

The *foraging* gene as a modulator of division of labour in social insects

Christophe Lucas & Yehuda Ben-Shahar

To cite this article: Christophe Lucas & Yehuda Ben-Shahar (2021) The *foraging* gene as a modulator of division of labour in social insects, *Journal of Neurogenetics*, 35:3, 168-178, DOI: [10.1080/01677063.2021.1940173](https://doi.org/10.1080/01677063.2021.1940173)

To link to this article: <https://doi.org/10.1080/01677063.2021.1940173>

Published online: 20 Jun 2021.

Submit your article to this journal

Article views: 138

View related articles

View Crossmark data

Citing articles: 1 [View citing articles](#)

The *foraging* gene as a modulator of division of labour in social insects

Christophe Lucas^a and Yehuda Ben-Shahar^b

^aInstitut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS – University of Tours, Tours, France; ^bDepartment of Biology, Washington University in St. Louis, St. Louis, MO, USA

ABSTRACT

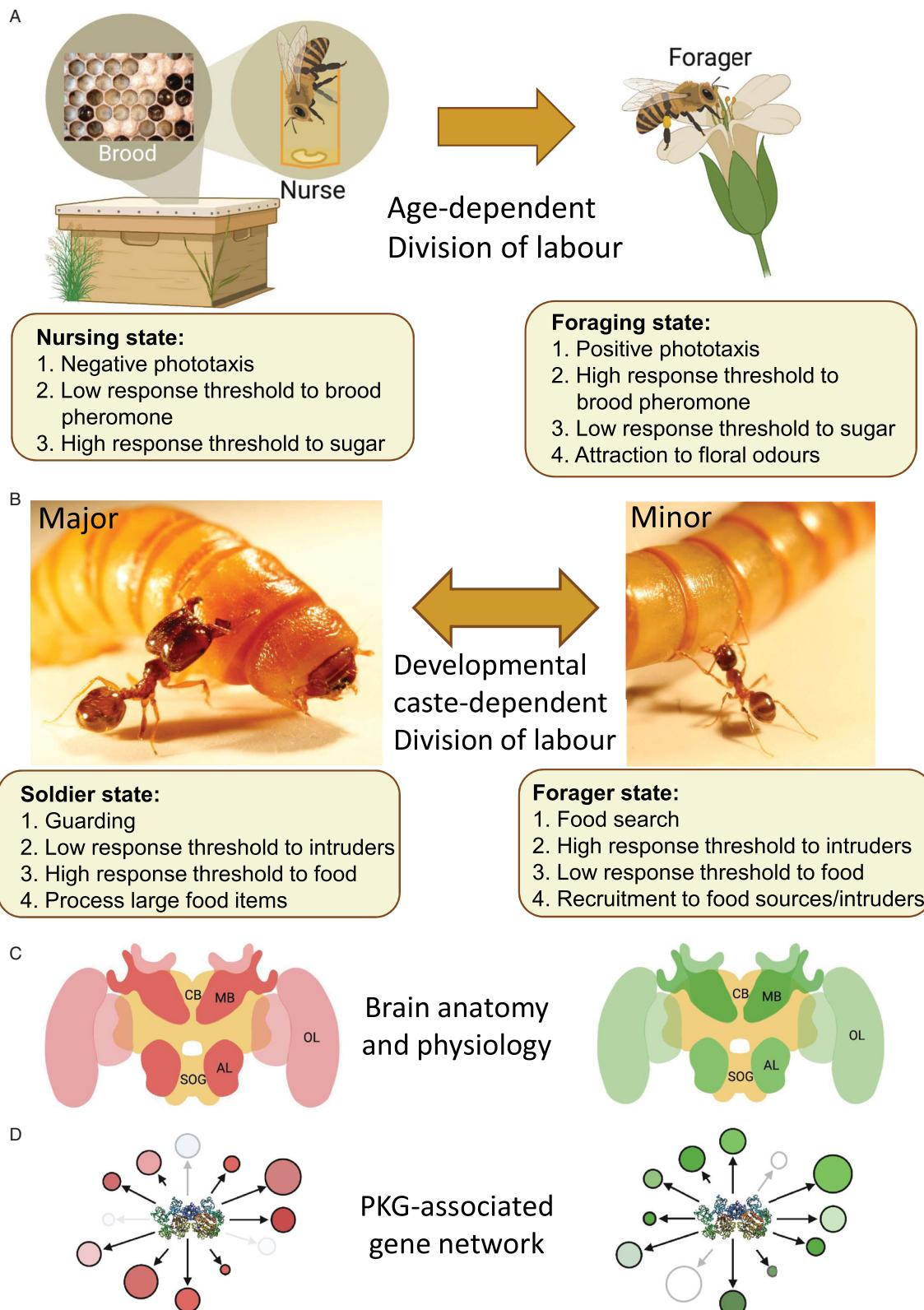
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the *foraging* gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly *Drosophila melanogaster*, changes in *foraging* expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, *foraging* appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of *foraging* in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.

ARTICLE HISTORY

Received 30 December 2020
Accepted 3 June 2021

KEYWORDS

foraging gene; sociality; insects; behaviour; division of labour


Introduction

Animal social grouping is common because it increases the fitness of individuals by, for example, maximizing their access to resources and providing improved defences against predators (Wilson, 1987). Some of the most derived forms of sociality are exhibited by species of eusocial insects in the orders Hymenoptera (ants, bees, wasps) and Isoptera (termites), which together are estimated to represent more than 30% of the global animal biomass (Hölldobler & Wilson, 2009). All social insect colonies exhibit reproductive division of labour, in which majority of a colony is comprised of sterile female workers and just one or few reproductive individuals (the “queen” in social Hymenoptera and the “royal couple” in termites) (Oster & Wilson, 1978). The sterile workers, in turn, self-organize to become specialized in different tasks that are necessary for the growth and maintenance of the colony such as foraging, brood care and colony defence (Corona, Libbrecht, & Wheeler, 2016; Gordon, 2016; Leitner & Dornhaus, 2019). Although division of labour among workers is common across many different social insect taxa, different species show varying levels of individual specializations. At one extreme, workers might exhibit almost no task specialization, while at the other extreme

workers might differentiate into developmentally-determined morphological castes (Oster & Wilson, 1978) (Figure 1).

Despite the overwhelming complexity associated with insect sociality and the regulation of division of labour, the evolutionary emergence of division of labour systems across different social insect species most likely depended on the co-option of existing sensory pathways, and associated modulatory neural circuits, to generate differential behavioural syndromes across individuals that share a common social and physical environment. Subsequently, although sensory stimuli for all tasks are simultaneously present in the colony, division of labour systems maintain differential behavioural response thresholds to task specific cues in different individuals (Figure 1). The highly-tuned network of semi-autonomous individuals provides a robust, systems-level modulation of task allocation across time and space based on the overall needs of the colony (Buttstedt, Ihling, Pietzsch, & Moritz, 2016; Haydak, 1970; Ingram, 2002; Kamakura, 2011; Libbrecht & Keller, 2013; Nygaard et al., 2011; Patel, Haydak, & Gochnauer, 1960; Schwander & Keller, 2008; Schwander, Lo, Beekman, Oldroyd, & Keller, 2010; Wheeler, 1991).

Phylogenetic studies indicate that division of labour systems likely evolved multiple times across, and within,

Figure 1. cGMP-dependent protein kinase is a key node in the gene network that regulates behavioral states associated with division of labour. (A) Division of labour in the honey bee *Apis mellifera* is regulated solely by age-dependent processes. Young bees start their lives as nurses and typically start foraging when they are 3 weeks old. (B) Division of labour in the ant *Pheidole pallidula*. Tasks are regulated by developmental caste determination of "majors" and "minors," as well by age-dependent regulation of behaviours such as nursing and foraging. Division of labour is also associated with task-specific sensory thresholds (A–B); and changes in neuronal anatomy and physiology (C). (D) Current models stipulate that *for* is a conserved regulatory node in the gene networks that regulate behavioral states across diverse social insect species. Therefore, changes in PKG activity can lead to shifts in the activity of peripheral and central neuronal populations that drive task-specific behavioral repertoires.

different lineages of the social hymenopterans (Gordon, 2016; Rueffler, Hermisson, & Wagner, 2012). Therefore, division of labour in colonies of social insects has emerged as an excellent model for understanding how animal social systems have evolved and are regulated at the physiological, molecular, and cellular levels (Kapheim *et al.*, 2015; Robinson, Grozinger, & Whitfield, 2005; Smith, Toth, Suarez, & Robinson, 2008; Toth & Robinson, 2007; Toth *et al.*, 2010; Whitfield *et al.*, 2006). Transcriptomic analyses of gene expression in the brains of workers that are engaged in specific tasks, for example, have indicated that division of labour depends on broad and complex changes in many different neuronal signalling pathways across different parts of the brain and other tissues (Figure 1). This appears to occur via differential promoter activity, regulatory non-coding miRNAs, and epigenetic processes (Cash, Whitfield, Ismail, & Robinson, 2005; Greenberg *et al.*, 2012; Kapheim *et al.*, 2020; Lattorff & Moritz, 2013; Simola *et al.*, 2016; Sinha, Ling, Whitfield, Zhai, & Robinson, 2006; Toth *et al.*, 2007; Whitfield *et al.*, 2006). To date, changes in the expression levels of several genes have been associated with division of labour across diverse social insect species. However, only a few have been studied in any depth. The highly conserved cGMP-dependent protein kinase gene *foraging* (*for*), in particular, has been well-studied for its role in regulating division of labour. Previous work has established a causal association between *for* and task specialization, which is conserved across multiple independently-evolved lineages. Here we review the role of *for*, first identified as a behaviourally polymorphic gene in *Drosophila* associated with larval and adult foraging decisions (de Belle, Hilliker, & Sokolowski, 1989; Osborne *et al.*, 1997), as a conserved signalling pathway that has been co-opted for the regulation of division of labour across diverse social insect species.

The study of sociality in the era of molecular genetics

Over 50 years ago, the pioneering ethologist Niko Tinbergen published his seminal paper entitled “On aims and methods of ethology” (Burkhardt, 2014; Tinbergen, 1963). With brilliant simplicity, Tinbergen argued that if biologists want to really understand “behaviour” then they need to ask the following four questions (rephrased): (1) What is the studied trait good for (its impact on fitness)? (2) How does it develop during the lifetime of an individual (development/ontogeny)? (3) How did it evolve over the history of the species (trait phylogeny)? (4) How does it work (mechanism/causation)? The emergence of modern neuroscience and neurogenetics followed in the footsteps of ethology by providing a mechanistic framework as a powerful approach to the design of behavioural studies and their interpretation in the context of brain functions (Tinbergen question #4).

However, modern neuroscience research is now largely framed in the context of causation and mechanism (Tinbergen question #4). Consequently, the diversity of animal species used for basic neurogenetic research has, historically, been reduced to just a few genetically tractable species

that have sequenced genomes, including the roundworm *Caenorhabditis elegans* (Bargmann, 1998), the fruit fly *Drosophila melanogaster* (Bellen, Tong, & Tsuda, 2010), the zebrafish *Danio rerio* (Stewart, Braubach, Spitsbergen, Gerlai, & Kalueff, 2014), and the laboratory mouse *Mus musculus* (Lehner, 2013). While there is no doubt that these models have been instrumental in the phenomenal progress made in cellular and molecular neuroscience over the past three decades, the decline in model diversity is clearly an unfortunate side effect, and has negatively impacted our ability to understand behaviour in ecologically and evolutionary relevant contexts (Fitzpatrick *et al.*, 2005; Walton, Sheehan, & Toth, 2020).

Yet, recent advances in genetic and genomic approaches have enabled investigators to adopt modern molecular approaches for understanding the behaviour of a wider assortment of animal species in the lab and in their natural environments. Some of the first non-drosophilid insects for which genomic and molecular tools for studying behaviour have made a tremendous impact are the social insects, particularly in the several independent social clades within the order Hymenoptera. One of the best established model species for sociogenomic and genetic studies is the European honey bee *Apis mellifera*. As the most dominant domesticated insect, the long tradition of beekeeping has provided investigators with a rich knowledge of its behaviour and physiology, including well-established techniques for manipulating colony demography and colony genetics via artificial inseminations (Page, Gadau, & Beye, 2002; Vanengelsdorp & Meixner, 2010). Not surprisingly, the economic importance of the honey bee has led to the development of diverse molecular and genetic resources, including a relatively well-annotated genome, high-resolution population genetics, and successful genome transformations (Ament, Wang, & Robinson, 2010; Ben-Shahar, 2014; Ben-Shahar, Dudek, & Robinson, 2004; Chen *et al.*, 2021; Foret, Kucharski, Pittelkow, Lockett, & Maleszka, 2009; Sinha *et al.*, 2006; Wang *et al.*, 2006; Weinstock *et al.*, 2006; Whitfield *et al.*, 2006; Whitfield, Cziko, & Robinson, 2003). Subsequently, the progress in analysing honey bee behaviour with molecular and genetic tools has paved the way for similar breakthroughs in many additional social insect species (Kapheim *et al.*, 2020; Kapheim *et al.*, 2015; Libbrecht, Oxley, Kronauer, & Keller, 2013; Sadd *et al.*, 2015; Toth *et al.*, 2010). Nevertheless, the genetic mechanisms by which specific genes and neuronal signalling pathways regulate the complex behaviour of social insects had remained mostly a mystery until the discovery of the gene *foraging* (*for*), a cGMP-dependent protein kinase (PKG), and its role in the regulation of behavioural plasticity in colonies of social insects (Figure 1D). Subsequent studies of this gene in the context of division of labour have provided some important mechanistic insights into animal sociality.

The role of *foraging* in regulating division of labour in social insect colonies

The *foraging* (*for*) gene encodes a cGMP-dependent protein kinase (Osborne *et al.*, 1997), a highly conserved enzyme

present in all animal genomes sequenced to date (Anreiter & Sokolowski, 2019; Lucas, Kornfein, et al., 2010). The *for* gene was first identified as a naturally polymorphic locus that regulates larval foraging behaviour in *Drosophila* (de Belle & Sokolowski, 1987; Sokolowski, 1980), and was later identified as a gene that encodes one of the two cGMP-dependent protein kinases (PKG) encoded by the *Drosophila* genome (Osborne et al., 1997). The highly conserved PKG family is broadly expressed in both neuronal and non-neuronal tissues, and has been implicated in numerous cellular and physiological functions via its kinase activity (Dason, Allen, Vasquez, & Sokolowski, 2019; Douglas, Dawson-Scully, & Sokolowski, 2005; Francis, Busch, Corbin, & Sibley, 2010; Lohmann, Vaandrager, Smolenski, Walter, & De Jonge, 1997; Wang & Robinson, 2002). In *Drosophila*, *for* is expressed in diverse tissues, including the peripheral (PNS) and central (CNS) nervous systems of both larvae and adults (Anreiter, Kramer, & Sokolowski, 2017). Several genetic studies have revealed that the natural polymorphism in *for* contributes to diverse sensory functions, including the visual, olfaction, and gustatory pathways (Lin, Nairn, & Guggino, 1992). In the CNS, *for* is expressed in the Kenyon cells of the mushroom bodies, the central complex, and the antennal lobes. It has been implicated in regulating neuronal and behavioural plasticity in diverse cognitive and motor functions such as neuronal sensitization and habituation, learning and memory, and sleep (Eddison, Belay, Sokolowski, & Heberlein, 2012; Engel, Xie, Sokolowski, & Wu, 2000; Scheiner, Sokolowski, & Erber, 2004). In addition to regulating behaviour via neuronal functions, *for* also indirectly contributes to feeding and foraging behaviours via its role in metabolic plasticity and the response to stress (Dason et al., 2020; Kaun, Chakabarty-Chatterjee, & Sokolowski, 2008; Kaun & Sokolowski, 2009; Kent, Daskalchuk, Cook, Sokolowski, & Greenspan, 2009).

The role of the cGMP-PKG signalling axis in regulating feeding behaviours is conserved in other animal species. For example, cGMP-signalling has been shown to regulate the response threshold of insects to pheromones (Boekhoff et al., 1993; Ziegelberger, van den Berg, Kaissling, Klumpp, & Schultz, 1990), and to influence olfactory communication in rats (Kroner, Boekhoff, Lohmann, Genieser, & Breer, 1996; Moon et al., 1998). In the worm *Caenorhabditis elegans*, the PKG-ortholog *egl-4* plays a role in foraging, olfaction, sleep, body size and lifespan (Fujiwara, Sengupta, & McIntire, 2002; L'Etoile et al., 2002; Raizen et al., 2008). Yet, in spite of its broad role in regulating different forms of behavioural plasticity in diverse animal species, the identities of the specific neuronal substrates modulated by *for* in the context of foraging behaviour and social insect division of labour remain mostly unknown. However, studies in genetically tractable species provide some mechanistic insights into how PKG signalling might be regulating neuronal processes associated with division labour. For example, studies in the mouse, indicate that PKG activity can have broad effects on long-term neuronal processes and behavioural plasticity via diverse downstream effectors. Neuronal PKG activity can modulate long-term potentiation (LTP) in the mammalian

brain via a direct modulation of cAMP-phosphodiesterases, which regulate cAMP levels and synaptic plasticity (Bollen et al., 2014). In addition, studies of *Egl-4*, the ortholog of *for* in the worm *C. elegans*, has shown that sensory-induced neuronal plasticity within the chemosensory system depends on the transition of activated PKG to the nucleus, which leads to changes in neuronal gene expression via the modulation of heterochromatin binding proteins (Lee et al., 2010). Together, these examples illustrate the broad role *for* and related kinase genes play in regulating neuronal plasticity and organismal behaviour via diverse molecular and cellular mechanisms in the peripheral and central nervous systems of invertebrates and vertebrates.

The *foraging* gene in social bees

The realization that *for* plays a key role in regulating feeding-related behavioural plasticity in *Drosophila* suggested that the phylogenetically conserved PKG signalling pathway is also likely to be driving similar foraging-related decisions in other insect species, including in the regulation of foraging vs. brood care behaviour in social insect division of labour. Recently, *for* has also been implicated in the regulation of social networks in *Drosophila* (Alwash et al., 2021). By using transcriptomics and gene candidate approaches (Fitzpatrick et al., 2005), multiple studies have identified several key genes that play a role in regulating division of labour in honey bees including the acetylcholine esterase (*AchE*) gene (Shapira, Thompson, Soreq, & Robinson, 2001), the *foraging* (*for*) gene (Ben-Shahar, Leung, Pak, Sokolowski, & Robinson, 2003; Ben-Shahar, Robichon, Sokolowski, & Robinson, 2002), and the manganese transporter *malvolio* (Ben-Shahar et al., 2004). In terms of how *for* exerts its action in honey bees, follow-up studies have identified an increase in brain expression levels of *for* just prior to the initiation of foraging, which suggests that its activity may serve as a trigger for the transition from in-hive behaviours to foraging outside (Heylen et al., 2008). Furthermore, QTL analysis of foraging-related traits in honey bee populations has identified an association with QTLs in the *for* locus, suggesting that in addition to its role at the developmental and physiological timescales, *for* may play a role in shaping division of labour at the evolutionary timescale as well (Ruppell, Pankiw, & Page, 2004).

The discovery of *for* as a putative key regulator of division of labour in the honey bee was followed by studies investigating its role in regulating division of labour across the social hymenopteran phylogeny. It was shown that changes in *for* expression are also associated with division of labour in other species of social bees, including the Asian honey bee *A. cerana* (Ma et al., 2018), as well as different bumblebee species (Kodaira, Ohtsuki, Yokoyama, & Kawata, 2009; Tobback, Mommaerts, Vandersmissen, Smagghe, & Huybrechts, 2011). Interestingly, in contrast to the reported increased *for* expression in the brains of honey bee foragers, the expression of *for* in association with the size-dependent regulation of division of labour in bumblebees was variable, indicating higher *for* expression in *Bombus terrestris* foragers

but lower in brains of *B. ignitus* foragers (Couvillon, Jandt, Duong, & Dornhaus, 2010; Kodaira et al., 2009; Shpigler et al., 2013). Together, these studies suggest that the functional relationship between *for* activity in the brain and the behavioural states that define the probability of performing specific tasks by individual bees is complex and likely involve both central and peripheral neuronal pathways.

The *foraging* gene in ants

In ants, *for* has been shown to be involved in age-related division of labour, as in honey bees (Ingram et al., 2016; Ingram, Oefner, & Gordon, 2005; Lucas, Nicolas, & Keller, 2015; Manfredini et al., 2014; Oettler, Nachtigal, & Schrader, 2015). However, in contrast to social bees, which primarily regulate division of labour on a physiological timescale, studies of *for* in ants revealed its role in regulating polyethisms in association with both age-dependent and developmentally-regulated morphological castes. For example, colonies of the ant *Pheidole pallidula* have two morphologically-distinct workers (Passera, 1985), each associated with specific behavioural repertoires. The majors have a large head with large mandibles and are mainly involved in the defence of the colony and processing of large food items, while the minors are smaller and are mainly involved in brood care and foraging. This morphological and behavioural division of labour was associated with changes in brain activity; minors had lower brain PKG activity than majors (Lucas & Sokolowski, 2009). In addition, although minors and majors typically perform distinct roles in the colony, when confronted with changing needs of the colony, majors may assist minors in foraging activities and minors may help with defence tasks (Aarab, 1991). Accordingly, experimental manipulations showed that majors that respond to foraging stimuli show minor-like, low brain PKG activity. Similarly, when participating in colony defence, minors showed a significant increase in brain PKG activity to major-like levels (Lucas & Sokolowski, 2009). Moreover, pharmacological treatment of minors with the PKG activator 8-Br-cGMP induced brain PKG activity, and led to an increase in defence and decrease in foraging behaviours (Lucas & Sokolowski, 2009), thus establishing a causal association between PKG activity and worker behavioural plasticity. The *foraging* gene in *P. pallidula* therefore appears to modulate both foraging behaviour and defence behaviour (Anreiter & Sokolowski, 2019; Lucas, Hughson, & Sokolowski, 2010; Lucas & Sokolowski, 2009) and, under conditions that require plastic task reallocation, can drive neuronal plasticity even in species with a robust morphological division of labour system (Anreiter & Sokolowski, 2019; Lucas, Hughson, et al., 2010). These findings suggest that *for* exerts at least two levels of control over worker behaviour in ants: (1) Differences in baseline brain PKG activity are associated with caste polyethism at the developmental timescale; and (2) Plasticity in PKG activity allows colony-level responses to environmental changes at the physiological timescale. This link between defence and PKG activity has also been demonstrated in a field study, where

feeding the ant *Allomerus octoarticulatus* with a PKG activator, increased defence behaviour of the ant-plant *Cordia nodosa* against herbivores, suggesting a molecular basis for ant-plant mutualism (Malé et al., 2017).

In another ant species, *Solenopsis invicta*, *foraging* gene expression in workers was influenced by colony demography, in particular whether the colony had one queen (monogynous) or multiple queens (polygynous) (Lucas et al., 2015). Workers from monogynous colonies of *S. invicta*, which are very territorial and aggressive (Chirino, Gilbert, & Folgarait, 2012; Tschinkel, 2006), had higher brain expression levels of *for* relative to workers from the more docile polygynous colonies (Lucas et al., 2015). Altogether, these results suggest that the *for* gene might be involved in regulating differential levels of aggression associated with territorial foraging or caste polyethisms. Recently, *for* has been shown to regulate aggression in flies as well, providing further support to the idea that the role of *for* in regulating behavioural plasticity across distant species is conserved not only for foraging behaviour but may be also for defence behaviour (Wang & Sokolowski, 2017).

Moreover in the ant *S. invicta*, *for* expression level was shown to be associated with reproductive state (future queen vs. workers) and the number of future queens (monogynous vs. polygynous) (Lucas et al., 2015), suggesting that in addition to its role in regulating behavioural plasticity in workers, *for* also contributes to reproductive division of labour in *S. invicta*. Interestingly, variations in colony demography (monogynous vs. polygynous) exist in several ant species, and are thought to confer colony-level benefits by increasing genetic diversity, and therefore, amplifying worker behavioural differences that underlie division of labour (Cronin, Molet, Doums, Monnin, & Peeters, 2013; Krista K Ingram, 2002; Manfredini et al., 2014; Pearcy, Aron, Doums, & Keller, 2004; Ross & Keller, 1995).

The neuroethological context of the regulation of division of labour by *for*

Based on theoretical and empirical studies, one of the primary models for self-organized division of labour in social insect colonies is based on the idea that animals at different behavioural states exhibit different behavioural response thresholds to task-specific stimuli (Beshers & Fewell, 2001; Duarte, Pen, Keller, & Weissing, 2012). Consequently, although workers are exposed to many or all task-stimuli in the colony, the probability that an individual worker will respond to the stimulus for a particular task varies (Bonabeau, Theraulaz, & Deneubourg, 1998; Detrain, Deneubourg, & Pasteels, 1999; Duarte et al., 2012; Leitner & Dornhaus, 2019). Subsequently, molecular, genetic, and neuroethological studies have suggested that the PKG activity of *for* regulates division of labour, at least in part, via the modulation of task-specific sensory thresholds (Ben-Shahar et al., 2003; George, Bröger, Thamm, Brockmann, & Scheiner, 2020; Heylen et al., 2008; Thamm & Scheiner, 2014).

As a kinase, *for* is likely to have numerous protein targets in the insect brain (Wang & Robinson, 2002). To date, the specific protein targets that mediate its role in behavioural plasticity in general, and division of labour in particular, remain mostly elusive; however, studies in various species suggest that *for* may have targets within the sensory system. Studies in *Drosophila*, for example, have indicated that *for* contributes to sucrose responsiveness in adults (Scheiner et al., 2004) and the larval nociception threshold (Dason et al., 2020). Similar effects on sensory thresholds have also been identified in *C. elegans* and rodent models, further indicating a conserved role for cGMP-dependent signalling in modulating behavioural states via sensory functions (Gangadharan, Wang, & Luo, 2017; Jaumann et al., 2012; Levy & Bargmann, 2020). Subsequently, several studies in the honey bee have indicated that *for* activity plays a role in regulating the response threshold to light, indicating that increased PKG activity drives positive phototaxis in foragers (Ben-Shahar, 2005; Ben-Shahar et al., 2003). In addition, *for* has also been implicated in honey bee sucrose responsiveness and the response threshold to queen pheromones (Fussnecker, McKenzie, & Grozinger, 2011; Thamm & Scheiner, 2014). Together, these studies suggest that *for* is likely to regulate division of labour via multimodal modulation of sensory functions.

In addition to its role in regulating sensory functions, *for* has been shown to contribute to both simple forms of neuronal plasticity, such as the habituation in the giant fiber escape circuit responsiveness to sugar (Engel et al., 2000; Scheiner et al., 2004), as well as more complex processes such as visual memories (Kuntz, Poeck, & Strauss, 2017; Wang et al., 2008) and associative learning (Kaun, Hendel, Gerber, & Sokolowski, 2007; Mery, Belay, So, Sokolowski, & Kawecki, 2007) in flies. Because division of labour is often associated with differential learning and memory capacities (Ben-Shahar, Thompson, Hartz, Smith, & Robinson, 2000; Ben-Shahar & Robinson, 2001; Roussel, Carcaud, Sandoz, & Giurfa, 2009), it has been hypothesized that *for* is also likely to also modulate division of labour via its action in central neuronal circuits associated with higher level cognitive functions (Ben-Shahar, 2005; Menzel, Leboulle, & Eisenhardt, 2006). Interestingly, in *Pheidole* ants, the expression pattern of *for* in the brains of majors is specific to a subregion of the mushroom bodies, while both minor and major workers share its expression in several brain regions including the lobula, which plays a role in the integration of visual cues (Lucas & Sokolowski, 2009). Although it is still unknown how the action of *for* in this specific brain region is contributing to the behaviours exhibited by minors and majors, the well-established anatomical and physiological role of the mushroom bodies in regulating division of labour in diverse social insects suggest that *for*-dependent signalling in this brain region is important for cognitive processes associated with division of labour. This is further supported by the recent findings that *for* activity is associated with interindividual differences in the dance intensity of returning foragers (George et al., 2020), and the impact of cGMP pharmacological treatment on spatial learning in honey bee

foragers (Tsvetkov, Madani, Krimus, MacDonald, & Zayed, 2019).

The *foraging* gene in other social contexts

The complex role of *for* in regulating division of labour in bee and ant species indicates that this gene is highly pleiotropic, regulating not only foraging but also many other behavioural aspects of division of labour and other sociality-related traits. The study of *for* in other social species, such as wasps and termites, will yield important discoveries for understanding how *for* regulates social behaviours across diverse insect taxa. For example, a study on the comparisons of brain gene expression between the social wasp *Polistes metricus* and the honey bee *Apis mellifera* allowed to identify common molecular roots for division of labour, demonstrating the importance of *for* across lineages (Toth et al., 2010). In the termite *Reticulitermes flavipes*, a recent study showed differences in mRNA expression depending on caste, temperature and photoperiod (Merchant, Song, Yang, Li, & Zhou, 2019), suggesting the possibility that the differential expression of *for* may very well be important for this social insect group as well. Future comparisons between termites and social hymenopteran will likely shed even more light on how *for* regulates division of labour across phylogenetically distant social systems (Hymenoptera/Isoptera) with distinct developmental processes (e.g., holometabolism vs. hemimetabolism).

Although the precise origin of insect eusociality remains mostly unknown at the molecular level, it is clear that some key neuronal signalling pathways, such as *for*, contribute to social interactions between conspecifics in non-social insects as well. For example, flies with low *for* expression are more sensitive to social context in learning paradigms than those with high expression levels (Kohn et al., 2013). In addition, *for* has been shown to be associated with population density-dependent regulation of polyphenisms in some aphid species (Tarès, Arthaud, Amichot, & Robichon, 2013), and between solitary and gregarious forms in the locust *Schistocerca gregaria* (Lucas, Kornfein, et al., 2010; Rogers et al., 2003; Tobback et al., 2013).

Concluding remarks

The association between the PKG activity of the *foraging* gene and behavioural plasticity in response to changes in the social and biotic environments, especially in the context of feeding and foraging behaviours, is conserved across a broad range of animal species, from insects to humans (Anreiter & Sokolowski, 2019; Armstrong, López-Guerrero, Dawson-Scully, Peña, & Robertson, 2010; Chardonnet et al., 2014; Kohlmeier, Alleman, Libbrecht, Foitzik, & Feldmeyer, 2019; Lucas, Kornfein, et al., 2010; Malé et al., 2017; Merchant et al., 2020; Robertson & Sillar, 2009; Struk et al., 2019; Tarès et al., 2013; Tobback et al., 2013). Additionally, it remains unknown whether all or only some of the alternative transcripts transcribed by *for* in at least some social insect species play a role in regulating neuronal plasticity

and behaviour in social insects (Lucas & Sokolowski, 2009; Merchant et al., 2020; NCBI, 2021). Furthermore, the specific molecular targets and neuronal signalling pathways modulated by *for* activity across the evolutionary, developmental, and physiological timescales remain a mystery. Nevertheless, recent developments in transposon-mediated transgenesis and Cas9/CRISPR-dependent genome editing in several social insect species (Ben-Shahar, 2014; Chen et al., 2021; Kohno, Suenami, Takeuchi, Sasaki, & Kubo, 2016; McAfee, Pettis, Tarpy, & Foster, 2019; Schulte, Theilenberg, Muller-Borg, Gempe, & Beye, 2014; Trible et al., 2017) will likely yield new insights into the molecular and cellular pathways that underlie the role of *for*, and other important signalling pathways, in the “social” brain.

Acknowledgements

We thank Jeffrey Dason, Ina Anreiter, and Chun-Fang Wu for their kind invitation to contribute to this special issue; Joël Meunier and Romain Libbrecht for the pictures of the ants; and Nicole Leitner for helpful comments on previous drafts of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation program under the grant agreement 773324, and APR-IR 2017-00117111 from Région Centre-Val de Loire to CL; and grants R21NS089834 from the NIH, and 1754264 and 1707221 from the NSF to YB.

ORCID

Christophe Lucas <http://orcid.org/0000-0003-2839-7583>
Yehuda Ben-Shahar <http://orcid.org/0000-0002-2956-2926>

References

Aarab, A. (1991). *Polyéthisme, régulation sociale et éthogénèse chez les deux sous-castes morphologiques de la fourmi Pheidole pallidula*. Université Paris-Nord.

Alwash, N., Allen, A.M., Sokolowski, M.B., Levine, J. (2021) The *Drosophila melanogaster* foraging gene affects social networks. *Journal of Neurogenetics*.

Ament, S.A., Wang, Y., & Robinson, G.E. (2010). Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*, 2(5), 566–576. doi:10.1002/wsbm.73

Anreiter, I., Kramer, J.M., & Sokolowski, M.B. (2017). Epigenetic mechanisms modulate differences in *Drosophila* foraging behavior. *Proceedings of the National Academy of Sciences*, 114(47), 12518–12523. doi:10.1073/pnas.1710770114

Anreiter, I., & Sokolowski, M.B. (2019). The foraging gene and its behavioral effects: Pleiotropy and plasticity. *Annual Review of Genetics*, 53(1), 373–392. doi:10.1146/annurev-genet-112618-043536

Armstrong, G.A., López-Guerrero, J.J., Dawson-Scully, K., Peña, F., & Robertson, R.M. (2010). Inhibition of protein kinase G activity protects neonatal mouse respiratory network from hyperthermic and hypoxic stress. *Brain Research*, 1311, 64–72. doi:10.1016/j.brainres.2009.11.038

Bargmann, C.I. (1998). Neurobiology of the *Caenorhabditis elegans* genome. *Science*, 282(5396), 2028–2033. doi:10.1126/science.282.5396.2028

Bellen, H.J., Tong, C., & Tsuda, H. (2010). 100 years of *Drosophila* research and its impact on vertebrate neuroscience: A history lesson for the future. *Nature Reviews Neuroscience*, 11(7), 514–522. doi:10.1038/nrn2839

Ben-Shahar, Y. (2005). The foraging gene, behavioral plasticity, and honeybee division of labor. *Journal of Comparative Physiology A*, 191(11), 987–994. doi:10.1007/s00359-005-0025-1

Ben-Shahar, Y. (2014). A piggyBac route to transgenic honeybees. *Proceedings of the National Academy of Sciences of the United States of America*, 111(24), 8708–8709. doi:10.1073/pnas.1407876111

Ben-Shahar, Y., Dudek, N.L., & Robinson, G.E. (2004). Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. *Journal of Experimental Biology*, 207(Pt 19), 3281–3288. doi:10.1242/jeb.01151

Ben-Shahar, Y., Leung, H.T., Pak, W.L., Sokolowski, M.B., & Robinson, G.E. (2003). cGMP-dependent changes in phototaxis: A possible role for the foraging gene in honey bee division of labor. *Journal of Experimental Biology*, 206(14), 2507–2515. doi:10.1242/jeb.00442

Ben-Shahar, Y., & Robinson, G.E. (2001). Satiation differentially affects performance in a learning assay by nurse and forager honey bees. *Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology*, 187(11), 891–899. doi:10.1007/s00359-001-0260-z

Ben-Shahar, Y., Robichon, A., Sokolowski, M.B., & Robinson, G.E. (2002). Influence of gene action across different time scales on behavior. *Science*, 296(5568), 741–744. doi:10.1126/science.1069911

Ben-Shahar, Y., Thompson, C.K., Hartz, S.M., Smith, B.H., & Robinson, G.E. (2000). Differences in performance on a reversal learning test and division of labor in honey bee colonies. *Animal Cognition*, 3(3), 119–125. doi:10.1007/s100710000068

Besheres, S.N., & Fewell, J.H. (2001). Models of division of labor in social insects. *Annual Review of Entomology*, 46 (1), 413–440. doi:10.1146/annurev.ento.46.1.413

Boekhoff, I., Seifert, E., Goggerle, S., Lindemann, M., Kruger, B.W., & Breer, H. (1993). Pheromone-induced second-messenger signalling in insect antennae. *Insect Biochemistry and Molecular Biology*, 23 (7), 757–762. doi:10.1016/0965-1748(93)90063-X

Bollen, E., Puzzo, D., Rutten, K., Privitera, L., De Vry, J., Vanmierlo, T., ... Prickaerts, J. (2014). Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. *Neuropharmacology*, 39(11), 2497–2505. doi:10.1038/npp.2014.106

Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1998). Fixed response thresholds and the regulation of division of labor in insect societies. *Bulletin of Mathematical Biology*, 60(4), 753–807. doi:10.1006/bulm.1998.0041

Burkhardt, R.W. (2014). Tribute to Tinbergen: Putting Niko Tinbergen’s ‘Four Questions’ in historical context. *Ethology*, 120(3), 215–223. doi:10.1111/eth.12200

Buttstedt, A., Ihling, C.H., Pietzsch, M., & Moritz, R.F. (2016). Royalactin is not a royal making of a queen. *Nature*, 537(7621), E10–E12. doi:10.1038/nature19349

Cash, A.C., Whitfield, C.W., Ismail, N., & Robinson, G.E. (2005). Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. *Genes, Brain and Behavior*, 4(4), 267–271. doi:10.1111/j.1601-183X.2005.00131.x

Chardonnet, F., Capdevielle-Dulac, C., Chouquet, B., Joly, N., Harry, M., Le Ru, B., ... Kaiser, L. (2014). Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism. *Journal of Experimental Biology*, 217(19), 3465–3473. doi:10.1242/jeb.108258

Chen, Z., Traniello, J.M., Rana, S., Cash-Ahmed, A.C., Sankey, A.L., Yang, C., & Robinson, G.E. (2021). Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation

in honey bees. *J Neurogenet*, 1–13. doi:10.1080/01677063.2021.1887173

Chirino, M.G., Gilbert, L.E., & Folgarait, P.J. (2012). Behavioral discrimination between monogyne and polygyne red fire ants (Hymenoptera: Formicidae) in their native range. *Annals of the Entomological Society of America*, 105(5), 740–745. doi:10.1603/AN11073

Corona, M., Libbrecht, R., & Wheeler, D.E. (2016). Molecular mechanisms of phenotypic plasticity in social insects. *Current Opinion in Insect Science*, 13, 55–60. doi:10.1016/j.cois.2015.12.003

Couvillon, M.J., Jandt, J.M., Duong, N., & Dornhaus, A. (2010). Ontogeny of worker body size distribution in bumble bee (*Bombus impatiens*) colonies. *Ecological Entomology*, 35(4), 424–435. doi:10.1111/j.1365-2311.2010.01198.x

Cronin, A.L., Molet, M., Doums, C., Monnini, T., & Peeters, C. (2013). Recurrent evolution of dependent colony foundation across eusocial insects. *Annual Review of Entomology*, 58(1), 37–55. doi:10.1146/annurev-ento-120811-153643

Dason, J.S., Allen, A.M., Vasquez, O.E., & Sokolowski, M.B. (2019). Distinct functions of a cGMP-dependent protein kinase in nerve terminal growth and synaptic vesicle cycling. *Journal of Cell Science*, 132(7), 1–12.

Dason, J.S., Cheung, A., Anreiter, I., Montemurri, V.A., Allen, A.M., & Sokolowski, M.B. (2020). *Drosophila melanogaster* foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit. *Proceedings of the National Academy of Sciences*, 117(38), 23286–23291. doi:10.1073/pnas.1820840116

de Belle, J.S., & Sokolowski, M.B. (1987). Heredity of rover/sitter: Alternative foraging strategies of *Drosophila melanogaster* larvae. *Heredity*, 59 (1), 73–83. doi:10.1038/hdy.1987.98

de Belle, J.S., Hilliker, A.J., & Sokolowski, M.B. (1989). Genetic localization of foraging (for): A major gene for larval behavior in *Drosophila melanogaster*. *Genetics*, 123(1), 157–163. doi:10.1093/genetics/123.1.157

Detrain, C., Deneubourg, J.L., & Pasteels, J.M. (1999). *Information processing in social insects*. Berlin: Birkhäuser Verlag.

Douglas, S.J., Dawson-Scully, K., & Sokolowski, M.B. (2005). The neurogenetics and evolution of food-related behaviour. *Trends in Neurosciences*, 28(12), 644–652. doi:10.1016/j.tins.2005.09.006

Duarte, A., Pen, I., Keller, L., & Weissling, F.J. (2012). Evolution of self-organized division of labor in a response threshold model. *Behavioral Ecology and Sociobiology*, 66(6), 947–957. doi:10.1007/s00265-012-1343-2

Eddison, M., Belay, A.T., Sokolowski, M.B., & Heberlein, U. (2012). A genetic screen for olfactory habituation mutations in *Drosophila*: Analysis of novel foraging alleles and an underlying neural circuit. *PLoS One*, 7(12), e51684. doi:10.1371/journal.pone.0051684

Engel, J.E., Xie, X.J., Sokolowski, M.B., & Wu, C.F. (2000). A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in *Drosophila*. *Learning & Memory*, 7(5), 341–352. doi:10.1101/lm.31600

Fitzpatrick, M.J., Ben-Shahar, Y., Smid, H.M., Vet, L.E., Robinson, G.E., & Sokolowski, M.B. (2005). Candidate genes for behavioural ecology. *Trends in Ecology & Evolution*, 20(2), 96–104. doi:10.1016/j.tree.2004.11.017

Foret, S., Kucharski, R., Pittelkow, Y., Lockett, G.A., & Maleszka, R. (2009). Epigenetic regulation of the honey bee transcriptome: Unravelling the nature of methylated genes. *BMC Genomics*, 10, 472. doi:10.1186/1471-2164-10-472

Francis, S.H., Busch, J.L., Corbin, J.D., & Sibley, D. (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. *Pharmacol Rev*, 62(3), 525–563. doi:10.1124/pr.110.002907

Fujiwara, M., Sengupta, P., & McIntire, S.L. (2002). Regulation of body size and behavioral state of *C. elegans* by sensory perception and the EGL-4 cGMP-dependent protein kinase. *Neuron*, 36(6), 1091–1102. doi:10.1016/S0896-6273(02)01093-0

Fussnecker, B.L., McKenzie, A.M., & Grozinger, C.M. (2011). cGMP modulates responses to queen mandibular pheromone in worker honey bees. *Journal of Comparative Physiology A*, 197(9), 939–948. doi:10.1007/s00359-011-0654-5

Gangadharan, V., Wang, X., & Luo, C. (2017). Cyclic GMP-dependent protein kinase-I localized in nociceptors modulates nociceptive cortical neuronal activity and pain hypersensitivity. *Molecular Pain*, 13, 174480691770174. doi:10.1177/174480691770174

George, E.A., Bröger, A.-K., Thamm, M., Brockmann, A., & Scheiner, R. (2020). Inter-individual variation in honey bee dance intensity correlates with expression of the foraging gene. *Genes, Brain and Behavior*, 19(1), e12592. doi:10.1111/gbb.12592

Gordon, D.M. (2016). From division of labor to the collective behavior of social insects. *Behavioral Ecology and Sociobiology*, 70, 1101–1108. doi:10.1007/s00265-015-2045-3

Greenberg, J.K., Xia, J., Zhou, X., Thatcher, S.R., Gu, X., Ament, S.A., ... Ben-Shahar, Y. (2012). Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. *Genes Brain Behav*, 11(6), 660–670. doi:10.1111/j.1601-183X.2012.00782.x

Haydak, M.H. (1970). Honey bee nutrition. *Annual Review of Entomology*, 15(1), 143–156. doi:10.1146/annurev.en.15.010170.001043

Heylen, K., Gobin, B., Billen, J., Hu, T.T., Arckens, L., & Huybrechts, R. (2008). Amfor expression in the honeybee brain: A trigger mechanism for nurse-forager transition. *Journal of Insect Physiology*, 54(10–11), 1400–1403. doi:10.1016/j.jinsphys.2008.07.015

Hölldobler, B., & Wilson, E.O. (2009). *The superorganism : The beauty, elegance, and strangeness of insect societies*. New York: W.W. Norton & Company.

Ingram, K.K. (2002). Plasticity in queen number and social structure in the invasive Argentine ant (*Linepithema humile*). *Evolution*, 56(10), 2008–2016. doi:10.1111/j.0014-3820.2002.tb0127.x

Ingram, K.K., Gordon, D.M., Friedman, D.A., Greene, M., Kahler, J., & Peteru, S. (2016). Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. *Proceedings of the Royal Society B: Biological Sciences*, 283(1837), 20160841. doi:10.1098/rspb.2016.0841

Ingram, K.K., Oefner, P., & Gordon, D.M. (2005). Task-specific expression of the foraging gene in harvester ants. *Molecular Ecology*, 14(3), 813–818. doi:10.1111/j.1365-294X.2005.02450.x

Jaumann, M., Dettling, J., Gubelt, M., Zimmermann, U., Gerling, A., Paquet-Durand, F., ... Ruttiger, L. (2012). cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. *Nature Medicine*, 18(2), 252–259. doi:10.1038/nm.2634

Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. *Nature*, 473(7348), 478–483. doi:10.1038/nature10093

Kapheim, K.M., Jones, B.M., Sovik, E., Stolle, E., Waterhouse, R.M., Bloch, G., & Ben-Shahar, Y. (2020). Brain microRNAs among social and solitary bees. *Royal Society Open Science*, 7(7), 200517. doi:10.1098/rsos.200517

Kapheim, K.M., Pan, H., Li, C., Salzberg, S.L., Puiu, D., Magoc, T., ... Zhang, G. (2015). Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. *Science*, 348(6239), 1139–1143. doi:10.1126/science.aaa4788

Kaun, K.R., Chakaborty-Chatterjee, M., & Sokolowski, M.B. (2008). Natural variation in plasticity of glucose homeostasis and food intake. *Journal of Experimental Biology*, 211(Pt 19), 3160–3166. doi:10.1242/jeb.010124

Kaun, K.R., Hendel, T., Gerber, B., & Sokolowski, M.B. (2007). Natural variation in *Drosophila* larval reward learning and memory due to a cGMP-dependent protein kinase. *Learn Mem*, 14(5), 342–349. doi:10.1101/lm.505807

Kaun, K.R., & Sokolowski, M.B. (2009). cGMP-dependent protein kinase: linking foraging to energy homeostasis. *Genome*, 52(1), 1–7. doi:10.1139/G08-090

Kent, C.F., Daskalchuk, T., Cook, L., Sokolowski, M.B., & Greenspan, R.J. (2009). The *Drosophila* foraging gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites and gene expression in response to food deprivation. *PLoS Genetics*, 5(8), e1000609. doi:10.1371/journal.pgen.1000609

Kodaira, Y., Ohtsuki, H., Yokoyama, J., & Kawata, M. (2009). Size-dependent foraging gene expression and behavioral caste

differentiation in *Bombus ignitus*. *BMC Research Notes*, 2 (1), 184. doi:10.1186/1756-0500-2-184

Kohlmeier, P., Alleman, A.R., Libbrecht, R., Foitzik, S., & Feldmeyer, B. (2019). Gene expression is more strongly associated with behavioural specialization than with age or fertility in ant workers. *Molecular Ecology*, 28(3), 658–670. doi:10.1111/mec.14971

Kohn, N.R., Reaume, C.J., Moreno, C., Burns, J.G., Sokolowski, M.B., & Mery, F. (2013). Social environment influences performance in a cognitive task in natural variants of the *foraging* gene. *PLoS One*, 8(12), e81272. doi:10.1371/journal.pone.0081272

Kohno, H., Suenami, S., Takeuchi, H., Sasaki, T., & Kubo, T. (2016). Production of knockout mutants by CRISPR/Cas9 in the European Honeybee, *Apis mellifera* L. *Zoological Science*, 33(5), 505–512. doi:10.2108/zs160043

Kroner, C., Boekhoff, I., Lohmann, S.M., Genieser, H.G., & Breer, H. (1996). Regulation of olfactory signalling via cGMP-dependant protein kinases. *Trends in Biochemical Sciences*, 22(8), 307–312.

Kuntz, S., Poeck, B., & Strauss, R. (2017). Visual working memory requires permissive and instructive NO/cGMP signaling at presynapses in the Drosophila central brain. *Current Biology*, 27(5), 613–623. doi:10.1016/j.cub.2016.12.056

Lattorff, H.M., & Moritz, R.F. (2013). Genetic underpinnings of division of labor in the honeybee (*Apis mellifera*). *Trends in Genetics*, 29(11), 641–648. doi:10.1016/j.tig.2013.08.002

Lee, J.I., O'Halloran, D.M., Eastham-Anderson, J., Juang, B.T., Kaye, J.A., Scott Hamilton, O., ... L'Etoile, N.D. (2010). Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. *Proceedings of the National Academy of Sciences of the United States of America*, 107(13), 6016–6021. doi:10.1073/pnas.1000866107

Lehner, B. (2013). Genotype to phenotype: Lessons from model organisms for human genetics. *Nature Reviews Genetics*, 14(3), 168–178. doi:10.1038/nrg3404

Leitner, N., & Dornhaus, A. (2019). Dynamic task allocation: How and why do social insect workers take on new tasks? *Animal Behaviour*, 158, 47–63. doi:10.1016/j.anbehav.2019.09.021

L'Etoile, N.D., Coburn, C.M., Eastham, J., Kistler, A., Gallegos, G., & Bargmann, C.I. (2002). The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in *C. elegans*. *Neuron*, 36(6), 1079–1089. doi:10.1016/S0896-6273(02)01066-8

Levy, S., & Bargmann, C.I. (2020). An adaptive-threshold mechanism for odor sensation and animal navigation. *Neuron*, 105(3), 534–548 e513. doi:10.1016/j.neuron.2019.10.034

Libbrecht, R., & Keller, L. (2013). Genetic compatibility affects division of labor in the Argentine ant *Linepithema humile*. *Evolution*, 67(2), 517–524. doi:10.1111/j.1558-5646.2012.01792.x

Libbrecht, R., Oxley, P.R., Kronauer, D.J., & Keller, L. (2013). Ant genomics sheds light on the molecular regulation of social organization. *Genome Biology*, 14(7), 212. doi:10.1186/gb-2013-14-7-212

Lin, M., Nairn, A.C., & Guggino, S.E. (1992). cGMP-dependant protein kinase regulation of a chloride channel in T84 cells. *Am. J. Physiol.*, 262(5 Pt 1), 1304–1312.

Lohmann, S.M., Vaandrager, A.B., Smolenski, A., Walter, U., & De Jonge, H.R. (1997). Distinct and specific functions of cGMP-dependant protein kinases. *Trends in Biochemical Sciences*, 22(8), 307–312. doi:10.1016/S0968-0004(97)01086-4

Lucas, C., Hughson, B.N., & Sokolowski, M.B. (2010). Job switching in ants: role of a kinase. *Communicative and Integrative Biology*, 3(1), 6–8. doi:10.4161/cib.3.1.9723

Lucas, C., Kornfein, R., Chakaborty-Chatterjee, M., Schonfeld, J., Geva, N., Sokolowski, M.B., & Ayali, A. (2010). The locust *foraging* gene. *Archives of Insect Biochemistry and Physiology*, 74(1), 52–66. doi:10.1002/arch.20363

Lucas, C., Nicolas, M., & Keller, L. (2015). Expression of *foraging* and *Gp-9* are associated with social organization in the fire ant *Solenopsis invicta*. *Insect Molecular Biology*, 24(1), 93–104. doi:10.1111/imb.12137

Lucas, C., & Sokolowski, M.B. (2009). Molecular basis for changes in behavioral state in ant social behaviors. *Proceedings of the National Academy of Sciences of the United States of America*, 106(15), 6351–6356. doi:10.1073/pnas.0809463106

Ma, W., Jiang, Y., Meng, J., Zhao, H., Song, H., & Shen, J. (2018). Expression characterization and localization of the foraging gene in the Chinese Bee, *Apis cerana cerana* (Hymenoptera: Apidae). *Journal of Insect Science*, 18(2): 1–5.. doi:10.1093/jisesa/iey034

Malé, P.-J.G., Turner, K.M., Doha, M., Anreiter, I., Allen, A.M., Sokolowski, M.B., & Frederickson, M.E. (2017). An ant-plant mutualism through the lens of cGMP-dependent kinase genes. *Proceedings of the Royal Society B: Biological Sciences*, 284(1862), 20170896. doi:10.1098/rspb.2017.0896

Manfredini, F., Lucas, C., Nicolas, M., Keller, L., Shoemaker, D., & Grozinger, C.M. (2014). Molecular and social regulation of worker division of labour in fire ants. *Molecular Ecology*, 23(3), 660–672. doi:10.1111/mec.12626

McAfee, A., Pettis, J.S., Tarpy, D.R., & Foster, L.J. (2019). Feminizer and doublesex knock-outs cause honey bees to switch sexes. *PLOS Biology*, 17(5), e3000256. doi:10.1371/journal.pbio.3000256

Menzel, R., Leboule, G., & Eisenhardt, D. (2006). Small brains, bright minds. *Cell*, 124(2), 237–239. doi:10.1016/j.cell.2006.01.011

Merchant, A., Song, D., Yang, X., Li, X., & Zhou, X.J. (2019). Candidate foraging gene orthologs in a lower termite, *Reticulitermes flavipes*. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 334(3), 168–177. doi:10.1002/jez.b.22918

Mery, F., Belay, A.T., So, A.K., Sokolowski, M.B., & Kawecki, T.J. (2007). Natural polymorphism affecting learning and memory in Drosophila. *Proceedings of the National Academy of Sciences of the United States of America*, 104(32), 13051–13055. doi:10.1073/pnas.0702923104

Moon, C., Jaber, P., Otto-Bruc, A., Baehr, W., Palczewski, K., & Ronnet, G.V. (1998). Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons. *The Journal of Neuroscience*, 18(9), 3195–3205. doi:10.1523/JNEUROSCI.18-09-03195.1998

NCBI. (2021). Retrieved 9th April from [https://www.ncbi.nlm.nih.gov/protein/?term=cGMP-dependent+protein+kinase%5BAll+Fields%5D+AND+\(ant%5BAll+Fields%5D+or+bee%5BAll+Fields%5D+or+termite%5BAll+Fields%5D+or+wasp%5BAll+Fields%5D+not+Nasonia+not+Amantichitinum+not+fungi+not+chordates+not+arachnids+not+blattella\)](https://www.ncbi.nlm.nih.gov/protein/?term=cGMP-dependent+protein+kinase%5BAll+Fields%5D+AND+(ant%5BAll+Fields%5D+or+bee%5BAll+Fields%5D+or+termite%5BAll+Fields%5D+or+wasp%5BAll+Fields%5D+not+Nasonia+not+Amantichitinum+not+fungi+not+chordates+not+arachnids+not+blattella))

Nygaard, S., Zhang, G., Schiøtt, M., Li, C., Wurm, Y., Hu, H., ... Rasmussen, M. (2011). The genome of the leaf-cutting ant *Acromyrmex echinatior* suggests key adaptations to advanced social life and fungus farming. *Genome Research*, 21(8), 1339–1348. doi:10.1101/gr.121392.111

Oettler, J., Nachtigal, A.-L., & Schrader, L. (2015). Expression of the foraging gene is associated with age polyethism, not task preference, in the ant *Cardiocondyla obscurior*. *PLoS One*, 10(12), e0144699. doi:10.1371/journal.pone.0144699

Osborne, K.A., Robichon, A., Burgess, E., Butland, S., Shaw, R.A., Coulthard, A., ... Sokolowski, M.B. (1997). Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. *Science*, 277(5327), 834–836. doi:10.1126/science.277.5327.834

Oster, G.F., & Wilson, E.O. (1978). *Caste and ecology in the social insects*. Princeton, New Jersey: Princeton University Press.

Page, R.E., Jr., Gadau, J., & Beye, M. (2002). The emergence of hymenopteran genetics. *Genetics*, 160(2), 375–379. doi:10.1093/genetics/160.2.375

Passera, L. (1985). Soldier determination in ants of the genus *Pheidole*. In J.A.L. Watson, B.M. Okot-Kotber, & C. Noirot (Eds.), *Caste differentiation in social insects* (pp. 331–346). Oxford: Pergamon Press.

Patel, N., Haydak, M., & Gochnauer, T. (1960). Electrophoretic components of the proteins in honeybee larval food. *Nature*, 186(4725), 633–634. doi:10.1038/186633a0

Pearcy, M., Aron, S., Doums, C., & Keller, L. (2004). Conditional use of sex and parthenogenesis for worker and queen production in ants. *Science*, 306(5702), 1780–1783. doi:10.1126/science.1105453

Raizen, D.M., Zimmerman, J.E., Maycock, M.H., Ta, U.D., You, Y.-j., Sundaram, M.V., & Pack, A.I. (2008). Lethargus is a *Caenorhabditis*

elegans sleep-like state. *Nature*, 451(7178), 569–572. doi:10.1038/nature06535

Robertson, R.M., & Sillar, K.T. (2009). The nitric oxide/cGMP pathway tunes the thermosensitivity of swimming motor patterns in *Xenopus laevis* tadpoles. *Journal of Neuroscience*, 29(44), 13945–13951. doi:10.1523/JNEUROSCI.3841-09.2009

Robinson, G.E., Grozinger, C.M., & Whitfield, C.W. (2005). Sociogenomics: Social life in molecular terms. *Nature Reviews Genetics*, 6(4), 257–270. doi:10.1038/nrg1575

Rogers, S.M., Matheson, T., Despland, E., Dodgson, T., Burrows, M., & Simpson, S.J. (2003). Mechanosensory-induced behavioural gregarization in the desert locust *Schistocerca gregaria*. *Journal of Experimental Biology*, 206(22), 3991–4002. doi:10.1242/jeb.00648

Ross, K.G., & Keller, L. (1995). Joint influence of gene flow and selection on a reproductively important genetic polymorphism in the fire ant *Solenopsis invicta*. *The American Naturalist*, 146 (3), 325–348. doi:10.1086/285803

Roussel, E., Carcaud, J., Sandoz, J.-C., & Giurfa, M. (2009). Reappraising social insect behavior through aversive responsiveness and learning. *PLoS One*, 4(1), e4197. doi:10.1371/journal.pone.0004197

Rueffler, C., Hermissen, J., & Wagner, G.P. (2012). Evolution of functional specialization and division of labor. *Proceedings of the National Academy of Sciences of the United States of America*, 109(6), E326–E335. doi:10.1073/pnas.1110521109

Ruppell, O., Pankiw, T., & Page, R.E. Jr. (2004). Pleiotropy, epistasis and new QTL: The genetic architecture of honey bee foraging behavior. *Journal of Heredity*, 95(6), 481–491. doi:10.1093/jhered/esh072

Sadd, B.M., Barribeau, S.M., Bloch, G., de Graaf, D.C., Dearden, P., Elsik, C.G., ... Worley, K.C. (2015). The genomes of two key bumblebee species with primitive eusocial organization. *Genome Biology*, 16 (1), 76. doi:10.1186/s13059-015-0623-3

Scheiner, R., Sokolowski, M.B., & Erber, J. (2004). Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in *Drosophila melanogaster*. *Learn Mem*, 11(3), 303–311. doi:10.1101/lm.71604

Schulte, C., Theilenberg, E., Muller-Borg, M., Gempe, T., & Beye, M. (2014). Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (*Apis mellifera*). *Proceedings of the National Academy of Sciences of the United States of America*, 111(24), 9003–9008. doi:10.1073/pnas.1402341111

Schwander, T., & Keller, L. (2008). Genetic compatibility affects queen and worker caste determination. *Science*, 322(5901), 552–552. doi:10.1126/science.1162590

Schwander, T., Lo, N., Beekman, M., Oldroyd, B.P., & Keller, L. (2010). Nature versus nurture in social insect caste differentiation. *Trends in Ecology & Evolution*, 25(5), 275–282. doi:10.1016/j.tree.2009.12.001

Shapira, M., Thompson, C.K., Soreq, H., & Robinson, G.E. (2001). Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. *Journal of Molecular Neuroscience*, 17(1), 1–12. doi:10.1385/JMN:17:1:1

Shpigel, H., Tamarkin, M., Gruber, Y., Poleg, M., Siegel, A.J., & Bloch, G. (2013). Social influences on body size and developmental time in the bumblebee *Bombus terrestris*. *Behavioral Ecology and Sociobiology*, 67(10), 1601–1612. doi:10.1007/s00265-013-1571-0

Simola, D.F., Graham, R.J., Brady, C.M., Enzmann, B.L., Desplan, C., Ray, A., ... Berger, S.L. (2016). Epigenetic (re)programming of caste-specific behavior in the ant *Camponotus floridanus*. *Science*, 351(6268), aac6633. doi:10.1126/science.aac6633

Sinha, S., Ling, X., Whitfield, C.W., Zhai, C., & Robinson, G.E. (2006). Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. *Proceedings of the National Academy of Sciences*, 103(44), 16352–16357. doi:10.1073/pnas.0607448103

Smith, C.R., Toth, A.L., Suarez, A.V., & Robinson, G.E. (2008). Genetic and genomic analyses of the division of labour in insect societies. *Nature Reviews Genetics*, 9(10), 735–748. doi:10.1038/nrg2429

Sokolowski, M.B. (1980). Foraging strategies of *Drosophila melanogaster*: A chromosomal analysis. *Behavior Genetics*, 10(3), 291–302. doi:10.1007/BF01067774

Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A.V. (2014). Zebrafish models for translational neuroscience research: From tank to bedside. *Trends in Neurosciences*, 37(5), 264–278. doi:10.1016/j.tins.2014.02.011

Struk, A.A., Mugon, J., Huston, A., Scholer, A.A., Stadler, G., Higgins, E.T., ... Danckert, J. (2019). Self-regulation and the *foraging* gene (PRKG1) in humans. *Proceedings of the National Academy of Sciences*, 116(10), 4434–4439. doi:10.1073/pnas.1809924116

Tarès, S., Arthaud, L., Amichot, M., & Robichon, A. (2013). Environment exploration and colonization behavior of the pea aphid associated with the expression of the *foraging* gene. *PLoS One*, 8(5), e65104. doi:10.1371/journal.pone.0065104

Thamm, M., & Scheiner, R. (2014). PKG in honey bees: Spatial expression, Amfor gene expression, sucrose responsiveness, and division of labor. *Journal of Comparative Neurology*, 522(8), 1786–1799. doi:10.1002/cne.23500

Tinbergen, N. (1963). On aims and methods of Ethology. *Zeitschrift für Tierpsychologie*, 20(4), 410–433. doi:10.1111/j.1439-0310.1963.tb01161.x

Tobback, J., Mommaerts, V., Vandersmissen, H.P., Smagghe, G., & Huybrechts, R. (2011). Age- and task-dependent foraging gene expression in the bumblebee *Bombus terrestris*. *Archives of Insect Biochemistry and Physiology*, 76(1), 30–42. doi:10.1002/arch.20401

Tobback, J., Verlinden, H., Vueringckx, K., Vleugels, R., Vanden Broeck, J., & Huybrechts, R. (2013). Developmental-and food-dependent foraging transcript levels in the desert locust. *Insect Science*, 20(6), 679–688. doi:10.1111/1744-7917.12012

Toth, A.L., & Robinson, G.E. (2007). Evo-devo and the evolution of social behavior. *Trends in Genetics*, 23(7), 334–341. doi:10.1016/j.tig.2007.05.001

Toth, A.L., Varala, K., Henshaw, M.T., Rodriguez-Zas, S.L., Hudson, M.E., & Robinson, G.E. (2010). Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. *Proceedings of the Royal Society B: Biological Sciences*, 277(1691), 2139–2148. doi:10.1098/rspb.2010.0090

Toth, A.L., Varala, K., Newman, T.C., Miguez, F.E., Hutchison, S.K., Willoughby, D.A., ... Robinson, G.E. (2007). Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. *Science*, 318(5849), 441–444. doi:10.1126/science.1146647

Trible, W., Olivos-Cisneros, L., McKenzie, S.K., Saragosti, J., Chang, N.C., Matthews, B.J., ... Kronauer, D.J.C. (2017). orco Mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. *Cell*, 170(4), 727–735 e710. doi:10.1016/j.cell.2017.07.001

Tschinkel, W.R. (2006). *The fire ants*. Cambridge: Harvard University Press.

Tsvetkov, N., Madani, B., Krimus, L., MacDonald, S.E., & Zayed, A. (2019). A new protocol for measuring spatial learning and memory in the honey bee *Apis mellifera*: Effects of behavioural state and cGMP. *Insectes Sociaux*, 66(1), 65–71. doi:10.1007/s00040-018-0641-8

Vanengelsdorp, D., & Meixner, M.D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. *J Invertebr Pathol*, 103 Suppl 1, S80–S95. doi:10.1016/j.jip.2009.06.011

Walton, A., Sheehan, M.J., & Toth, A.L. (2020). Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. *Hormones and Behavior*, 124, 104774. doi:10.1016/j.yhbeh.2020.104774

Wang, S., & Sokolowski, M.B. (2017). Aggressive behaviours, food deprivation and the *foraging* gene. *Royal Society Open Science*, 4(4), 170042. doi:10.1098/rsos.170042

Wang, X., & Robinson, P.J. (2002). Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. *Journal of Neurochemistry*, 68(2), 443–456. doi:10.1046/j.1471-4159.1997.68020443.x

Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., ... Robinson, G.E. (2006). Functional CpG methylation system in a social insect. *Science*, 314(5799), 645–647. doi:10.1126/science.1135213

Wang, Z., Pan, Y., Li, W., Jiang, H., Chatzimanolis, L., Chang, J., ... Liu, L. (2008). Visual pattern memory requires foraging function in the central complex of Drosophila. *Learning and Memory*, 15(3), 133–142. doi:10.1101/lm.873008

Weinstock, G.M., Robinson, G.E., Gibbs, R.A., Worley, K.C., Evans, J.D., Maleszka, R., ... Consort, H.G.S. (2006). Insights into social insects from the genome of the honeybee *Apis mellifera*. *Nature*, 443(7114), 931–949. doi:10.1038/Nature05260

Wheeler, D.E. (1991). The developmental basis of worker caste polymorphism in ants. *The American Naturalist*, 138(5), 1218–1238. doi:10.1086/285279

Whitfield, C.W., Ben-Shahar, Y., Brillet, C., Leoncini, I., Crauser, D., Leconte, Y., ... Robinson, G.E. (2006). Genomic dissection of behavioral maturation in the honey bee. *Proceedings of the National Academy of Sciences of the United States of America*, 103(44), 16068–16075. doi:10.1073/pnas.0606909103

Whitfield, C.W., Cziko, A.M., & Robinson, G.E. (2003). Gene expression profiles in the brain predict behavior in individual honey bees. *Science*, 302(5643), 296–299. doi:10.1126/science.1086807

Wilson, E.O. (1987). Causes of ecological success: The case of the ants. *The Journal of Animal Ecology*, 56(1), 1–9. doi:10.2307/4795

Ziegelberger, G., van den Berg, M.J., Kaissling, K.E., Klumpp, S., & Schultz, J.E. (1990). Cyclic GMP levels and guanylate cyclase activity in pheromone-sensitive antennae of silkworms *Antherea polyphemus* and *Bombyx mori*. *The Journal of Neuroscience*, 10(4), 1217–1225. doi:10.1523/JNEUROSCI.10-04-01217.1990