2 and Theorems 1
and 3. In all the proofs, we only consider the case that 062 is fixed. The
results for diverging o2 can be simply obtained by replacing Y;, € and
Bo with Y;/oe, €/0c and B/0¢, respectively, in the proofs.

We introduce some notations and equations. Let X(;, = (X1,...,
X,-,l,XHl,...,Xn)T for i = 1,...,n, that is, the design matrix
without the ith observation. Similarly, X; s, denotes the design matrix
without the ith and jth observations for 1 < i # j < n. From the
Sherman-Morrison formula (Sherman and Morrison 1950),

&0 = &y Xy +xixD 7 = (X!

i Xap T ax] () Xap

1+ X’IF(X{I)X(I))_1X1

, (C1)

and hence,
X072 = X[ Xa) 7 = K Xa) 2XX] X Xap Y
1+ XIT(X(TI)X(I))_IXl} (C2)

— Xy Xay T XX (X X))
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o¢ = Q(1), [|Boll3 = 2(pn)

T=0

02 2 C >0, [|Boll3

Strong Signal

7>0

Figure B1. Relation between t = 0/t > 0 and strong/weak signal.

1+ X7 (XX} (C3)
+ {(X(Tl)X(1))_1X1X1T(X(T1)X(1))_l}2/
{1+ X7 (X Xay) ™1 Xn), (C4)
Therefore,
&7 = gy¥oy) 0 (C5)
L+ X] (L X~
&Tx) 72X, = ko)
1+ xT (X(I)X(l))_l)ﬁ
XX IXXT () Xa) T -
n+x7 (X(Dxm) X2
xT(xTx)~2x, = XT O X)) X . (C.7)
{14+ Xx] (X(I)Xa))_le}z

The following are the proofs of the main results in this article.

Proof of Lemma 1. For Z; = (zj1, . . - ,z,-pn)T defined in Condition Al,
let z;"j = z;jl(Iz;| < /n/\/logn) — E{z;jl(|z;| < /n/\/logm)}, z;j =
zij—zf = z;jl(|zjj| > «/n/\/logn)+E{z;l(|z;j| < /n/\/logm)}, Z} =

(zll,...,z:;n)T, Zi = Guo..ozp)l, 25 = (Z...Z)T =
(Zij)zsn,jgpn andZ = (Z1,...,Zn)T = Ei)i<nj<pu-

Then, E(z;) = 0 and by Cauchy-Schwarz inequality and Cheby-
shev’s inequality,

1— E(z;;z)
1 — E{z;1(1zj| < v/n/y/logm)} + [E{zil(zj| < v/n/y/logm)1?
= 1 - 1+ E{z1(z5 > V/n//logn))
[Elzjl(I24] > /n/+/log m}1?
2E{Zz]1(|2y| > V/n/\/logm)} < 2EHP(Iz4] > V/n//logm)'/?

< (P12l > Vn/logm}'/? < {E(z)/ (v/n/\/logm*}'/?
< (logn)/n,

IA

which implies that maxj<p, Z?:l [1— E(z;]‘.z)| < logn = o(n). Also,

x4
i)

(Efzijl(Iz| < v/n//logm)}*

sup E(z;

i<n,j<pp,n>1

< up

i<nj<pp,n>1

+HE{zijl(1z] < v/n/y/logm)}1*)

< sup  BfzI(|z;| < v/n/y/log myt+C

i<n,j<pn,n>1

< sup
i<n,j<pn,n>1

E(z;j.) +C<2C < c0.

It is easy to see |z;"j| < 24/n/,/logn. From Theorem 9.13 of Bai and
Silverstein (2010), for any s; > (14 /7)%, 52 < (1 — /7) and any
£ > 0, we have

P(1Z*Z* /nll2 > s1) = o(n™©),

P12 Z* /m) M2 > 1/s2) = o(n™Y).

Since Z = Z*+Z,wehave ZT Z/n = 2*T 7% n+ ZT 2% yn+ 2T Z ) n+
ZTZ /n. We know that

127 2/m1z < 1127 Z/nl)1 = maxZ | Zznztj/n( (€s)
"i=1 t=1

Note E(z;;) = 0, E(Zz4j) = 0 for i # j, and, for any integer k > 0,
from Cauchy-Schwarz inequality,

ElZil* = Elzil(zi > v/n/\/logn) + Elzal(zil < /n/\/logm}|¥
Elzil(|z4i| > ~/n/y/logn) — E{zil(|z| > </n/y/log m)}|¥
Elzil(|zi] > /n//logn)[F

< {Elzi**P(Iz4i| > v/n/\/logm)}'/

< {P(zil > v/n/\/logm}/2.

Therefore, for any integer £ > 0, taking x = 1//n, from (C.8) and
Markov’s inequality,

N

P(||ZTZ/n||z > x)

(maXZ’Zznzg/n‘ > x) < pnP (Z‘Zznzg/n‘ > x)

i=<pn =1 t=1
< p%P(’Z%tﬁtj/n’ > x/pn)

= (X

%PQ Zzh/n‘ > x/Pn) <pyE (’ Zzt, ‘ )/(x/p,,)zg
t=

th/”H Zztj/n’ > X /p,,)



n
2042 20 24 =2
=p, X “'n E(‘Zzti

25)
t=1

2042 —20 —20 20 22,20 2042 —20p 2 4L
p T2 =2y Elz;|” < pi T2x720E 24

Sp
< P22 2P (|z| > /n//logm)) /2

< PR 2 L2 2/ (Vi log m) 24y 1/2
< 72 (logn/ v

< (1Ogn)7en—5£+2x—2£ — (log n)7£n—4g+2 — O(n—f).
Then, for n large enough,

P(1ZTZ* /nll2 > 1/logn) < P(IZT11211Z*|12/n > 1/log n)
= PU1ZTZ/n211Z*T 2% /nlly > 1/(logm)?)
< P(1ZTZ/nlly > n=V4/logn) + P11 Z*TZ* /||y > n'/*/logn)
= o(nfz).

Therefore, taking 11 = 4(1 + V)% and uy = (1 — /7)%/4, we have

P(1ZTZ/nll2 = 1)
< P(1Z*TZ* /nlly > w1/2) + PUZTZ* /nll2 > p1/8)
+P(IZ*TZ/nlly > u1/8) + PUIZTZ/nlly > 1 /8) = o(n™),

and

PIZTZ/m) 72 = 1/02) = POmin(Z1Z/0) < 112)
< POumin(Z*T 2% /n) — 127 2% /1y — 112¥T Z /)|
—NZTZ/nll2 < p2)
< POmin(Z*T 2" /n) < 2p12) + PUI1ZT 2% /mll2 = p2/4)
+PUIZ*TZ)nll = p2/9) + PUIZTZ/nllp = 12/4)
= P(IZ*TZ* /m) " l2 > 1/@u2)) + o(n™%) = o(n™ ).
Then, taking x1 = || 2]|2¢1 and xp = w2/11Z27 Y2, we have
P(IXTX/nll2 = x1) < PUIZIRIZTZ/n)l2 = x1)
P(1Z7Z/nll2 = x1/1IZ1]2) = o(n™"),
PUIS Y21 Z/m) 7 12 2 57
P(1ZTZ/m) 7o = all= M) ™
= o(n_l).

A

PUICXTX/m 7 = x5 h)

O

Proof of Theorem 1. We first consider the situation that limy— o0 pn =
oo for part (a). From Lemma 2 that tr{XTX)"1} — Burf{xTx)~!
I(K)} = op(pn/n). Under event K, the eigenvalues of XTX/n are
bounded away from 0 and infinity. Hence, Etr{XTX) 1K)} =
Q(pu/n). Therefore, we have tr{(XTX)~1} = Etr{(XTX) " 1(K)}{1 +
op(1)}. From

1BII3 — 11Boll5 — tr{x"x)~"}62
= 1B = Boll3 +2B¢ (B — Bo) — tr((x" )~ )67
= (1B = Boll3 — r{ X021 = X 07162 = 02)
+2B5 (B — Bo)
=T1; — Etre{(XTX) T HK) {1 + op(1)}p + 213,
we first demonstrate the asymptotic normality of ¢, 1((:111 + clp +
c313)I(K) for any constants c; = (1), c2 = Q(pn/n) and c3 = Q(1).

For notational simplicity, denote M = X(XTX)~2XT, My = {I,,—
XXTX)71XTy/(n — pp) and vT = BT (XTX)71XT. Then,

I = e Mie — tr{(XTX) " 1}o 2
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n
=2 Y M1(i,j)6,-6j+ZM1(j,j)6j2—tr{(XTX)_l}o'gz

1<i<j<n j=1

=2 Z Ml(i,j)€i€j+ZM1(j:j)(€]'2_062)>

1<i<j<n j=1

n
L =€ Me—o0?=2 Z My (i jeiej + ZMz(j,j)(ﬁjz —ad),

1<i<j<n j=1
n
— T = A.
3=ve= ZVJEJ’
j=1
where My(i,j) is the (i, j)th element of My (k = 1, 2) and v =
(v1,...,vn)" . Hence,

cli + ol + ¢33
=2 Y {aMiGj) + M j)lee

1<i<j<n

n n
+ Y (M) + MG e —od) + 3 ) vie
j=1 j=1

- Z[ 3 2{aMiGj) + 2MaGirj)eie

j=1l<i<j

M1 Gof) + MG ) (e} — 02) + v
n
= Z U]
=1

Note that UjI(K), j=1,2,...,1is a martingale difference, with

E(UIL(K)|X, €1,...,€j-1) =0

and

n
> EHUIE) P X €t .. €-1]
=1

10y E([
j=1
2
HaMiG,)) + MG ) e} — o) + v
10y E([
j=1

HaM1G.) + MG )Y€ — o)) + Gvie]

Z 2{aa M1 G j) + c2M2 (i, ) Jejej

1<i<j

X, €1,.. .,ej_l)

- N
Z 2{c1M1(z,])+CzM2(l>])}€i] €

1<i<j

]
+2 ) 2{aMihf) + caMa (i, f)leiejler M1 G j) + c2Ma (i )
1<i<j
2 2
x(ej — o)
+2 Z 2{c1M1(i,)) + caMa (i ) Yeiejcavie
1<i<j
+2Aa M1 (.)) + M2 — od)esvig|Xoer, 1)
" 2
=100 ([ X 2laMip) + MG ple] o2
j=1 1<i<j

HeaMiGj) + M) var(el) + Sviol

+2 ) 2AaMi)) + aMaG PHaM1G.) + MG )IEED e

1<i<j
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+2 3 2{aMi i) + 2Ma (o )eicsviol
1<i<j
F2AetMiGof) + 2Ma (o )IEE sy
n

= I(K) Y (I + Iy + T3 + Iy j + s j + I ).
=1

Denote t, = ||Bgll2/~/n + /Pn/n. Lemmas S.6-S.11 imply

n
var{ 3 IIk,jI(K)} —o(th), fork=1,...,6. (C.9)
j=1
Lemma S.5 indicates
n
> E{UIE) = o(ty). (C.10)
j=1
From Lemmas S.12-S.14, we have
n 3
Z Z E(II;1(K)} = O(t;). (C.11)
j=lk=1
Lemmas S.9-S.11 imply that
n 6
3O B IK)} = o(th). (C.12)

j=1k=4

Checking conditions (2) and (4) with § = 1 in the theorem of
Heyde and Brown (1970), from (C.9)-(C.12), taking ¢; =
—Etr{(XTX)1(K)}, and c3 = 2,

1, o =

_ D
¢y Ml + el + aI)IK) = N, 1),
where, from Lemmas S.12-S.14,

¢ = 402 BLE(XTX)TH(K)) Bg + 202 Etr{(XTX) T21(K))
4
+£[Etr{(XTX)_lI(K) 12
n—pn

= Q2||Boll3/n+ olpn/n* + olph/n)
= Q(a2|IBol3/n+ olpn/n?) = Q(tD).

For part (b), if p./>/n = 0(SNR), then ¢2 = o(||Bol[3). Then, ||/§||§ —
11Bol13 = Op(¢n) = op(lIBoll3).

Last, we consider the case for fixed py. Since By and o2 do not
change with n and B # 0p,, we have n~! = 0(SNR). Note

BI13 — 11Bol13 — tr{(xTx)~1)62
=118 — Boll3 + 2B (B — Bo) — r{xTx)~1)872
=eIXXTX)72xTe + 280 (B — By) — tr{(xXTx)" )62,

Following the proof for I3, we have Zﬂg(ﬁ - /30)/[AlzfezﬂgE{(XTX)71

1K)} 80112 B N(0,1) and hence 28 (B—Bo) = 2p (0 1Bol 2/ /7).
From E{eTX(XTX)2XTel(K)} = Q(a2pn/n), tr{(XTX)"1)62 =
aezOp(pn /n) and n~! = 0(SNR), we have the following results
2 = Qo2 BIE(XTX)TI(K)}Bo] and (|IBI13 — [1Bol13)/1402BT

E((XTX)~11(K)}Bo1Y2 B N(0,1). Hence, (18112 — 11Bol12)/2n >
N(0, 1). The proof for part(b) is similar to that for diverging py.

In the end, we will discuss the extension to fixed design. From the
proofs for (C.9)-(C.12) with ¢; = 1, ¢ = —Etr{(XTX) " 'I(K)} and
c3 = 2, there exists a sequence of positive real numbers {w;},>1 with

wy = 0(1) and constants 0 < C1 < Cy < 00, such that P(X € X)) —
1 where X, € R"*Pn is a collection of all x € R"*Pn satisfying

6 n
Zvar| 3 IIk,jI(K)’X = x] < ot
k=1 j=1
n
Y EHUIENIX = x] < oty
j=1

n 3
Z Z E{II 1(K)|X = x} € [C1t5, Caty],
j=1k=1

n 6
> O B IK) (X = x) < wnt;,

j=1 k=4

’4062ﬂg(xTx)_1ﬁ0 + Zaftr{(xTx)_z}

=< (C.13)

20 To—1y72 _ 2 2
+——[tr{(x" %) " }]° = & | < wnty,
n—pn

while the last equation above is due to Lemma 2. Then, using the
martingale difference CLT in Heyde and Brown (1970), the asymptotic

standard normality holds for (|| ﬂA ||% — 1Bol |%) /¢n conditioning on X
= x for any x € X);. The consistency result in part (b) can be derived
using similar arguments. O

Proof of Lemma 2. We provide the proof given event H. The results
given event K can be similarly derived.

From Efron-Stein inequality in Efron and Stein (1981), if W is a
function of n independent random variables and W(; is any function
of all those random variables except the ith, then

n n
var(W) < Zvar(W — W) < ZE(W — W% (Cl14)
i=1 i=1

First, we use (C.14) with
W = % /patr{ (X TX) ~Fy1(H),
W) = nk/pntr{(x(Ti)X(i))—k}I(H(l-)),

T

where H(;) denotes the event that ||(X(l.)X(,-)/n)_1 [l2 < 1/x2. Note

D E(W = Wp)® = nE(W — W)’

i=1
< nELR /pte( (X7 X0 TRHICH) — 1(H )}

+nEr* putel (XX FIH) — 7 /pate( X X (i) T H(H )P
=I1+1IL

Since XTX > X(Tl.)X(,«), we know ||(XTX) 71, < ||(X(Ti)X(,-))_1 |2 and
hence H D Hy;). Then, I(H) — I(H;)) = I(H N Hg)) = IH)I(H;)).
From Lemma 1,

1< n(n*/p)2 (pun™*)2P(H)) = O(1/n).
Next, given Hq), we will show that
L 2Bl (X0 7R — e (X X)) TR = o1 /m).
From (C.1), we have

&' = &l Xap T+ A



where A is a sum of 2 — 1 terms, each of which can be expressed as
Ap X Ay X - x Ap with A; = (X(Tl)X(l))_l orA;=B(i=1,...,k
where
T -1 T 5T -1 T T -1
B = —(X}, X)) " X X] (X X T+ XT X X)X,

and at least one of Ay, ..., A is B. It suffices to show that for each of

the 2% — 1 terms in A, E{tr(A1A; -- -Ak)}2 = O(p%n_Zk_z). Without

loss of generality, if A} = B, then from Lemmas 1 and S.1, given event

Hqys

B{tr(A14z - ApY < BIX{ (X(}) X)) ™ Az -+ Ap(X ) X)) T X0 )
= 0(p2n~ 72,

Next, we prove the second result of this lemma. Without loss of
generality, assume ||Byll2 = 1, and we will use (C.14) again with
W = nk BT (XTX)"FBoI(H) and Wiy = n*BT (X[ X)) ~*Bol(H)
to show that, for each of the 2% — 1 terms in A,

W BB ALA -+ ArBol(H i)} = O(1/m).

We only give the proof of a special case that Ay = A, = B, and
A= =Ap = (X(TI)X(I))fl. From Lemma S.1,

E{B§ A1A2 - - AkBol(H (1))}

T ~T —1 T/+T -2 T /T -1
E{ﬂo (X(l)X(l)) X1X1 (X(l)X(l)) X1X1 (X(l)X(l))

IA

X (X X)) T2 Bol(H(1))

E{(B (X[} X))~ XD (X (X[} X (1)) "2X1)?
x (X (XT3 X)) ™5 Bo)1(H 1))

[E{(BG (X(1) X))~ X0 1(H1)1?

x[B{X (X)) X)) X0 1(H /4

IA

TELXT (X)) T By BTcH )N
< EIBG (X Xy T IH)I13}
x [B(XT (X[} X (1) 72X11(H(1)))8/4
LB X X)) T BoT(Hy 154
S n—Zn—Zn—2k+2 — O(n—Zk—Z).

The proofs for the other terms are similar. We complete the proof. [

Proof of Theorem 3. First, we consider p,, — oc. Following the proof
of Theorem 1,if c; = 1, ¢ = —Etr{(XTX)fll(K)}, 3 = 2, we
have {2 — ¢2 = op(t) using the results in Lemmas S.12-S.14 and
Proposition 1, where ¢, is defined in the proof of Theorem 1.

For fixed p;,, we first show that BT(XTX)*lﬁ/B E 1, where B =
BIEIXTX)TI(K)}Bg = Q(11Bol13/m). Note
BT B = BTTX) T By + 28] (X302 Te
+eTxxTx)3xTe.
From Lemma 2, 81 (XTX)~18o/B 5 1. Since 28T (XTX)~2xTe =
Op(0¢ellBoll2n™%) = op(B) and e’ X(XTX)73xTe = Op(c?
n~2) = op(B), we claim that BT(XTX)A[}/B E 1.
Recall {2 = 4&33T(XTX)*1 B — 263t((XTX)"2) + 262
[te{(XTX)"1}12/(n — pn). Then 262tr{(XTX)™2} = Op(on~2) =
op(02B) and 26 2[tr{(XTX)~1}12/(n—pn) = Op(02n~3) = op(a2B).

Therefore, from Proposition 1, we have ;:,% / (4062B) f) 1.
Following the proof of Theorem 1, we have {,% / (40623) f) 1, which
implies that 23 / {3 E 1. We complete the proof. O
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Supplementary Materials

The supplementary material includes a discussion of the conditions in
Kelejian and Prucha (2001), extension of our results to centralized data,
conventional inference for the fraction of variance explained, two-sample
inferences, and the proofs for the rest of the main theoretical results as well
as the technical lemmas.
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