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Abstract

In this paper, we propose a general frame-

work for sparse and low-rank tensor estima-

tion from cubic sketchings. A two-stage

non-convex implementation is developed

based on sparse tensor decomposition and

thresholded gradient descent, which ensures

exact recovery in the noiseless case and sta-

ble recovery in the noisy case with high

probability. The non-asymptotic analysis

sheds light on an interplay between opti-

mization error and statistical error. The

proposed procedure is shown to be rate-

optimal under certain conditions. As a tech-

nical by-product, novel high-order concen-

tration inequalities are derived for studying

high-moment sub-Gaussian tensors. An in-

teresting tensor formulation illustrates the

potential application to high-order inter-

action pursuit in high-dimensional linear

regression.

1 Introduction

The rapid advance in modern scientific technology

gives rise to a wide range of high-dimensional ten-

sor data (Kroonenberg, 2008; Kolda and Bader,

2009). Accurate estimation and fast communica-

tion/processing of tensor-valued parameters are cru-

cially important in practice. For example, a tensor-

valued predictor, which characterizes the association

between brain diseases and scientific measurements,

such as magnetic resonance imaging, becomes the
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point of interest (Zhou et al., 2013; Li et al., 2018;

Sun and Li, 2017). Another example is tensor-valued

image acquisition algorithms that can considerably

reduce the number of required samples by exploiting

the compressibility property of signals (Caiafa and

Cichocki, 2013; Friedland et al., 2014).

In particular, the following tensor estimation model

is widely considered in recent literatures,

yi = 〈T ∗,Xi〉+ εi, i = 1, . . . , n. (1.1)

Here, Xi and εi are the measurement tensor and

noise, respectively. The goal is to estimate the un-

known tensor T ∗ from measurements {yi,Xi}ni=1.

A number of specific settings with varying forms of

Xi have been studied, e.g., tensor completion (Liu

et al., 2013; Yuan and Zhang, 2016, 2017; Zhang,

2019; Montanari and Sun, 2018), tensor regression

(Zhou et al., 2013; Li et al., 2018; Raskutti et al.,

2018; Chen et al., 2016; Li and Zhang, 2017; Sun

and Li, 2017), multi-task learning (Romera-Paredes

et al., 2013), etc.

In this paper, we focus on the case that the mea-

surement tensor can be written in a cubic form, i.e.,

Xi = xi ◦ xi ◦ xi. The cubic sketching form of Xi

is motivated by interaction effect estimation. High-

dimensional high-order interaction models have been

considered under a variety settings (Bien et al., 2013;

Hao and Zhang, 2014; Fan et al., 2016; Basu et al.,

2018). By writing Xi = xi ◦ xi ◦ xi, we find that

the interaction model has an interesting tensor rep-

resentation which allows us to estimate high-order

interaction terms using tensor techniques. This is

in contrast with the existing literature that mostly

focused on pair-wise interactions due to the model

complexity and computational difficulties. More de-

tailed discussions will be provided in Section A.

In practice, the total number of measurements n is

considerably smaller than the number of parameters



in unknown tensor T ∗, due to all kinds of restrictions

such as time and storage. Fortunately, a variety of

high-dimensional tensor data possess intrinsic struc-

tures, such as low-rankness (Kolda and Bader, 2009)

and sparsity (Sun et al., 2017), which highly reduce

the effective dimension of the parameter and make

the accurate estimation possible. Please refer to

Section 3 for low-rank and sparse assumptions.

In this paper, we propose a computationally efficient

non-convex optimization approach for sparse and

low-rank tensor estimation via cubic-sketchings. Our

procedure is two-stage: (i) obtain an initial estimate

via the method of tensor moment (motivated by high-

order Stein’s identity), and then apply sparse tensor

decomposition to the initial estimate to output a

provably warm start; (ii) use a thresholded gradient

descent to iteratively refine the warm start along

each tensor mode until convergence.

In theory, we carefully characterize the optimization

and statistical errors at each iteration step. The

output estimate is shown to converge in a geometric

rate to an estimation with minimax optimal rate in

statistical error (in terms of tensor Frobenius norm).

In particular, after a logarithmic factor of iterations,

whenever n & K2(s log(ep/s))
3
2 , the proposed esti-

mator T̂ achieves∥∥∥T̂ −T ∗
∥∥∥2

F
≤ Cσ2Ks log(p/s)

n
(1.2)

with high probability, where n, s, K, p, and σ2 are the

number of measurements, the sparsity (an absolute

number of non-zeros), rank, dimension, and noise

level, respectively. We further establish the matching

minimax lower bound to show that (1.2) is indeed

optimal over a large class of sparse low-rank tensors.

Our optimality result can be further extended to the

non-sparse domain (such as tensor regression (Chen

et al., 2016; Rauhut et al., 2017)) – to the best of our

knowledge, this is the first optimality result in both

sparse and non-sparse low-rank tensor regressions.

The above theoretical analyses are non-trivial due

to the non-convexity of the empirical risk function,

and the need to develop some new high-order sub-

Gaussian concentration inequalities. Specifically,

the empirical risk function in consideration satis-

fies neither restricted strong convexity (RSC) con-

dition nor sparse eigenvalue (SE) condition in gen-

eral. Thus, many previous results, such as the one

based on local optima analysis (Wang et al., 2014;

Loh and Wainwright, 2015; Chen et al., 2016), are

not directly applicable. Moreover, the structure of

cubic-sketching tensor leads to high-order products

of sub-Gaussian random variables. Thus, the matrix

analysis based on Hoeffding-type or Bernstein-type

concentration inequality (Cai and Zhang, 2015; Chen

et al., 2015) will lead to sub-optimal statistical rate

and sample complexity. This motivates us to develop

new high-order concentration inequalities and sparse

tensor-spectral-type bound, i.e., Lemmas 1 and 8.

These new technical results are obtained based on

the careful partial truncation of high-order products

of sub-Gaussian random variables and the argument

of bounded ψα-norm (Adamczak et al., 2011), and

may be of independent interest.

A related line of research is low-rank matrix esti-

mation in the literature, e.g., the spectral method

and nuclear norm minimization (Candès and Recht,

2009; Keshavan et al., 2010; Koltchinskii et al., 2011).

However, our cubic sketching model is by-no-means

a simple extension from matrix estimation problems.

In general, many related concepts or methods for

matrix data, such as singular value decomposition,

are problematic to apply in the tensor framework

(Richard and Montanari, 2014; Zhang and Xia, 2018).

It is also found that simple unfolding or matricizing

of tensors may lead to suboptimal results due to the

loss of structural information (Mu et al., 2014). Tech-

nically, the tensor nuclear norm is NP-hard to even

approximate (Yuan and Zhang, 2016, 2017; Fried-

land and Lim, 2018), and thus the method to handle

tensor low-rankness is particularly different from the

matrix.

2 Preliminary

For any set A, let |A| be the cardinality. The diag(x)

is a diagonal matrix generated by x. For two vec-

tors x and y, x ◦ y is the outer product. Define

‖x‖q := (|x1|q+ · · ·+ |xp|q)1/q. Let ej be the canoni-

cal vectors, whose j-th entry equals to 1 and all other

entries equal to zero. We next introduce notations

and operations on the matrix. For matrices A =

[a1, . . . ,aJ ] ∈ RI×J and B = [b1, . . . , bL] ∈ RK×L,

the Kronecker product is defined as a (IK)-by-(JL)

matrixA⊗B = [a1⊗B · · ·aJ⊗B], where aj⊗B =

(aj1B
>, . . . , ajIB

>)>. If A and B have the same
2



number of columns J = L, the Khatri-Rao product is

defined as A�B = [a1 ◦ b1,a2 ◦ b2, · · · ,aJ ◦ bJ ] ∈
RIK×J . If the matrices A and B are of the same di-

mension, the Hadamard product is their element-wise

matrix product, such that (A ∗B)ij = Aij ·Bij .

In the end, we focus on tensor notation and rel-

evant operations. Suppose X ∈ Rp1×p2×p3 is an

order-3 tensor, then the (i, j, k)-th element of X is

denoted by [X ]ijk. The successive tensor multipli-

cation with vectors u ∈ Rp2 , v ∈ Rp3 is denoted by

X ×2u×3v =
∑
j∈[p2],l∈[p3] ujvlX[:,j,l] ∈ Rp1 . We say

X ∈ Rp1×p2×p3 is rank-one if it can be written as the

outer product of three vectors, i.e., X = x1 ◦ x2 ◦ x3

or [X ]ijk = x1ix2jx3k for all i, j, k.

More generally, we may decompose a tensor as the

sum of rank one tensors as follows,

X =

K∑
k=1

ηkx1k ◦ x2k ◦ x3k, (2.1)

where ηk ∈ R,x1k ∈ Sp1−1,x2k ∈ Sp2−1,x3k ∈
Sp3−1. This is the so-called CANDE-

COMP/PARAFAC, or CP decomposition (Kolda

and Bader, 2009) with CP-rank being defined as the

minimum number K such that (2.1) holds. Several

tensor norms also need to be introduced. The tensor

Frobenius norm and tensor spectral norm are defined

respectively as

‖X‖F =

√√√√ p1∑
i=1

p2∑
j=1

p3∑
k=1

X 2
ijk, (2.2)

‖X‖op := sup
u∈Rp1 ,v∈Rp2 ,w∈Rp3

|〈X ,u ◦ v ◦w〉|
‖u‖2‖v‖2‖w‖2

,

where 〈X ,Y〉 =
∑
i,j,k XijkYijk. Clearly, ‖X‖2F =

〈X ,X〉. We also consider the following sparse tensor

spectral norm,

‖X‖s := sup
‖a‖=‖b‖=‖c‖=1

max{‖a‖0,‖b‖0,‖c‖0}≤s

∣∣〈X ,a ◦ b ◦ c〉∣∣. (2.3)

By definition, ‖X‖s ≤ ‖X‖op.

3 Symmetric Tensor Estimation via

Cubic Sketchings

In this section, we focus on the estimation of sparse

and low-rank symmetric tensors,

yi =
〈
T ∗,Xi

〉
+ εi,

Xi = xi ◦ xi ◦ xi ∈ Rp×p×p, i = 1, . . . , n,
(3.1)

where xi are random vectors with i.i.d. standard

normal entries. As previously discussed, the tensor

parameter T ∗ often satisfies certain low-dimensional

structures in practice, among which the factor-wise

sparsity and low-rankness (Raskutti et al., 2018)

commonly appear. We thus assume T ∗ is CP

rank-K for K � p and the corresponding fac-

tors are sparse, T ∗ =
∑K
k=1 η

∗
kβ
∗
k ◦ β∗k ◦ β∗k, where

‖β∗k‖2 = 1, ‖β∗k‖0 ≤ s,∀k ∈ [K]. The CP low-

rankness has been widely assumed in literature for

its nice scalability and simple formulation (Li and

Li, 2010; Li and Zhang, 2017; Sun and Li, 2017).

Based on observations {yi,Xi}ni=1, we propose to

estimate T ∗ via minimizing the empirical squared

loss since the closed form gradient provides compu-

tational convenience: T̂ = argminT L(T ), subject

to T is sparse and low-rank, where

L(T ) = L (ηk,β1, . . . ,βK) =
1

n

n∑
i=1

(yi − 〈T ,Xi〉)2

=
1

n

n∑
i=1

(
yi −

K∑
k=1

ηk
(
x>i βk

)3)2

.

(3.2)

Equivalently, (3.2) can be written as,

min
ηk,βk

1

n

n∑
i=1

(
yi −

K∑
k=1

ηk(x>i βk)3
)2

,

s.t. ‖βk‖2 = 1, ‖βk‖0 ≤ s, for k ∈ [K].

(3.3)

Clearly, (3.3) is a non-convex optimization problem.

To solve it, we propose a two-stage method as de-

scribed in the next two subsections.

3.1 Initialization

Due to the non-convex optimization (3.3), a straight-

forward implementation of many local search algo-

rithms, such as gradient descent and alternating min-

imization, may easily get trapped into local optimums

and obtain sub-optimal statistical performances. In-

spired by recent advances of spectral method (e.g.,

EM algorithm (Zhang et al., 2016), phase retrieval

(Cai et al., 2016), and tensor SVD (Zhang and Xia,

2018)), we propose to evaluate an initial estimate

{η(0)
k ,β

(0)
k } via the method of moment and sparse

tensor decomposition (a variant of high-order spectral

method) in the following Steps 1 and 2, respectively.

The pseudo-code is given in Algorithm 1.
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Step 1: Unbiased Empirical Moment Estima-

tor. Construct the empirical moment based estima-

tor Ts := 1
6 [ 1
n

∑n
i=1 yixi◦xi◦xi−

∑p
j=1(m1◦ej◦ej+

ej◦m1◦ej+ej◦ej◦m1)], wherem1 := 1
n

∑n
i=1 yixi,

ej is the canonical vector.

As will be shown in Lemma 3, Ts is an unbiased

estimator of T ∗. The construction is motivated by

high-order Stein’s identity (Janzamin et al. (2014);

also see Theorem 5 for a complete statement). In-

tuitively speaking, based on the third-order score

function for a Gaussian random vector x: S3(x) =

x◦x◦x−
∑p
j=1(x◦ej ◦ej +ej ◦x◦ej +ej ◦ej ◦x),

we can construct the unbiased estimator of T ∗ by

properly choosing a continuously differentiable func-

tion in high-order Stein’s identity. See the proof of

Lemma 3 for more details.

Step 2: Sparse Tensor Decomposition. The

method of moment estimator obtained in Step 1

provides an initial estimate for tensor T ∗. Then

we further obtain good initialization for the factors

{η(0)
k ,β

(0)
k } via truncation and alternating rank-1

power iterations (Anandkumar et al., 2014; Sun et al.,

2017), Ts ≈
∑K
k=1 η

(0)
k β

(0)
k ◦β

(0)
k ◦β

(0)
k . Note that the

tensor power iterations recover one rank-1 component

per time. To identify all rank-1 components, we gen-

erate a large number of different initialization vectors

at first, implement a clustering step, and choose the

centroids as the estimates in the initialization stage.

More specifically, we firstly choose a large inte-

ger M � K and generate M starting vectors

{b(0)
m }Mm=1 ∈ Rp through sparse SVD as described

in Algorithm 3 (described in the supplementary).

Then for each b
(0)
m , we apply the following truncated

power update:

b̃(l+1)
m =

Ts ×2 b
(l)
m ×3 b

(l)
m

‖Ts ×2 b
(l)
m ×3 b

(l)
m ‖2

,

b(l+1)
m =

Td(b̃
(l+1)
m )

‖Td(b̃(l+1)
m )‖2

, l = 0, . . . ,

(3.4)

where ×2,×3 are tensor multiplication operators de-

fined in Section 2 and Td(x) ∈ Rp is a truncation

operator that sets all but the largest d entries in ab-

solute values to zero for any vector x ∈ Rp. We run

power iterations till its convergence, and denote bm
as the outcome. Finally, we apply K-means to parti-

tion {bm}Mm=1 into K clusters, then let the centroids

of the output clusters be {β(0)
k }Kk=1 and calculate

η
(0)
k = Ts ×1 β

(0)
k ×2 β

(0)
k ×3 β

(0)
k for k ∈ [K].

Algorithm 1 Initialization in cubic sketchings

Require: response {yi}ni=1, sketching vector {xi}ni=1,
truncation level d, rank K, stopping error ε = 10−4.

1: Step 1: Calculate the moment-based tensor Ts.
2: Step 2:
3: For m = 1 to M

Generate b
(0)
m through Algorithm 3.

4: Repeat power update (3.4).

5: Until ‖b(l+1)
m − b(l)m ‖2 ≤ ε.

6: End for.
7: Perform K-means for {b(l)m }Mm=1. Denote the cen-

troids of K clusters by {β(0)
k }

K
k=1.

8: Calculate η
(0)
k = Ts×1β

(0)
k ×2β

(0)
k ×3β

(0)
k , k ∈ [K].

9: return symmetric tensor estimator {η(0)k ,β
(0)
k }

K
k=1.

3.2 Thresholded Gradient Descent

After obtaining a warm start in the first stage, we

propose to apply the thresholding gradient descent

to iteratively refine the solution to the non-convex

optimization problem (3.3). Specifically, denote X =

(x1, . . . ,xn) ∈ Rp×n, y = (y1, . . . , yn)> ∈ Rn, η =

(η1, . . . , ηK)> ∈ RK and B = (β1, . . . ,βK) ∈ Rp×K .

Recall that L(B,η) = L(T ), and hence let

∇BL(B,η) = (∇β1
L(B,η)>, . . . ,∇βKL(B,η)>),

be the gradient function with respect to B. Based on

the detailed calculation in Lemma S.1, ∇BL(B,η)

can be written as

∇BL(B,η) =
6

n
[{(B>X)>}3η − y]>

· [({(B>X)>}2 � η>)> �X]>,
(3.5)

where {(B>X)>}3 and {(B>X)>}2 are entry-wise

cubic and squared matrices of (B>X)>. Define

ϕh(x) as the thresholding function with a level h

that satisfies the following minimal assumptions:

|ϕh(x)− x| ≤ h, ∀x ∈ R, and ϕh(x) = 0, when |x| ≤
h. Many widely used thresholding schemes, such

as hard thresholding Hh(x) = xI(|x|>h), soft-

thresholding Sh(x) = sign(x) max(|x| − h, x), sat-

isfy the above assumption. With slightly abuse of

notations, we further define the vector threshold-

ing function as ϕh(x) = (ϕh(x1), . . . , ϕh(xp)), for

x ∈ Rp.

The initial estimates η(0) andB(0) will be updated by

thresholded gradient descent in two steps summarized

in Algorithm 2. It is noteworthy that only B is
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updated in the Step 3, while η will be updated in

Step 4 after the update of B is finished.

Step 3: Updating B via Thresholded Gradi-

ent descent. We update B(t) in each iteration step

via thresholded gradient descent,

vec(B(t+1)) = ϕµh(B(t))
φ

(vec(B(t))−µ
φ
∇BL(B(t),η(0))).

Here, µ is the step size and φ =
∑n
i=1 y

2
i /n serves as

an approximation for (
∑K
k=1 η

∗
k)2 (see Lemma 15);

h(B) ∈ R1×K is the thresholding level defined as

h(B) =

√
4 log np

n2
[{{(B>X)>}3η(0) − y}2]>

· {{(B>X)>}2 � η(0)>}2.

Step 4: Updating η via Normalization. We

normalize each column of B(T ) and estimate the

weight parameter as

B̂ = (β̂1, . . . , β̂K)> =
( β

(T )
1

‖β(T )
1 ‖2

, . . . ,
β

(T )
K

‖β(T )
K ‖2

)
,

η̂ = (η̂1, . . . , η̂K)> =
(
η

(0)
1 ‖β

(T )
1 ‖32, . . . , η

(0)
K ‖β

(T )
K ‖

3
2

)>
.

The final estimator for T ∗ is T̂ =
∑K
k=1 η̂kβ̂k ◦ β̂k ◦

β̂k.

Algorithm 2 Thresholded gradient descent in cubic

sketchings

Require: response {yi}ni=1, sketching vector {xi}ni=1,
step size µ, rank K, stopping error ε = 10−4, warm-
start {η(0)k ,β

(0)
k }

K
k=1.

1: Step 3: Let t = 0.
2: Repeat Compute thresholding level h(B) and cal-

culate the thresholded gradient descent update.
3: Until ‖B(T+1) −B(T )‖F ≤ ε.
4: Step 4: Perform column-wise normalization and

update the weight. Construct the final estimator
T̂ =

∑K
k=1 η̂kβ̂k ◦ β̂k ◦ β̂k.

5: return symmetric tensor estimator T̂ .

Algorithm 3 Sparse SVD

Require: tensor Ts, cardinality parameter d.

1: Compute θ̃ = Td(θ), where θ ∼ N (0, Id).

2: Calculate u as the leading singular vector of

Ts ×1 θ̃.

3: return the sparse vector Td(u)/‖u‖2.

4 Theoretical Analysis

In this section, we establish the geometric conver-

gence rate in optimization error and minimax optimal

rate in statistical error of the proposed symmetric

tensor estimator.

4.1 Assumptions

Conditions 1-3 are on the true tensor parameter

T ∗ while Conditions 4-5 are on the measurement

scheme. The first condition guarantees the model

identifiability for CP-decomposition.

Condition 1 (Uniqueness of CP-decomposition).

The CP-decomposition form is unique in the sense

that if there exists another CP-decomposition T ∗ =∑K′

k=1 η
∗′
k β
∗′
k ◦ β∗

′

k ◦ β∗
′

k , it must have K = K ′ and

be invariant up to a permutation of {1, . . . ,K}.

For technical purpose, we introduce the following

conditions to ensure that the CP-decomposition of

T ∗ has a regular form in the sense that the operator

norm of T ∗ can be bounded by the largest factor and

all factors are in the same order. Similar assumptions

were previously used in literature (e.g., Zhou et al.

(2013); Sun et al. (2017)).

Condition 2 (Parameter space). The CP-

decomposition T ∗ =
∑K
k=1 η

∗
kβ
∗
k ◦ β∗k ◦ β∗k satisfies

‖T ∗‖op ≤ Cη∗max, K = O(s),

and R = η∗max/η
∗
min ≤ C ′,

(4.1)

for some absolute constants C,C ′, where η∗min =

mink η
∗
k and η∗max = maxk η

∗
k. Recall that s is the

sparsity for β∗k.

The performance of Step 2, i.e. the tensor decom-

position for initialization, is crucial to the final esti-

mation. However, as shown in the seminal work of

H̊astad (1990); Hillar and Lim (2013), the estima-

tion of the low-rank tensor is NP-hard in general.

Hence, we impose the following incoherence condition

that is widely used in tensor decomposition literature

(Anandkumar et al., 2014; Sun et al., 2017).

Condition 3 (Parameter incoherence). The true

tensor components are incoherent such that

Γ := max
1≤k1 6=k2≤K

|〈β∗k1 ,β
∗
k2〉| ≤ min{C

′′
K−

3
4R−1, s−

1
2 },

where R is the singular value ratio defined in (4.1)

and C
′′

is some small constant.
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We also introduce the following conditions on noise

and sample complexity.

Condition 4 (Sub-exponential noise). The noise

{εi}ni=1 are i.i.d. randomly generated with mean

0 and variance σ2 satisfying 0 < σ < C
∑K
k=1 η

∗
k.

(εi/σ) is sub-exponential distributed, i.e., there

exists constant Cε > 0 such that ‖(εi/σ)‖ψ1
:=

supp≥1 p
−1(E|εi/σ|p)1/p ≤ Cε, and independent of

{Xi}ni=1.

The sample complexity condition is crucial for our

algorithm, especially in the initialization stage. Ig-

noring any polylog factors, Condition 5 is even weaker

than the sparse matrix estimation case (n & s2) in

Cai et al. (2016).

Condition 5 (Sample complexity). We assume a

sufficient number of observations is observed, n ≥
C
′′′
K2(s log(ep/s))

3
2 log4 n.

4.2 Main Theoretical Results

Our main Theorem 1 shows that based on a good

initializer, the output from the proposed thresholded

gradient descent can achieve optimal statistical rate

after sufficient iterations. Here, we define a contrac-

tion parameter 0 < κ = 1 − 32µK−2R−
8
3 < 1, and

also denote E1 = 4Kη
∗ 2

3
maxε2

0 and E2 = C0η
∗− 4

3
min /16 for

some C0 > 0.

Theorem 1 (Statistical Error and Optimization Er-

ror). Suppose Conditions 3-5 hold and the initial

estimator {β(0)
k , η

(0)
k }Kk=1 satisfies

max
1≤k≤K

{∥∥β(0)
k − β

∗
k

∥∥
2
, |η(0)

k − η
∗
k|
}
. K−1, (4.2)

with probability at least 1 − O(1/n) and

|supp(β
(0)
k )| . s. Assume the step size µ ≤ µ0,

where µ0 is defined in (S.6). Then, the output from

the thresholded gradient descent update satisfies:

• For any t = 0, 1, 2, . . ., the factor-wise estimator

satisfies

K∑
k=1

∥∥∥ 3

√
η(0)

k β
(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤E1κt + E2
σ2s log p

n
,

(4.3)

with probability at least 1−O(tKs/n).

• When the total number of iterations is no smaller

than

T ∗ =
(

log(
n

σ2s log p
∨ 1) + log

E1
E2

)
/ log κ−1,(4.4)

there exists a constant C1 (independent of

K, s, p, n, σ2) s.t. the final estimator T̂ =∑K
k=1 η

(0)
k β

(T∗)
k ◦ β(T∗)

k ◦ β(T∗)
k is upper bounded

by ∥∥∥T̂ −T ∗
∥∥∥2

F
≤ C1σ

2Ks log p

n
, (4.5)

with probability at least 1−O(T ∗Ks/n).

Remark 1 . From (4.3), the error bound can be

decomposed into an optimization error E1κt (which

decays with a geometric rate as iterations) and a

statistical error E2 σ
2s log p
n (which does not decay as

iterations). In particular, the convergence rate of

the optimization error relies on the rank K and the

singular value ratio R in the sense that the smaller

K or R, the faster convergence. Also from (4.5), we

note that in the special case that σ = 0, T̂ exactly

recover T ∗ with high probability.

The next theorem shows that Steps 1 and 2 of Al-

gorithm 1 provides a good initializer required in

Theorem 1.

Theorem 2 (Initialization Error). Suppose the

number of initializations L ≥ KC3γ
−4

, where γ is

a constant defined in (S.3). Given that Conditions

1-4 hold, the initial estimator obtained from Steps

1-2 with a truncation level s ≤ d ≤ Cs satisfies

max
1≤k≤K

{
‖β(0)

k − β
∗
k‖2, |η

(0)
k − η

∗
k|
}

≤C2KRδn,p,s +
√
KΓ2,

(4.6)

and |supp(β
(0)
k )| . s with probability at least 1−5/n,

where

δn,p,s = (log n)3
(√s3 log3(ep/s)

n2
+

√
s log(ep/s)

n

)
.

Moreover, if the sample complexity condition 5 is

satisfied, then the above bound satisfies (4.2).

Remark 2 (Interpretation of initialization error).

The upper bound of (4.6) consists of two terms,

which corresponds to the approximation error of Ts
to T ∗ and the incoherence condition of β∗k’s, respec-

tively. Especially, the former converges to zero as
6



n grows while the latter does not. This indicates

that the convergence rate of the initial estimate is

significantly slower than that of the final estimate

after iterative updates, unless n & (s log(ep/s))2 and

Γ2 .
√

s log(ep/s)
nK . More detailed numerical compar-

isons will be provided later in Section 5.

The proof of Theorems 1 and 2 are involved and

postponed to Section S.I-S.II in the supplementary

materials. The combination of Theorems 1 and 2

immediately yields the following upper bound for the

final estimate as one main result in this paper.

Theorem 3 (Upper Bound). Suppose Conditions

1 – 5 hold, s ≤ d ≤ Cs. After T ∗ iterations, there

exists a constant C1 not depending on K, s, p, n, σ2,

such that the proposed procedure yields∥∥∥T̂ −T ∗
∥∥∥2

F
≤ C1σ

2Ks log p

n
, (4.7)

with probability at least 1−O(T ∗Ks/n), where T ∗

is defined in (4.4).

The above upper bound turns out to match with the

minimax lower bound for a large class of sparse and

low rank tensors.

Theorem 4 (Lower Bound). Consider the following

class of sparse and low-rank tensors,

Fp,K,s =

T :

T =
∑K
k=1 ηkβk ◦ βk ◦ βk,

‖βk‖0 ≤ s, for k ∈ [K],

T satisfies Conditions 1, 2, and 3.

 .

(4.8)

Suppose that {Xi}ni=1 are i.i.d standard normal cubic

sketchings with i.i.d. N(0, σ2) noise in (3.1). We have

the following lower bound result,

inf
T̃

sup
T ∈Fp,K,s

E
∥∥∥T̃ −T

∥∥∥2

F
≥ cσ2Ks log(ep/s)

n
.

The proof of Theorem 4 is deferred to Section S.III in

the supplementary materials. Combining Theorem 3

and Theorem 4 together, we immediately obtain the

following minimax-optimal rate for sparse and low-

rank tensor estimation with cubic sketchings when

log p � log(p/s):

inf
T̃

sup
T ∗∈Fp,K,s

E
∥∥∥T̃ −T ∗

∥∥∥2

F
� σ2Ks log(p/s)

n
.

(4.9)

The rate in (4.9) sheds light upon the effect of di-

mension p, noise level σ2, sparsity s, sample size n

and rank K to the estimation performance.

Remark 3 . We would like to highlight our algo-

rithmic and theoretical results automatically hold for

non-sparse case with all the truncation/thresholding

steps removed. If no sparsity assumption and n ≥
p3/2, one can apply similar arguments of Theorems

1-3 to show that the output estimate satisfies optimal

rate
√
σ2Kp/n in terms of tensor Frobenius norm.

Our analysis does not take advantage of sparsity

assumption.

4.3 Key Lemmas: High-order

Concentration Inequalities

As mentioned earlier, one major challenge for theo-

retical analysis of cubic sketching is to handle heavy

tails of high-order Gaussian moments. One can only

handle up-to second moments of sub-Gaussian ran-

dom variables by directly applying the existing Ho-

effding’s or Bernstein’s concentration inequalities.

Rather, we need to develop the following high-order

concentration inequality as technical tools. It pro-

vides a generic spectral-type concentration inequality

that can be used to quantify the approximation error

for Ts introduced in Step 1 of the proposed procedure.

The proof of 1 is given in Section S.II.

Lemma 1 (Concentration inequality for Gaussian

cubic sketchings). Suppose {x1i}ni=1
iid∼ N (0, Ip1),

β1 ∈ Rp1 are fixed vectors. Define M = 1
n

∑n
i=1〈x1i◦

x1i ◦ x1i,β1 ◦ β1 ◦ β1

〉
x1i ◦ x1i ◦ x1i. Then E(M) =

6β1 ◦β1 ◦β1 +3
∑p
m=1(β1 ◦em ◦em+em ◦β1 ◦em+

em ◦ em ◦ β1), and∥∥∥M − E(M)
∥∥∥
s

≤ C(log n)3
(√s3 log3(ep/s)

n2
+

√
s log(ep/s)

n

)
‖β1‖32,

with probability at least 1−10/n3. Here, C is an ab-

solute constant and ‖ ·‖s is the sparse tensor spectral

norm defined in (2.3).

5 Numerical Results

In this section, we empirically examine the effect of

noise level, CP-rank, sample size, dimension, and

sparsity on the estimation performance. In each

setting, we generated T ∗ =
∑K
k=1 β

∗
k ◦ β∗k ◦ β∗k,

where |supp(β∗k)| = s was uniformly selected from

{1, . . . , p}, the nonzero entries of β∗k were drawn
7



Figure 1: Percent of successful recovery with varying

sample size (top left panel). Log absolute estimation

error of initial estimation error (top right panel)

and initialization/final estimation error comparisons

(bottom panel).

from standard Gaussian distribution. Next we nor-

malized each vector β∗k and aggregated the coeffi-

cient as η∗k. The cubic sketchings {Xi}ni=1 were gen-

erated as Xi = xi ◦ xi ◦ xi, where {xi}ni=1 were

from standard Gaussian distribution. The noise

{εi}ni=1
iid∼ N(0, σ2).

First, we consider the percent of successful recov-

ery in the noiseless case. Let K = 3, s/p = 0.3,

p = 30 or 50, so that the total number of un-

known parameters in T ∗ is 2.7× 104 or 1.25× 105.

The sample size n ranges from 500 to 6000. The

recovery is called successful if the relative error

‖T̂ − T ∗‖F /‖T ∗‖F < 10−4. We report the per-

cent of successful recovery in Figure 1. It is clear

from Figure 1 that the empirical relation with di-

mensionality and sample size is consistent with our

theory.

We then move to the noisy case where the empirical

estimation error is examined. We select K = 3,

s/p = 0.3, p = 30 or 50, {εi}ni=1
iid∼ N(0, σ2) and

consider two specific scenarios: (1) sample size n

= 6000, 8000, or 10000, s/p = 0.3, the noise level

σ varies from 0 to 200; (2) noise level σ = 200,

sample size n varies from 4000 to 10000, p = 30,

s/p = 0.1, 0.3, 0.5. The estimation errors in terms of

‖T̂ −T ∗‖F under these two scenarios are plotted in

Figure 2: Estimation error for different sample sizes

and noise levels. The top left panel is p = 30 and

the top right panel is p = 50. The bottom left panel

is for initial estimation error and the bottom right

panel is for final estimation error.

Figures 2, respectively. From these results, we can

see that the proposed algorithm achieves reasonable

estimation performance: Algorithms 1 and 2 yield

more accurate estimation with smaller variance σ2

and/or large value of sample size n.

Next, we compare the estimation errors of initial and

final estimators for different ranks and sample sizes.

First we set K = 3, p = 30, s/p = 0.3 and consider

the noiseless setting. It is clear from Figure 1 that

the initialization error decays sufficiently, but does

not converge to zero as sample size n grows. This

result matches our theoretical findings in Theorem 2.

After sufficient steps of thresholded gradient descent

(Steps 3 and 4 in Algorithm 2), the initial estima-

tor is refined to lead to the final estimate that is

proven to be minimax-optimal. Thus, we evaluate

and compare estimation errors for both initial and

final estimators for K = 3 or 5 and growing sample

sizes n. We can see from the bottom panel of Figure

1, the final estimator is more stable and accurate

compared with the initial one, which illustrates the

merit of thresholded gradient descent step of the

proposed procedure.
8
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