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The Hubbard model and its extensions are important microscopic models for understanding high-7, super-
conductivity in cuprates. In the model with next-nearest-neighbor hopping ¢’ (the #’-Hubbard model), pairing
is strongly influenced by #'. In particular, a recent study on a width-4 cylinder observed quasi-long-range
superconducting order, associated with a negative ¢', which was taken to imply superconductivity in the
two-dimensional (2D) limit. In this work we study more carefully pairing in the width-4 #’-Hubbard model. We
show that in this specific system, the pairing symmetry with t' < 0 is not the ordinary d-wave one would expect
in the 2D limit. Instead we observe a so-called plaquette d-wave pairing. We show that the plaquette d-wave or
its extension is difficult to generalize in other geometries, for example a 4-leg ladder with open boundaries or
a width-6 cylinder. We find that a negative ¢’ suppresses the conventional d-wave, leading to plaquette pairing.
In contrast, a different ¢” coupling acting diagonally on the plaquettes suppresses plaquette pairing, leading to

conventional d-wave pairing.

DOI: 10.1103/PhysRevB.102.041106

I. INTRODUCTION

Understanding the superconductivity in cuprates is one of
the greatest challenges in condensed matter physics [1]. The
two-dimensional (2D) Hubbard model successfully captures
most of the important physics, for example the antiferromag-
netism at half filling [2-8] and the competing orders under
doping [9-12]. Among these competing states, the ground
state under 1/8 hole doping in the intermediate coupling
regime has been shown to exhibit stripes [11,13], where
spin density wave and charge density wave (CDW) coexist
[14-16]. More precisely, the ground state is a striped state
with (CDW) wavelength A = 8, while the states of A between
5 and 8 have extremely close energies. In experiments the
A =4 stripes were widely observed [18-20], and the A = 8
stripes were observed recently only in the vertex core induced
by magnetic field [17].

Superconductivity is an even more sensitive property of
the model. The uniform superconducting (SC) state has
been shown to exist at higher energy than stripes [9,11,13].
Whether the superconductivity coexists with stripes is a more
subtle question. Both positive [21,22] and negative [23,24]
results have been reported. A recent detailed study shows
that the d,>_>-wave SC pairing in the Hubbard model is
indeed short ranged at the interaction strengths relevant in the
cuprates, and no SC order appears in the thermodynamic limit
[25]. This result indicates that the minimal Hubbard model is
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not sufficient to understand superconductivity in the cuprates,
and one should consider additional terms.

The next-nearest-neighbor hopping ¢’ is an important con-
tribution in the models of cuprates [26-28]. Recent numerical
studies showed that the presence of ¢’ drives the wavelength of
the stripes from A = 8 to 4 [10,13,29] and enhances supercon-
ductivity [30,31]. Specifically, a study of ¢-Hubbard model on
a width-4 cylinder observed algebraic decay of SC correlation
[32], which may imply true long-range SC order in the 2D
limit.

In this work we study the #’-Hubbard model with negative
t' and 1/8 doping on a width-4 cylinder as in Ref. [32].
The ground state is found to show A = 4 stripes as expected.
However we find that the pairing symmetry is not the ordinary
d-wave that one can extend to the 2D limit. Instead, due to
the fact that the width-4 cylinder is identical to a stack of
plaquettes, we observe that the “d-wave” pairing arises only
on the plaquettes but not along the longitudinal direction, as
shown in Fig. 1(a). We call this plaquette d-wave pairing.
Since this specific geometry completely changes the pairing
symmetry, the conclusion from a width-4 cylinder cannot be
simply generalized to the 2D limit.

We note that the plaquette d-wave pairing has also been
observed in the ¢'-t-J model on a width-4 cylinder [33]. In
the Hubbard model without #', the pairing symmetry is the
ordinary d-wave, and a negative t’ drives the system to the
plaquette d-wave. In the ¢-J model with #' = 0, the pairing is
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FIG. 1. (a) Plaquette d-wave pairing for ¢’ % 0 and ¢] = 0 and
(b) ordinary d-wave pairing for #' =0 and ' # 0 on a width 4
cylinder. The left hand side shows the plane view of a 2D lattice.
The right hand side shows the view of a stack of plaquettes. The red
solid (blue dashed) lines represent the positive (negative) sign of the
SC pairing. (c) A rough estimation of the phase diagram for ¢" and #]'.
Different colors represent different orders as indicated in the figure.

the plaquette d-wave, and a ¢’ > O drives the system to the
ordinary d-wave.

We then discuss the effect of ¢ on the pairing symmetry.
In the view of a stack of plaquettes, the ' hopping exists only
on the “surface” of the cylinder but not on the plaquettes [see
Fig. 1(b)]. The fact that negative ¢’ drives the d-wave from
the surface (ordinary d-wave) to the plaquettes (plaquette d-
wave) implies that negative ¢’ depresses rather than enhances
d-wave pairing. This is consistent with the early studies on the
t'-t-J model [34,35]. To further examine this idea, we study a
system with “next-nearest” hopping ¢” only on the plaquettes
but not on the surface [see Fig. 1(a)]. In other words, we
consider a width-4 cylinder with ;' < 0 and #' = 0, where #
is the third-nearest neighbor in the y direction. We find that
in this system the pairing symmetry becomes the ordinary d
wave, consistent with our conjecture.

To further illustrate the uniqueness of the width-4 cylinder,
we study a width-6 cylinder for comparison, as well as a
fully open width-4 system (ladder). The plaquette structure
is not present in these systems, and their pairing properties
are different. To understand superconductivity in 2D, systems
wider than width-4 must be considered.

II. SYSTEM AND OBSERVABLES

The Hamiltonian we consider has the form
H=- Z tijéheje +U Zﬁnﬁm — W Zﬁim ey
(ij)o i io

where 6; is the fermionic creation operator, o = {1, |} de-
notes spin, and 7;, = 6?0 Ci» 18 the particle-number operator.
In this work we consider mainly #;; = ¢ and ¢’ for the nearest
and next-nearest neighbors, respectively, and ¢;; = 0 for other
terms, except in one special toy case, where we set #;; = ty” #*
0 for the third-nearest neighbors in the y direction, while
setting t' = 0. The chemical potential term is included only
when an additional pairing field is applied to the system (ex-
plained below) and thus the particle number is not conserved.
Throughout this paper, ¢ = 1 is the energy unit. We consider
cylindrical boundary conditions, where the system is open in
the x and periodic in the y direction, as illustrated in Fig. 1.

In Sec. IV fully open boundary conditions are also considered
for comparison.

We are mostly interested in the SC properties of the ground
state. We define the (singlet) pairing operator on two nearest-
neighbor sites i and j (or a bond),

A (CirCjy — Ciy8jy)
=TA

The coherence of the pairs is measured by the pair-pair
correlation between two bonds

P@, j'si, ) = (A}, Ai). 3)

@

The strongest order the system can have on the cylinder is
quasi-long-range order, where the correlation decays alge-
braically. Alternatively, if the system has no SC order, the
correlation decays exponentially. Another useful probe to
detect SC is to apply a weak pairing field >, ; hy) A,-_,- to the
system and measure the induced SC order (A;;). Without a
pairing field the Hamiltonian conserves particle number, while
in the presence of a pairing field it does not.

The density-matrix renormalization group (DMRG)
method is a variational method that approximates the ground
state due to its low entanglement [36-38]. These quasi-1D
systems can be accurately simulated by DMRG. We use two
different setups in DMRG for two types of systems. For the
systems without pairing field, in studying the correlations,
we use DMRG with conserved particle number and SU(2)
symmetry, together with a single-site update [39,40]. For
the system with pairing field, in studying the SC order, we
use DMRG without particle-number conservation and with a
two-site update.

The constrained path auxiliary-field quantum Monte Carlo
(AFQMC) [41,42] has an approximation completely indepen-
dent of entanglement, providing a good complementary cross-
check with DMRG. For pairing measurements with AFQMC,
we use the Hellmann-Feynman formula to convert an energy
measurement to a measurement of the pairing order parame-
ter, significantly increasing the accuracy [25].

III. PAIR-PAIR CORRELATION

We first discuss the pair-pair correlation in the ground state
of the #-Hubbard model for #’ = —0.25 (ty” = 0) on a width-4
cylinder. We consider 1/8 hole doping throughout if not stated
otherwise. To characterize different pairing symmetries, we
measure four types of the pair-pair correlation in Eq. (3),
which we will denote by P, g(d), with o and B (= x or y)
giving the character of the bonds (ij) and (i’j’), and d being
the distance between i and i’. (We use the convention that,
for each bond (ij), j is either “above” or “to the right” of
i, for a vertical or horizontal bond.) Thus P, (d), P, .(d),
and P, ,(d) denote the correlations between two vertical, two
horizontal, and one vertical (at i) and one horizontal (at i’)
bonds, respectively, with the bonds located at i = (5, yo) and
i'=06+d,yo); Py/",(d ) will denote the correlation between
two vertical bonds at i = (5, yg)and i’ = (5 +d,yo + 1), i.e.,
shifted by one site vertically. See the diagram in Fig. 2 for a
sketch.

In Fig. 2 we show these correlations as functions of the
distance d to the reference bonds. One can see that P, , and
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FIG. 2. Pair-pair correlations P = (Aj, ,A;j) as functions of dis-
tance d. The system is a 48 x 4 cylinder with t' = —0.25. Different
types of correlations are shown: P, ,, (blue), P)’) (red), and P, , (green)
are the correlations of the blue, red, and green bonds with respect to
the black bond. P, . is the correlation of the thin yellow bonds with
respect to the thick yellow bond. The main panel shows Py , and —P] |
in log-log scale. The blue solid line is the algebraic fit to the peak
values of P, , for d from 10 to 30, and the dashed line is an extension
to guide the eye. The inset shows |P, | and |P, .| compared with P,
in semilog scale.

—P)’,’y, the two kinds of vertical-vertical correlations with the
opposite signs, are perfectly symmetric. This indicates the
d,»_p-wave pairing on the plaquettes [see Fig. 1(a)]. The
inset shows comparisons of |P,,| and |P ;| to P,,. It can
be seen that both |P, .| and |P, .| decay exponentially and
much faster than P,,, showing that the pairing is only on
the plaquettes but not along the longitudinal direction. In fact
P, and P, , oscillate up and down around zero (hence we
plot their absolute values). Together these correlations show
that the pairing symmetry is plaquette d-wave. We employ an
algebraic fit P, o< d %5 for the peak values of P, , for d from
10 to 30, and obtain Ksc = 1.62(5) which is compatible with
what was obtained in Ref. [32].

We see that only measuring the correlation of two verti-
cal bonds at the same y position is not able to distinguish
the plaquette d-wave and the ordinary d-wave, which show
fundamentally different properties. It is necessary to measure
different kinds of correlations to understand the pairing sym-
metry.

Next-neighbor hopping on plaquettes

Recall that #’ only includes next-nearest hopping on the
surface but not on the plaquettes of the cylinder. The fact
that t' < 0 drives the d-wave pairing from the surface to the
plaquettes implies that ' < O tends to suppress the d-wave
pairing, therefore pushes the d-wave from the surface to the
plaquettes. To further examine this idea, we consider a system
with the “next nearest” hopping only on the plaquette. More
precisely, we consider ;' = —0.25 and ¢’ = 0; see Fig. 1(b).
The ground state still has stripes with A = 4; however the

pairing symmetry changes. The different types of pair-pair
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FIG. 3. Pair-pair correlations P = (A;J.,A,- ;) as functions of dis-
tance d in log-log scale. The system is a 48 x 4 cylinder with
) = —0.25 and ¢’ = 0. Different types of correlations are shown, as
éxplained in the caption of Fig. 2. The blue solid line is the algebraic
fit to the peak values of P, for d from 10 to 30, and the dashed line
is just the extension to guild the eyes.

correlations are shown in Fig. 3. In this system the pairing
symmetry is back to the ordinary d-wave: P,, and P, are
symmetric with the same sign, and |P,,| and |P; .| are com-
patible with |P,,|. The algebraic fit P, , o< d~¥s¢ for the peak
values P, , gives Ksc = 2.13(5). The result is consistent with
our conjecture that the next-nearest hopping ¢’ < 0 suppresses
d-wave pairing, and therefore the ty” on the plaquettes stabilize
the ordinary d-wave on the surface.

In Fig. 1(c) we provide a rough estimation of the phase
diagram for the parameters ¢" and #;/. See Appendix A for more
detail. Reference [31] also explores the phase diagram for the
stripe order more systematically.

IV. OTHER CLUSTER GEOMETRIES

In this section we illustrate that the plaquette d-wave
pairing can only exist on a width-4 cylinder due to its special
geometry. It does not exist in a system with open boundaries in
both directions and cannot be extended to a width-6 cylinder.

A. Fully open boundary conditions

The plaquette structure is specific to the cylindrical bound-
ary condition on a width-4 cylinder. With open boundaries in
both directions, the vertical bonds along the circumferential
direction do not form a plaquette, and therefore the system is
expected to not have plaquette d-wave pairing. Here we con-
sider a 48 x 4 system with open boundaries for ' = —0.25.
The pair-pair correlations are shown in Fig. 4. One can see
that the pairing symmetry is the ordinary d-wave: P, has
the same (opposite) sign with Py’yy (Py,x). The correlations are
not perfectly symmetric due to the open boundaries in the y
direction.
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FIG. 4. Pair-pair correlations P = (A:,j,Al-j) as functions of dis-
tance d for t' = —0.25 for a 48 x 4 system with open boundaries.
Different types of correlations are shown, as explained in the caption
of Fig. 2. Note that the signs of the correlations are different from
those in Fig. 2.

B. A 16 x 6 cylinder

Here we discuss the pairing symmetry in a 16 x 6 cylinder
for " = —0.32, using AFQMC to study the SC order induced
by pairing field. To see if the simple extension of the plaquette
d-wave can be applied to a wider cylinder, we consider two
types of pairing fields ZW) h},’A,- ; which will induce two
types of pairing symmetries: (1) the ordinary d-wave pairing
field applied on all bonds, with h;) = h, and —h, for the
vertical and horizontal bonds, respectively; (2) the “4—"
alternating pairing field applied only on the vertical bonds,
with i) = h,, for the odd and —h,, for even vertical bonds. The
alternating pattern in (2) leads to the plaquette d-wave on a
width-4 cylinder and is a “natural” (but not unique) extension
of the plaquette pattern to a width-6 cylinder. Figure 5 shows
the SC orders induced by the two types of pairing field
for 16 x 4 and 16 x 6 cylinders. (We verify the accuracy
of AFQMC by comparing to the DMRG data for 16 x 4
cylinder with ordinary d-wave pairing field, where excellent
agreement is seen between the two methods.) It can be seen

<

@EE DMRG d-wave
A QMC d-wave
0.04 A QMC +— alt

S\ =

0.02+

N\

0.00- -
0.092 0.106

16 x 4

0.092 0.106 hy
16 X 6

FIG. 5. SC orders induced by two different types of pairing
fields with magnitude £, for 16 x 4 and 16 x 6 cylinders. The blue
(orange) bars are for the ordinary d-wave (4— alternating) pairing
field from QMC. The green bars are for the ordinary d-wave pairing
field from DMRG.

that, for a 16 x 4 cylinder, the plaquette d-wave SC order is
stronger than the ordinary d-wave, while fora 16 x 6 cylinder,
the ordinary d-wave is stronger. This result shows that the
plaquette d-wave pairing is special for a width-4 cylinder.

V. CONCLUSIONS

In this work we have studied the SC pairing symmetry
in the ground state of #-Hubbard model for ¢’ < 0. We have
shown that the pairing symmetry in a width-4 cylinder is the
plaquette d-wave rather than the ordinary d-wave. In contrast,
one sees ordinary d-wave pairing, on a width-6 cylinder. This
indicates that a width-4 cylinder is not representative of the 2D
limit, and its pairing order does not straightforwardly imply
SC in 2D. Moreover, even width 6 is still limited by the
quantized fillings of the short stripes that circle the cylinder,
which are observed to always contain an even number of
holes. Thus a half-filled stripe is not seen in width 6, which
would require three holes. Ideally, to establish the nature of
the superconducting correlations in 2D, a systematic approach
to the thermodynamic limit will be needed. We also discuss
the role of ¢’ for d-wave pairing. We find that on the width
4 cylinder ' < 0 suppresses rather than enhances the d-wave
pairing. This result is inconsistent with a recent infinite pro-
jected entangled pairs study [30] focusing on the 2D limit. It
may be that the role of ¢’ is subtle, both weakening stripes (and
thus favoring pairing) but also weakening the pair in a more
direct fashion.
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APPENDIX A: ¢ DEPENDENCE

Here we study the transition from filled (A = 8) stripes
to half-filled (A = 4) stripes induced by ¢’ on a width-4 and
infinitely long cylinder. A more complete phase diagram for ¢’
and U has been addressed in Ref. [31]. Note that the pairing
symmetries are different in these two striped states: The filled
stripes show the ordinary d-wave pairing and the half-filled
stripes have plaquette d-wave pairing. The transition happens
around t' = —0.03. In Fig. 6 we show the energies of filled
and half-filled stripes for different ¢'. The energies have been
extrapolated to infinite system length. For small (large) nega-
tive ¢, the ground state shows filled (half-filled) stripes. The
gray area shows the region where a mixture of filled and
half-filled stripes is seen in the ground states.

APPENDIX B: U DEPENDENCE

We examine the U dependence of the plaquette d-wave
pairing for t' = —0.25. Since the pairing symmetry is not
sensitive to the length of the system, we focus on a 24 x 4
cylinder. To characterize the different pairing symmetries, we
compute the normalized sum of the two types of vertical
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FIG. 6. The energies of the filled (A = 8) stripes with the or-
dinary d-wave pairing and the half-filled (A = 4) stripes with the
plaquette d-wave pairing on a width-4 and infinite-length cylinder
for different . The gray area indicates the region where the ground
state is the mixture of these two striped states. The orange dashed
line is a linear extrapolation of the orange crosses.

0.00004 —
jnl
3= —0.00254
T
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—0.00751 Y : : : :
4 6 8 10 12
U
FIG. 7. Sum of two types of vertical correlations, [32“;[:’/“, at

distance d = L/2. The system is a 24 x 4 cylinder with #' = —0.25.
If the system has perfect plaquette (surface) d-wave pairing, this
quantity should equal to zero (one).

. PyytP. )
correlations, )2)‘},—“, at distance d = L/2. For the perfect

plaquette (surface) d-wave pairing, P, , would have opposite
(the same) sign with Py’.!v, and this normalized sum will equal
to zero (one). As shown in Fig. 7, the plaquette d-wave pairing
is very stable in all U we study here from U = 4to U = 12.
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