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Abstract
In this paper, we build phase-field models for the actomyosin driven cell oscillations.
In ourmodeling, an oscillation starts from an actin cortex breakage.After the breakage,
due to the unbalanced distribution of actin andmyosin, there is unbalanced contraction
force in different membrane components, which then results in the lipids transferring
to the bulged membrane compartment. As such we can observe a cell oscillation.
During the whole process, the actin and myosin polymerization and depolymerization
play important roles. We give detailed formulations under the framework of phase-
field methodology, in which phase-field functions are used to describe different parts
of the cell membrane, integrated with the distribution of the actin and myosin at dif-
ferent components. The whole system is described as a set of time-dependent partial
differential equations in three-dimensional space. Forward Euler method is used to
solve the system. The spectral method is used for spatial discretizations for efficiency
and accuracy purpose. Given carefully selected parameters, three-dimensional simula-
tions are performed and compared with biological images. The simulations prove that
actomyosin dynamics are the major reasons for cell oscillations. Further, our method
can be easily extended into the simulations of cell polarization. We also compared our
numerical simulations with biological experiments. This modeling gives an example
of applying diffusive interface methods toward complex biology experiments.
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Fig. 1 Cell oscillation experiment from time 00:00 to 00:55, a ring moves from one end to the other end.
Starting from 01:15, the ring moves back (from Paluch et al. 2005, scale bar, 5 µm.)

1 Introduction

Cell division and migration are two of the most important functions of living cells.
Cell division and migration require shape changes in which actin polymerization and
myosinmotors play a central role. During the cytokinesis, an actomyosin cortex under-
neath the membranes generates contractile forces (Zhang and Robinson 2005). The
constriction of an actomyosin ring at the cell equator results in the cytokinetic furrow
(Cabernard et al. 2010). Due to the contractility force of the actin filaments exert to the
membrane, the inside of the cell may maintain a high hydrostatic pressure (Charras
et al. 2008). In the case of breakage of the actin cortex, which results in a local discon-
nection from the membrane, the high pressure drives the membrane bulge outward,
which is called cell blebbing (Charras and Paluch 2008). Cell blebbing can release the
polar pressure and stabilize the process of cytokinesis. The polarized pressure could be
due to spatial localization of myosin, actin, or actin-binding proteins. However, during
some conditions there is a large imbalance of the contraction force between the acto-
myosin cortex and the breakage, the cortex turnover can not stabilize the cytokinesis
and it will develop the cell oscillations, and thus a failure of the cytokinesis (Sedzinski
et al. 2011).

There are some experiments and mathematical modeling that have been done in the
study of cell oscillations. Recently, an experiment (Paluch et al. 2005) comes to our
attention in which the authors found an interesting cell oscillation (Fig. 1) which gives
us a chance to examine carefully the mechanism based on actomyosin dynamics, and
it may be used for explaining the cell polarization in cell division and migration. In
the experiment, a constriction ring once formed moves from one end of the cell to the
other end, and then moves back across the cell. Such back and forth movement repeats
and results in the oscillation of the cell membrane.

In Sedzinski et al. (2011), the authors did further experiments and mathematical
modeling about the oscillations. They examined the conditions that could result in
the cell oscillations. The cell oscillations are mostly due to the competition between
cortex turnover and contraction dynamics. They found that the polar bleb formation
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may release the tension of the cortex and help for successful cytokinesis.A faster cortex
turnover than the contraction dynamics will most likely to drive a cell oscillation.

In this paper, we propose a mathematical tool, which is called diffusive model-
ing, to do the computational modeling of cell membrane shape transformation. In this
modeling, we considered the following facts that could contribute to the cell oscil-
lations: membrane elastic bending energy, actomyosin dynamics, line tension of the
cortex ring, osmotic pressure, and membrane lipid flow. Membrane lipid flow, some-
times being ignored in some models, is considered to be a very important part in our
modeling. The surface cortex breakage is due to a large pressure jump of the pressure
from the inside to the outside of the cell. This jump is mostly contributed by osmotic
pressure. Water permeating into the cell generates the osmotic pressure. It is resisted
by the membrane surface tension. A surface breakage may occur when the surface
tension is bigger than a threshold value. After a surface breakage, the lipids will be
driven to flow from the actomyosin cortex to the bulging part. During the process, lipid
transferring is competing with actomyosin turnover. A success oscillation requires a
relatively faster lipid flowing speed. However, in our modeling, we do not consider
the polar blebs, like that in Sedzinski et al. (2011).

Our purpose is to develop a phase-field model to compare simulation cell shapes
to phase contrast images of cell fragments. Here, we focus on the comparison of the
cell shape qualitatively to microscopy images. Ultimately, we can compare gradients
of actin or myosin (or other proteins) from a spatial model to fluorescent protein tags
from experiments.We start from the experiments and setting from Paluch et al. (2005).
Figure 2 shows a period of the oscillation. The non-uniform cortex stress results in
the breakage of the actomyosin cortex (Gucht et al. 2005), and forms a hole in the
cortex. After an initial rapture of the actin gel, the cell membrane is divided into two
components, �1 with actin gel and �2 initially devoid of actin and myosin. Due to the
actin polymerization and depolymerization, gradually actin will be recruited to the
surface �2. Myosin II is attaching to the actin filaments and sliding to exert the stress
force. It can also detach from actin filaments to the cytosol by the depolymerization of
actin filaments. On the other hand, it can attach to the actin filaments at any position.
A set of formulae is used to describe the dynamics of actin and myosin II and calculate
their concentrations on different components. Because the concentrations of myosin II
at different components are changing in time, the surface tension,which is proportional
to the density of the myosin II motors, is also changing in time. The different values of
surface tension at different parts of the cell membrane finally drive the lipid molecules
from one component to the other, and change the area of �1 and �2. This gives an
explanation of the cell oscillations.

As we mentioned before, to further determine the shape of the cell during the
oscillation, we also need to consider some other facts, such as the line tension between
the two components of a collating cell, the surface tension, the elasticity of the lipid
membrane, osmotic pressure, and membrane lipid flow. We will examine those facts
in details and propose a system including the transformation of the cell membrane and
the dynamics of the actin and myosin inside the cell.

Numerically, one classical method for simulating an evolving interface is to employ
a mesh that has grid points on the interfaces, and deforms according to the motion
of the boundary, such as the boundary integral and boundary element methods (cf.
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Fig. 2 A period of the cell oscillation (actin gel is colored in green; and the red dots represent the myosin
II) (Color figure online)

Cristini et al. 1998; Toose et al. 1995; Khayat 1991 and their references). Keeping
track of the movingmeshmay entail computational difficulties and large displacement
in internal domains may causemesh entanglement. Typically, sophisticated remeshing
schemes have to be used in these cases. We turned to the energetic phase-field models
that offer many advantages including the easy treatment of topological changes of
the interface (Lowengrub and Truskinovsky 1998), similar to the popular level set
formulations (Osher and Fedkiw 2002; Chang et al. 1996). In Zhuan and Kunkun
(2013), one computational model based on the phase-field method is developed to
describe the a complicated biological process which couples the cell movement and
cell morphogenesis with the dynamic behaviors of actin assemble into actin filaments,
the physiological functions of myosin, and the interaction between the cell and the
substrate. Up to now, we already published a serial of our works in this field, including
the phase-field model and its theoretical analysis (Du et al. 2005a; Rui et al. 2016),
simulations for equilibrium vesicle shapes (Du et al. 2004, 2005b, 2006), vesicle
transformations in fluid fields (Du et al. 2009) and retrieval of topological information
within our phase-field framework (Du et al. 2005c).

Following the approach of the phase-field formulations for multi component vesi-
cles studied in Wang and Du (2008), in this paper, we formulate the mathematical
model within a phase-field framework. Due to the complexity of the system, we com-
pared our numerical results with those find in biological experiments (Gucht et al.
2005).

The paper is organized as follows: in Sect. 2, we present the mathematical model
for the cell oscillations, including the actomyosin dynamics, the energy formulations,
membrane lipid dynamics, and osmotic flows. In Sect. 3, we present the phase-field
formulations associated with the mathematical model. In Sect. 4, we discuss the dis-
cretization schemes and some detailed implementation issues. Spectral methods are
used the same as that in Du et al. (2006) due to their high accuracy in calculating
the derivatives in space. In Sect. 5, we assemble some interesting experiments of the
oscillations triggered by some artificial breakages. We also simply explain the effects
of changes in different parameters. Those simulations are compared with biological
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findings. We then make some concluding remarks and present the direction of our
future work in Sect. 6.

2 Mathematical Model for Cell Oscillations

In this section, we first propose a mathematical model to explain the oscillations. This
model includes the actomyosin dynamics, energy formulations, and membrane lipid
dynamics. In Sect. 3, we derive the detail phase-field formulations of the mathematical
model for numerical simulations.

2.1 Actomyosin Dynamics

The oscillation always starts from a breakage of the underlying actin gel (Paluch et al.
2005; Gucht et al. 2005). The breakage is believed due to the uneven distribution of
the actin gel. In the beginning, the actin cortex is only locally ruptured. Around the
ruptured hole, a constriction ring forms. This ring divides the cell membrane into two
components. One component is devoid of actin in the beginning and bulges out. As
time goes on, actin monomers polymerize onto that component gradually. The other
component inherits the original actin cortex. Due to the different concentration of the
actin and myosin II, the two components have totally different behavior, as one bulges
out and grows, while the other component shrinks. Denote the two components by
�1 and �2. we have |�1 ∩ �2| = 0, ∂�1 ∩ ∂�2 = γ , and �1 ∪ �2 = �. The ring γ

is in between two components and � is the whole membrane. During the oscillation
process, the area of the two components |�1| and |�1| are changing. One is expanding,
while the other is shrinking. The lipidsmaymove fromone component to the other. But
the total number of the lipid molecules are fixed. It is known that the lipid membrane
can sustain amaximal area expansion of around 2–5% (Boal 2002). Suppose the nature
surface area is s. We can make a constraint of the total surface area as

|�1| + |�2| = s. (1)

Note that in our final energy formulation (26), this area constrain is penalized to the
total energy which actually allows a small area expansion.

Denote the concentrations of the actin on �1 as m1, on �2 as m2. Also, we denote
the concentrations of the myosin II on �1 as y1, on �2 as y2. Here we assume the
concentrations of actin and myosin II are uniform on each component for simplicity.
The non-uniform concentration is much more common, and some studies are given
in Hu et al. (2006). We have different density values of the actin monomers m0 and
myosin II s0 within the cell. Because of the conservation of the mass, we have the
following equations

m0Vol(�) + m1|�1| + m2|�2| = Cm, (2)

y0Vol(�) + y1|�1| + y2|�2| = Cy (3)
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where Cm and Cy are the total mass of actin and myosin II.
Now, we can consider the growth of the actin gel beneath themembrane. It is known

that the polymerization occurs at the plus end of the actin filaments attached to the
membrane, whereas the depolymerization occurs at the other minus end (Sekimoto
et al. 2004; Noireaux et al. 2000). Thus, the growth velocity of the actin gel can be
formulated by

dmi

dt
= konm0 − koff (4)

for i = 1, 2. The value of kon is suggested at 0.032 s−1 and koff is suggested at
2.0 nm s−1 (Gucht et al. 2005). The growth of actin filaments here does not take the
polarity of the actin filament into the account.

Myosin II attaches on the actin filaments. It disassembles to the cytosol during the
depolymerization of actin filaments. On the other hand, it attaches to the filaments at
any position.

dyi
dt

= mi (k
y
ony0 − kyoff yi ) (5)

where kyon is the attaching rate of myosin and kyoff is the detaching rate, y0, y1 and y2
are the concentration of myosin II in cytosol, �1 and �2.

2.2 Energy Formulations

Closed cell membranes or vesicles, in most of the case, are composed by unified lipid
bilayer structure. The geometry of vesicles theoretically are determined byminimizing
energy with contributions of the bending resistance, which is called elastic bending
energy, first studied by Ciarlet (1998), Ciarlet (2000). It is based on the principle that
the equilibrium shape of such a membrane is determined by minimizing the elastic
bending energy:

W =
∫

�

a1 + a2(H − c0)
2 + a3G ds, (6)

where H is the mean curvature of the membrane surface, a1 is the surface tension, a2
the bending rigidity and a3 the stretching rigidity, c0 is the spontaneous curvature that
describes the asymmetry effect of the membrane or its environment, G is the Gaussian
curvature. In general, c0 is assumed to be constant (Lipowsky 1992) but it can also
be variable (Seifert 1993). The last term in (6), which is equal to the Euler–Poincare
index, representing the topological structure of the membrane which has also been
formulated and studied in the context of the energetic variational formulation (Du
et al. 2005c). In the whole process, the cell membrane is a uniform lipid bilayer.
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Each component has a different parameter value representing surface tension and
bending rigidity. The bending energy is formulated as follows:

W =
2∑

i=1

∫
�i

(
αi + κi (H − ci )

2 + κ ′
i G

)
dS. (7)

For simplicity, we take elastic bending modules κ1 = κ2 = κ to be constant, spon-
taneous curvature c1 = c2 = c and bending module κ ′

1 = κ ′
2 = κ ′ to be another

two constants. However, due to the stress from the actomyosin system, the surface
tension depends on the concentrations of myosin and actin. Here, we model it as a
linear function of the concentration of myosin II, i.e.,

αi = a1yi + a0 (8)

for i = 1, 2. Obviously, a0 is the default surface tension for the cell membrane devoid
actin and myosin.

Besides the bending energy, other facts determine the shape of the cell membrane
include the line tension energy and osmotic potential energy. The line tension energy
from the ring between the two components can be formulated either δ|γ | or 1

2δ|γ |2,
the energy of a spring. Osmotic pressure regulates the permeate flow of the membrane,
and thus the total volume of the cell (Stewart et al. 2011; Zoniz andMunnik 2007). One
compartment bulges out is related to the volume change of the cell. Osmotic pressure
is proportional to the salt density difference between the inside and the outside of the
cell, i.e., P = c(ρ0 − ρ), where ρ0 is the outside salt density and ρ the inside salt
density, c is a proportional constant. When ρ = ρ0, inside and outside get balanced.
On the other hand, ρ = m/V , wherem is the mass of inside salt, V is the cell volume.
We can calculate the osmotic potential energy by

Eos = c
∫ V

V0
(ρ0 − m/V )dV = −(mc log(V ) − cρ0V ) + (mc log(V0) − cρ0V0).

Combine constants and take off the potential offset, the osmotic potential energy to
be used in our model is as following

Eos = −τ0 log(Vol(�)) + τ1Vol(�).

where τ0 = mc and τ1 = cρ0 are two osmotic coefficients. When Vol(�) = τ0/τ1,
the osmotic potential arrives minimum, i.e., inside and outside get balanced with same
salt density.

Take into account of the elastic bending energy, line tension energy and the osmotic
potential, we have the following total energy to describe the shape of the oscillating
cell membrane.

E =
2∑

i=1

∫
�i

αi + κi (H − ci )
2 + κ ′

i G dS + 1

2
δ|γ |2 − τ0 log(Vol(�)) + τ1Vol(�)

(9)

123



37 Page 8 of 21 X. Wang, L. Zhu

where the line tension coefficient δ and osmotic pressure coefficient τ are treated as
constants. The Gaussian curvature bending rigidity κ ′

i values the same for the two
parts due to the uniform lipid bilayer. From the classic Gauss–Bonnet formula, the
integration of the Gaussian curvature of a closed surface is the Euler number, which
is a constant if no topological change. Thus, we can ignore this term as there are no
topological changes in the oscillations.

2.3 Cell Membrane Lipid Dynamics

The double-layer lipidmembrane exhibit a degree of fluidity (Evans and Skalak 1980).
With the surface tension on different components, the lipid molecules can transport
between the two components. We know that at any moment, with prescribed surface
area |�1| = A1 and |�2| = A2, the cell shape is always determined by minimizing
the total energy (9). We can adapt the penalty methods for this constraint optimization
problem. Given a large penalty constant M , the whole systemminimizes the following
total energy

EM = E + 1

2
M(|�1| − A1)

2 + 1

2
M(|�2| − A2)

2 (10)

where energy E is defined by (9). This penalty form can be rewrittenwith the Lagrange
multipliers. {
i = M(|�i | − Ai )}21 as M large enough. The surface interior stress pi
is proportional to the Lagrange terms, i.e.,

pi ∼ 
i = M(|�i | − Ai )

for i = 1, 2. Due to the difference in the stress in two components, the lipids move
from one part to another part. The speed is assumed to be proportional to the stress
difference. Therefore, we have

dA1

dt
= λM[(|�1| − A1) − (|�2| − A2)], (11)

dA2

dt
= −dA1

dt
(12)

where λ is a constant to describe the lipid motility.

2.4 Osmotic Flow

With the osmotic pressure, the water moves in or out the cell and thus changes the
cell volume. However, the water cannot move in and out of the cell completely freely.
The movement rate of the water is depending on the water pressure, osmotic pressure
and surface area. In our model, the surface area is fixed. The water pressure and
osmotic pressure come from the variation of the total energy (9). With the same idea
handling the membrane lipid dynamics, we can add a penalty term for the volume,
and thus measure the pressure for the osmotic flow. Select a large penalty constant,
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for simplicity we still denote it as M , which can be the same value or a different value
with the penalty constant for the surface area. The total energy (10) further becomes

EM = E + 1

2
M(|�1| − A1)

2 + 1

2
M(|�2| − A2)

2 + 1

2
M(Vol(�) − V )2. (13)

This penalty form is equivalent to those with the Lagrange multipliers. The Lagrange
multiplier 
 = M(Vol(�) − V ). All the pressures together including the osmotic
pressure and the pressure due to the membrane contractions can be described by the
Lagrange multiplier. Therefore, the osmotic flowing rate is proportional to 
, as the
surface area is fixed. We have

dV

dt
= μM((Vol(�) − V ) (14)

where μ is a constant to describe the cell membrane permeability. For a system with
smallμ, the permeate flow is very slow, and thus the cell volume is not easy to change.

2.5 Model Summary

All together,webuild amathematicalmodel for the actomyosin driven cell oscillations:
At any time t , finding the shape of �1 and �2 to minimize the total energy (13) with
the dynamics of the actomyosin system (4), (5), the dynamics of surface area (11),
(12), osmotic flow (14) and the mass conservation (1), (2), (3).

It is not trivial to solve the system described in this mathematical model. The
major difficulty is to track the surface shape changes. One can simplify the model
by thinking each component of the cell membrane is part of a perfect sphere, but
this may not be the case. In particular, here we take into account the elastic bending
energy of the lipids. Phase-fieldmethod has advantages in tracking the surface evolving
under a uniform Cartesian grid. We already built the package in simulating the multi-
component vesicles (Wang and Du 2008) in 3D by phase-field method we decide to
use phase field method to solve this problem. The detailed formulations are given in
the following section.

3 Phase-Field Formulations

We follow our previous approach in the study of multi-component vesicles (Wang
and Du 2008), which is summarized as follows. We start by introducing a pair of
phase-field functions (φ(x), η(x)), defined on a physical (computational) domain �

in the three-dimensional space. The function φ = φ(x) is used so that the level set
{x : φ(x) = 0} determines the membrane �, while {x : φ(x) > 0} represents the
interior of the membrane (denoted by �i ) and {x : φ(x) < 0} the exterior (denoted by
�e). In the phase-fieldmodels of a single component vesicle, this is the only phase-field
function used (Du et al. 2004).

Next, we take another closed surface�⊥ defined on the domain� and being perpen-
dicular to �, such that it is the zero level set {x : η(x) = 0} of a phase-field function
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Fig. 3 Membrane � = �1 ∪ �2,
is described by phase file
function φ(x). The label surface
�⊥, defined by phase-field
function η(x), cuts the surface �

into two components �1 and �2
(Color figure online)

η = η(x) in � with {x : η(x) > 0} being the interior of �⊥ and {x : φ(x) < 0}
the exterior. We thus take the part of � in the interior of �⊥ as the first component
�1 and the remain part of � makes up the second component �2. Note that there
may be many choices to select �⊥, but we are mostly interested in the level set
{x : η(x) = φ(x) = 0} which gives the ring between the two components of the vesi-
cle, with {x : η(x) > 0 and φ(x) = 0} representing one component of the membrane,
while {x : η(x) < 0 and φ(x) = 0} the other component (Fig. 3).

In the phase-field model, the functions η and φ are forced to be nearly constant-
valued except in thin transition layers the surfaces � and �⊥, respectively. We use two
small positive constant parameters ε and ξ to characterize the widths of the thin layers
(also called the diffuse interfaces).

Similar toWang and Du (2008), we have the phase-field formulation for the surface
energy defined by

Esurf(φ, η) = 3
√
2

4

∫
�

α(η)

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx (15)

where the variable surface tension is given by

α(η) = 1

2
(α1 + α2 + (α1 − α2) tanh(η/ε))

= a0 + a1
2

(y1 + y2 + (y1 − y2) tanh(η/ε)) (16)

so that α1 is the value of surface tension of one component and α2 is the other. As
revealed inWang andDu (2008), we can always assume φ(x) ∼ tanh(d(x, �)/(

√
2ε))

and η(x) ∼ tanh(d(x, �⊥)/(
√
2ξ)) for the phase-field functions. With this ansatz, we

can check that as ε and ξ tend to 0, that is, in the sharp interface limit,

Esurf(φ, η) →
∑
i

∫
�i

αi dS .

123



Diffusive Interface Model for Actomyosin Driven Cell… Page 11 of 21 37

Similarly, we have the following phase-field formulations

3
√
2

4

∫
�

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx → |�|, (17)

S1(φ, η) = 3
√
2

4

∫
�

1 + tanh(η/ξ)

2

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx → |�1|,(18)

and

S2(φ, η) = 3
√
2

4

∫
�

1 − tanh(η/ξ)

2

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx → |�2|, (19)

Eelastic(φ, η) = 3
√
2

8

∫
�

κ

2ε

(
ε�φ + (

1

ε
φ + c

√
2)(1 − φ2)

)2
dx →

∫
�

κ(H − c)2 dS. (20)

In above convergence formula, one can think that our phase-field formulation at the
left-hand side is an approximation of the data at the right hand side of the convergence
arrow. But if we choose ε and ξ smaller enough, the approximation error can be
ignored.

The length of the ring between two components is approximated by functional

L(φ, η) = 9

8

∫
�

[
ε

2
|∇η|2 + 1

4ε
(η2 − 1)2

] [
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

]
dx (21)

and the volume inside � is formulated by

V (φ) = 1

2

∫
�

1 + φ dx . (22)

Thus, the total energy in the phase-field framework is

EM (φ, η) = Esurf(φ, η) + Eelastic(φ, η) + 1

2
δL2(φ, η) − τ0 log(V(φ))

+ τ1V(φ) + M

2
(S1(φ, η) − A1)

2 + M

2
(S2(φ, η) − A2)

2

+ M

2
(V(φ) − V )2. (23)

Following the approach in Wang and Du (2008), to maintain the consistency of
the phase-field model which is based on φ and η having the tanh profiles and the
orthogonality between � and �⊥, additional constraints are imposed. First of all, the
orthogonality constraint on the normal directions of the two surfaces, written in our
phase-field formulations, can be enforced by ∇φ · ∇η = 0 on or near the phase
boundary {x : φ(x) = η(x) = 0}. This orthogonality constraint can be enforced
everywhere by penalizing

P(φ, η) =
∫

�

ε

2
|∇φ · ∇η|2 dx . (24)
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Secondly, to better maintain the tanh profile of η, especially for the case of a large line
tension energy, we have two options, one is to add a small regularization term, much
like the bending elastic energy for φ but with a very small bending rigidity; another
option is to regularize through the following functional

Q(η) =
∫

�

(ξ

2
|∇η|2 − 1

4ξ
(η2 − 1)2

)2 dx , (25)

which also vanishes for any function η having a tanh profile.
We can also convert these constraints into a penalty formulation with another large

penalty constant N . Thus, we will minimize the energy

EM (φ, η) = Esurf(φ, η) + Eelastic(φ, η) + 1

2
δL2(φ, η) − τ0 log(V(φ))

+ τ1V(φ) + M

2
(S1(φ, η) − A1)

2 + M

2
(S2(φ, η) − A2)

2

+ M

2
(V(φ) − V )2 + N

2
(P(φ, η))2 + N

2
(Q(η))2. (26)

To search for the energy minimizers, we adopt a gradient flow approach which has
been very effective for solving the phase-field model of single- or multi-component
vesicles (Du et al. 2004, 2006; Wang and Du 2008). The equations for the gradient
flow are given by:

φt = −r
δEM
δφ

, ηt = −r
δEM
δη

(27)

where coefficient r is a time scale, representing the membrane shape changing speed.
The variation of δEM

δφ
, and δEM

δη
can be calculated by the summation of the variation of

each term. Those calculations can be found in Du et al. (2009), Wang and Du (2008).
For simplicity, here we list some of them here

δEsurf(φ, η)

δφ
= 3

√
2

4
α(η)

(
ε�φ + 1

φ
(φ3 − φ)

)
(28)

δEsurf(φ, η)

δη
= 3

√
2

4
α′(η)

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
(29)

The whole system used to describe the oscillation is (27) with the dynamics of
the actomyosin system (4), (5), the dynamics of surface area (11), (12), and the mass
conservation (1), (2), (3). The model equations are summarized below.
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φt = −r
δEM
δφ

;

ηt = −r
δEM
δη

;
dmi

dt
= konm0 − koff for i = 1, 2;

dyi
dt

= mi (k
y
ony0 − kyoff yi ) for i = 1, 2;

dA1

dt
= λM[(S1(φ, η) − A1) − (S2(φ, η) − A2)];

dA2

dt
= −dA1

dt
;

dV

dt
= μM(V(φ) − V );

m0V (φ) + m1A1 + m2A2 = Cm;
y0V (φ) + y1A1 + y2A2 = Cy

(30)

with initial values at time t = 0

φ(0) = φ0, η(0) = η0, A1(0) = S1(φ0, η0), A2(0) = S2(φ0, η0),

and m1(0),m2(0), y1(0), y2(0). Also the prescribed constants including

r , λ, μ, kon, koff ,Cm,Cy, a0, a1, c, κ, δ, τ0, τ1, M, N , ε, ξ.

Note that a0, the intrinsic surface tension of the cell membrane without actin and
myosin is negligible. Because the total surface area is fixed, the surface tension con-
tribution from a0 to the total energy keeps to be constant. So in all of our experiments,
we just set a0 = 0.

4 Numerical Schemes

For spatial discretization, we use Fourier spectral methods on a regular 3D Carte-
sian grid. Due to the regularization effect of the finite transition layer, for fixed ε, ξ ,
the solutions exhibit high-order regularities and thus making spectral methods very
efficient with the help of FFT routines.

There are a number of options for the time discretization. For simplicity, we dis-
cretize the system of equations from (30) in time using forward Euler’s method as
follows: (30):

φn+1 − φn

�t
= −r

δEM
δφ

(φn, ηn); (31)

ηn+1 − ηn

�t
= −r

δEM
δη

(φn, ηn); (32)
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An+1
1 − An

1

�t
= λM[(S1(φn+1, ηn+1) − An

1) − (S2(φ
n+1, ηn+1) − An

2)]; (33)

An+1
2 − An

2

�t
= − An+1

1 − An
1

�t
; (34)

V n+1 − V n

�t
= μM(V (φn+1) − V n); (35)

mn+1
i − mn

i

�t
= konm

n
0 − koff for i = 1, 2; (36)

yn+1
i − yni

�t
= mn

i k
y
ony

n
0 − koff y

n
i for i = 1, 2; (37)

mn+1
0 = (Cm − mn+1

1 An+1
1 − mn+1

2 An+1
2 )/V (φn+1); (38)

yn+1
0 = (Cy − yn+1

1 An+1
1 − yn+1

2 An+1
2 )/V (φn+1). (39)

The whole system is split into three parts. Equations (31)–(32) solve the phase-field
dynamics, or the shape of the cell with two components. Equations (33)–(35) solve
the lipid transferring and osmotic fluid. Equations (36)–(39) solve the actomyosin
dynamics.

For the first part, a sufficiently small time step size �t should be chosen to satisfy
the decay of energy, i.e.,

EM (φn+1, ηn+1) < EM (φn, ηn). (40)

Note that two different time steps can be used, �t1 in Eqs. (31)–(32), and �t2 in
Eqs. (33)–(39). Latter time step �t2 is k times of �t1, the time step of former. In
another words, we can go k steps Eqs. (31)–(32) with step size �t1 = �t2/k and then
go one step Eqs. (33)–(39) with step size �t2. �t2 can be fixed to be relatively large,
k is always adjusted to be sufficiently large to get a smaller �t1 such that the energy
decays (40) for every iteration of Eqs. (31)–(32). If a particular time step size violates
the energy decreasing principle, we just simply double k and repeat the iterations. It is
assured that sufficiently small steps would decrease the energy if the solution is not at
a local minimum of the energy, which is always true for our problem. Practically, we
will try to half k after some period to increase �t1 so that to speed up the iterations.
We like to point out that for the most part of in our numerical experiments, although
fully adjustable, the step size �t1 is kept to be in the interval from 10−6 to 10−7 and
�t2 is kept to be 10−4.

There have been some stabilized numerical methods could be used for this type
of phase-field equations, such as stabilized semi-implicit Euler methods (Du et al.
2018), exponential time differencing methods (Wang et al. 2016). We believe that
those methods could further improve the simulation in terms of efficiency and discrete
energy stability. Although we did not try those methods here, in Rui et al. (2014), Rui
et al. (2016), we tried the nonlinear CG methods and lowered the cost in finding the
energy minimizers.

For this specific problem, one can simplify the problem from 3D to 1D due to
the axissymmetric property of the case. Because we already have the full three-
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dimensional code package, and for the possible future non-axissymmetric case, we did
the fully 3D simulations of this problem. To make our three-dimensional simulations
efficient on today’s high-performance computing platform, parallel implementation is
a useful approach that can be realized on both distributed memory systems via MPI
and shared memory systems via OpenMP. As we have done in Wang and Du (2008),
in our numerical experiments, we have mostly utilized the OPENMP platform on a
shared memory system with 16 CPU cores. One can refer Wang and Du (2008) for
detail discussions. We also use the FFTW freeware package which provides necessary
interfaces for the parallel implementation of FFT via MPI and OpenMP. Our parallel
code is only implemented using the serial interface of FFTW for one-dimensional and
two-dimensional discrete FFTs. The scalable performance of our numerical implemen-
tation is clearly observed. This provides efficient means for us to conduct extensive
three dimensional simulations.

5 Numerical Simulation

In this section,we present the results of the three-dimensional simulations. Throughout
this section, we take the domain as the box [−π, π ]3 except otherwise indicated. The
domain is divided into 483 or 643 uniform mesh grids. Also, we choose the phase
transition parameters ε = ξ = 1.25h.

5.1 Initial Shape and Initial Breakage

For a complete actin cortex without breakage, our mathematical model becomes an
energy minimizing process. There is only one component. Because there is no lipid
transferring, the cell membrane surface area is fixed. The surface tension energy will
be dropped off the total energy. Gradually, the actin and myosin dynamics will reach
an equilibrium state. For the actin, the depolymerization rate koff is the same as the
polymerization rate of koffm0. Osmotic pressure is balanced by the surface tension
and bending rigidity. The whole system degenerates into the regular one component
problem to find surface � minimizing the energy

E =
∫

�

κ(H − c)2 dS − τ0 log(V(φ)) + τ1V(φ) (41)

with fixed surface area |�|. If the actomyosin dynamics do not change the bending
rigidity κ and the spontaneous curvature c, the problem degenerates into a static
optimization problem, which was already studied in details on paper (Du et al. 2004,
2005b). If the inside salt density is larger than that outside and the osmotic potential
by far outpaces the elastic bending energy, water will move inside and force the cell
to be spherical. Given a surface area, if the inside salt density is larger than that of
the outside, water will permeate into the cell and make it spherical. Also because
the sphere always has the smallest elastic bending energy

∫
�

κH2 dS, a spherical cell
shape is the most often case to be observed.
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Fig. 4 Initial spherical cell with initial breakage after several runs. Left: the cell surface (0-level set of
φ), blue colored part is the breakage; right: the ghost surface (0-level set of η) to cut the cell into two
components. Both the cell surface and the ghost surface evolve in time. Please refer Wang and Du (2008)
for more details (Color figure online)

Fig. 5 One period of the oscillation of cell. From left to right, cut view at time t = 0.3, 1.0, 2.0, 3.0, 4.0
(Color figure online)

In the numerical simulation, we can start from an initial shape with initial breakage.
In most of the case, the initial shape is a sphere. The initial breakage is artificial. The
spherical cell is the zero level set of the first phase-field function φ. We construct
another phase-field function η whose zero level set cut the sphere a small surface. We
can set the ghost surface as a small perfect sphere. Once the initial breakage formed,
the initial balance is broken and the cell starts its shape evolution. Figure 4 shows a
sphere with initial breakage. Different color describes different components. The blue
color in the left image is the breakage. The right picture is the ghost surface, i.e., the
zero level set of phase-field function η used to label the breakage.

5.2 Simulations with Artificial Breakages

Figure 5 shows one period of the oscillation of the cell. We use the cut view to see the
two components more clearly. Note that the color in the picture represents the density
of the myosin II. From blue to red, the myosin II density is from low to high. Pure blue
indicate a value of 0, and pure red indicate a value around 2.0. In the beginning, the
breakage is void of the myosin II. With time going on, the breakage bulges and grows
larger and larger, finally take control of the while surface. The density of myosin II
grows significantly as the color goes from blue to red.

This experiment was performed on a 643 grid mesh. The parameters we used are
as following: time scale r = λ = 1; linear coefficient for the surface tension a1 = 30,
a0 = 0; elastic bending rigidity κ = 1.0; spontaneous curvature c = 0; line tension
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Fig. 6 Oscillation of the cell with artificial breakages. From left to right, first row to the second row, cell
images time t = 0.68, 4.17, 8.10, 12.59, 16.47, 17.70, 18.34, 21.66, 26.86, 31.28, 37.74, 38.41 (Color
figure online)

coefficient δ = 1.3; osmotic pressure coefficients τ0 = 70, τ1 = 0; osmotic motility
μ = 10; total surface area is 31.14; penalty coefficients M = N = 10000. Initial
actin distributions m0 = 0, m1 = 0.9, m2 = 0; and myosin II distributions y0 = 0,
y1 = 0.81, y2 = 0; actomyosin dynamics coefficients kon = 0.5, kyon = 1.0, koff =
kyoff = 0.

Bydimensional analysis,we can give the units of those quantities. The domain range
of x is [−π, π ], in unit µm. The time is in unit second. Bending rigidity κ is in unit
10−18 J . The line tension (Hookean) coefficient δ is in the unit 10−12Nμm−1. Osmotic
pressure coefficients τ is in the unit 10−18 J. Actomyosin dynamics coefficients kon
is in unit 10−3 s−1, koff is in unit nm s−1. Actin-myosin distribution m1,m2, y1, y2
have unit nm, and m0, y0 has unit 10−3.

Note that in Fig. 5, the lower component finally disappeared. The oscillation stops.
In the biological experiments, after a very short time, another oscillation period starts.
To simulate the whole oscillation process, only with the initial breakage is not enough.
In our numerical simulation, we periodically set the artificial breakages. For example,
we reset the actin and myosin density to zero once the surface area of that component
shrinks under 5% of the whole area. Meanwhile, we increase the actin and myosin
densities m0 and y0 so that the mass is conserved. Just as shown in Fig. 6, the cell
periodically oscillates.

The first row of Fig. 6 shows one period. The ring moves from top to bottom,
myosin II recruited to the membrane gradually. During the time between 17.70 and
18.34, the lower component shrinks the surface area smaller enough and then we
manually reset the actin and myosin densities to 0 to simulate another breakage. This
results in the second round of oscillation, with the ring moves from bottom to top.
Actin and myosin recruit to the cortex gradually as well. Between the time 37.74 and
38.41, we get another reset of the actin and myosin densities to 0. The third oscillation
period begins.

Figure 7 shows the concentration of actin and myosin II during the first two oscil-
lation periods of this simulation. At the time 0, we see the breakage (part II, i.e. �2)
is devoid of actin and myosin. As time goes on, Fig. 8 shows that the surface area of
part I shrinks and due to the polymerization, the concentrations on both parts grow.
At the time about 18, part I gets reset to 0 density of actin and myosin II. With this
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Fig. 7 Plot of the concentration of actin and myosin II during two oscillation periods (Color figure online)

Fig. 8 Plot of the surface area (left) and the surface area changing rate/lipid transferring rate (right) of
different parts during two oscillation periods (Color figure online)

artificial breakage, the second period starts. This process can repeat once again and
again, resulting in the cell oscillations.

The right plot of Fig. 8 shows the lipid transferring rate (from Eqs. 11, 12) in time.
The transferring rate keeps slightly increasing during each oscillation period.

This experiment performed on a 483 grid mesh. The parameters we used are as
following: time scale r = λ = 1; linear coefficient for the surface tension a1 = 30,
a0 = 0; elastic bending rigidity κ = 1.0; spontaneous curvature c = 0; line tension
coefficient δ = 1.5; osmotic pressure coefficients τ0 = 70, τ1 = 0; osmotic motility
μ = 10; total surface area is 31.24; penalty coefficients M = N = 10,000. Because
we use the penalty method in our formulation, the penalty coefficients should be
chosen sufficiently large. Initial actin distributions m0 = 1.0, m1 = 1.0, m2 = 0; and
myosin II distributions y0 = 1.0, y1 = 1.0, y2 = 0; actomyosin dynamics coefficients
kon = 0.25, kyon = 0.25, koff = kyoff = 0.
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Fig. 9 Comparison of the bio-images with our simulations. First row: the bio-image of cell oscillations
from Paluch et al. (2005), bottom: the first four pictures of the second row of Fig. 6 (Color figure online)

Compared with the first simulation, we keep most of the parameters to be the same.
One difference is that the actomyosin dynamics coefficients kon, k

y
on are about 1/4 of

the previous one, resulting in slower actomyosin dynamics. One can notice this slow
down by comparing the color of the third and fourth pictures between Figs. 5 and 6.
Another difference is that we increase the line tension coefficient from 1.3 to 1.5. This
change results in a thinner ring in Fig. 6 comparing to that in Fig. 5. For more effects
of the parameters for phase-field modeling of the two-component cell membranes,
please refer Wang and Du (2008) for more details.

We performed our experiments with different osmotic pressure coefficients. With
zero osmotic pressure coefficients, the oscillations still happen. With larger osmotic
pressure coefficients (τ0 = 100), the shape remains spherical with little shrinking.
With super large osmotic pressure coefficients (τ0 = 1000), the shape keeps to be
spherical. Although following a man-made breakage, there is still oscillations, we
think large osmotic pressure will suppress the breakage and thus lower the oscillation
rate as indicated in Paluch et al. (2005).

Figure 9 gives a rough comparison of the bio-images from experiments of L929
fibroblasts (Paluch et al. 2005) with our numerical simulations in our second exper-
iments. The second-row pictures are the same as that of the first four pictures of the
second row of Fig. 6. We believe a finer mesh simulation can get better results. For
example, one may notice that the cells appear to have regions of higher curvature at
the interface of the two compartments when compared to the experimental images.

6 Conclusion

In this paper, we first build a mathematical model to explain the cell oscillations
driven by actin and myosin II dynamics. A phase field method is used to solve this
problem. Three-dimensional numerical simulations are carried out. With the use of
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penalty formulation, our model can effectively calculate the transferring of the lipids
from one component to the other. Also because of the penalty formulation, we are
able to model the osmotic flow. A simple forward Euler scheme for the numerical
implementation is discussed, as well as the possible parallel methods for this problem.
In the numerical simulations, we performed artificial breakages which triggers the
oscillations. We also compared our numerical results with biological images. The
model successfully explained the mechanism based on actomyosin dynamics, and it
may be further extended to explain the cell polarization in cell division and migration.

In conclusion, we would like to stress that the current work to be a further step of
our previous work for the study of the deformation vesicle membranes. In this work,
we begin the consideration of the cell inside structures, including the actin filaments,
myosin II and their dynamics. Moreover, a more careful study on the the relation
between the parameters in our system and more complex study such as the reaction
and diffusion of actin monomers, and interactions of the cell membrane with fluid
fields are needed in the future.
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