

1 **Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced**
2 **somatic *orco* mutation in honey bees**

3
4 Zhenqing Chen^a, Ian M. Traniello^{#a, b}, Seema Rana^{#a}, Amy Cash-Ahmeda, Alison L.
5 Sankey^{a,c}, Che Yang^a, Gene E. Robinson^{a, b, c}

6 ^a *Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,*
7 *Urbana, IL 61801 (UIUC)*

8 ^b *Neuroscience Program, UIUC*

9 ^c *Department of Entomology, UIUC*

10 [#]These authors contributed equally.

11

12 ORCID IDs:

13 ZC: 0000-0002-9214-9480

14 IMT 0000-0002-0001-3915

15 GER: 0000-0003-4828-4068

16

17

18

19

20

21

22

23

24

25

26

27

28

29 **Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced**
30 **somatic *orco* mutation in honey bees**

31

32 **ABSTRACT**

33 In insects, odorant receptors facilitate olfactory communication and require the functionality of the
34 highly conserved co-receptor gene *orco*. Genome editing studies in a few species of ants and moths
35 have revealed that *orco* can also have a neurodevelopmental function, in addition to its canonical
36 role in adult olfaction, discovered first in *Drosophila melanogaster*. To extend this analysis, we
37 determined whether *orco* mutation also affects the development of the adult brain of the honey bee
38 *Apis mellifera*, an important model system for social behavior and chemical communication. We
39 used CRISPR/Cas9 to knock out *orco* and examine anatomical and molecular consequences. To
40 increase efficiency, we coupled embryonic microinjection with a laboratory egg collection and *in*
41 *vitro* rearing system. This new workflow advances genomic engineering technologies in honey
42 bees by overcoming restrictions associated with field studies. We used Sanger sequencing to
43 quickly select individuals with complete *orco* knockout for neuroanatomical analyses and later
44 validated and described the mutations with amplicon sequencing. Mutant bees had significantly
45 fewer glomeruli, smaller total glomerular volume, and higher mean glomerulus volume in the
46 antennal lobe compared to wild-type controls. RNA-Sequencing revealed that *orco* knockout also
47 caused differential expression of hundreds of genes in the antenna, including genes related to
48 neural development and genes encoding odorant receptors. The expression of other types of
49 chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this
50 study. These results suggest that neurodevelopmental effects of *orco* are related to specific insect
51 life histories.

52 Keywords: Genome editing; Orco; OR; Olfaction; antennal lobe; development; RNA-seq;

53 **INTRODUCTION**

54 Olfaction plays a key role in insect behavior, and insects are able to sense and respond to myriad
55 odorants from their environments. Odorant receptors (ORs) are the largest family of chemosensory
56 proteins in insects (Robertson, 2019) and are expressed in olfactory sensory neurons (OSNs),
57 mostly located in the antennae. Each OSN co-expresses one specific OR together with the highly
58 conserved olfactory coreceptor (ORCO) protein encoded by an *orco* gene. Orco is required for
59 olfaction because it localizes specific ORs to dendritic membranes of OSNs and forms heterodimer
60 ion channels with these ORs to respond to different odors (Sato et al., 2008; Wicher et al., 2008).
61 Insect OSNs with the same OR send projections to specific glomeruli in the antennal lobes, the
62 first olfactory processing center in the brain. Although olfaction in insects and vertebrates shows
63 many commonalities at the anatomical, physiological, and molecular levels, mammalian ORs do
64 not function with a co-receptor (Fleischer, Breer, & Strotmann, 2009).

65
66 Recent evidence indicates that *orco* can play different roles in different insect species. In fruit flies
67 (*Drosophila melanogaster*), it has long been known that *orco* is only associated with olfactory
68 sensing in adults and not with antennal lobe development (Chiang, Priya, Ramaswami,
69 VijayRaghavan, & Rodrigues, 2009; Larsson et al., 2004). By contrast, in Indian jumping ants
70 (*Harpegnathos saltator*) and clonal raider ants (*Ooceraea biroi*), CRISPR-induced *orco* mutations
71 did affect antennal lobe development, and also impacted social behavior (Trible et al., 2017; Yan
72 et al., 2017). In the hawkmoth *Manduca sexta*, CRISPR-induced *orco* mutations caused more mild
73 effects on antennal lobe development, and also disrupted olfactory signaling and foraging (Fandino
74 et al., 2019). These results indicate that although the *orco* gene itself is highly conserved, its roles
75 in olfaction vary in different insect species. However, more species need to be studied to look for
76 general patterns across diverse insect lineages.

77
78 The western honey bee (*Apis mellifera*) is an important model system for studying olfaction,
79 especially in the context of behaviour. Honey bees live in colonies of tens of thousands of
80 individuals, who coordinate the performance of behavioral tasks primarily through chemical
81 signals (Bortolotti & Costa, 2014; P. G. Ferreira et al., 2013; Winston & Slessor, 1998). Honey
82 bee olfaction has been studied extensively at the neuroanatomical and neurophysiological levels
83 (Galizia et al., 2012) and more recently with genomic tools (Alaux & Robinson, 2007; Guo et al.,
84 2016; Wallberg et al., 2019). A total of 150 ORs have been identified in the most recent assembly
85 of the honey bee genome (Wallberg et al., 2019). So far only one has been functionally
86 characterized, a queen pheromone receptor (Wanner et al., 2007). Honey bees have many more
87 ORs than *Drosophila* (60; *Drosophila Odorant Receptor Nomenclature Committee*, 2000), but
88 similar numbers to other social insect species (Zhou et al., 2015). The relationship between
89 sociality and OR diversity has led to the hypothesis that OR number is associated with the
90 complexity of a species' chemical ecology and social communication (Robertson, 2019; Yan et
91 al., 2020; Zhou et al., 2012). If this is correct, the *orco* results mentioned above may also be related
92 to differences in life history. We therefore extended this analysis by examining the honey bee. We
93 predicted that the effects of *orco* mutagenesis in honey bees would be similar to what has been
94 observed for ants (Trible et al., 2017; Yan et al., 2017).

95
96 Recent applications of genome editing technologies to insects have opened new vistas of discovery
97 for honey bees (Kohno, Suenami, Takeuchi, Sasaki, & Kubo, 2016; Schulte, Theilenberg, Müller-
98 Borg, Gempe, & Beye, 2014). In particular, clustered regularly interspaced short palindromic

99 repeats/CRISPR-associated protein 9 (CRISPR/Cas9) methodology has recently been made
100 possible in honey bees through a combination of embryonic microinjection, *in vitro* rearing, and
101 artificial diet (Değirmenci et al., 2020; Roth et al., 2019). These studies have generated complete
102 somatic mutants for phenotypic analyses, thus presenting an alternative to the challenges of
103 maintaining honey bee genetic lines in the lab. These tools are also very useful to explore the
104 function of specific genes through targeted mutagenesis, such as *orco*.
105

106 We knocked out *orco* in embryonic honey bee workers and performed molecular genotyping to
107 determine the efficacy of the knockout. We then explored downstream effects of *orco* mutation on
108 the adult brain by performing a detailed morphological analysis of antennal lobe glomerular
109 structure. We also measured antennal gene expression to further examine the effects of *orco*
110 mutation on the olfactory system. Our results contribute to an expanded understanding of the role
111 of this important gene.
112

113 RESULTS

114 Degree of somatic mutagenesis and knockout efficiency

115 Our protocols of embryonic injection and *in vitro* rearing with artificial diet were based on
116 published methods (Değirmenci et al., 2020; Roth et al., 2019; Schmehl, Tomé, Mortensen,
117 Martins, & Ellis, 2016), but with some changes as described in Methods. Notably, to facilitate the
118 production of somatic *orco* knock out mutants, we used a laboratory egg collection system that we
119 described previously (Fine et al., 2018; Fig. 1A), which added substantial flexibility to existing
120 honey bee *in vitro* rearing techniques (Fig. 1B-D). This system enables high rates of egg collection
121 independent of weather, which facilitates planning injection and rearing schedules. Injections were
122 performed in the anterior ventral part of 0.5~2 h old embryos; these parameters recently were
123 shown to lead to the strongest effects of genome editing in honey bees (Hu, Zhang, Liao, & Zeng,
124 2019; Otte et al., 2018)

125 Honey bee Orco is a seven-transmembrane domain protein. The Cas9 single guide RNA (sgRNA)
126 was designed to target a site in the second exon, 235 bps downstream of the start codon. This
127 cleavage site is in the codon of the 79th amino acid residue, within the second transmembrane
128 domain (Fig. 2A and B). This design was intended to maximize the potential knockout (KO) of
129 *orco* function. Frameshift mutations in this location cause extensive alternation in all downstream
130 domains, and the indels of amino acid residues could potentially disrupt the structure of the
131 transmembrane domain to affect normal function. The sgRNA was *in vitro* transcribed and mixed
132 with purified Cas9 protein to form ribonucleoprotein (RNP) complex solution, which enables the
133 immediate action of Cas9 when injected.
134

135 We rapidly genotyped each individual via Sanger sequencing using the Inference of CRISPR Edits
136 (ICE) tool (Hsiau et al., 2018) (<https://www.synthego.com/products/bioinformatics/crispr-analysis>). This was done to select individuals to be processed for neuroanatomical analysis. This
137 was followed by a slower but more rigorous analysis via Illumina amplicon sequencing for
138 confirmation and more detailed characterization of the induced mutation.
139

140 Out of the total 76 CRISPR-injected individuals, we selected 51 for preliminary genotyping via
141 Sanger sequencing. We identified those that appeared to have high knock out efficiency via Sanger
142 sequencing, and selected 25 *orco* CRISPR-injected and 10 buffer-injected control individuals for
143

145 neuroanatomical assessment and transcriptomic analysis.

146
147 Illumina amplicon sequencing revealed that mutagenesis was highly efficient. Out of the total 76
148 CRISPR-injected individuals, ~90% generated some degree of mutation, ~50% of which were
149 complete KOs. We also found 15% homozygous biallelic mutants and ~50% heterozygous
150 biallelic mutants (Table 1). For those used for neuroanatomical analysis, percentages were even
151 higher: 72% complete KO and 20% homozygous biallelic mutants (N = 25, Table 2).

152
153 The two sequencing methods gave similar results in 40 out of 76 cases. The discrepancies were
154 mostly minor, involving only changes in the adjacent categories listed in Tables 1 and 2, e.g., from
155 multiallelic mutant to heterozygous mutant. For the complete KO samples, the results of Sanger
156 and Illumina amplicon sequencing were highly consistent: 34 individuals showed complete KO in
157 both methods, compared to 36 for Sanger and 40 for Illumina amplicon sequencing.

158

159 ***orco* mutation caused extensive neurodevelopmental defects in the honey bee antennal 160 lobe**

161 A total of 25 *orco*-injected and 10 wild type control adult bees aged 0-1 days old were prepared
162 for glomeruli antibody staining and confocal imaging. We selected three control individuals and
163 five KO individuals with superior confocal image quality. The five KO individuals were all
164 confirmed via Illumina amplicon sequencing after neuroanatomical analysis to be complete KOs
165 (two homozygous biallelic and three heterozygous biallelic mutants) (Fig. 2C and D).

166
167 *orco* KO individuals showed extensive antennal lobe compared to controls (Fig. 3A and B and
168 Supplementary Videos 1-4). Total glomerular volume per antennal lobe was significantly lower in
169 *orco* KO individuals compared to controls ($p = 0.0018$, Fig. 3C). *orco* KO individuals also had
170 significantly fewer glomeruli compared to controls ($p = 8.83e-08$, Fig. 3D). By contrast, average
171 volume per glomerulus was higher in *orco* KO individuals than in controls ($p = 0.00044$, Fig. 3E).
172 In the *orco* KO individuals, there was often a lack of clear boundaries between glomeruli.

173

174 ***orco* mutation caused extensive differences in antennal gene expression**

175 In ant *orco* mutants, glomeruli defects were attributed to a loss of antennal OSNs that project to
176 the antennal lobe (Trible et al., 2017; Yan et al., 2017). After observing the antennal lobe defects
177 reported above, we used transcriptomics to explore whether similar consequences also occur in
178 honey bee *orco* mutants. With RNA-Sequencing (RNA-Seq) of antennae from *orco* KO
179 individuals and controls (N = 5 and 5, respectively), we detected 1154 differentially expressed
180 genes (false discovery rate-corrected p -value ≤ 0.05), 433 up-regulated and 721 down-regulated
181 in *orco* KO bees relative to controls (Fig. 4A, and Supplementary Table 2). OR encoding genes
182 were the most affected subfamily of chemosensory genes.

183
184 Our transcriptomic analysis included 85 of the 150 genes (including *orco*) predicted to encode OR
185 genes in the honey bee genome (Wallberg et al., 2019). We found different responses to *orco* KO
186 across these ORs: 53 were significantly downregulated in *orco* KO individuals and the other 32
187 remained unchanged (Fig. 4A, B and Supplementary Table 3). Transcripts of *orco* itself were
188 strongly downregulated in *orco* KO bees compared to controls (log fold change = -4.06).

189
190 To examine the possibility of off-target effects of *orco* genome editing, we also used this antennal

191 transcriptomic analysis to examine the expression of genes encoding other families of
192 chemosensory proteins, including gustatory receptors (GR), ionotropic receptors (IR), odorant
193 binding proteins (OBP), and chemosensory proteins (CP). Out of a total of 38 genes in these
194 categories, we found only two OBP and one IR up-regulated mildly in *orco* KO bees; no GR nor
195 CP genes were differentially expressed (Fig. 4A, B and Supplemental Table 3).

196

197 GO analysis detected dozens of terms enriched in both up- and down-regulated genes in *orco* KO
198 bees. For up-regulated genes, there were Biological Process terms mostly associated with various
199 developmental processes such as “structure development,” “regulation of cell proliferation,”
200 “regulation of stem cell division,” “regulation of transcription,” and biological rhythms (including
201 “eclosion rhythm”) (Fig. 4C). For down-regulated genes, there were Biological Process terms
202 mostly associated with neural activity and normal functions of olfactory sensing, e.g., several terms
203 related to general behavior, cell signals and biological processes in neurons, as well as very specific
204 terms related to synaptic formation and activities. We also saw terms specifically related to OSNs
205 or OSN related tissue, such as “chemosensory behavior,” “G-protein coupled signaling pathway,”
206 “olfactory receptor activity” and “cilium assembly.” We also found GO terms linked to the
207 neurotransmitter acetylcholine, known to be involved in olfaction (Massee, Turner, & Jefferis,
208 2009), including acetate ester and acetylcholine metabolism genes; they were down-regulated in
209 *orco* mutants. The full lists of GO terms, including Molecular Function and Cellular Components,
210 are included in Supplemental Table 4.

211

212 DISCUSSION

213 We integrated an established *in vitro* rearing system, a new laboratory egg collection system, and
214 CRISPR/Cas9 genome editing technology to develop an efficient method for genetic manipulation
215 in honey bees. By generating somatic mutants, we demonstrated strong effects of *orco* on the
216 development of the honey bee olfactory system, at both the neuroanatomical and molecular levels.
217 These results provide further support for the hypothesis that species differences in *orco* function
218 are related to differences in life history.

219

220 We observed strong effects of *orco* KO on antennal lobe structure. These differences involved a
221 reduction in total glomerular volume and the overall number of glomeruli, though each glomerulus
222 was, on average, larger in size. Because the injections occurred in the embryonic stage and analyses
223 were performed early in adulthood, these results likely reflect neurodevelopmental effects of Orco,
224 rather than effects related to adult neural activity or a neurodegenerative response of the adult
225 brain. These findings suggest *orco* is necessary for proper development of the antennal lobe, and
226 thus are more similar to findings in other hymenopterans than in more distantly related fly and
227 moth species. In ants, *orco* has been shown to be necessary for proper antennal lobe development
228 and social behavior (Trible et al., 2017; Yan et al., 2017). By contrast, in fruit flies, *orco* mutation
229 does not seem to impact general antennal lobe anatomy, although it is still required for maintaining
230 OSN axonal integrity (Chiang et al., 2009). Examination of the results for the hawkmoth *Manduca*
231 *sexta*, suggest that *orco* mutations also affect neurodevelopment, but only a reduction in the size
232 of the pheromone-responsive macrogglomerular structure in males (Fandino et al., 2019),
233 suggesting a more limited impact similar to fruit flies. These results point to intriguing differences
234 between insect species in *orco* function.

235

236 Transcriptomic analysis of the antennae of *orco* KO mutants provided further insight into the

237 function of *orco* in the honey bee olfactory system. *orco* KO strongly impacted antennal gene
238 expression, with hundreds of genes differentially expressed as a result. We were able to identify
239 86 out of 150 ORs annotated in the latest assembly of the honey bee genome. This discovery rate
240 is similar to what has been reported or other RNA-Seq analyses of bee antennal tissue (Nie et al.,
241 2018; Zhao et al., 2016). Our results suggest that one group of ORs is dependent on normal Orco
242 function and the other is independent of Orco. It is not possible to determine the fate of the OSNs
243 with *orco*-dependent ORs in *orco* mutant bees without tissue staining, but we predict that they
244 would either be missing or strongly defective, as in ants (Trible et al., 2017; Yan et al., 2017), due
245 to the reduction of OR gene expression and glomerular counts in antennal lobe.
246

247 OSN projections are crucial in separating and defining proto-glomeruli into mature glomeruli in
248 insects, a process in which synaptic partner-matching and connectivity play important roles (Barish
249 & Volkman, 2015). The surviving *orco*-independent neurons were still able to project to the antennal
250 lobes to form glomeruli in *orco* mutants, but these glomeruli were deformed and lacked clearly
251 defined boundaries. Such morphological defects suggest possible failures in proto-glomerulus
252 separation and glomerulus formation. This might be due to a reduction of synaptic structure and
253 activity in the OSNs, as suggested by the GO term analysis. Our results thus extend the findings
254 from ants, which reported significant reduction of antennal OSNs (Trible et al., 2017; Yan et al.,
255 2017); we provide similar results, but for specific ORs.
256

257 Our results also have more general implications insect neurodevelopment. *Drosophila* olfactory
258 sensory neurons and antennal lobe neurons are generated by neurogenetic lineages determined by
259 stereotyped genetic programs (Barish & Volkman, 2015; Chai et al., 2019; Chiang et al., 2009;
260 Dobritsa, Van Der Goes Van Naters, Warr, Steinbrecht, & Carlson, 2003; Lai, Awasaki, Ito, &
261 Lee, 2008; Lin et al., 2012; reviewed in Yan et al., 2020), and it is generally thought that insect
262 neurogenesis mostly follows a hardwiring developmental scheme (*NEEDS REF). However, the
263 bee and ant *orco* results challenge this concept, and are more reminiscent of mammalian olfactory
264 systems. Mammalian olfactory systems are highly plastic and dependent on individual ORs for the
265 proper projection of OSNs and glomeruli formation in the olfactory bulb, and defects in these
266 processes could trigger OSN apoptosis (Lodovichi & Belluscio, 2012; Mombaerts, 2006;
267 Nakashima et al., 2013). Exploring the newly discovered plasticity in insects could lead to insights
268 relevant to mammalian systems.
269

270 We also observed extreme down-regulation of *orco* transcript levels, which cannot simply be
271 explained by loss or reduction of OSNs. Only 11 OR genes had stronger down-regulation than
272 *orco*, which was down-regulated 16-fold relative to controls. If the reduction of *orco* was only
273 caused by the loss of OSNs, it should have a level of OR down-regulation intermediate to the other
274 genes. In *orco* mutant individuals, the sum of all OR expression levels was 69% of that in the
275 control. This result suggests that there are additional mechanisms other than simple reduction of
276 OSN numbers causing *orco* down-regulation.
277

278 The transcriptional regulation of *orco* in *orco* mutants in other insect species has not yet been
279 closely studied, but in mammalian OSNs (which lack an Orco-like protein), ORs have indirect
280 regulatory roles on transcription. Once the first OR initiates expression in a neuron, it elicits a
281 feedback mechanism to maintain its own expression and repress other ORs via a cascade of
282 cellular, biochemical, and epigenetic changes, so that only one OR is expressed per OSN (Dalton,
283 Lyons, & Lomvardas, 2013; T. Ferreira et al., 2014; Lyons et al., 2013). Perhaps Orco also has a

similar feedback mechanism to regulate its own transcription in OSNs, at least in species with neurodevelopmental effects as in honey bees. More generally, extensive upregulation of genes related to development and cell proliferation suggests strong developmental plasticity feedback in the honey bee olfactory system in response to *orco* mutation.

288

Gene Ontology (GO) functional analysis of the genes differentially expressed as a result of *orco* mutation provide insights into known and perhaps new functions of Orco. Enriched GO terms that reflect known functions of Orco and general olfaction include terms associated with synapse formation, neurotransmitter pathways, neuronal signals, ligand-gated ion channels, G-protein coupled receptor (GPCR) activity, and chemosensory behavior (Chiang et al., 2009; Sato et al., 2008; Wicher, 2018; Wicher et al., 2008) Enriched GO terms that reflect the possibility of additional functions of Orco include "cilium assembly," a surprising term associated with down regulated genes. While Orco is known to play a role in OR localization in the ciliated dendrites of the OSNs in fruit flies (Benton, Sachse, Michnick, & Vosshall, 2006; Larsson et al., 2004), no effects on cellular cilia structure have been reported so far.

299

This study was facilitated by improvements in laboratory husbandry of honey bees in the laboratory. We integrated a new laboratory egg collection system (Fine et al. 2019) with an established *in vitro* rearing system (Schmehl et al., 2016) and CRISPR/Cas9 genome editing technology to develop a more efficient method for genetic manipulation in honey bees. Our system overcomes a key challenge associated with honey bee research, namely strong dependence on seasonality and weather conditions for egg collection from outside field colonies.

306

Improvements in rearing efficiency are especially useful because the increasing popularity of CRISPR/Cas9 somatic mutagenesis reduces emphasis on the need to maintain genetic lines for simple mutant analysis; maintenance of genetic lines is especially difficult in honey bees, because they live in large colonies and queens naturally mate with multiple males. However, one important challenge in the use of somatic mutants is to be able to efficiently identify successful mutant genotypes to facilitate phenotypic analysis. Illumina sequencing of amplicons is the current preferred genotyping tool to identify somatic mutations, but the related benchwork and data analysis is time consuming and not always conducive to generating large samples in a timely manner for certain age-related neurobiological and behavioral phenotypes. Some researchers have used amplified fragment length polymorphism (AFLP) or clone-based sequencing of the CRISPR targeted region as an alternative quick analysis tools (Hu et al., 2019; Roth et al., 2019) but AFLP requires expensive fluorescent primers and only reveals changes in sequence length, while clonal sequencing is still laborious. Instead we combined standard Sanger sequencing data and an online ICE tool (Hsiao et al., 2018), thus using basic molecular biology techniques and analysis tools. Although this method is not able to reveal complete allelic information for the *orco* mutants, it performed extremely well in predicting which mutants showed complete KO and thus helped us select KO samples for time-sensitive phenotypic analysis. We then confirmed these results with the more time-consuming and comprehensive Illumina amplicon sequencing. This combination of methods provides the flexibility necessary to perform phenotypic analysis on somatic mutants.

326

The effects on antennal lobe development observed here and in ants (Trible et al., 2017; Yan et al., 2017) reveal a higher level of neuroplasticity of the insect olfactory system than previously appreciated. Based on studies of *Drosophila*, it is generally thought that the development of the

330 insect olfactory system is not dependent upon environmental stimuli (Chai, Cruchet, Wigger, &
331 Benton, 2019; Lin, Kao, Yu, Huang, & Lee, 2012) . By contrast, in mammals, environmental
332 stimuli do appear to play a role in the development of the olfactory system because experimental
333 manipulations that affect normal OR function affect OSN projection and glomerular formation and
334 sometimes trigger OSN apoptosis (Trible et al., 2017; Yan et al., 2017). The effects on antennal
335 lobe development in honey bees thus reflect mammalian-like neuroplasticity in the olfactory
336 system.

337

338 Variation in *orco* function appears to be related to variation in insect life history. This early
339 conclusion, based only on results from a few species, suggests that the evolutionary history of
340 Orco's role in olfaction is more complex than previously imagined. In *Drosophila*, Orco appears
341 to have only one role (neurophysiology), whereas in bees, ants, and moths it has two
342 (neurophysiology and neurodevelopment). This is puzzling because the Hymenoptera insect order
343 (bees and ants) is more evolutionarily ancient relative to Diptera (*Drosophila*) and Lepidoptera
344 (*Manduca*). However, these three orders exhibit great intraordinal diversification, all dated
345 similarity to the Early Cretaceous (Misof et al., 2014). Such complicated evolution history makes
346 it difficult to give a simple answer about the evolution of *orco* functions. Studies of additional
347 species, aided by new genome editing tools, will help elucidate the evolution and mechanisms of
348 *orco* function.

349

350 The present results from bees and those reported for ants (Trible et al., 2017; Yan et al., 2017)
351 suggest that the neurodevelopmental role of *orco* is related to sociality. To it should be possible to
352 thoroughly test this hypothesis by taking advantage of the remarkable diversity of life histories
353 within the Hymenoptera, ranging from solitary through various levels of sociality (Kapheim et al.,
354 2015). Comparative analyses of *orco*, across insect orders and within the Hymenoptera hold
355 promise for elucidating the mechanisms and evolution of this important insect gene.

356

357

358 **Material and Methods**

359 ***CRISPR RNP complex***

360 We expressed the Cas9 protein using the plasmid pET-28b-Cas9-His (#47327, Addgene,
361 Watertown, MA) in Rosetta *E. coli* cells. The His-tagged Cas9 protein was purified with an Ni-
362 NTA Superflow resin column (#30410, Qiagen, Hilden, Germany) and desalting with PD-10
363 columns (GE Life Sciences). The protein was then eluted in storage buffer (20 mM Tris [pH =
364 8.0], 200 mM KCl, 10 mM MgCl₂, 10% glycerol) at a concentration of 50 μM and stored at -80
365 °C.

366

367 A single guide RNA (sgRNA) targeting *orco* was designed using the CRISPR Guide RNA Design
368 tool in Benchling (<http://benchling.com>). We used a MiniGene plasmid with the following DNA
369 template containing a T7 promoter and site-specific targeting sequence (in bold and underlined,
370 respectively):

371 **TAATACGACTCACTATAGGGCTGTGCGTGAGAAGAGCA**

372 GTTCAGAGCTATGCTGGAAACAGCATAGCAAGTTGAAATAAGGCTAGTCCGTTATC
373 AACTGAAAAAGTGGCACCGAGTCGGTGCTTTAAAAGAGACC (Integrated DNA
374 Technologies, Coralville, IA). The plasmid was linearized by BsaI digestion. sgRNA was
375 transcribed *in vitro* with the T7 RiboMAX™ Express Large Scale RNA Production System
(#P1320, Promega, Madison, WI) and purified with Monarch RNA Cleanup Kit following

376 standard protocol in the manual (New England Biolabs, Ipswich, MA).

377

378 We performed Cas9 ribonucleoprotein (RNP) assembly following published methods (Burger et
379 al 2016, Fernandez et al 2017) with some changes. Cas9 protein and sgRNA stock solutions were
380 diluted separately and later combined at a 1:2 molar ratio to create 5 μ M RNP solution in injection
381 buffer (20 mM HEPES [pH = 7.5], 300 mM KCl, 1 mM MgCl₂). After preparation, the RNP
382 solution was checked for good *in vitro* cleavage activity based on a published protocol (Nishimasu
383 et al., 2018). To ensure consistent RNP complex quality across multiple injection batches, a two-
384 step dilution scheme was used. Briefly, the 5 μ M solution was split into 6 μ L aliquots and stored
385 at -80°C. To prepare for one week of injections, a 6 μ L aliquot of 5 μ M RNP solution was thawed,
386 diluted to 2.5 μ M with injection buffer and split into 2-3 μ L injection aliquots. The injection
387 aliquots were frozen again at -80 °C and only thawed before injection for single-day use. In such
388 way, the RNP solutions only had two freeze-thaw cycles across different injection batches.

389

390

391 ***Egg collection and injection***

392 We caged naturally mated queens (Olivarez Honey Bee Inc, Orland, CA) with ~60-100 one-day-
393 old adult worker bees in plastic cages, fed *ad libitum* with 70% pollen paste, water, 30% sugar
394 syrup and honey following our published protocol (Fine et al., 2018). We set up 20 cages for egg
395 collection at 34 °C and 50% relative humidity (RH) in an incubator. To facilitate collection of eggs
396 for injection, Jenter plugs (Karl Jenter GmbH, Frickenhausen, Germany) were fit into pre-drilled
397 holes positioned in the center of cells in the plastic artificial honeycomb in each cage (Fig. 1B and
398 C). After we removed eggs laid overnight, newly laid eggs were collected within a time window of
399 3-4 h. Eggs were lined up on a circular ring made of beeswax in a Petri dish. The CRISPR RNP
400 complex targeting *orco* was injected with a PLI100 pico injector (Warner Instruments, LLC,
401 Hamden, CT) following published protocols (Hu et al., 2019; Roth et al., 2019; Schulte et al.,
402 2014). For the control group, 1 \times injection buffer was used to inject embryos from the same batch
403 of embryos on the same day using the same protocol. After injection, a droplet of ~100 μ L 16%
404 sulfuric acid was applied to the center of each Petri dish to suppress fungal growth. The Petri dishes
405 were incubated at 35°C in a humid chamber saturated with 16% sulfuric acid solution. Embryos
406 for genotyping were frozen at 80 °C 2-3 days after egg laying.

407

408 ***in vitro rearing of injected honey bee larvae***

409 The injected honey bee embryos were reared *in vitro* with artificial diets following a published
410 protocol (Schmehl et al., 2016) with modifications; feeding was more frequent but the same total
411 amount of diet was given (Fig. 1D and E). The diets were: Diet A, 44.25% royal jelly, 5.3%
412 Glucose, 5.%3 Fructose, 0.9% yeast extract and 44.25% water; Diet B 42.95% royal jelly, 6.4%
413 Glucose, 6.4% Fructose, 1.3% yeast extract and 42.95% water; Diet C 50% royal jelly, 9%
414 Glucose, 9% Fructose, 2.0% yeast extract and 30% water. Three days following injection, embryos
415 were screened for survivors. The hatching larvae were fed with 5 μ L Diet A immediately without
416 grafting. The Jenter plugs were then inserted into predrilled holes in a new, sterilized artificial
417 honeycomb and sealed with Axygen® aluminum film (PCR-AS-200, Corning Inc., Corning, NY)
418 to prevent dehydration or contamination. Over the following 7 days, we used the following feeding
419 schedule: Day 1, 10 μ L Diet A; Day 2, 10 μ L Diet A; Day 3, 20 μ L Diet B; Day 4 25 μ L Diet C; Day
420 5, 10 μ L (am)+25 μ L(pm) Diet C; Day 6, 20 μ L (am) + 20 μ L (pm) Diet C; Day 7 20 μ L (am)
421 Diet C. We performed two feedings daily during the time of high consumption to avoid leaving

422 too much stale food in the cell. The aluminum sealing film was replaced with a microplate lid
423 (#3098, Corning Inc.) after the first 10 μ L Diet A was administered. Larvae were kept at the same
424 humidity and temperature conditions as the embryos. For pupation, larvae that finished all the diet
425 were transferred to a 75% RH humid chamber at 35 °C; we sandwiched the plates with UV-
426 sterilized Kimwipes (Kimberly-Clark, Irving, TX) to absorb larval defecation before pupation.
427 Plates were vertically arranged to mimic the natural pupal orientation in the beehive. After pupae
428 eclosed, all adults were flash-frozen in liquid nitrogen for genotyping and RNAseq (using wing
429 and antennal tissue respectively); for those selected for neuroanatomical analysis, brains were
430 removed and dissected on wet ice, as described.

431

432 **Immunofluorescence staining and imaging**

433 We modified an existing protocol (Rössler et al., 2017) for whole-mount brain immuno-
434 fluorescence. All dissections were performed in ice-cold PBS on adult bees within 24 h of eclosion.
435 Briefly, heads were removed, a small window was cut in the frons, and tissue obscuring the brain
436 was removed. The entire head was then prefixed in 4% paraformaldehyde (PFA) in PBS for 1-2 h
437 on wet ice. After prefixation, brains were carefully dissected and fixed overnight in 4% PFA at
438 4°C. The following day the brain was rinsed in PBS, permeabilized with 0.2% TritonX-100 in PBS
439 (0.2% PBS-Tx), blocked in 2% goat serum in 0.2% PBS-Tx for 1 h at room temperature and
440 incubated in mouse anti-SYNORF1 antibody (1:100 dilution in blocking buffer; #3C11,
441 Developmental Studies Hybridoma Bank, Iowa, USA) for 4-7 days at 4 °C. Brains were then
442 washed in PBS and incubated in CF®488A goat anti-mouse secondary antibody (1:250 dilution in
443 1% goat serum in PBS;#20011, Biotium, Fremont, CA) with a NucBlue™ (R37605, Invitrogen,
444 Carlsbad, CA) cellular counterstain for 4-14 days at 4 °C. Finally, brains were washed with PBS,
445 serially dehydrated in ethanol and cleared in methyl salicylate.

446

447 Whole-mount brain samples were mounted on glass slides using an iSpacer and #1.5 glass
448 coverslip and scanned with a Zeiss LSM880 confocal microscope. The brains regions in the central
449 part of the brain, including the antennal lobes, parts of the mushroom bodies and the
450 suboesophageal ganglion, were scanned with 10X/0.3 objectives to get “overview images” at a
451 lateral resolution of 1.38 μ m and a nominal axial resolution of 8 μ m. For detailed measurement,
452 higher resolution images of only antennal lobes were obtained with 20X/0.8 objectives at a lateral
453 resolution of 0.42 μ m and a nominal axial resolution of 1 μ m.

454

455 **Image processing and analysis**

456 Brain images were deconvoluted by AutoQuant X3 (Media Cybernetics, Rockville, MD). Z-stack
457 projection images were generated by Fiji (Schindelin et al., 2012). High-resolution images of
458 individual antennal lobes were processed with Amira 6.50 (Thermo Fisher Scientific, Waltham,
459 MA). For annotation of glomerular size and volume, the automated hysteresis thresholding method
460 was used to generate the outline of the glomerular regions in the antennal lobes. The outlines were
461 manually edited with the Segmentation Editor tool in Amira to correct flaws in the automated
462 process. Total glomerular volume was calculated with the Material Statistic command. The
463 number of glomeruli were counted manually. Videos of spinning 3D reconstructed brain structures
464 were generated with the Amira animation function to show the changes in antennal lobe
465 morphology. In those videos, the *orco* *KO* and control samples were shown at the same distance
466 from the virtual camera to allow size comparison . All data met normality assumptions, so we used
467 Student’s t-test to compare buffer-injected controls and *orco* *KO* groups (in R, Version 3.6.1). Raw
468 data and code can be found in the Figshare repository (URL).

469 **Genotyping and sequencing**

470 We utilized both Sanger and Illumina amplicon sequencing to genotype every individual. Sanger
471 sequencing allowed us to rapidly genotype a particular individual before selecting it for
472 neuroanatomical analysis. Illumina amplicon sequencing required more preparation but allowed
473 for more rigorous genotype analysis to confirm the initial genotyping.

474

475 Frozen adult antennal or wing tissue or whole embryos were individually homogenized using
476 NucleoType Mouse PCR kit (Thermo Fisher Scientific, Waltham, MA). The unpurified and
477 undiluted lysates were used as templates for PCR and Sanger sequencing. For Illumina amplicon
478 sequencing, libraries were constructed using the protocol outlined in the Illumina 16S
479 metagenomic library preparation (Illumina, San Diego, CA). First stage PCR was performed with
480 *orco*-specific primers along with overhang adapters at the 5' end. Second stage index PCR was
481 performed with a Nextera unique dual (UD) indexing kit (Illumina) and indexed PCR products
482 were purified using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA). The library pool
483 was quantitated via qPCR and sequenced on one MiSeq flowcell for 251 cycles from each end of
484 the fragment using a MiSeq 500-cycle sequencing kit version 2 (Illumina). Fastq files were
485 generated and demultiplexed with the bcl2fastq v2.20 Conversion Software (Illumina). Data were
486 analyzed with CRISPResso2 (Clement et al., 2019) and CrispRVariants package (Lindsay et al.,
487 2016). Raw and processed reads were uploaded to the Gene Expression Omnibus (GEO) under
488 SuperSeries GSE147719 and SubSeries GSE147713. CRISPResso2 code is available in the
489 Figshare repository (URL).

490

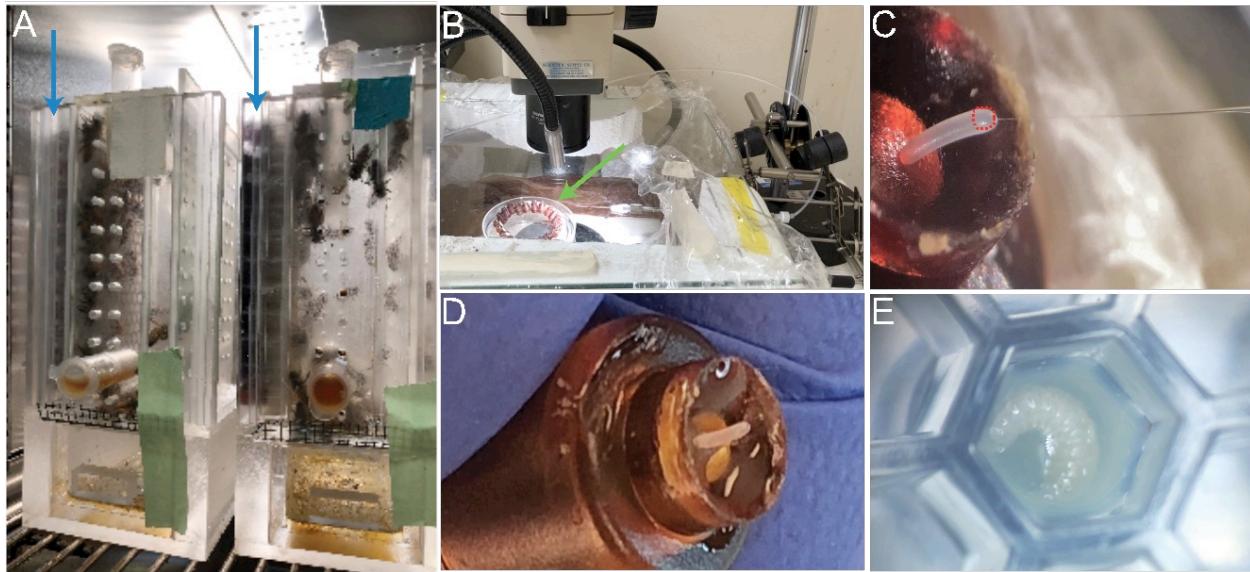
491 Sanger and Illumina amplicon sequencing enabled us to classify samples into five categories: wild-
492 type (wt), heterozygous monoallelic mutant, multiallelic mutant, heterozygous biallelic mutant,
493 and homozygous biallelic mutant. Mutant samples were also scored by the level of knockout (KO):
494 complete, uncertain, or incomplete. In the Sanger ICE analysis, a KO score was given by the
495 software and we considered a sample with >70% KO score to be a complete KO. Analyzing the
496 results of the Illumina amplicon sequencing, only samples with frameshift or long indel mutant
497 alleles were considered complete KO. Incomplete KOs were samples with either a wt allele or a
498 mutant allele causing only short indels or substitution of amino acid residues in the protein coding
499 sequence. Uncertain KOs were samples in which only one major allele had a frameshift or long
500 indel mutation.

501

502 **Measuring antennal gene expression**

503 For RNA-Sequencing (RNA-Seq), total RNA was extracted from a single frozen antenna using
504 the PicoPure RNA isolation kit (Thermo Fisher Scientific). Ribosomal RNA was removed using
505 Ribozero HMR Gold kit (Illumina). Sequencing libraries were prepared using the TruSeq Stranded
506 mRNASeq Sample Prep kit (Illumina), quantitated by qPCR and sequenced in one lane for 101
507 cycles from each end of the fragment on a NovaSeq 6000 system using NovaSeq SP reagent kit
508 (Illumina).

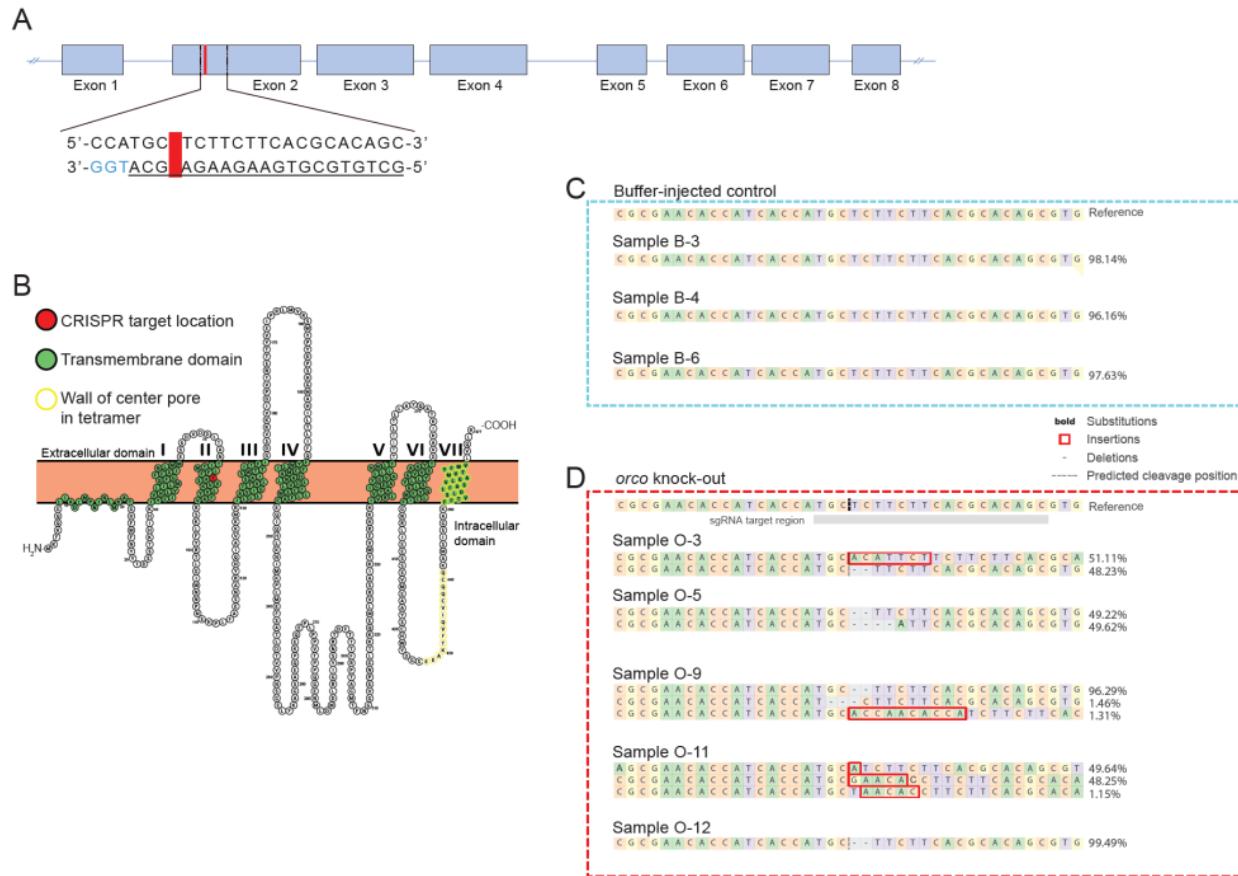
509


510 After adapter trimming, fastq reads from 5 *orco* knockout and 5 buffer-injected control individuals
511 were mapped to the most recent honey bee genome assembly (build HAv3.1; Wallberg et al., 2019)
512 using default settings in STAR v2.7.3a (Dobin et al., 2013). Samples were inspected for
513 contamination with common honey bee viruses (Shpigler et al., 2017; Traniello et al., 2020) but
514 only negligible levels were detected. After alignment, we counted numbers of aligned reads using
515 the “featureCounts” command in the Subread v2.0.0 package (Y. Liao, Smyth, & Shi, 2014; Yang

516 Liao, Smyth, & Shi, 2013). Count data were imported to R and analyzed with edgeR (M.D.
517 Robinson et al., 2010). We filtered out genes that had fewer than one read per million in at least 5
518 samples, giving us a total of 8868 genes to use for analysis. We performed TMM normalization
519 and used a generalized linear model with treatment group (*orco* KO vs control) as a categorical
520 predictor of gene expression. Differentially expressed genes (DEGs) were calculated using
521 edgeR's quasi-likelihood test functions, and DEGs were subjected to a Benjamini-Hochberg
522 correction for multiple tests with a false discovery rate (FDR) of 0.05 (Supplemental Table 2). To
523 represent the lack of off-target effects in the entire transcriptome (and not just DEGs), we
524 calculated log2 counts per million (CPM). Raw and processed RNA-Seq reads were uploaded to
525 GEO under the SuperSeries GSE147719 and SubSeries GSE147712.
526

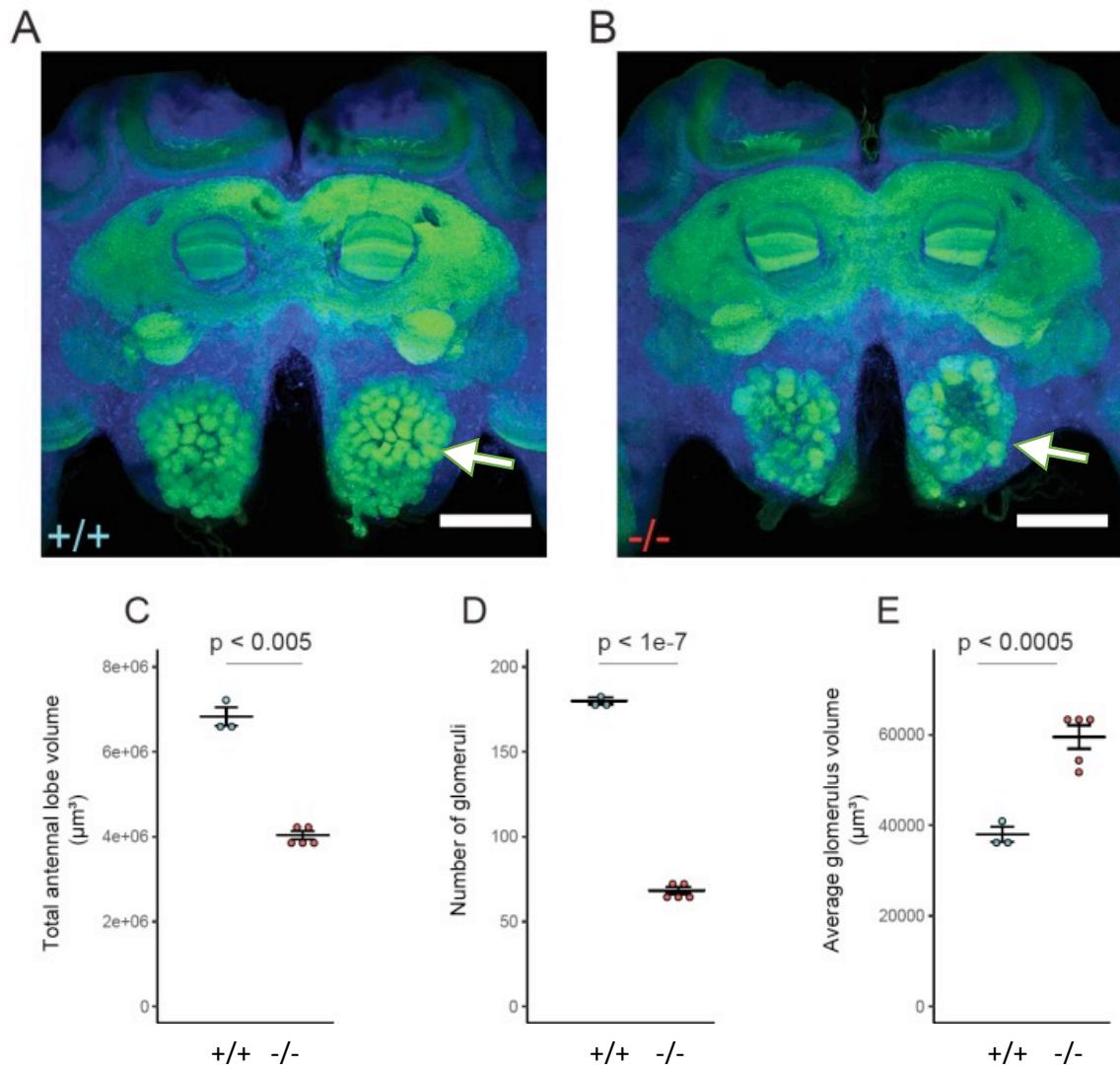
527 For Gene Ontology analysis, we performed a one-to-one reciprocal best hit BLAST to convert
528 honey bee genes to their *Drosophila* orthologs (Traniello et al., 2020), and these new gene lists
529 were submitted to the GOrilla database for GO enrichment and REViGO for visualization in
530 semantic space (Eden, Navon, Steinfeld, Lipson, & Yakhini, 2009; Supek et al, 2011). All R code
531 is available in the Figshare repository (URL: ZZ).
532

533 **Acknowledgements**


534 We thank P. Hanke for assistance with Cas9 protein preparation, L. Licitis and M. Seyller for assistance
535 with the bees, A. Hamilton, K. Torres, N. Beach and J. Fine for support and suggestions on *in vitro* rearing,
536 and members of the Robinson lab for helpful dicussion. The work is funded by NSF NeuroNex grant NSF-
537 DBI 1707221(PI: Y. Ben-Shahar) and DARPA grant XXXXX (PI: GER).

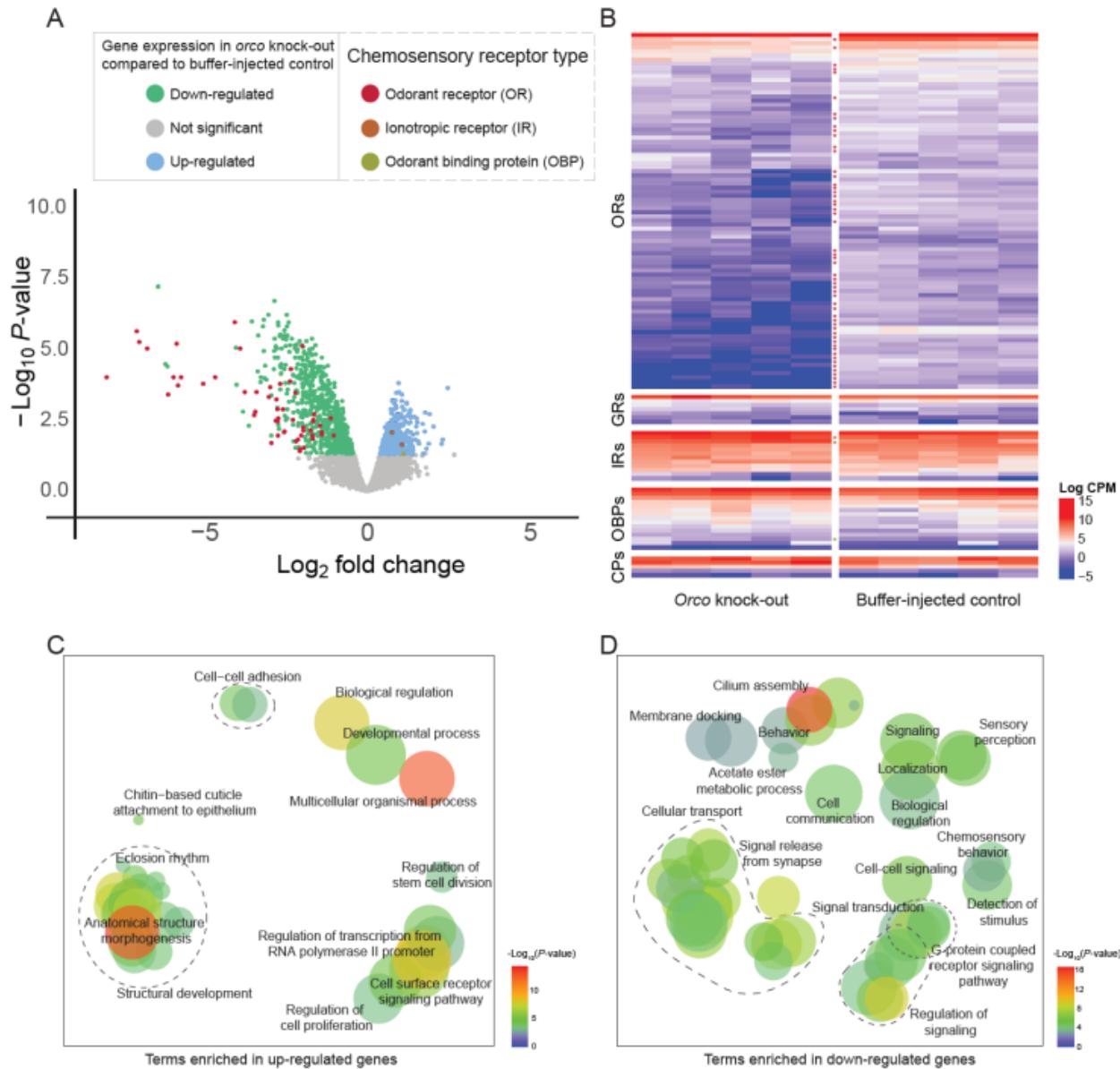
538
539

540 Figure 1. Experimental workflow including setup of egg collection, injection, and *in vitro* rearing.


541 A) Honey bee queens were caged with 50-100 adult workers in plastic cages with clear plastic
542 artificial honeycomb modified to house Jenter plugs (blue arrows).
543 B) Brown Jenter plugs with eggs were aligned along a ring of white beeswax in a Petri dish
544 (green arrow) inside a humid chamber built with glass and Styrofoam blocks.
545 C) Reagent was injected into the anterior ventral part of the embryo (red dashed circle). The
546 orientation of the Jenter plug was adjusted manually to achieve the best injection angle for
547 each embryo.
548 D) Three days post-injection, embryos were given a small amount of diet around the time of
549 hatching.
550 E) Honey bee larva floating on a pool of artificial diet during *in vitro* rearing.
551
552
553
554
555
556
557
558
559
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

Figure 2. CRISPR/Cas9 design strategy and detection of somatic *orco* mutations.


- A) The genomic locus of the honey bee *orco* gene. The target of the CRISPR reagent is in Exon 2; cleavage site (red), sgRNA target sequence (underlined) and PAM sequence (blue) are shown.
- B) The predicted protein structure of Orco. The protein has seven transmembrane domains numbered I to VII. The CRISPR target is in the second transmembrane domain, with the codon positioned at the cut site shown in red. Other amino acid residues are colored according to their sequence homology to important structural domains in published Cryo-EM data (Butterwick et al., 2018). Scheme prepared using the Protter web tool (Omasits et al., 2014)).
- C) *orco* allelic composition from the three control individuals used in brain neuroanatomical analysis.
- D) *orco* allele composition from the five *orco* mutant individuals used in the brain neuroanatomical analysis. Only differences in the region around the sgRNA target are shown. For simplicity, we only present the 40-base window around the cut site, which was used for analysis with CRISPResso2.

578
579
580
581
582
583
584
585
586
587
588

Figure 3. *orco* mutants have neurodevelopmental defects in the antennal lobes.

A and B) Stacked confocal images of honey bee brain samples stained with anti-Syn antibody (green) and counterstained with nuclear label DAPI (blue). Only the central brain regions (tissue excluding optic lobes) were imaged. A control brain is shown in (A) and an *orco* KO brain in (B). Arrows point to antennal lobes. Objective:10x. Scale bar: 200 μm .
 C) Effect of *orco* KO on antennal lobe volume. +/+ = wild type control (N = 3; -/- = *orco* KO (N = 5).
 D) Effect of *orco* KO on antennal lobe glomerular number. Notation as in Figure 3C.
 E) Effect of *orco* KO on antennal lobe glomerular volume. Notation as in Figure 3C.

589
590
591
592
593
594
595
596
597
598
599
600
601
602

Figure 4. *orco* mutants show extensive differences in antennal gene expression.

A) Volcano plot showing 721 down-regulated (green) and 433 up-regulated (blue) genes in *orco*-KO individuals relative to controls (False discovery rate-corrected $P\text{-value} \leq 0.05$).
 B) Heatmap of gene expression (log counts-per-million values) for all chemosensory genes identified by transcriptomic profiling, including odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), odorant binding proteins (OBPs), and chemosensory proteins (CPs). The majority of the chemosensory genes found to be differentially expressed were also ORs (red asterisk), with minimal evidence for off-target effects among other chemosensory genes. Asterisks denote genes significantly differentially expressed; asterisk color corresponds to chemosensory receptor type, shown in the Fig. 4A legend.

C and D) Biological Processes identified by Gene Ontology enrichment analysis in up-regulated (C) and down-regulated (D) genes. More similar terms are more closely positioned in semantic space, and circle size is inversely correlated with specificity of GO term (with smaller circles

603 representing more specific terms in the GO hierarchy), and significance related to gene list
604 enrichment score for a particular term. Full lists containing all significantly enriched Biological
605 Process, Molecular Function and Cellular Component GO terms are in Supplementary Table 4.
606

607 Table 1. Genotypes of the *orco* injected individuals analyzed by Illumina amplicon sequencing;
 608 these individuals were used to refine the *orco* injection and rearing protocols.

Categories of mutation	Number per category	Complete KO	Uncertain KO	Incomplete KO
Homozygous biallelic mutant	7 (13.7%)	7 (13.7%)	0	0
Heterozygous biallelic mutant	29 (56.9%)	13 (25.5%)	10 (19.6%)	6 (11.8%)
Multi-allelic mutant	8 (15.7%)	2 (3.92%)	5 (9.81%)	
Heterozygous monoallelic mutant	1 (1.3%)	0%	0	1 (1.3%)
WT or WT like	6 (11.8%)			
Total	51	32 (62.7%)	15 (29.4%)	7 (13.7%)

609

610 Table 2. Genotypes of the *orco* injected individuals analyzed by amplicon sequencing from
 611 which we selected individuals for brain neuroanatomical analysis.

Categories of mutation	Number per category	Complete KO	Uncertain KO	Incomplete KO
Homozygous biallelic mutant	5 (20%)	5 (20%)	0	0
Heterozygous biallelic mutant	13 (52%)	12 (48%)	1 (4%)	0
Multi-allelic mutant	5 (20%)	1 (4%)	3 (12%)	1 (4%)
WT or WT like	2 (8%)			
Total	25	18 (72%)	4 (16%)	1 (4%)

612

613 Complete KO : only frameshift mutations or indel > 12bps in all alleles

614 Uncertain KO: frameshift mutations or indel only in one major allele

615 Incomplete KO, (only short aa deletion/insertion/substitution in major alleles, or large percentage
 616 of wt allele in mutant samples. Wt samples were not counted in this category.

617 Only changes in or close to cleavage sites are considered in genotyping.

618

619

620

621

622 **References**

623

624 Abel, R., Rybak, J., & Menzel, R. (2001). Structure and response patterns of olfactory
625 interneurons in the honeybee, *Apis mellifera*. *Journal of Comparative Neurology*.
626 <https://doi.org/10.1002/cne.1289>

627 Alaux, C., & Robinson, G. E. (2007). Alarm pheromone induces immediate-early gene
628 expression and slow behavioral response in honey bees. *Journal of Chemical Ecology*,
629 33(7), 1346–1350. <https://doi.org/10.1007/s10886-007-9301-6>

630 Barish, S., & Volkan, P. C. (2015, November). Mechanisms of olfactory receptor neuron
631 specification in *Drosophila*. *Wiley Interdisciplinary Reviews: Developmental Biology*. John
632 Wiley & Sons, Inc. <https://doi.org/10.1002/wdev.197>

633 Benton, R., Sachse, S., Michnick, S. W., & Vosshall, L. B. (2006). Atypical membrane topology
634 and heteromeric function of *Drosophila* odorant receptors in vivo. *PLoS Biology*, 4(2), 240–
635 257. <https://doi.org/10.1371/journal.pbio.0040020>

636 Bortolotti, L., & Costa, C. (2014). Chemical Communication in the Honey Bee Society.
637 *Neurobiology of Chemical Communication*, 147–210. <https://doi.org/doi:10.1201/b16511-6>

638 Butterwick, J. A., del Marmol, J., Kim, K. H., Kahlson, M. A., Rogow, J. A., Walz, T., & Ruta,
639 V. (2018). Cryo-EM structure of the insect olfactory receptor Orco. *Nature*, 560(7719),
640 447–452. <https://doi.org/10.1038/s41586-018-0420-8>

641 Chai, P. C., Cruchet, S., Wigger, L., & Benton, R. (2019). Sensory neuron lineage mapping and
642 manipulation in the *Drosophila* olfactory system. *Nature Communications*, 10(1).
643 <https://doi.org/10.1038/s41467-019-08345-4>

644 Chiang, A., Priya, R., Ramaswami, M., VijayRaghavan, K., & Rodrigues, V. (2009). Neuronal
645 activity and Wnt signaling act through Gsk3- β to regulate axonal integrity in mature
646 *Drosophila* olfactory sensory neurons. *Development*, 136(8), 1273–1282.
647 <https://doi.org/10.1242/dev.031377>

648 Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., ... Pinello, L.
649 (2019, March). CRISPResso2 provides accurate and rapid genome editing sequence
650 analysis. *Nature Biotechnology*. Nature Publishing Group. <https://doi.org/10.1038/s41587-019-0032-3>

652 Dalton, R. P., Lyons, D. B., & Lomvardas, S. (2013). Co-opting the unfolded protein response to
653 elicit olfactory receptor feedback. *Cell*. <https://doi.org/10.1016/j.cell.2013.09.033>

654 Değirmenci, L., Geiger, D., Rogé Ferreira, F., Keller, A., Krischke, B., Beye, M., ... Scheiner, R.
655 (2020). CRISPR/Cas9 mediated mutations as a new tool for studying taste in honeybees.
656 *BioRxiv Genetics*, 2020.03.26.009696. <https://doi.org/10.1101/2020.03.26.009696>

657 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., ... Gingeras, T. R.
658 (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15–21.
659 <https://doi.org/10.1093/bioinformatics/bts635>

660 Dobritsa, A. A., Van Der Goes Van Naters, W., Warr, C. G., Steinbrecht, R. A., & Carlson, J. R.
661 (2003). Integrating the molecular and cellular basis of odor coding in the *Drosophila*
662 antenna. *Neuron*. [https://doi.org/10.1016/S0896-6273\(03\)00094-1](https://doi.org/10.1016/S0896-6273(03)00094-1)

663 Eden, E., Navon, R., Steinfeld, I., Lipson, D., & Yakhini, Z. (2009). GOrilla: a tool for discovery
664 and visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics*, 10(1), 48.
665 <https://doi.org/10.1186/1471-2105-10-48>

666 Fandino, R. A., Haverkamp, A., Bisch-Knaden, S., Zhang, J., Bucks, S., Nguyen, T. A. T., ...
667 Große-Wilde, E. (2019). Mutagenesis of odorant coreceptor Orco fully disrupts foraging but

668 not oviposition behaviors in the hawkmoth *Manduca sexta*. *Proceedings of the National*
669 *Academy of Sciences of the United States of America*, 116(31), 15677–15685.
670 <https://doi.org/10.1073/pnas.1902089116>

671 Ferreira, P. G., Patalano, S., Chauhan, R., Ffrench-Constant, R., Gabaldon, T., Guigo, R., &
672 Sumner, S. (2013). Transcriptome analyses of primitively eusocial wasps reveal novel
673 insights into the evolution of sociality and the origin of alternative phenotypes. *Genome*
674 *Biology*, 14(2), 1–15.

675 Ferreira, T., Wilson, S. R., Choi, Y. G., Risso, D., Dudoit, S., Speed, T. P., & Ngai, J. (2014).
676 Silencing of odorant receptor genes by G Protein $\beta\gamma$ signaling ensures the expression of one
677 odorant receptor per olfactory sensory neuron. *Neuron*.
678 <https://doi.org/10.1016/j.neuron.2014.01.001>

679 Fine, J. D., Shpigler, H. Y., Ray, A. M., Beach, N. J., Sankey, A. L., Cash-Ahmed, A., ...
680 Robinson, G. E. (2018). Quantifying the effects of pollen nutrition on honey bee queen egg
681 laying with a new laboratory system. *PLOS ONE*, 13(9), e0203444.
682 <https://doi.org/10.1371/journal.pone.0203444>

683 Fleischer, J., Breer, H., & Strotmann, J. (2009). Mammalian olfactory receptors. *Frontiers in*
684 *Cellular Neuroscience*. <https://doi.org/10.3389/neuro.03.009.2009>

685 Guo, Y., Wang, Z., Li, Y., Wei, G., Yuan, J., Sun, Y., ... Chen, R. (2016). Lateralization of gene
686 expression in the honeybee brain during olfactory learning. *Scientific Reports*.
687 <https://doi.org/10.1038/srep34727>

688 Hsiau, T., Conant, D., Maures, T., Waite, K., Yang, J., Kelso, R., ... Stoner, R. (2018). Inference
689 of CRISPR Edits from Sanger Trace Data. *BioRxiv The Preprint Server Biology*.
690 <https://doi.org/10.1101/251082>

691 Hu, X. F., Zhang, B., Liao, C. H., & Zeng, Z. J. (2019). High-Efficiency CRISPR/Cas9-
692 Mediated Gene Editing in Honeybee (*Apis mellifera*) Embryos. *G3 (Bethesda, Md.)*, 9(5),
693 1759–1766. <https://doi.org/10.1534/g3.119.400130>

694 Kapheim, K. M., Pan, H., Li, C., Salzberg, S. L., Puiu, D., Magoc, T., ... Zhang, G. (2015).
695 Genomic signatures of evolutionary transitions from solitary to group living. *Science*,
696 348(6239), 1139–1143. <https://doi.org/10.1126/science.aaa4788>

697 Kohno, H., Suenami, S., Takeuchi, H., Sasaki, T., & Kubo, T. (2016). Production of Knockout
698 Mutants by CRISPR/Cas9 in the European Honeybee, *Apis mellifera* L. *Zoological Science*,
699 33(5), 505–512. <https://doi.org/10.2108/zs160043>

700 Lai, S. L., Awasaki, T., Ito, K., & Lee, T. (2008). Clonal analysis of *Drosophila* antennal lobe
701 neurons: Diverse neuronal architectures in the lateral neuroblast lineage. *Development*,
702 135(17), 2883–2893. <https://doi.org/10.1242/dev.024380>

703 Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., & Vosshall, L. B.
704 (2004). *Or83b* encodes a broadly expressed odorant receptor essential for *Drosophila*
705 olfaction. *Neuron*, 43(5), 703–714. <https://doi.org/10.1016/j.neuron.2004.08.019>

706 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program
707 for assigning sequence reads to genomic features. *Bioinformatics*, 30(7), 923–930.
708 <https://doi.org/10.1093/bioinformatics/btt656>

709 Liao, Yang, Smyth, G. K., & Shi, W. (2013). The Subread aligner: fast, accurate and scalable
710 read mapping by seed-and-vote. *Nucleic Acids Research*, 41(10), e108–e108.
711 <https://doi.org/10.1093/nar/gkt214>

712 Lin, S., Kao, C. F., Yu, H. H., Huang, Y., & Lee, T. (2012). Lineage Analysis of *Drosophila*
713 Lateral Antennal Lobe Neurons Reveals Notch-Dependent Binary Temporal Fate Decisions.

714 *PLoS Biology*. <https://doi.org/10.1371/journal.pbio.1001425>

715 Lindsay, H., Burger, A., Biyong, B., Felker, A., Hess, C., Zaugg, J., ... Robinson, M. D. (2016).
716 CrispRVariants charts the mutation spectrum of genome engineering experiments. *Nature
717 Biotechnology*. <https://doi.org/10.1038/nbt.3628>

718 Lodovichi, C., & Belluscio, L. (2012). Odorant Receptors in the Formation of the Olfactory Bulb
719 Circuitry Organization of the Mammalian Olfactory System. *PHYSIOLOGY*, 27, 200–212.
720 <https://doi.org/10.1152/physiol.00015.2012>

721 Lyons, D. B., Allen, W. E., Goh, T., Tsai, L., Barnea, G., & Lomvardas, S. (2013). XAn
722 epigenetic trap stabilizes singular olfactory receptor expression. *Cell*.
723 <https://doi.org/10.1016/j.cell.2013.06.039>

724 Magklara, A., & Lomvardas, S. (2013, September 1). Stochastic gene expression in mammals:
725 Lessons from olfaction. *Trends in Cell Biology*. Elsevier.
726 <https://doi.org/10.1016/j.tcb.2013.04.005>

727 Masse, N. Y., Turner, G. C., & Jefferis, G. S. X. E. (2009, August 25). Olfactory Information
728 Processing in Drosophila. *Current Biology*. Elsevier.
729 <https://doi.org/10.1016/j.cub.2009.06.026>

730 Menzel, R., Hammer, M., Müller, U., & Rosenboom, H. (1996). Behavioral, neural and cellular
731 components underlying olfactory learning in the honeybee. In *Journal of Physiology Paris*.
732 [https://doi.org/10.1016/S0928-4257\(97\)87928-4](https://doi.org/10.1016/S0928-4257(97)87928-4)

733 Menzel, Randolph. (2012). The honeybee as a model for understanding the basis of cognition.
734 *Nature Reviews Neuroscience*, 13(11), 758–768. <https://doi.org/10.1038/nrn3357>

735 Menzel, Randolph, Galizia, G., Müller, D., & Szyszka, P. (2005). Odor coding in projection
736 neurons of the honeybee brain. In *Chemical Senses*. <https://doi.org/10.1093/chemse/bjh234>

737 Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., ... Zhou, X. (2014).
738 Phylogenomics resolves the timing and pattern of insect evolution. *Science (New York,
739 N.Y.)*, 346(6210), 763–767. <https://doi.org/10.1126/science.1257570>

740 Mombaerts, P. (2006). Axonal Wiring in the Mouse Olfactory System. *Annual Review of Cell
741 and Developmental Biology*. <https://doi.org/10.1146/annurev.cellbio.21.012804.093915>

742 Nakashima, A., Takeuchi, H., Imai, T., Saito, H., Kiyonari, H., Abe, T., ... Sakano, H. (2013).
743 Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory
744 sensory neurons. *Cell*, 154(6). <https://doi.org/10.1016/j.cell.2013.08.033>

745 Nie, H., Xu, S., Xie, C., Geng, H., Zhao, Y., Li, J., ... Su, S. (2018). Comparative transcriptome
746 analysis of *Apis mellifera* antennae of workers performing different tasks. *Molecular
747 Genetics and Genomics*, 293(1), 237–248. <https://doi.org/10.1007/s00438-017-1382-5>

748 Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., ... Nureki, O. (2018).
749 Engineered CRISPR-Cas9 nuclease with expanded targeting space. *Science (New York,
750 N.Y.)*, 361(6408), 1259–1262. <https://doi.org/10.1126/science.aas9129>

751 Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2014). Protter: Interactive protein
752 feature visualization and integration with experimental proteomic data. *Bioinformatics*,
753 30(6), 884–886. <https://doi.org/10.1093/bioinformatics/btt607>

754 Otte, M., Netschitailo, O., Kaftanoglu, O., Wang, Y., Page, R. E., & Beye, M. (2018). Improving
755 genetic transformation rates in honeybees. *Scientific Reports*, 8(1), 16534.
756 <https://doi.org/10.1038/s41598-018-34724-w>

757 Robertson, H. M. (2019). Molecular Evolution of the Major Arthropod Chemoreceptor Gene
758 Families. *Annual Review of Entomology*, 64(1), 227–242. [https://doi.org/10.1146/annurev-ento-020117-043322](https://doi.org/10.1146/annurev-
759 ento-020117-043322)

760 Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005). Sociogenomics: social life in
761 molecular terms. *Nature Reviews. Genetics*, 6(4), 257–270. <https://doi.org/10.1038/nrg1575>

762 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for
763 differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–
764 140. <https://doi.org/10.1093/bioinformatics/btp616>

765 Rössler, W., Spaethe, J., & Groh, C. (2017). Pitfalls of using confocal-microscopy based
766 automated quantification of synaptic complexes in honeybee mushroom bodies (response to
767 Peng and Yang 2016). *Scientific Reports*, 7(1), 9786. <https://doi.org/10.1038/s41598-017-09967-8>

768 Roth, A., Vleurinck, C., Netschitailo, O., Bauer, V., Otte, M., Kaftanoglu, O., ... Beye, M.
769 (2019). A genetic switch for worker nutrition-mediated traits in honeybees. *PLOS Biology*,
770 17(3), e3000171. <https://doi.org/10.1371/journal.pbio.3000171>

771 Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., & Touhara, K. (2008).
772 Insect olfactory receptors are heteromeric ligand-gated ion channels. *Nature*, 452(7190),
773 1002–1006. <https://doi.org/10.1038/nature06850>

774 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., ... Cardona,
775 A. (2012). Fiji: an open-source platform for biological-image analysis. *Nature Methods*,
776 9(7), 676–682. <https://doi.org/10.1038/nmeth.2019>

777 Schmehl, D. R., Tomé, H. V. V., Mortensen, A. N., Martins, G. F., & Ellis, J. D. (2016). Protocol
778 for the in vitro rearing of honey bee (*Apis mellifera* L.) workers. *Journal of Apicultural
779 Research*, 55(2), 113–129. <https://doi.org/10.1080/00218839.2016.1203530>

780 Schmuker, M., Yamagata, N., Nawrot, M. P., & Menzel, R. (2011). Parallel representation of
781 stimulus identity and intensity in a dual pathway model inspired by the olfactory system of
782 the honeybee. *Frontiers in Neuroengineering*. <https://doi.org/10.3389/fneng.2011.00017>

783 Schulte, C., Theilenberg, E., Müller-Borg, M., Gempe, T., & Beye, M. (2014). Highly efficient
784 integration and expression of piggyBac-derived cassettes in the honeybee (*Apis mellifera*).
785 *Proceedings of the National Academy of Sciences of the United States of America*, 111(24),
786 9003–9008. <https://doi.org/10.1073/pnas.1402341111>

787 Shpigler, H. Y., Saul, M. C., Murdoch, E. E., Cash-Ahmed, A. C., Seward, C. H., Sloofman,
788 L., ... Robinson, G. E. (2017). Behavioral, transcriptomic and epigenetic responses to social
789 challenge in honey bees. *Genes, Brain and Behavior*, 16(6), 579–591.
790 <https://doi.org/10.1111/gbb.12379>

791 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes
792 Long Lists of Gene Ontology Terms. *PLoS ONE*, 6(7), e21800.
793 <https://doi.org/10.1371/journal.pone.0021800>

794 Traniello, I. M., Bukhari, S. A., Kevill, J., Ahmed, A. C., Hamilton, A. R., Naeger, N. L., ...
795 Robinson, G. E. (2020). Meta-analysis of honey bee neurogenomic response links
796 Deformed wing virus type A to precocious behavioral maturation. *Scientific Reports*, 10(1),
797 1–12. <https://doi.org/10.1038/s41598-020-59808-4>

798 Trible, W., Olivos-Cisneros, L., McKenzie, S. K., Saragosti, J., Chang, N.-C., Matthews, B.
799 J., ... Kronauer, D. J. C. (2017). orco Mutagenesis Causes Loss of Antennal Lobe
800 Glomeruli and Impaired Social Behavior in Ants. *Cell*, 170(4), 727-735.e10.
801 <https://doi.org/10.1016/j.cell.2017.07.001>

802 Wallberg, A., Bunikis, I., Pettersson, O. V., Mosbech, M. B., Childers, A. K., Evans, J. D., ...
803 Webster, M. T. (2019). A hybrid de novo genome assembly of the honeybee, *Apis*
804 *mellifera*, with chromosome-length scaffolds. *BMC Genomics*, 20(1), 275.

805

806 https://doi.org/10.1186/s12864-019-5642-0
807 Wanner, K. W., Nichols, A. S., Walden, K. K. O., Brockmann, A., Luetje, C. W., & Robertson,
808 H. M. (2007). A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid.
809 *Proceedings of the National Academy of Sciences of the United States of America*, 104(36),
810 14383–14388. https://doi.org/10.1073/pnas.0705459104
811 Wicher, D. (2018). Tuning insect odorant receptors. *Frontiers in Cellular Neuroscience*.
812 https://doi.org/10.3389/fncel.2018.00094
813 Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H., &
814 Hansson, B. S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-
815 nucleotide- activated cation channels. *Nature*, 452(7190), 1007–1011.
816 https://doi.org/10.1038/nature06861
817 Winston, M. L., & Slessor, K. N. (1998). Honey bee primer pheromones and colony
818 organization: gaps in our knowledge. *Apidologie*, 29(1–2), 81–95.
819 https://doi.org/10.1051/apido:19980105
820 Yamagata, N., Schmuker, M., Szyszka, P., Mizunami, M., & Menzel, R. (2009). Differential
821 odor processing in two olfactory pathways in the honeybee. *Frontiers in Systems*
822 *Neuroscience*. https://doi.org/10.3389/neuro.06.016.2009
823 Yan, H., Jafari, S., Pask, G., Zhou, X., Reinberg, D., & Desplan, C. (2020, February 1).
824 Evolution, developmental expression and function of odorant receptors in insects. *The*
825 *Journal of Experimental Biology*. NLM (Medline). https://doi.org/10.1242/jeb.208215
826 Yan, H., Opachaloemphan, C., Mancini, G., Yang, H., Gallitto, M., Mlejnek, J., ... Desplan, C.
827 (2017). An Engineered orco Mutation Produces Aberrant Social Behavior and Defective
828 Neural Development in Ants. *Cell*, 170(4), 736-747.e9.
829 https://doi.org/10.1016/J.CELL.2017.06.051
830 Zhao, H., Du, Y., Gao, P., Wang, S., Pan, J., & Jiang, Y. (2016). Antennal transcriptome and
831 differential expression analysis of five chemosensory gene families from the Asian
832 honeybee *Apis cerana cerana*. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0165374
833 Zhou, X., Rokas, A., Berger, S. L., Liebig, J., Ray, A., & Zwiebel, L. J. (2015). Chemoreceptor
834 evolution in Hymenoptera and its implications for the evolution of eusociality. *Genome*
835 *Biology and Evolution*. https://doi.org/10.1093/gbe/evv149
836 Zhou, X., Slone, J. D., Rokas, A., Berger, S. L., Liebig, J., Ray, A., ... Zwiebel, L. J. (2012).
837 Phylogenetic and Transcriptomic Analysis of Chemosensory Receptors in a Pair of
838 Divergent Ant Species Reveals Sex-Specific Signatures of Odor Coding. *PLoS Genetics*,
839 8(8), e1002930. https://doi.org/10.1371/journal.pgen.1002930
840