November 29, 2021 23:39 output

Unmanned Systems, Vol. 0, No. 0 (2013) 1-17
(© World Scientific Publishing Company

Automated Playbook for UAV Traffic Management based on
Spatiotemporal Scenario Data

Chenyuan He ¥ Yan Wan [ and Junfei Xiet

University of Texas at Arlington, Arlington, TX, 76019
San Diego State University, San Diego, CA, 92182

This paper develops a decision framework to automate the playbook for UAS traffic management (UTM) under uncertain envi-
ronmental conditions based on spatiotemporal scenario data. Motivated by the traditional air traffic management (ATM) which
uses the playbook to guide traffic using pre-validated routes under convective weather, the proposed UTM playbook leverages a
database to store optimal UAS routes tagged with spatiotemporal wind scenarios to automate the UAS trajectory management.
Our perspective is that the UASs, and many other modern systems, operate in spatiotemporally evolving environments, and similar
spatiotemporal scenarios are tied with similar management decisions. Motivated by this feature, our automated playbook solution
integrates the offline operations, online operations and a database to enable real-time UAS trajectory management decisions. The
solution features the use of similarity between spatiotemporal scenarios to retrieve offline decisions as the initial solution for online
fine tuning, which significantly shortens the online decision time. A fast query algorithm that exploits the correlation of spatiotem-
poral scenarios is utilized in the decision framework to quickly retrieve the best offline decisions. The online fine tuning adapts to
trajectory deviations and subject to collision avoidance among UASs. The solution is demonstrated using simulation studies, and
can be utilized in other applications where quick decisions are desired and spatiotemporal environments play a crucial role in the

decision process.
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1. Introduction

Unmanned aircraft system (UAS) technologies have been
rapidly developed in recent years and have found applica-
tions in a wide range of civilian domains, including goods
delivery,! infrastructure survelliance,? smart farming,® on-
demand communication,*® and others. In order to inte-
grate UASs into the National Airspace System (NAS),
many efforts have been devoted to UAS traffic manage-
ment (UTM).%7 UTM aims to provide safe and efficient
low-altitude airspace services, including airspace design,
dynamic configuration, route planning and rerouting, geo-
fencing, severe weather and wind avoidance, congestion
management, terrain avoidance, and separation manage-
ment.” 8 Although most of the current studies of UTM are
concerned with a low-density airspace, the long-term goal is
to enable the safety and efficiency of low-altitude airspace
with dense operations of UAS under dynamic weather and
other potential hazards.

In this paper, we borrow ideas from traditional air traf-

fic management (ATM) to UTM. The current ATM solu-
tions, developed mainly for commercial airlines, adopt the
national playbook® to reroute traffic during periods of con-
vective weather or other off-nominal events that affect the
coordination of routes. The national playbook is a collec-
tion of Severe Weather Avoidance Plan (SWAP) routes that
have been pre-validated with involved air route traffic con-
trol centers (ARTCCs). Experienced traffic controllers at
traffic management units (TMUs) check the national play-
book, evaluate the route advisories, and then determine a
certain route to implement.

Despite the similarities between UTM and ATM, it is
challenging to directly apply ATM solutions to UTM con-
sidering the unique characteristics of UTM.% 10 First, the
management solutions need to be automated instead of hu-
man controlled considering the high volume of UASs in a
dense airspace. Second, UASs are much more sensitive to
weather, such as varying wind conditions, due to their small
size and low weight. Finer weather resolutions need to be
considered. Third, the management solutions need to be
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adaptive to the dynamic and varying weather conditions.
Forth, computational efficiency becomes an issue to resolve
with the growing number of UASs in the NAS.

There have been some studies in the literature that
investigate the various aspects of UTM. The studies of
our interest include the UTM capacity studies,'! sys-
tem structures,® communication framework,? weather ser-
vice,'? representative UAS trajectory models,** collision
avoidance protocols,'® 16 and multi-UAS path planning al-
gorithms.'”23 In this paper, we propose a spatiotemporal
scenario data-driven decision framework which automates
the playbook for UTM subject to uncertain environmental
conditions. This solution can also be utilized in other appli-
cations where real-time decision is desired and spatiotem-
poral environments play a significant role in the decision
process.

The key idea of our proposed spatiotemporal scenario
data-driven decision framework is based on the fact that
similar spatiotemporal scenarios are tied with similar de-
cision solutions. Broadly, modern systems often operate
in spatiotemporally evolving environments, and their dy-
namics are modulated by environments in a complicated
fashion. Such uncertain spatiotemproal environments, if ex-
ploited, can improve the efficiency of end-to-end decision-
making. To enact the environmental data-driven big data
analytics, we earlier systematically investigated a new data
type, called the spatiotemporal scenario data.?*2> A data
point of spatiotemproal scenario data is composed of a se-
quence of snapshots, each of which is a spatial map. Dif-
ferent from static data,?0 spatial graphical data,?” tempo-
ral data,?®2% and spatiotemporal data3® that have been
widely studied in the literature, the spatiotemporal sce-
nario data, unique for physical networked dynamic systems,
feature tight correlations across the spatial, temporal, and
also spatiotemporal dimensions. In our prior studies, we
developed data-driven and model-based algorithms to ana-
lyze and process the spatiotemporal scenario data.2% 31734
Along the data-driven direction, we developed a multi-
resolution moving-window approach to capture spatiotem-
poral correlations and developed a distance measure to
quantify the similarity among spatiotemporal scenarios.?*
We also developed an effective similarity search algorithm
to quickly query similar spatiotemporal scenarios by explor-
ing the correlations among spatiotemporal dimensions.??
Along the model-based direction, we adopted a reduced-
order stochastic influence model to capture uncertain spa-
tiotemporal weather spread dynamics.?* 34 The sufficient
and necessary conditions for the identifiability of the influ-
ence model was proposed and estimators were developed
to find model parameters.?> A model-based distance mea-
sure3* based on Kullback-Leibler (KL) divergence was then
developed to validate the data-driven distance measure.?*
By utilizing the properties of spatiotemporal scenario data
and the corresponding analytical methods we developed,
this paper ? investigates the use of spatiotemporal scenario

#A brief conference version of this paper can be found in reference.

data query to automate the UTM playbook, and facilitate
optimal online decisions for multi-UAS trajectory manage-
ment under uncertain environmental conditions.

The basic operations of the proposed spatiotemporal
scenario data-driven solution for UTM are as follows. First,
we construct offline a database of spatiotemporal wind sce-
narios tagged with their optimal multi-UAS trajectory de-
cisions. Next, based on current wind forecast, a fast query
of similar spatiotemporal wind scenario in the database is
conducted to retrieve the best offline UAS trajectory deci-
sion. The decision is then fine tuned online to obtain the
optimal trajectory decision for the current weather scenario
with significantly shortened online computing time.

The contributions of this paper are summarized as fol-
lows. First, different from the existing studies that treat
uncertain wind fields as constants, Gaussian noises or time-
varying variables,?6:3%36 we here consider wind fields as
stochastic spatiotemporal processes that demonstrate spa-
tial, temporal and spatiotemporal correlations. Second, we
efficiently automate the playbook for UTM based on spa-
tiotemporal scenario data. Our automated playbook so-
lution integrates offline operations, online operations and
a spatiotemporal scenario database, and significantly ac-
celerates online decisions in adaptation to environmental
changes. Database query relies on a spatiotemporal sce-
nario data distance measure and a fast query algorithm
that exploits spatiotemporal scenario data correlations.
The online tuning aims to guarantee the safety and ac-
curacy of multi-UAS trajectories. Third, the proposed so-
lution framework is flexible and can be easily extended to
include more control actions, and more complicated vehi-
cle dynamics and weather conditions. It can also be utilized
in other applications where quick decisions are desired in
spatiotemporal environments.

The rest of this paper is organized as follows. Sec-
tion 2 overviews the spatiotemporal scenario data-driven
decision framework. Section 3 introduces offline UTM op-
erations, including the spatiotemporal influence model, op-
timal control-based trajectory management solution, and
spatiotemporal scenario database construction. Section 4
introduces online UTM operations, including spatiotempo-
ral scenario data distance measure, fast spatiotemporal sce-
nario data query, online tuning, and database expansion.
Section 5 presents simulation studies. Section 6 concludes
the paper.

2. Overview of the Spatiotemporal Scenario
Data-driven Decision Framework

The spatiotemporal scenario data-driven decision frame-
work is developed based on the assumption that similar
spatiotemporal scenarios share similar decision solutions,
and hence stored solutions can be leveraged to accelerate
online decisions. The framework is composed of three main
blocks shown in Figure 1: the offline block, online block and
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database block.

The offline block contains three operations. The first
operation is to obtain spatiotemporal scenario data from
either historical environmental data or environmental sim-
ulation models. The second operation is to find an opti-
mal solution for each scenario. The third operation is to
construct a database of spatiotemporal scenarios and their
corresponding optimal solutions.

The online block also contains three operations. The
first operation is to query the spatiotemporal scenario
database and search for the scenario that is most similar to
the current scenario provided by environmental forecasting
tools. The corresponding optimal solution is thus retrieved.
Because the current scenario may not be exactly the same
as the retrieved scenario during flight, the retrieved solu-
tion is then fine tuned online in the second operation. Once
the optimal solution to the current scenario is obtained, the
solution is pushed to the database in the third operation
to expand the solution sets for future use.

Offline
thaln Fm.d optimal Construct
spatiotemporal solution for each
. L . database
scenario data scenario
Database
Online

Query: Search for ‘ Expand database
similar scenario and the Online with the current
corresponding solution tuning scenario and its

from database optimal solution.

Fig. 1.
tion.

Spatiotemporal Scenario Data-driven Decision Solu-

We use the aforementioned spatiotemporal scenario
data-driven decision framework to solve multi-UAS trajec-
tory management for UTM as a case study. We adopt the
stochastic influence model which captures spatiotemporal
spread patterns for the wind fields. We then formulate the
multi-UAS trajectory management problem using optimal
control in continuous state and action spaces. Each UAS
has its own dynamics, starting point and destination. We
assume that once the UASs are launched into the air, they
navigate at the same altitude, and as such a 2D UAS mo-
bility model is adopted. We adopt the required time of ar-
rival (RTA) for the UTM initiative.3” We assume that each
UAS has a RTA constraint. Our objective is to drive all
the UASs to their destinations with minimal total energy
consumption, subject to uncertain wind conditions, colli-
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sion avoidance constraints and RTA constraints. By lever-
aging the spatiotemporal scenario database and the fast
query algorithm, the proposed framework realizes the au-
tomated UTM playbook with computational efficiency. Of
notice, the proposed framework can be applied to the de-
cision making in other time stringent applications under
spatiotemporally varying environments as well.

3. Offline Operations

In this section, we first introduce the generation of spa-
tiotemporal wind scenario data using the stochastic influ-
ence model. We then develop the offline optimal multi-
UAS trajectory management solution subject to spatiotem-
porally varying wind conditions and collision avoidance
constraints. In the end, we describe the construction of
database to store the spatiotemporal wind scenarios tagged
with corresponding optimal multi-UAS trajectory solu-
tions.

3.1. Generation of Spatiotemporal Wind
Scenario Data Using the Influence
Model

The spatiotemporal wind scenario database can be con-
structed from historical wind data or wind field models. We
here use the influence model to generate a spatiotemporal
wind dataset.?33%3% The model captures spatiotemporal
correlations by modeling both network- and local- level spa-
tiotemporal spread properties (see Figure 2 for example).
Compared to Markov models, the influence model provides
a tractable reduced-order representation of a stochastic net-
work and hence is significantly more computationally effi-

cient.
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Fig. 2. A simple illustrative example of an influence model with
five regions and two wind statuses ‘W’ and ‘E’.

Because the influence model is a discrete time and
discrete state model, we first discretize the time and
wind conditions. Given a time horizon [0,7], we adopt
a sampling period AT and obtain a set of discrete time
points {0, AT,2AT,--- ,T}. For simplicity, we denote the
time step from (k — 1)AT to kAT by k, where k €
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{1,2,--- ,%}. Consider a wind field of N regions. Each
region has its own wind that interacts with other regions
stochastically. We describe wind at each region using two
elements: speed and direction. Let Wi, and W, de-
note the upper and lower bounds of the wind speed re-
spectively. The wind direction ranges from 0 to 27 radius.
Let 6, and A,, denote the speed and angle resolutions re-
spectively. The wind speed and direction are discretized
accordingly. In order to facilitate the influence model, we
encode speed and direction to one wind status by construct-
ing a look-up table (see Figure 3). The wind status for re-
gion n at time step k is denoted by a scalar I, ;, where
n € {1,2,--- , N}. The total number of wind statuses M is

calculated as M = W. We use a length-M row

vector Sy, [k] to denote the vector form of the wind status
of region n at time step k. S,[k] is filled with zeros ex-
cept a ‘17 at the position of I,, . Therefore, Sy, [k] and I,
have a one-to-one mapping relationship. The whole wind
field’s state S[k] can be denoted by cascading Sy,[k] for

T

all n € {1,2,, N}, iie., S[K] =[S} K], S5 (K], Sx[M] -
where the superscript T is the transpose operator.

Wind Speed Wind Direction Status

Winin + 8,,/2 /2 1

Winin + 6w /2 30w/2 2

Winin + 8,/2 21 — Dy /2 1+ (21— Ay) /by

Winin + 36,,/2 /2 2+ (2w — A,)/A,,

Wonin + 36,,/2 34,,/2 3+ (2w — Ay)/Ay

Winin + 368,,/2 2w —A,,/2 24221 — A,)/B,

Winax — 6w/2 Aw/2 @1/ By Winax = Winin — 8w)/8w) +1

Winax — 6w/2 34y /2 21/ D Whnax — Winin — 8w)/8w) + 2

Winax — 6w/2 2n—A,/2 21 (Winax — Winin)/Bwbyw)
Fig. 3. The construction of the look-up table that encodes wind

speed and direction into one wind status.

In the Influence model, the spatiotemporal wind
spread dynamics is captured using two matrices, the net-
work influence matrix D and the local Markov chain A. The
network influence matrix D € RY describes the spread pat-
tern at the network level. Each entry d;; is the probability
for the wind status of region ¢ to be influenced by the wind
status of region j at the next time step. A local Markov
chain A € RM*M describes the local influence between a
pair of neighboring regions ¢ and j. The entry a.,,, of A
is the probability for region j to be in wind status n at
the next time step when region 7 is in wind status m at
the current time step. D and A are both right stochastic
matrices.

To use the influence model dynamics to capture uncer-

tain wind dynamics, the probability mass function (PMF)
for the wind status of region n at time step k is de-
noted as a length-M row vector p,[k]. The network’s PMF
matrix can be represented by cascading p,[k] in order,

T T
plk) = [} (8] p3 K, -
status evolves spatiotemporally based on a quasi-linear
combination of the wind statuses of its neighbors and itself,

ie, pplk+1] = E;il dn1Si[k]A. Therefore, the evolution of
the wind field can be represented in a matrix multiplication
form, i.e., p[k+1] = DS[k]A. The wind field’s state at time
step k + 1 is randomly realized according to p[k + 1], i.e.,
Slk + 1] = Realize(plk + 1)).

Each region of the wind field has its own wind status at
initial time. The spatiotemporal wind scenario then evolves
in time according to the initial wind statuses, the network
influence matrix D and the local Markov chain A. Figure
2 shows a simple example to illustrate the influence model
dynamics. The example considers a wind field composed of
five regions. The wind speeds are constants for all the re-
gions, i.e., Wiaz = Winin = 1 m/s. The angle resolution is
A, = m. Therefore, we have two encoded wind status, de-
noted as ‘W’ and ‘E’ respectively. The wind statuses evolve
in time according to the probabilistic interactions among
the five regions. Taking region 1 as an example, its wind
status is influenced by not only itself, but also the wind
statuses of its neighboring regions 2, 3, 4 and 5. When re-
gion 1, 2, 3 and 4’s wind statuses are ‘W’, and region 5’s
wind status is ‘E’, the probability for region 1 to have wind
status ‘W’ at the next time step is 0.73. This is calculated
by summing the probability of 0.48 (0.6 x 0.8) by region 1
itself, probability of 0.08 (0.1 x 0.8) from each of region 2,
3 and 4, and probability of 0.01 (0.1 x 0.1) from region 5.

,p]T\,[k;]} . For region n, its wind

3.2. Optimal Multi-UAS Trajectory
Management Solution

We formulate the multi-UAS trajectory management as
an optimal control problem in continuous state and ac-
tion spaces. Consider K UASs in a wind field, each of
which has its own starting point and destination, denoted
by Ly = [xio,yio]T and L;; = [xif,yif]T respectively,
where i € {1,2,---,K}. Let Ly = [L1o, Loo, -+ , Lxo]
and Ly = [Lyy, Loy, - ,LKf]T. The control variables for
each UAS are thrust w; and its angle 6;, where w; is
bounded by the largest thrust wmaz, i-€., |u;] < Umaz. Let
(x:(7),yi(7)) and (vg(7),vy;(7)) denote the position and
velocity of UAS ¢ at time 7 along the X and Y axes re-
spectively. The corresponding speed and direction of wind
for the position of UAS i at time 7 are denoted by W;(7)
and v;(7) respectively. The wind field is generated using
the influence model described in Section 3.1. The system
state for UAS ¢ is X; = [xi,yi,vzi,vyi]T. Stacking all the
X, the integrated system state for all the UASs is de-
noted by X = [X;, Xy, -, Xy] . The UAS dynamics
Xi(r) = F(Xi(r),ui(r), 0i(7), Wi(7),1i(7),7) modulated
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by the spatiotemporally correlated wind subject to colli-
sion avoidance can be modeled as:

Zi(T) = i (T) + Wi(7) cos ¥ (7)
Ui (1) = vyi(7) + Wi(T) sin (1) .
Ui (T) = ui(7) o8 0:(T) + > _jeqa, 2, K} ) S G

mylm y; (1))
< KY e ()l (D= (7]

(1)
where 7;; denotes the FEuclidean distance between UASs ¢
and j, i.e., r;; = /(z; — ;)% + (y; — y;)?, and S is a pos-
itive constant to account for the importance of collision
avoidance. Each UAS emanates a repulsive force to compel
the surrounding UASs to move away. Here we adopt inverse
proportional functions with respect to 7;; to model the re-
pulsive potential field. Other functions such as exponential
and Gaussian functions can also be applied.39 In particu-
B(zi(r)=x;(r)) Byi(1)=y; (7))
w3 (D=5 (D] 2 w5 )y () =y, ()]
along the X and Y axes are produced by the repulsive
force of UAS j for UAS i to avoid collision. (zi(r)—z;(r)

i (T)—z; ()]
and % denote the directions of the repulsive force

lar, the accelerations

along X and Y axes respectively. When two UASs are far
away from each other, the repulsive fields exert little or
no influence on their motion. With the decrease of r;;, the
repulsive force that UAS j exerts on ¢ increases to avoid
collision.

To improve the UTM, we adopt the RTA for the
UTM initiative.?” We assume each UAS i has a RTA
constraint 7;. We aim to find the optimal solutions u =
[u1, ug, - 7uK]T and 6 = [01,02,-- ,OK]T which drive all
the UASs from their starting points Lg to their destinations
Ly at their corresponding RTAs and meanwhile minimize
the total energy consumption for the UASs subject to wind
disturbances and collision avoidance. Mathematically, the
optimal control problem is formulated to minimize the fol-
lowing cost function J:

i(T)7¢i(7_)77_)7

Subject to : [(T) (Tz)}T
(2)

where p, a; and s are weighting coefficients, and R is the
pre-specified safety distance.

Paper Title 5

The corresponding Hamiltonian is:

SN

H(X(7),u(r),0(7), A

)+ agZGQ ()

K
+ D M (i (1) + Wi(7) cos dhi(7))
=1

K
+ ) Agilvyi(r) + Wilr) sin (7))
i=1
X B(xi(r) —z;(7))
+Z)\3i u;(7) cos 0;(7) + Z i (T )Z|x (r )7]37‘(7'
i=1 je{1,2, Kk} Y g J
J#i
X Blyi(r
+Z>‘4i u; (1) sin 6; (1) + Z o z‘
i=1 je{1,2,- K} Y vilr
J#i 3

where A(7) is the collection of all the costates, i.e., A(T

[A117A12) e a)\le AQla e 7)\2Ka)\317 e 7A3K7)\417 : )A4K] .
The necessary conditions for «*(7) and 6*(7) to be optimal
controls are:

R OH (X ™ (1),u*(7),0" (1), \* (1), 7)
Oy ’
JE = OH (X*(1),u*(1),0% (1), \*(7),7)
i M 5
o OH (X*(1),u*(1),0% (1), \*(7),T)
. OAs; ’
o OH (X*(1),u* (1), 0% (1), \*(7),T)
yi E)VP )
)\T _ 76H(X*(T)7U*(T)79*(7)7)‘*(7)77—)
E ox; ’
3= COH(X(1),u”(7),0% (1), \" (1), 7)
21 — ayz )
35— _OH(X*(T),u*(T),G*(T),)\*(7'),7')
31 a'Urci B
3= _OH(X™(7),u"(7),0"(7),\"(1),7)
4 Ovy; ’
yi
OH (X*(1),u*(1),0% (1), \*(1),7) —0
ou; ’
OH(X*(7),u™ (1), 0"(7), \"(1),7) _
00; ’
H(X*(7),u™(1),0" (1), \*(7),7) < H(X"(7),u(7),0(T), A (72,7)'

In general, there are two approaches to solve the above
optimization problem, indirect methods and direct meth-
0ds.4? The indirect methods are based on the necessary
conditions derived from the Hamiltonian. They require the
computation of gradient and search for the control vari-
ables to let the gradient be zero. The indirect methods
feature good accuracy and fast convergence speed. How-
ever, solving the two-point boundary value problem often
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requires a priori information about the structure of the so-
lution, which is challenging for complex nonlinear dynamic
systems. The direct methods convert the optimal control
problem into a nonlinear programming problem and dis-
cretize the control variables as piece-wise constants. A pri-
ori knowledge about the structure of the solution is not
required. The direct methods provide an approximate so-
lution to the original optimization problem.

Here we adopt a widely used direct method for large-
scale optimal control problems, the control vector parame-
terization (CVP), to solve the multi-UAS trajectory man-
agement problem.*! To facilitate the illustration of the pro-
posed decision framework, we assume the RTAs for all the
UASs are the same, ie., T; = T for all 4 € {1,2,--- | K}.
The CVP contains two steps. First, we divide the time hori-
zon [0,T] into H > 1 control stages, with CVP specified
time points 0 < t; < to < .-+ < tyg = T. Second, in
each time interval [t;,¢;41], where [ € {1,2,---,H}, the
control vector is approximated by a basis function with
a limited number of parameters, for example, a low-order
B-spline function.*! Then the system states are integrated
forward in time, and the cost at final time T is evaluated
and optimized over a number of iterations. Since the opti-
mal control problem is nonconvex and the CVP method is
sensitive to initial guesses, we design a restart function to
find the global optimum. In particular, we select multiple
initial guesses, implement the CVP method, and calculate
the cost function for each of them. Then we find the least
cost and record the corresponding control strategy as the
optimal trajectory solution.

3.3. Database Construction

In order to automate the proposed UTM playbook, we con-
struct a database to store the offline spatiotemporal wind
scenarios and their corresponding optimal multi-UAS tra-
jectory solutions. The key elements of the database include
the wind scenario tag, spatiotemporal wind scenario data,
number of UASs, starting points, destinations, optimal
management solutions and waypoints for all UASs at the
CVP specified time points. The structure of the data type
is shown in Figure 4. The waypoint R} = [5(t1), s ()]
denotes the position of UAS i at the CVP specified time
point ¢;, where ¢ € {1,2,--- K} and | € {1,2,--- ,H}.
Here we let R =
of all UASs at ;.

[RI' RY,--- ,R?(]T store the waypoints

4. Online Operations

As shown in Figure 1, three main online operations are
involved. With the current spatiotemporal wind scenario
provided from forecasting tools, we first apply a fast query
algorithm to retrieve the most similar scenario and its cor-
responding optimal multi-UAS management strategy from
the database. We then apply online tuning to the retrieved
solution to correct trajectory deviation and avoid potential

collisions. In the end, we expand the database with the cur-
rent scenario and its optimal solution. Before we elaborate
on the fast query algorithm, let us first introduce a distance
measure to be used in the fast query algorithm.

4.1. Distance Measure For Spatiotemporal
Scenario Data

The distance measure we previously developed?* quanti-
fies the similarity between spatiotemporal scenario data.
It calculates the distance between two spatiotemopral sce-
narios across spatial, temporal, and also spatiotemporal di-
mensions. The distance measure has the following features.
First, it captures the spatiotemporal correlations for a pair
of scenarios by using 3D moving windows of multiple resolu-
tions. Second, the distance measure automatically corrects
boundary effects and balances the contributions of all spa-
tial cells and time points. Third, the distance measure is
applicable for not only regular-shaped but also irregular-
shaped spatial cells.

Consider two spatiotemporal wind scenarios s, and s
generated from the influence model introduced in Section
3.1, each of which is composed of N regions and % tem-
poral points. The scalar wind status of s, at region n and
time point k is denoted as I;Ll’k, where n € {1,2,--- |N}

and k € {1,2,---, %} We use moving windows at mutli-
ple spatial and temporal dimensions to simultaneously scan
5q and sy, and then compute their similarity. Let ¢,, ,, and
@k,n denote the spatial window and temporal window re-
spectively. ¢y, ., is a size-w spatial window centered at re-
gion n and contains all the regions within w — 1 hops to
region n. ®,, is the full set of spatial windows of size w.
@k,n is a size-h temporal window starting from the time
point k£ and contains the subsequent h time points. @y is
the full set of temporal windows of size h. w € [1, Wmaz)
and h € [1, hyae]. The maximum sizes of spatial window
Wmae and temporal window h,,q, are selected according
to the priori knowledge of spatiotemporal scenario prop-
erties. Of note, smaller window size indicates finer resolu-
tion, while larger window size indicates coarser resolution.
In our previous studies,?* we found that small Wy, and
hmaz are typically sufficient for most applications, which
alleviate the computational burden. The distance between
the two scenarios with fixed spatial window size w and tem-
poral window size h, represented by Dy p w.n, is calculated
by comparing the aggregated region wind statuses,

1
D Jbaw,h = T L 1+ 1
el L | A
7o P (5)
9 _ T,9
Z Z %",w(g,h Z Z ’Vr,ng,h ’
T€Pn,w 9EPK, h T€EPn,w 9EPk, h
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Scenario | Spatiotemporal Wind | The Number of | The Starting The (éI;::::: Wavpoints
Tag Scenario Data UASs Points Destinations . P
Strategies
sl S[1] | S[2] K Ly Lf [, 0] [R*1,R%, ..., RtH]
s2 S[1] | S[2] K Lo Ly [u, 6] [Rt1, Rz, ..., RtH]
s3 S[1] | S[2] K Ly Lf [, 0] [R*,R®2, ..., R™]
Fig. 4. The structure of the multi-UAS trajectory database.
where 4.2. Fast Query for Spatiotemporal Scenario
1 Data
Trow = T
- > B

Dnw€{Pn w|TE€EPn w}

T
Coh = Z A#

Ok, n€E{Pk,n|gE K, }

| -| denotes the cardinality. 4, ., a spatial contribution fac-
tor, is used to correct the boundary effect of the spatial
cells, so that each spatial cell contributes equally to the
distance calculation. The temporal contribution factor (g »
operates in a similar way. Figure 5 shows an illustration of
the 3D moving window scanning process.

The total distance between s, and s; can be obtained
by iterating all the spatial and temporal window sizes in
the predefined ranges,

Rmaz Wmax

Da’b = Z Da’b’w’h hmax Zqﬂmax
h=1 w=1 h=1 w=1 Twlh

OwQlp

, (6)

where o, > 0 and «a;, > 0 are weighting factors to pe-
nalize large spatial and temporal windows, respectively. In
general, a larger window size contributes less to the calcu-
lation of distance due to its coarser resolution. To reflect
that, we select o, and «, to be negative exponential func-
tions as g, = e =1 and ay, = e*P(h’l), where €, p > 0.
The procedure to calculate the distance matrix for multiple
spatiotemporal wind scenarios is summarized in Algorithm

4.1.

Algorithm 4.1. Multi-Resolution Distance Algorithm For
Spatiotemporal Wind Scenarios
Input: Multiple spatiotemporal wind scenarios s =
[Sla 82, 75L]-
Output: Distance matrix D.
1: for each palr of scenarios s; and s; do
2: for each pair of spatial resolution w = 1
temporal resolution h =1 : hyq, do
3: Calculate the distance D ;. With a spatial window
size w and a temporal window size h according to (5).
4: end for
Calculate the distance D; ; between scenarios s; and s;
using Equation (6).
5: end for

D Winae and

Similar scenarios can be obtained by querying the database
to find the stored scenario with the smallest spatiotempo-
ral scenario distance. According to Fig. 4, the size of the
database equals the cartesian product of the number of
wind scenarios and the number of different UAS settings,
which includes the number of UASs and their location dis-
tributions. When the number of wind scenarios is large and
there exist various UAS settings, the database is large, and
this query procedure can be time-consuming. To reduce the
computational cost and accelerate the query process, we
use a fast query algorithm that we developed in paper.3?
The basic idea of the fast query algorithm is to trim the
searching space after each resolution run by exploiting the
bounds of the distance measure.

According to (5) and (6), finer resolution leads to
larger distance, i.e., Dabw h* < Dap < Dgpa,i, where

= N and h* = ﬁ are the largest spatial and temporal
WlndOWS that cover the whole spatial and temporal spaces.
Note that wpqee (0T Amae) are not necessarily equal to w*
(or h*). Let I, denote the total wind intensity of scenario

Sa,

Ia = Z Z Z,k' (7)

n€{l,2-- N} ke{1,2-, -}

AT|I,—1I
Then Dy p o= = can be computed as Dg p = o+ = %

Let D), , and D", denote the upper bound and the lower
bound of the distance between s, and s; of bpatiotemporal
resolution p respectively, where p € {1,2,- -+ | Wmazhmaz }-

D" a,p and D 1 can be calculated iteratively using the bounds

32

of finer resolution (u — 1) as follows.

Dapii, if p=1

b
6/—bwaﬂh

DCL b + Z:m{” Z“, LT Swan (Da7b7ll"u}7#h,
if pwe{2,3,...

=u
Da,b = _Da,b,1,1)7

s Wmax hmax }

(8)
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Fig. 5. Ilustration of the scanning process with window sizes equal to a) w =1and h=1,b) w =2 and h = 2, and ¢) w = 2 and
h=3.
1: Construct table I = [I1,I5,-- 7IL]T for s according to
Do b e + S04 D Db e )s (7).
bt B T e e swan Dabit1 = Dapuw ) 2: Calculate I according to (7).
D, = if le 1 . E’): sqQ < {sa}, where s, € s and |1, — Ic| < Iipra-
e —5,; + S mas “wa:;w Soon (Dabprus,iin — Pasp,w b ), 4: for each s, 16 sg do )
=1 w= w L PR .
it pe (2,3 ., wmazhmas )} 5: Calculate D,  and D,  according to (8) and (9).
) 6: end for
7

where p,, and pj denote the spatial window and temporal
window corresponding to resolution p respectively.

Given the current scenario s¢ and the spatiotemporal
wind scenario database s = [s1, $2,- -+, ], the fast query
algorithm aiming to find the most similar scenario sg to
s¢ includes the following two steps.

Step 1: Construct a total intensity table I =
[I1, 12, - ,I1] according to (7). An initial candidate set
sq is obtained by applying |I, — Ic| < Iipra, where Iiprq is
the threshold that limits the number of retrieved scenarios
and is determined by statistical analysis of the database.
The initial candidate set sg is then fine tuned based on

5;0 and 2(11,0-

Step 2: Trim sq based on D, . and D), - at each res-
olution p until the most similar scenario is obtained. The
algorithm is summarized in Algorithm 4.2. Simulation stud-
ies show that by appropriately selecting the threshold Isp,.q,
the fast query algorithm can be tens or hundreds of times
faster than exhaustive search.3?

Algorithm 4.2. Fast Query Algorithm
Input: The current scenario s, the spatiotemporal wind
scenario database s = [s1,82,---,sp], and threshold

Lihrg.

Output: The most similar scenarios sg C s to sc.

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:
24

25:

. —1
Determine the value of M¢c = max D, ..

Sa€SQ
while D} . < Mc, Vs, € sq do
Increase the value of I, and perform step 3-7.
end while
sg « sg \ {sa}, where Q}z,c > Mc and s4 € sq.
for p = 2 to Wazrhmar do
for each s, € sg do
Calculate D, . and Do
end for
if |sg| > 1 then

: T
Determine the value of Mc = max D, ..
Sa€5Q >

Remove all scenarios s, that satisfy QZ,C > Mg from
SQ.

else

Exit from the for loop.

end if

end for

if |sg| > 1 then

5¢g + the scenario selected from s¢ that have the small-

est upper bound values 55’0.
end if
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4.3. Online Tuning and Database Expansion

The fast query algorithm described in Section 4.2 finds
the most similar spatiotemporal wind scenario sg in the
database to the current wind scenario s¢, together with
the optimal multi-UAS trajectory management strategy
[u?,09] under s and the waypoints at the CVP speci-
fied time points R = [R@! RP*2 ... RP!#] Then we
adopt [u?,69] as the initial solution for UASs under sc.
Because sq is not exactly the same as s¢, directly applying
[u@,09] to UASs under s¢ may cause deviation or poten-
tial collision. To safely and accurately navigate the UASs to
their destinations, a simple and fast online tuning is desir-
able. We here develop an online fine tuning algorithm which
includes two procedures, a trajectory correction procedure
and a collision avoidance procedure.

Several methods for online trajectory correction can
be adopted, including e.g., the robust control-based
method,*?43 stochastic model-based method,** and deep
learning-based method.*® In this paper, we develop a data-
based trajectory correction procedure which exploits stored
single UAS trajectory data. Before we elaborate on the tra-
jectory correction procedure, we first introduce the con-
struction of the single UAS trajectory database s’ as fol-
lows.

(1) We divide the continuous UAS position space into reg-
ularly spaced rectangular cells. Let [0, L;] and [0, L]
denote the range on X and Y axes respectively. The
resolutions for X and Y axes are set as A, and A,

mLy
A

respectively. Hence, there are i‘ rectangular cells

in total. The center for the (th row and xth column
cell [(¢ — 1)Az,tA;] X [(k — 1)Ay,kA,] is denoted
as ¢ = [(L — DA, + 55, (k — 1)A, + %], where
ve{l,2,-  Layandwe {1,2,--, 22},

T y

(2) For each combination of the wind scenario s,, cell cen-
ter c,x, destination L;y, and CVP specified time point
t;, we find the optimal management strategy for a UAS
starting at c,, at time t; and arrive at L;;y at T" under
wind scenario s,.

(3) Store all the combinations and their corresponding
optimal management strategies and waypoints at the
CVP specified time points in the single UAS trajec-
tory database s’.

To summarize, the key elements of s’ (See Figure 6) include
the scenario tag, spatiotemporal wind scenario data, cell
center, destination, the starting time point, optimal man-
agement strategies, and waypoints. The size of the single
UAS trajectory database s’ is calculated as follows:

L,L,

= LHK =2,
' Y (10)

In the beginning, we apply [u?, 0] to the UASs un-
der the current wind scenario s¢. At each CVP specified
time point ¢;, where [ € [1,2,--- , H|, we record the current

Paper Title 9

waypoints R“% and compare them with the stored way-
points R@* . If the difference between the stored waypoint
and the current waypoint for any UAS ¢ is larger than a
pre-specified threshold, i.e., ef‘ = |Ric’tl — RZQ’“| > ¢, the
trajectory correction for UAS i is triggered.

Trajectory Correction Procedure: The trajectory cor-
rection repeats the following three steps whenever a devi-
ation occurs at each t;, until all the UASs arrive at their
destinations.

(1) Trim the single UAS trajectory dataset to contain the
entries that have the scenario tag sg, the starting time
point ¢;, and the destination L;y.

(2) In the trimmed single UAS trajectory dataset, find the
entry of which the cell center is closest to the current
position of UAS 4, i.e., min|c,, — RE*|.

(3) Extract the corresponding optimal single UAS trajec-
tory management strategy and apply it to UAS i.

Collision Avoidance Procedure: To account for the po-
tential collision among UASs, the distance r;; between any
pair of UAS 4 and j is monitored in flight time. If r;; is
equal to or smaller than the pre-specified safety distance
R, the collision avoidance procedure is triggered. In partic-
ular, the optimal management strategies for all the UASs
from their current positions to their destinations subject to
collision avoidance are recalculated using the CVP method
described in Section 3.2. To facilitate the computation in
real time, we set the CVP parameters to tolerate a relative
low precision for the final results.

The online tuning algorithm is summarized in Algo-
rithm 4.3. We notice that two types of data are needed
for the onlline tuning algorithm, including the online data
(i.e., the current scenario s¢), and the offline data in-
cluding the most similar scenario sg, the correspond-
ing optimal solution [u®?,#®], and the waypoints R? =
[135(‘»27t17]{627t27 e 7RQ,tH]_

Once the optimal multi-UAS trajectory strategy
[u®,0¢] for the current spatiotemporal wind scenario
s¢ is obtained, we expand the multi-UAS trajectory
database by adding sc, [u,0¢], and the waypoints
RC = [R¢t ROtz ... RC!u] The single UAS trajectory
dataset is expanded in a similar way. Each time a new spa-
tiotemporal wind scenario is obtained, we calculate the sin-
gle UAS trajectory strategy offline and store the solution
in the single UAS trajectory database.

It is worth noting that by combining the offline op-
erations, the database, and the online operations, the op-
timality of the derived multi-UAS trajectory management
solution is guaranteed. Initially, when the offline database
is small, it cannot cover various potential wind scenario
patterns. In this case, the online tuning plays a major role
to find the optimal management solution at the cost of
some computation time. The performance can be similar
with directly solving the problem using the CVP method
which starts with multiple random initial guesses. How-
ever, with the expansion of database (i.e., more wind sce-
narios and their corresponding optimal solutions added to
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. Spatiotemporal . . -
Scenario Wind Scenario The Cell Center "l'"he q The Start:mg Time | Optimal Cfmtrol Waypoints
Tag Destination Point Strategies
Data
A
sl S[1] | S[2] [%_73'] Lyf ty [u, 6] [R%2,R%, ..., R%]
A
sl S[1] | S[2] [%,73'] Lyf t1 [u, 0] [R%2,R%, ..., R%™]
sl S[1] | S[2] [Ly —%,Ly _Az_y] Ly ty [u, 6] [R'2,R's, ..., R™H]
sl S[1] | S[2] | ... [AZ_"_AZ_y] Ly ty [u, 0] [R2,R%, ..., R™H]
sl S[1] | S[2] [Ly — %,Ly = Az_y] Loy ty [u, 6] [R'2,R's, ..., R'H]
A A
sl | s[1] | s[2] [Le = 2Ly — 2] i e [u,6] [R'¥]
s2 S[1] | S[2] [Az—x%] Lyf ty [u, 6] [Rz,R%, ..., R'™H]

Fig. 6.

the database), the queried solution is expected to be near-
optimal and the decision framework becomes more efficient.

Algorithm 4.3. Online Tuning Algorithm

Input: The current scenario sc, the most simi-
lar scenario sg, the corresponding optimal man-
agement strategy [u®,0%], the waypoints RY =
[ROt Rtz ... RtH]  the trajectory deviation
threshold €, and the single UAS trajectory dataset s’.

Output: Online optimal management strategy [u®,6¢]
for s¢ and the corresponding waypoints R® at the CVP
specified time points.

1: for t € [0,7] do

2: Calculate the distance r;;(t) between any two UASs ¢
and j at time ¢ based on X(¢), Vi, j € {1,2,--- ,K}
and 7 # j.

3: if 7;;(t) < R then

4: The collision avoidance procedure is triggered using the
CVP method as described in Section 3.2. The optimal
management strategy [u®(t),0¢(t)] from the current
positions to the destinations L is recomputed.

5: else

6: if t € [t1,t2, - ,tg]and t =t;, wherel € {1,2,--- ,H}
then

7: Record the waypoints RS for all the UASs.

8: Calculate the difference between the current and the
stored waypoints el = |R" — R for each UAS i.

9: if €)' > ¢ then

10: Query s’ and find the entry with the scenario tag sq,
destination L;¢, starting time point ¢;, and closest cell
center to RS i.e., min |c,, — R*|. Retrieve the corre-

The single UAS trajectory database.

sponding optimal management strategy [u? (t), 0 (t)].
1L [uf (8), 0F ()] = [uf (t), 07 (1)),
12: else
13 [uf (1), 67 ()] < [u? (t), 07 (1)]-
14: end if
15: end if
16: end if
17: end for

5. Simulation Studies

In this section, we demonstrate the proposed spatiotempo-
ral scenario data based decision framework for UTM us-
ing simulation studies. We first generate four kinds of spa-
tiotemporal wind spread patterns. Then we apply the CVP
method to solve a six-UAS trajectory management prob-
lem with different starting points and destinations under
various wind scenarios. We store the corresponding opti-
mal solutions and associated waypoints, and construct the
database. The performance of the automated multi-UAS
data-driven decision framework is then verified using three
new representative spatiotemporal wind scenarios.

5.1. Spatiotemporal Wind Scenarios

Generated Using The Influence Model

We use the influence model to generate 100 spatiotempo-
ral wind scenarios in a wind field of 5 x 5 regions, each
region has an area of 100 x 100 m?. These wind scenar-
ios are generated using four influence models to capture
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four spread patterns, i.e., west to east, east to west, north
to south, and south to north (See Figure 7 for an exam-
ple). For each spread pattern, we generate 25 spatiotempo-
ral wind scenarios. Each region is influenced by itself and
its neighboring regions. For each region, the wind speed
ranges from 1 m/s to 10 m/s with resolution 1 m/s, and
the Wind1 direction ranges from 0 to 27 radians with res-

olution zz7 radians. Mathematically, Wy, = 1 m/s and

Winaz =10 m/s, §, =1 m/s and A, = %7? radians. The
time horizon is set as T' = 40s, which is the same as the
pre-specified multi-UAS final time 7T'. The sampling period

is set to AT = 1s.

5.2. Database Construction

Consider six UASs operating in the wind field, each of
which has its own starting point and destination. UAS
1’s starting point is [0, 0]m, and destination is [400, 400]m.
UAS 2’s starting point is [81,12]m, and destination is
[250, 330]m. UAS 3’s starting point is [400, 0]m, and desti-
nation is [0,400])m. UAS 4’s starting point is [400, 200]m,
and destination is [0,200]m. UAS 5’s starting point is
[200,400]m, and destination is [200,0]m. UAS 6’s starting
point is [150,372]m, and destination is [350,120]m. The
thrust of each UAS is bounded by wma, = 1.5 m/s?. The
parameters for CVP are set as follows. § = 1, p = 100,
ay = 12, as = 12, H = 5. The relative error tolerance,
absolute error tolerance, termination tolerance on function
value and termination tolerance on the current point are all
set as 1076 for the offline optimization calculation. For the
online collision avoidance procedure, these tolerance values
are all set to 1072. The parameters for single UAS tra-
jectory data are set as A, = 15m and A, = 15m. The
safety distance is set as R = 35m. We follow the offline
operations to obtain the optimal trajectory solutions and
construct the multi-UAS database for the 100 spatiotem-
poral wind scenarios. Figure 8 shows an example of the
optimal six UASs trajectory solution. Figure 8 (a) shows
the trajectories of the 6 UASs accurately arriving at their
destinations at T'. Figure 8 (b) and (c) show the optimal
thrusts and their angles respectively. Figure 8 (d) shows
the spatiotemporal wind scenario under which the optimal
multi-UAS trajectory solution is calculated. It takes 1820s
for the offline CVP method to compute the optimal multi-
UAS trajectory solution, using a Dell XPS 13 laptop with
CPU clock time up to 4.9 GHz. The computational time
suggests the high computational complexity of multi-UAV
trajectory management subject to collision avoidance con-
straints. The next procedures bring this online by signifi-
cantly reducing the computation.
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5.3. Performance of the Spatiotemporal
Scenario Data-driven Decision
Framework For Multi-UAS Trajectory
Management

We conduct three representative simulation studies to show
the performance of the spatiotemporal scenario data-driven
decision framework for multi-UAS trajectory management.
In the first case study, we generate a new spatiotemporal
wind scenario s¢; which is very similar to the spatiotem-
poral wind scenario sg shown in Figure 8 (d). No online
tuning operation is needed. In the second case study, the
new spatiotemporal wind scenario sgo differs to some de-
gree from the wind scenario sg shown in Figure 8 (d), and
the trajectory correction procedure for a single UAS is trig-
gered. In the third case study, the new spatiotemporal wind
scenario scg differs significantly from the wind scenario sg
shown in Figure 8 (d), and the collision avoidance proce-
dure is triggered to avoid potential collision.

5.3.1. Case I:

The new spatiotemporal wind scenario s¢p in Figure 9 (d)
is generated using the same influence model parameters as
sg shown in Figure 8 (d). Therefore, s¢q is very similar
to sg. Figure 9 shows scy and the optimal six UASs tra-
jectory solution for it. Figure 9 (a) shows the trajectories
of the six UASs. Compared with Figure 8 (a), we can see
that the final position of UAS 3 deviates slightly from its
destination, while the other UASs arrive at their destina-
tions with good accuracy. The deviation occurs because s¢
is not exactly the same as sg. Figure 9 (b) and (c) show
the optimal thrusts and their angles. We note that they
are exactly the same as in Figure 8 (b) and (c), indicating
that no online fine tuning is triggered. The total compu-
tation time is 3.8s (0.7s for fast query and 3.1s for UAS
movement simulation), significantly accelerating the online
decision procedure.

5.3.2. Case 2:

The new spatiotemporal wind scenario s¢o in Figure 10
(d) differs to some degree from sg shown in Figure 8 (d)
because its underlying influence model parameters is up-
dated. In this case, the trajectory correction procedure is
triggered during the online tuning. Figure 10 shows sco
and the optimal six UASs trajectory solution for it. Figure
10 (a) shows the trajectories of the six UASs. Compared
with Figure 8 (a), we can see that the final positions of all
the UASs deviate slightly from their destinations. Figure
10 (b) and (c) show the optimal thrusts and their angles.
We note that the angle of the thrust for UAS 2 changes
slightly at CVP specified time point t3 = 24s, indicating
that the trajectory correction procedure is triggered at that
time. The total computation time is 18.7s, which includes
0.8s for fast query, 12s for online tuning and 5.9s for UASs
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Fig. 7.

Examples for four spatiotemporal wind spread patterns. The arrow at each region denotes the wind speed and direction.

(a) West to East. (b) East to West. (¢) North to South. (d) South to North. Each subfigure contains 3 sample snapshots at ¢ = 1s,

t = 18s, and t = 35s.
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Fig. 8. An example for the optimal six UASs trajectory solution. (a) The trajectories of the 6 UASs. ‘Circle’ denotes the starting

point and ‘X’ denotes the destination. (b) The thrusts. (¢) The angles of the thrusts. (d) The sample snapshots of the spatiotemporal

wind scenario at t = 5s, t = 22s, and t = 37s.

movement simulation. The total computation time is longer
than Case 1, because correcting the current trajectory in-
troduces additional time.

5.3.3. Case 3:

The new spatiotemporal wind scenario s¢3 in Figure 11
(d) differs significantly from sg shown in Figure 8 (d). In
this case, potential collision exists and the online tuning
triggers the collision avoidance procedure. Figure 11 shows
scs and the optimal six UASs trajectory solution for it. Fig-
ure 11 (a) shows the trajectories of the six UASs. We see
that all the UASs arrive at their destinations with good ac-
curacy. However, their trajectories differ significantly from
the trajectories shown in Figure 8 (a). Figure 11 (b) and (c)
show the optimal thrusts and their angles. We note visible
changes for the management strategies of all the UASs at
time ¢t = 16s, indicating that the collision avoidance proce-
dure is triggered at that time. The total computation time
is 92.7s (0.7s for fast query, 85s for the online tuning and
7s for the UAS movement simulation), longer than Case 1
and Case 2 because the collision avoidance procedure recal-
culates the optimal management strategy for all the UASs.
The computation time is 5% of the total time for the of-
fline optimization (1820s). That is because with the help
of the queried initial management solution, only the last

few control stages of the CVP need to be recalculated, in-
stead of the whole trajectories. Hence we have significant
computation reduction.

Combining the simulation results of the three cases,
we note that the multi-UAS online trajectory management
is significantly expedited by using the offline, online, and
database integrated decision framework. In addition, the
safety and accuracy are also guaranteed through the adap-
tive online tuning. With the expansion of database (i.e.,
more wind scenarios and their corresponding optimal so-
lutions added to the database), the queried solution is ex-
pected to be near-optimal and the decision framework be-
comes more efficient.

6. Conclusions

In this paper, a spatiotemporal scenario data-driven de-
cision framework which automates the playbook of UTM
for multi-UAS trajectory management is developed. The
proposed framework contains offline operations, online op-
erations and a spatiotemporal scenario database. The of-
fline operations feature an influence model and an optimal
trajectory management planner to generate spatiotempo-
ral scenario data, obtain optimal strategies, and construct
the database. The online operations feature a fast query
algorithm for spatiotemporal scenario data, online tuning
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Fig. 9. The optimal six UASs trajectory solution for s¢y. (a) The trajectories of the 6 UASs. (b) The thrusts. (c) The angles of
the thrusts. (d) The sample snapshots of s¢q at t = 5s, t = 22s, and ¢t = 37s.

that deals with trajectory deviation and potential collision,
and database expansion. The offline and online operations
are integrated to automate the UTM playbook and pro-
vide computationally efficient decisions based on the sim-
ilarities of spatiotemporal scenarios. The simulation stud-
ies show that the online decision time for the multi-UAS
trajectory management problem is significantly shortened,
while safety and accuracy are also guaranteed. The decision
framework can also be utilized in other applications where
spatiotemporal environmental impact plays a crucial rule
in the decision process. In our future work, we will adopt a
more complex 3D dynamic UAS model for the multi-UAS
trajectory management problem, study machine learning-
based online tuning algorithms, implement the MATLAB
prototype using Java, and also consider probabilistic spa-
tiotemporal scenario forecasts.
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