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ABSTRACT

The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of
animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle,
which enable their colonies to exploit environmental resources with remarkable efficiency. One key
attribute of social insect colonies is the division of labour that emerges among the sterile workers,
which represent the majority of colony members. Studies of the mechanisms that drive division of
labour systems across diverse social species have provided fundamental insights into the developmen-
tal, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic
routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the con-
served role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally
identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly
Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a
key role in the division of labour in diverse social insect species as well. In particular, foraging appears
to regulate worker transitions between behavioural tasks and specific behavioural traits associated with
morphological castes. Although the specific neuroethological role of foraging in the insect brain
remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling
plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which
underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress
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response, phototaxis, and the response to pheromones.

Introduction

Animal social grouping is common because it increases the
fitness of individuals by, for example, maximizing their
access to resources and providing improved defences against
predators (Wilson, 1987). Some of the most derived forms
of sociality are exhibited by species of eusocial insects in the
orders Hymenoptera (ants, bees, wasps) and Isoptera (ter-
mites), which together are estimated to represent more than
30% of the global animal biomass (Holldobler & Wilson,
2009). All social insect colonies exhibit reproductive division
of labour, in which majority of a colony is comprised of
sterile female workers and just one or few reproductive indi-
viduals (the “queen” in social Hymenoptera and the “royal
couple” in termites) (Oster & Wilson, 1978). The sterile
workers, in turn, self-organize to become specialized in dif-
ferent tasks that are necessary for the growth and mainten-
ance of the colony such as foraging, brood care and colony
defence (Corona, Libbrecht, & Wheeler, 2016; Gordon, 2016;
Leitner & Dornhaus, 2019). Although division of labour
among workers is common across many different social
insect taxa, different species show varying levels of individ-
ual specializations. At one extreme, workers might exhibit
almost no task specialization, while at the other extreme

workers might differentiate into developmentally-determined
morphological castes (Oster & Wilson, 1978) (Figure 1).

Despite the overwhelming complexity associated with
insect sociality and the regulation of division of labour, the
evolutionary emergence of division of labour systems across
different social insect species most likely depended on the
co-option of existing sensory pathways, and associated mod-
ulatory neural circuits, to generate differential behavioural
syndromes across individuals that share a common social
and physical environment. Subsequently, although sensory
stimuli for all tasks are simultaneously present in the colony,
division of labour systems maintain differential behavioural
response thresholds to task specific cues in different individ-
uals (Figure 1). The highly-tuned network of semi-autono-
mous individuals provides a robust, systems-level
modulation of task allocation across time and space based
on the overall needs of the colony (Buttstedt, Ihling,
Pietzsch, & Moritz, 2016; Haydak, 1970; Ingram, 2002;
Kamakura, 2011; Libbrecht & Keller, 2013; Nygaard et al.,
2011; Patel, Haydak, & Gochnauer, 1960; Schwander &
Keller, 2008; Schwander, Lo, Beekman, Oldroyd, & Keller,
2010; Wheeler, 1991).

Phylogenetic studies indicate that division of labour sys-
tems likely evolved multiple times across, and within,
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Figure 1. cGMP-dependent protein kinase is a key node in the gene network that regulates behavioral states associated with division of labour. (A) Division of
labour in the honey bee Apis mellifera is regulated solely by age-dependent processes. Young bees start their lives as nurses and typically start foraging when they
are 3 weeks old. (B) Division of labour in the ant Pheidole pallidula. Tasks are regulated by developmental caste determination of “majors” and “minors,” as well by
age-dependent regulation of behaviours such as nursing and foraging. Division of labour is also associated with task-specific sensory thresholds (A-B); and changes
in neuronal anatomy and physiology (C). (D) Current models stipulate that for is a conserved regulatory node in the gene networks that regulate behavioral states
across diverse social insect species. Therefore, changes in PKG activity can lead to shifts in the activity of peripheral and central neuronal populations that drive
task-specific behavioral repertoires.
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different lineages of the social hymenopterans (Gordon,
2016; Rueffler, Hermisson, & Wagner, 2012). Therefore, div-
ision of labour in colonies of social insects has emerged as
an excellent model for understanding how animal social sys-
tems have evolved and are regulated at the physiological,
molecular, and cellular levels (Kapheim et al, 2015;
Robinson, Grozinger, & Whitfield, 2005; Smith, Toth,
Suarez, & Robinson, 2008; Toth & Robinson, 2007; Toth
et al., 2010; Whitfield et al., 2006). Transcriptomic analyses
of gene expression in the brains of workers that are engaged
in specific tasks, for example, have indicated that division of
labour depends on broad and complex changes in many dif-
ferent neuronal signalling pathways across different parts of
the brain and other tissues (Figure 1). This appears to occur
via differential promoter activity, regulatory non-coding
miRNAs, and epigenetic processes (Cash, Whitfield, Ismail,
& Robinson, 2005; Greenberg et al., 2012; Kapheim et al.,
2020; Lattorff & Moritz, 2013; Simola et al,, 2016; Sinha,
Ling, Whitfield, Zhai, & Robinson, 2006; Toth et al., 2007;
Whitfield et al., 2006). To date, changes in the expression
levels of several genes have been associated with division of
labour across diverse social insect species. However, only a
few have been studied in any depth. The highly conserved
c¢GMP-dependent protein kinase gene foraging (for), in par-
ticular, has been well-studied for its role in regulating div-
ision of labour. Previous work has established a causal
association between for and task specialization, which is con-
served across multiple independently-evolved lineages. Here
we review the role of for, first identified as a behaviourally
polymorphic gene in Drosophila associated with larval and
adult foraging decisions (de Belle, Hilliker, & Sokolowski,
1989; Osborne et al., 1997), as a conserved signalling path-
way that has been co-opted for the regulation of division of
labour across diverse social insect species.

The study of sociality in the era of
molecular genetics

Over 50years ago, the pioneering ethologist Niko Tinbergen
published his seminal paper entitled “On aims and methods
of ethology” (Burkhardt, 2014; Tinbergen, 1963). With bril-
liant simplicity, Tinbergen argued that if biologists want to
really understand “behaviour” then they need to ask the fol-
lowing four questions (rephrased): (1) What is the studied
trait good for (its impact on fitness)? (2) How does it
develop during the lifetime of an individual (development/
ontogeny)? (3) How did it evolve over the history of the spe-
cies (trait phylogeny)? (4) How does it work (mechanism/
causation)? The emergence of modern neuroscience and
neurogenetics followed in the footsteps of ethology by pro-
viding a mechanistic framework as a powerful approach to
the design of behavioural studies and their interpretation in
the context of brain functions (Tinbergen question #4).
However, modern neuroscience research is now largely
framed in the context of causation and mechanism
(Tinbergen question #4). Consequently, the diversity of ani-
mal species used for basic neurogenetic research has, histor-
ically, been reduced to just a few genetically tractable species

that have sequenced genomes, including the roundworm
Caenorhabditis elegans (Bargmann, 1998), the fruit fly
Drosophila melanogaster (Bellen, Tong, & Tsuda, 2010), the
zebrafish Danio rerio (Stewart, Braubach, Spitsbergen,
Gerlai, & Kalueff, 2014), and the laboratory mouse Mus
musculus (Lehner, 2013). While there is no doubt that these
models have been instrumental in the phenomenal progress
made in cellular and molecular neuroscience over the past
three decades, the decline in model diversity is clearly an
unfortunate side effect, and has negatively impacted our
ability to understand behaviour in ecologically and evolu-
tionary relevant contexts (Fitzpatrick et al,, 2005; Walton,
Sheehan, & Toth, 2020).

Yet, recent advances in genetic and genomic approaches
have enabled investigators to adopt modern molecular
approaches for understanding the behaviour of a wider
assortment of animal species in the lab and in their natural
environments. Some of the first non-drosophilid insects for
which genomic and molecular tools for studying behaviour
have made a tremendous impact are the social insects, par-
ticularly in the several independent social clades within the
order Hymenoptera. One of the best established model spe-
cies for sociogenomic and genetic studies is the European
honey bee Apis mellifera. As the most dominant domesti-
cated insect, the long tradition of beekeeping has provided
investigators with a rich knowledge of its behaviour and
physiology, including well-established techniques for manip-
ulating colony demography and colony genetics via artificial
inseminations (Page, Gadau, & Beye, 2002; Vanengelsdorp &
Meixner, 2010). Not surprisingly, the economic importance
of the honey bee has led to the development of diverse
molecular and genetic resources, including a relatively well-
annotated genome, high-resolution population genetics, and
successful genome transformations (Ament, Wang, &
Robinson, 2010; Ben-Shahar, 2014; Ben-Shahar, Dudek, &
Robinson, 2004; Chen et al., 2021; Foret, Kucharski,
Pittelkow, Lockett, & Maleszka, 2009; Sinha et al., 2006;
Wang et al., 2006; Weinstock et al., 2006; Whitfield et al.,
2006; Whitfield, Cziko, & Robinson, 2003). Subsequently,
the progress in analysing honey bee behaviour with molecu-
lar and genetic tools has paved the way for similar break-
throughs in many additional social insect species (Kapheim
et al., 2020; Kapheim et al, 2015; Libbrecht, Oxley,
Kronauer, & Keller, 2013; Sadd et al., 2015; Toth et al,
2010). Nevertheless, the genetic mechanisms by which spe-
cific genes and neuronal signalling pathways regulate the
complex behaviour of social insects had remained mostly a
mystery until the discovery of the gene foraging (for), a
c¢GMP-dependent protein kinase (PKG), and its role in the
regulation of behavioural plasticity in colonies of social
insects (Figure 1D). Subsequent studies of this gene of in the
context of division of labour have provided some important
mechanistic insights into animal sociality.

The role of foraging in regulating division of labour
in social insect colonies

The foraging (for) gene encodes a cGMP-dependent protein
kinase (Osborne et al, 1997), a highly conserved enzyme



present in all animal genomes sequenced to date (Anreiter &
Sokolowski, 2019; Lucas, Kornfein, et al, 2010). The for
gene was first identified as a naturally polymorphic locus
that regulates larval foraging behaviour in Drosophila (de
Belle & Sokolowski, 1987; Sokolowski, 1980), and was later
identified as a gene that encodes one of the two cGMP-
dependent protein kinases (PKG) encoded by the Drosophila
genome (Osborne et al., 1997). The highly conserved PKG
family is broadly expressed in both neuronal and non-neur-
onal tissues, and has been implicated in numerous cellular
and physiological functions via its kinase activity (Dason,
Allen, Vasquez, & Sokolowski, 2019; Douglas, Dawson-
Scully, & Sokolowski, 2005; Francis, Busch, Corbin, & Sibley,
2010; Lohmann, Vaandrager, Smolenski, Walter, & De
Jonge, 1997; Wang & Robinson, 2002). In Drosophila, for is
expressed in diverse tissues, including the peripheral (PNS)
and central (CNS) nervous systems of both larvae and adults
(Anreiter, Kramer, & Sokolowski, 2017). Several genetic
studies have revealed that the natural polymorphism in for
contributes to diverse sensory functions, including the visual,
olfaction, and gustatory pathways (Lin, Nairn, & Guggino,
1992). In the CNS, for is expressed in the Kenyon cells of
the mushroom bodies, the central complex, and the antennal
lobes. It has been implicated in regulating neuronal and
behavioural plasticity in diverse cognitive and motor func-
tions such as neuronal sensitization and habituation, learn-
ing and memory, and sleep (Eddison, Belay, Sokolowski, &
Heberlein, 2012; Engel, Xie, Sokolowski, & Wu, 2000;
Scheiner, Sokolowski, & Erber, 2004). In addition to regulat-
ing behaviour via neuronal functions, for also indirectly con-
tributes to feeding and foraging behaviours via its role in
metabolic plasticity and the response to stress (Dason et al.,
2020; Kaun, Chakaborty-Chatterjee, & Sokolowski, 2008;
Kaun & Sokolowski, 2009; Kent, Daskalchuk, Cook,
Sokolowski, & Greenspan, 2009).

The role of the cGMP-PKG signalling axis in regulating
feeding behaviours is conserved in other animal species. For
example, cGMP-signalling has been shown to regulate the
response threshold of insects to pheromones (Boekhoff
et al., 1993; Ziegelberger, van den Berg, Kaissling, Klumpp,
& Schultz, 1990), and to influence olfactory communication
in rats (Kroner, Boekhoff, Lohmann, Genieser, & Breer,
1996; Moon et al., 1998). In the worm Caenorhabditis ele-
gans, the PKG-ortholog egl-4 plays a role in foraging, olfac-
tion, sleep, body size and lifespan (Fujiwara, Sengupta, &
Mclntire, 2002; L’Etoile et al., 2002; Raizen et al., 2008). Yet,
in spite of its broad role in regulating different forms of
behavioural plasticity in diverse animal species, the identities
of the specific neuronal substrates modulated by for in the
context of foraging behaviour and social insect division of
labour remain mostly unknown. However, studies in genet-
ically tractable species provide some mechanistic insights
into how PKG signalling might be regulating neuronal proc-
esses associated with division labour. For example, studies in
the mouse, indicate that PKG activity can have broad effects
on long-term neuronal processes and behavioural plasticity
via diverse downstream effectors. Neuronal PKG activity can
modulate long-term potentiation (LTP) in the mammalian
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brain via a direct modulation of cAMP-phosphodiesterases,
which regulate cAMP levels and synaptic plasticity (Bollen
et al,, 2014). In addition, studies of Egl-4, the ortholog of for
in the worm C. elegans, has shown that sensory-induced
neuronal plasticity within the chemosensory system depends
on the transition of activated PKG to the nucleus, which
leads to changes in neuronal gene expression via the modu-
lation of heterochromatin binding proteins (Lee et al., 2010).
Together, these examples illustrate the broad role for and
related kinase genes play in regulating neuronal plasticity
and organismal behaviour via diverse molecular and cellular
mechanisms in the peripheral and central nervous systems
of invertebrates and vertebrates.

The foraging gene in social bees

The realization that for plays a key role in regulating feed-
ing-related behavioural plasticity in Drosophila suggested
that the phylogenetically conserved PKG signalling pathway
is also likely to be driving similar foraging-related decisions
in other insect species, including in the regulation of forag-
ing vs. brood care behaviour in social insect division of
labour. Recently, for has also been implicated in the regula-
tion of social networks in Drosophila (Alwash et al., 2021).
By using transcriptomics and gene candidate approaches
(Fitzpatrick et al., 2005), multiple studies have identified sev-
eral key genes that play a role in regulating division of
labour in honey bees including the acetylcholine esterase
(AchE) gene (Shapira, Thompson, Soreq, & Robinson, 2001),
the foraging (for) gene (Ben-Shahar, Leung, Pak, Sokolowski,
& Robinson, 2003; Ben-Shahar, Robichon, Sokolowski, &
Robinson, 2002), and the manganese transporter malvolio
(Ben-Shahar et al., 2004). In terms of how for exerts its
action in honey bees, follow-up studies have identified an
increase in brain expression levels of for just prior to the ini-
tiation of foraging, which suggests that its activity may serve
as a trigger for the transition from in-hive behaviours to for-
aging outside (Heylen et al.,, 2008). Furthermore, QTL ana-
lysis of foraging-related traits in honey bee populations has
identified an association with QTLs in the for locus, suggest-
ing that in addition to its role at the developmental and
physiological timescales, for may play a role in shaping div-
ision of labour at the evolutionary timescale as well
(Ruppell, Pankiw, & Page, 2004).

The discovery of for as a putative key regulator of div-
ision of labour in the honey bee was followed by studies
investigating its role in regulating division of labour across
the social hymenopteran phylogeny. It was shown that
changes in for expression are also associated with division of
labour in other species of social bees, including the Asian
honey bee A. cerana (Ma et al., 2018), as well as different
bumblebee species (Kodaira, Ohtsuki, Yokoyama, & Kawata,
2009; Tobback, Mommaerts, Vandersmissen, Smagghe, &
Huybrechts, 2011). Interestingly, in contrast to the reported
increased for expression in the brains of honey bee foragers,
the expression of for in association with the size-dependent
regulation of division of labour in bumblebees was variable,
indicating higher for expression in Bombus terrestris foragers
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but lower in brains of B. ignitus foragers (Couvillon, Jandt,
Duong, & Dornhaus, 2010; Kodaira et al., 2009; Shpigler
et al., 2013). Together, these studies suggest that the func-
tional relationship between for activity in the brain and the
behavioural states that define the probability of performing
specific tasks by individual bees is complex and likely
involve both central and peripheral neuronal pathways.

The foraging gene in ants

In ants, for has been shown to be involved in age-related
division of labour, as in honey bees (Ingram et al, 2016;
Ingram, Oefner, & Gordon, 2005; Lucas, Nicolas, & Keller,
2015; Manfredini et al., 2014; Oettler, Nachtigal, & Schrader,
2015). However, in contrast to social bees, which primarily
regulate division of labour on a physiological timescale,
studies of for in ants revealed its role in regulating polyeth-
isms in association with both age-dependent and develop-
mentally-regulated morphological castes. For example,
colonies of the ant Pheidole pallidula have two morphologic-
ally-distinct workers (Passera, 1985), each associated with
specific behavioural repertoires. The majors have a large
head with large mandibles and are mainly involved in the
defence of the colony and processing of large food items,
while the minors are smaller and are mainly involved in
brood care and foraging. This morphological and behav-
ioural division of labour was associated with changes in
brain activity; minors had lower brain PKG activity than
majors (Lucas & Sokolowski, 2009). In addition, although
minors and majors typically perform distinct roles in the
colony, when confronted with changing needs of the colony,
majors may assist minors in foraging activities and minors
may help with defence tasks (Aarab, 1991). Accordingly,
experimental manipulations showed that majors that
respond to foraging stimuli show minor-like, low brain PKG
activity. Similarly, when participating in colony defence,
minors showed a significant increase in brain PKG activity
to major-like levels (Lucas & Sokolowski, 2009). Moreover,
pharmacological treatment of minors with the PKG activator
8-Br-cGMP induced brain PKG activity, and led to an
increase in defence and decrease in foraging behaviours
(Lucas & Sokolowski, 2009), thus establishing a causal asso-
ciation between PKG activity and worker behavioural plasti-
city. The foraging gene in P. pallidula therefore appears to
modulate both foraging behaviour and defence behaviour
(Anreiter & Sokolowski, 2019; Lucas, Hughson, &
Sokolowski, 2010; Lucas & Sokolowski, 2009) and, under
conditions that require plastic task reallocation, can drive
neuronal plasticity even in species with a robust morpho-
logical division of labour system (Anreiter & Sokolowski,
2019; Lucas, Hughson, et al.,, 2010). These findings suggest
that for exerts at least two levels of control over worker
behaviour in ants: (1) Differences in baseline brain PKG
activity are associated with caste polyethism at the develop-
mental timescale; and (2) Plasticity in PKG activity allows
colony-level responses to environmental changes at the
physiological timescale. This link between defence and PKG
activity has also been demonstrated in a field study, where

feeding the ant Allomerus octoarticulatus with a PKG activa-
tor, increased defence behaviour of the ant-plant Cordia
nodosa against herbivores, suggesting a molecular basis for
ant-plant mutualism (Malé et al., 2017).

In another ant species, Solenopsis invicta, foraging gene
expression in workers was influenced by colony demog-
raphy, in particular whether the colony had one queen
(monogynous) or multiple queens (polygynous) (Lucas et al.,
2015). Workers from monogynous colonies of S. invicta,
which are very territorial and aggressive (Chirino, Gilbert, &
Folgarait, 2012; Tschinkel, 2006), had higher brain expres-
sion levels of for relative to workers from the more docile
polygynous colonies (Lucas et al, 2015). Altogether, these
results suggest that the for gene might be involved in regu-
lating differential levels of aggression associated with terri-
torial foraging or caste polyethisms. Recently, for has been
shown to regulate aggression in flies as well, providing fur-
ther support to the idea that the role of for in regulating
behavioural plasticity across distant species is conserved not
only for foraging behaviour but may be also for defence
behaviour (Wang & Sokolowski, 2017).

Moreover in the ant S. invicta, for expression level was
shown to be associated with reproductive state (future queen
vs. workers) and the number of future queens (monogynous
vs. polygynous) (Lucas et al., 2015), suggesting that in add-
ition to its role in regulating behavioural plasticity in work-
ers, for also contributes to reproductive division of labour in
S. invicta. Interestingly, variations in colony demography
(monogynous vs. polygynous) exist in several ant species,
and are thought to confer colony-level benefits by increasing
genetic diversity, and therefore, amplifying worker behav-
ioural differences that underlie division of labour (Cronin,
Molet, Doums, Monnin, & Peeters, 2013; Krista K Ingram,
2002; Manfredini et al., 2014; Pearcy, Aron, Doums, &
Keller, 2004; Ross & Keller, 1995).

The neuroethological context of the regulation of
division of labour by for

Based on theoretical and empirical studies, one of the pri-
mary models for self-organized division of labour in social
insect colonies is based on the idea that animals at different
behavioural states exhibit different behavioural response
thresholds to task-specific stimuli (Beshers & Fewell, 2001;
Duarte, Pen, Keller, & Weissing, 2012). Consequently,
although workers are exposed to many or all task-stimuli in
the colony, the probability that an individual worker will
respond to the stimulus for a particular task varies
(Bonabeau, Theraulaz, & Deneubourg, 1998; Detrain,
Deneubourg, & Pasteels, 1999; Duarte et al., 2012; Leitner &
Dornhaus, 2019). Subsequently, molecular, genetic, and neu-
roethological studies have suggested that the PKG activity of
for regulates division of labour, at least in part, via the
modulation of task-specific sensory thresholds (Ben-Shahar
et al., 2003; George, Broger, Thamm, Brockmann, &
Scheiner, 2020; Heylen et al, 2008, Thamm &
Scheiner, 2014).



As a kinase, for is likely to have numerous protein targets
in the insect brain (Wang & Robinson, 2002). To date, the
specific protein targets that mediate its role in behavioural
plasticity in general, and division of labour in particular,
remain mostly elusive, however, studies in various species
suggest that for may have targets within the sensory system.
Studies in Drosophila, for example, have indicated that for
contributes to sucrose responsiveness in adults (Scheiner
et al, 2004) and the larval nociception threshold (Dason
et al.,, 2020). Similar effects on sensory thresholds have also
been identified in C. elegans and rodent models, further
indicating a conserved role for cGMP-dependent signalling
in modulating behavioural states via sensory functions
(Gangadharan, Wang, & Luo, 2017; Jaumann et al., 2012;
Levy & Bargmann, 2020). Subsequently, several studies in
the honey bee have indicated that for activity plays a role in
regulating the response threshold to light, indicating that
increased PKG activity drives positive phototaxis in foragers
(Ben-Shahar, 2005; Ben-Shahar et al., 2003). In addition, for
has also been implicated in honey bee sucrose responsive-
ness and the response threshold to queen pheromones
(Fussnecker, McKenzie, & Grozinger, 2011; Thamm &
Scheiner, 2014). Together, these studies suggest that for is
likely to regulate division of labour via multimodal modula-
tion of sensory functions.

In addition to its role in regulating sensory functions, for
has been shown to contribute to both simple forms of neur-
onal plasticity, such as the habituation in the giant fiber
escape circuit responsiveness to sugar (Engel et al.,, 2000;
Scheiner et al., 2004), as well as more complex processes
such as visual memories (Kuntz, Poeck, & Strauss, 2017;
Wang et al.,, 2008) and associative learning (Kaun, Hendel,
Gerber, & Sokolowski, 2007; Mery, Belay, So, Sokolowski, &
Kawecki, 2007) in flies. Because division of labour is often
associated with differential learning and memory capacities
(Ben-Shahar, Thompson, Hartz, Smith, & Robinson, 2000;
Ben-Shahar & Robinson, 2001; Roussel, Carcaud, Sandoz, &
Giurfa, 2009), it has been hypothesized that for is also likely
to also modulate division of labour via its action in central
neuronal circuits associated with higher level cognitive func-
tions (Ben-Shahar, 2005; Menzel, Leboulle, & Eisenhardt,
2006). Interestingly, in Pheidole ants, the expression pattern
of for in the brains of majors is specific to a subregion of
the mushroom bodies, while both minor and major workers
share its expression in several brain regions including the
lobula, which plays a role in the integration of visual cues
(Lucas & Sokolowski, 2009). Although it is still unknown
how the action of for in this specific brain region is contri-
buting to the behaviours exhibited by minors and majors,
the well-established anatomical and physiological role of the
mushroom bodies in regulating division of labour in diverse
social insects suggest that for-dependent signalling in this
brain region is important for cognitive processes associated
with division of labour. This is further supported by the
recent findings that for activity is associated with interindi-
vidual differences in the dance intensity of returning forag-
ers (George et al, 2020), and the impact of cGMP
pharmacological treatment on spatial learning in honey bee
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foragers (Tsvetkov, Madani, Krimus, MacDonald, &

Zayed, 2019).

The foraging gene in other social contexts

The complex role of for in regulating division of labour in
bee and ant species indicates that this gene is highly pleio-
tropic, regulating not only foraging but also many other
behavioural aspects of division of labour and other sociality-
related traits. The study of for in other social species, such
as wasps and termites, will yield important discoveries for
understanding how for regulates social behaviours across
diverse insect taxa. For example, a study on the comparisons
of brain gene expression between the social wasp Polistes
metricus and the honey bee Apis mellifera allowed to identify
common molecular roots for division of labour, demonstrat-
ing the importance of for across lineages (Toth et al., 2010).
In the termite Reticulitermes flavipes, a recent study showed
differences in mRNA expression depending on caste, tem-
perature and photoperiod (Merchant, Song, Yang, Li, &
Zhou, 2019), suggesting the possibility that the differential
expression of for may very well be important for this social
insect group as well. Future comparisons between termites
and social hymenopteran will likely shed even more light on
how for regulates division of labour across phylogenetically
distant social systems (Hymenoptera/Isoptera) with distinct
developmental  processes  (e.g., holometabolism  vs.
hemimetabolism).

Although the precise origin of insect eusociality remains
mostly unknown at the molecular level, it is clear that some
key neuronal signalling pathways, such as for, contribute to
social interactions between conspecifics in non-social insects
as well. For example, flies with low for expression are more
sensitive to social context in learning paradigms than those
with high expression levels (Kohn et al., 2013). In addition,
for has been shown to be associated with population dens-
ity-dependent regulation of polyphenisms in some aphid
species (Tares, Arthaud, Amichot, & Robichon, 2013), and
between solitary and gregarious forms in the locust
Schistocerca gregaria (Lucas, Kornfein, et al., 2010; Rogers
et al., 2003; Tobback et al., 2013).

Concluding remarks

The association between the PKG activity of the foraging
gene and behavioural plasticity in response to changes in the
social and biotic environments, especially in the context of
feeding and foraging behaviours, is conserved across a broad
range of animal species, from insects to humans (Anreiter &
Sokolowski, 2019; Armstrong, Lopez-Guerrero, Dawson-
Scully, Pena, & Robertson, 2010; Chardonnet et al., 2014;
Kohlmeier, Alleman, Libbrecht, Foitzik, & Feldmeyer, 2019;
Lucas, Kornfein, et al., 2010; Malé et al, 2017; Merchant
et al, 2020; Robertson & Sillar, 2009; Struk et al., 2019;
Tares et al, 2013; Tobback et al., 2013). Additionally, it
remains unknown whether all or only some of the alterna-
tive transcripts transcribed by for in at least some social
insect species play a role in regulating neuronal plasticity



174 (&) C.LUCAS AND Y. BEN-SHAHAR

and behaviour in social insects (Lucas & Sokolowski, 2009;
Merchant et al., 2020; NCBI, 2021). Furthermore, the spe-
cific molecular targets and neuronal signalling pathways
modulated by for activity across the evolutionary, develop-
mental, and physiological timescales remain a mystery.
Nevertheless, recent developments in transposon-mediated
transgenesis and Cas9/CRISPR-dependent genome editing in
several social insect species (Ben-Shahar, 2014; Chen et al,
2021; Kohno, Suenami, Takeuchi, Sasaki, & Kubo, 2016;
McAfee, Pettis, Tarpy, & Foster, 2019; Schulte, Theilenberg,
Muller-Borg, Gempe, & Beye, 2014; Trible et al., 2017) will
likely yield new insights into the molecular and cellular
pathways that underlie the role of for, and other important
signalling pathways, in the “social” brain.
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