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1. Introduction

1.1. Perfect submonoids

Let K be an algebraic closed field of characteristic 0 and G be a connected reductive 
group over K. Let T be a maximal torus of G. Denote the weight lattice and the root 
lattice of G by X∗(T ) and Q. Let X∗

+(T ) be the set of dominant weights of G. For any 
λ in X∗

+(T ), we let L(λ) be the irreducible representation of G with highest weight λ. 
For any two dominant weights λ, μ, define
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X(λ, μ) = {ν ∈ X∗
+(T ) | L(ν) is a direct summand of L(λ) 

⊗
L(μ)}.

In the study of reductive monoids, Vinberg introduced the following definition.

Definition 1.1. [12, §1] A submonoid L of the additive group of dominant weights is called 
perfect if

λ, μ ∈ L implies X(λ, μ) ⊂ L.

In this paper, we give a complete characterization of perfect submonoids of dominant 
weights for connected semisimple groups. We also discuss the perfect submonoids for 
reductive groups.

1.2. Main results

The main result of this paper is the following.

Theorem A. Let G be a connected semisimple algebraic group with a maximal torus T .
a) The perfect submonoids of X∗

+(T ) with full component support are exactly the 
intersections of X∗

+(T ) with sublattices of X∗(T ) containing Q.
b) There is a natural bijection between the perfect submonoids of X∗

+(T ) with full 
component support and the subgroups of the center of G.

We refer to Definition 3.6 and Definition 3.11 for the definition of component sup-
port. Based on Theorem A, one can deduce the characterization for arbitrary perfect 
submonoids of dominant weights.

1.3. Strategy of the proof

We first reduce the general case to simply connected case by considering the simply 
connected cover. By applying PRV conjecture [10][7, Theorem 2.10], we show that if L
is a nonzero perfect submonoid of dominant weights, then for any dominant weight λ in 
L, the dominant weights which are also weights of L(λ) are all contained in L. We define 
the component support for each submonoid of dominant weights. Then we relate the 
perfect submonoids of dominant weights with full component support to the subgroups 
of the cocenter and prove Theorem A in simply connected case.

Then we prove Theorem A based on simply connected case. The general case for 
arbitrary perfect submonoids of dominant weights can be deduced from Theorem A.

At the end of the paper, we look at the connected reductive groups. We also compare 
our results with the classification of reductive monoids in [12].
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2. Preliminaries

2.1. Basic facts about algebraic groups

Recall that K is algebraically closed of characteristic 0 and G is a connected reduc-
tive algebraic group over K. Let T be a maximal torus of G. The root datum of G is 
a quadruple (X∗(T ), R, X∗(T ), R∨), where X∗(T ) is the weight lattice, X∗(T ) is the 
coweight lattice, R is the set of roots and R∨ is the corresponding set of coroots.

Let Q = ZR be the root lattice of G. Let V = X∗(T ) ⊗ R, there is a natural pairing 
〈, 〉 : X∗(T ) × X∗(T ) → Z and P := {x ∈ V | 〈x, R∨〉 ⊂ Z}. Then Q ⊂ X∗(T ) ⊂ P . If G
is simply connected, then X∗(T ) = P .

Choose the set of positive roots R+ ⊂ R. Let Δ = {α1, α2, ..., αn} ⊂ R+ be the set 
of simple roots. The fundamental dominant weights with respect to Δ are ω1, ω2, ..., ωn. 
For any two weights λ, μ in X∗(T ), write μ � λ if μ = λ −

n∑
i=1

kiαi where ki ∈ Z≥0 for 

1 ≤ i ≤ n. Let W be the Weyl group of G. Then W is generated by simple reflections 
{si}n

i=1, where si acts on X∗(T ) by si(λ) = λ − 〈λ, α∨
i 〉αi, for all 1 ≤ i ≤ n.

Let X∗
+(T ) be the set of dominant weights of G. Recall that for any dominant weight 

λ in X∗
+(T ), L(λ) is the irreducible representation of G with highest weight λ. Let L(λ)∗

be its dual representation, which is irreducible with highest weight λ∗. Denote the set of 
weights of L(λ) by Π(λ). For any μ ∈ Π(λ), denote the μ-weight space of L(λ) by L(λ)μ

and the dimension of L(λ)μ by nμ(λ). It is well known that μ ∈ Π(λ) implies μ � λ.
We say a subset Π of X∗(T ) is saturated if for any λ ∈ Π, α ∈ R and 0 ≤ i ≤ 〈λ, α∨〉, 

we have λ − iα ∈ Π. The following properties are well-known, see e.g. [4, §21].

• For any λ′ ∈ Π(λ) and w ∈ W , we have w(λ′) ∈ Π(λ) and dim L(λ)λ′ =
dim L(λ)w(λ′);

• Π(λ) is saturated and if μ ∈ X∗(T ), then μ ∈ Π(λ) is equivalent to that for any w ∈
W, w(μ) � λ. Therefore, Π(λ) is a finite set and for any dominant weight μ � λ, we 
have μ ∈ Π(λ).

2.2. Tensor product decomposition

Let λ, μ be two dominant weights of G. We have the tensor product decomposition:

L(λ) 
⊗

L(μ) =
⊕

ν∈X∗ (T )
L(ν)⊕mν

λ,μ .

+
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Here mν
λ,μ is the tensor product multiplicity. By definition, mν

λ,μ > 0 if and only if 
ν ∈ X(λ, μ). Therefore, a perfect submonoid of dominant weights is closed under taking 
direct summands of tensor product.

Recall the following classical results describing the possible weights in X(λ, μ).

Lemma 2.1. [6, Theorem 5.1] Let λ, μ, ν be dominant weights in X∗
+(T ). If ν ∈ X(λ, μ), 

then ν = λ′ + μ for some λ′ ∈ Π(λ). In particular, ν = λ + μ −
n∑

i=1
kiαi, where ki ∈ Z≥0

for 1 ≤ i ≤ n.

Lemma 2.2. [4, §24] Let λ, μ be dominant weights in X∗
+(T ). Suppose that for any μ′ ∈

Π(μ), λ + μ′ is dominant. Then for any μ′ ∈ Π(μ), λ + μ′ ∈ X(λ, μ) with multiplicity 
mλ+μ′

λ,μ = nμ′(μ).

Another key ingredient in our proof is the PRV conjecture conjectured in [10], which 
was first proved by Kumar.

Theorem 2.3. [7, Theorem 2.10] (PRV conjecture) Let G be a semisimple group with 
Weyl group W over K. Let λ, μ be two dominant weights of G. For any w ∈ W , 
λ + wμ ∈ X(λ, μ), where λ + wμ is the only dominant weight in the W -orbit of λ + wμ. 
In particular, if λ + wμ is dominant, then λ + wμ ∈ X(λ, μ).

3. Semisimple case

We prove Theorem A in this section.

3.1. Reduction

We first reduce the general case to the case when G is simply connected. Let G be 
a connected semisimple algebraic group with a maximal torus T and center Z. Let Gsc

be the simply connected cover of G with a maximal torus T sc and center Zsc. We know 
G 
 Gsc/Z ′, where Z ′ is a subgroup of Zsc. We have the following exact sequence

1 −→ X∗(T ) −→ X∗(T sc) −→ X∗(Z ′) −→ 1,

and X∗
+(T ) = {λ ∈ X∗

+(T sc) | λ|Z′ = 1} is a subset of X∗
+(T sc) by natural inclusion.

Recall that the functor between tensor categories Rep(G) → Rep(Gsc) is fully faith-
ful by [3]. Then the tensor product multiplicities mν

λ,μ are the same for G and Gsc if 
λ, μ, ν are dominant weights of G. This can also be seen in [8, Corollary 3.6]. Therefore, if 
L is perfect as a submonoid of X∗

+(T ), then it is also perfect as a submonoid of X∗
+(T sc). 

Thus we may focus on the case when G is simply connected.
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3.2. Characterization of perfect submonoids of dominant weights

Assume G is semisimple simply connected, then there is a decomposition G = G1×· ·· ×
Gn, where each Gk is simply connected quasi-simple with a maximal torus Tk, center Zk

and Weyl group Wk. Let Ξ = {1, ..., n} be the index set of quasi-simple factors. There are 
also corresponding decompositions of the weight lattice X∗(T ) = X∗(T1) 

⊕
· ·· 

⊕
X∗(Tn)

and the root lattice Q = Q1
⊕

· · · 
⊕

Qn. We also have

X∗(T )/Q 

n⊕

k=1
X∗(Tk)/Qk.

Let the set of simple roots of G be {αi}i∈I and the corresponding simple reflections be 

{si}i∈I . Write I =
n�

k=1
Ik, where Ik is the index set of simple roots of Gk.

First we give some perfect submonoids of dominant weights.

Proposition 3.1. Suppose that G is a simply connected semisimple group. If L̃ is a sub-
lattice of X∗(T ) containing Q, then L̃ ∩ X∗

+(T ) is a perfect submonoid of X∗
+(T ).

Proof. Let λ, μ be two dominant weights in L̃. For any ν ∈ X(λ, μ), by Lemma 2.1, we 
have ν = λ + μ −

∑
i∈I

kiαi, where ki ∈ Z≥0 for i ∈ I. Since L̃ is a lattice containing 

Q, we have λ, μ and − 
∑
i∈I

kiαi are all in L̃. Thus ν is also in L̃. Therefore, we have 

ν ∈ L̃ ∩ X∗
+(T ) and L̃ ∩ X∗

+(T ) is perfect. �
Next we focus on the necessary conditions for perfectness of a submonoid L ⊂ X∗

+(T ). 
By above decomposition of weight lattice, any weight λ ∈ X∗(T ) can be denoted by (
π1(λ), ..., πn(λ)

)
, where πk : X∗(T ) → X∗(Tk) is the canonical projection, for 1 ≤ k ≤ n. 

Suppose that λ is dominant, define the support of λ as

supp(λ) = {i ∈ I | 〈λ, α∨
i 〉 > 0}.

For any 1 ≤ k ≤ n, say λ is k-regular if supp(λ) ⊃ Ik. If λ is k-regular for all k, 1 ≤ k ≤ n, 
then λ is a regular dominant weight in X∗(T ).

Definition 3.2. Let G be a semisimple group. For any dominant weight λ of G, the 
component support of λ is the set {1 ≤ k ≤ n | πk(λ) is nontrivial}.

Let L be a perfect submonoid of X∗
+(T ). It is clear that for any 1 ≤ k ≤ n, πk(L) is a 

perfect submonoid of X∗
+(Tk). We claim the existence of some certain k-regular dominant 

weights in a nonzero perfect submonoid L of dominant weights.

Lemma 3.3. Suppose that G is simply connected semisimple and L is a nonzero perfect 
submonoid of X∗

+(T ). Let λ be a dominant weight in L. Then there exists a dominant 
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weight ωλ ∈ L (not uniquely determined by λ) such that for any 1 ≤ k ≤ n, ωλ is 
k-regular if πk(λ) is nontrivial.

Proof. It suffices to prove the lemma for quasi-simple group G. Indeed, suppose that 
for any 1 ≤ k ≤ n such that πk(λ) is nontrivial, there is a k-regular dominant weight 
πk(μk) ∈ πk(L), where μk ∈ L. Then 

∑
k,πk(λ) is nontrivial

μk is a desirable dominant weight 

ωλ ∈ L.
Assume that G is quasi-simple. It suffices to show that for any dominant weight λ ∈ L

with supp(λ) � I, there is another dominant weight μ ∈ L such that supp(μ) � supp(λ).
Let D be the Dynkin diagram of G and λ be a dominant weight in L with supp(λ) � I. 

There are vertices j ∈ supp(λ) and i1 /∈ supp(λ) such that j and i1 are joint with each 
other in D. Then 〈λ, α∨

j 〉 > 0. Let I ′ = {i1, i2, ..., im, j} be the subset of I consisting of 
all vertices joint with j and j itself. Consider the weight μ = 2λ + sj(λ). We show it is 
dominant.

For any i ∈ I, we have

〈μ, α∨
i 〉 = 3〈λ, α∨

i 〉 − 〈λ, α∨
j 〉〈αj , α∨

i 〉.

If i = j, then 〈μ, α∨
j 〉 = 〈λ, α∨

j 〉 > 0. If i ∈ I ′ \ {j}, then 〈μ, α∨
i 〉 > 3〈λ, α∨

i 〉 ≥ 0 since 
〈αj , α∨

i 〉 < 0. If i ∈ I \ I ′, then 〈μ, α∨
i 〉 = 3〈λ, α∨

i 〉 ≥ 0 since 〈αj , α∨
i 〉 = 0. By above 

computations, we have μ is dominant. Then by Theorem 2.3, we have μ ∈ X(2λ, λ) is 
contained in L.

Now we look at the support. Still by above computations, for i ∈ I \ I ′, we have i ∈
supp(μ) if and only if i ∈ supp(λ). We also have supp(μ) contains I ′ while i1 /∈ supp(λ). 
Therefore, we have supp(μ) � supp(λ) and the lemma is proved. �

Based on above property of ωλ and the fact that Π(λ) is a finite set, we have a direct 
corollary.

Corollary 3.4. Suppose that G is simply connected semisimple and L is a nonzero perfect 
submonoid of X∗

+(T ). Let λ be a dominant weight in L. Then there is a positive integer 
m such that μ + mωλ ∈ L for any weight μ ∈ Π(λ).

We also need the following technical proposition, which will be proved in Section 4.

Proposition 3.5. Suppose that G is simply connected semisimple. If L is a nonzero perfect 
submonoid of X∗

+(T ), then for any λ ∈ L, all the dominant weights in Π(λ) are contained 
in L.

For the proof of Proposition 3.5 and our later discussions, we cannot reduce them 
directly to the case when G is quasi-simple. This is because 

(
π1(λ1), π2(λ2), ..., πn(λn)

)
may not be in L even if λ1, ..., λn are all in L.
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Definition 3.6. Let L be a submonoid of X∗
+(T ), the component support of L is the set 

{1 ≤ k ≤ n | πk(L) �= {0}}. If the component support of L is equal to {1, 2, ..., n}, then 
L is said to have full component support. In particular, when G is quasi-simple, every 
nonzero submonoid of X∗

+(T ) has full component support.

We first restrict ourselves to perfect submonoids of X∗
+(T ) with full component sup-

port.

Lemma 3.7. Suppose that G is simply connected semisimple. If L is a perfect submonoid 
of X∗

+(T ) with full component support, then for any 1 ≤ k ≤ n, we have Qk ∩ X∗
+(T ) is 

contained in L. In particular, Q ∩ X∗
+(T ) is contained in L.

Proof. Let μ be arbitrary in Qk ∩ X∗
+(T ). Since L has full component support, there 

is a dominant weight λ in L with full component support. By Lemma 3.3, there is 
a regular dominant weight ωλ =

(
π1(ωλ), ..., πn(ωλ)

)
in L. We know that ωλ is a 

Q≥0-combination of simple roots. Then one can take a positive integer m such that 
mωλ ∈ Q ∩ X∗

+(T ). Moreover, since ωλ is regular, we have 〈ωλ, α∨
i 〉 > 0 for any 

i ∈ Ik. One can take m large enough such that 〈mωλ, α∨
i 〉 ≥ 〈μ, α∨

i 〉 for any i ∈ Ik. 
Then mπk(ωλ) − μ is a Z≥0-combination of simple roots in Qk. Moreover, we have 
mωλ − μ :=

(
mπ1(ωλ), ..., mπk−1(ωλ), mπk(ωλ) − μ, mπk+1(ωλ), ..., mπn(ωλ)

)
is a Z≥0-

combination of simple roots and thus μ � mωλ. Then μ ∈ Π(mωλ) ∩ X∗
+(T ) is in L by 

Proposition 3.5. Therefore, Qk ∩ X∗
+(T ) is contained in L.

In particular, since L is a submonoid of X∗
+(T ), we have Q ∩ X∗

+(T ) is contained in 
L by adding Qk ∩ X∗

+(T ) for 1 ≤ k ≤ n. �
Based on the above lemma, we use the cocenter to characterize the perfect submonoids 

of X∗
+(T ). Consider the canonical projection map p : X∗(T ) → X∗(T )/Q. If L is a 

perfect submonoid of X∗
+(T ) with full component support, then p(L) is a submonoid of 

X∗(T )/Q. Moreover, it is a subgroup of X∗(T )/Q since X∗(T )/Q is finite.

Proposition 3.8. Suppose that G is simply connected semisimple and L is a perfect sub-
monoid of X∗

+(T ) with full component support. Then L = p−1(L) ∩ X∗
+(T ) for some 

subgroup L of X∗(T )/Q.

Proof. Let L = p(L) be a subgroup of X∗(T )/Q. By definition we have L ⊂ p−1(L) ∩
X∗

+(T ). Then it suffices to show:

For any a ∈ L, p−1(a) ∩ X∗
+(T ) is contained in L.

Indeed, by our choice of L, there exists λ ∈ L such that p(λ) = a. Let μ be an arbitrary 
dominant weight in p−1(a). Then λ − μ ∈ Q. By same argument as in the proof of 
Lemma 3.7, there exists a regular dominant weight ω ∈ L. Then there is a positive integer 
m such that λ − μ + mω is dominant by regularity of ω. Then λ − μ + mω ∈ Q ∩ X∗

+(T )
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is a Z≥0-combination of simple roots. By Proposition 3.5, μ ∈ Π(λ + mω) ∩ X∗
+(T ) is in 

L. Therefore, we have p−1(a) ∩ X∗
+(T ) ⊂ L and L = p−1(L) ∩ X∗

+(T ). �
Based on above, we can give the characterization of perfect submonoids of dominant 

weights.

Proposition 3.9. Let G be a simply connected semisimple group. The perfect submonoids 
of X∗

+(T ) with full component support are exactly L̃ ∩ X∗
+(T ), where L̃ is any sublattice 

of X∗(T ) containing Q.

Proof. By Proposition 3.1, the intersection of sublattices of X∗(T ) containing Q with 
X∗

+(T ) is perfect. Moreover, these perfect submonoids clearly have full component sup-
port since Q ∩ X∗

+(T ) has full component support.
Let L be a perfect submonoid of X∗

+(T ) with full component support. By Proposi-
tion 3.8, L = p−1(L) ∩ X∗

+(T ) for some subgroup L of X∗(T )/Q. We also have p−1(L)
is a subgroup of X∗(T ). Moreover, p−1(L) contains p−1(0) = Q. Therefore, the per-
fect submonoid L is the intersection of a sublattice p−1(L) of X∗(T ) containing Q with 
X∗

+(T ). �
3.3. Reformulation of the characterization

In Proposition 3.8, we relate our perfect submonoids of X∗
+(T ) with the cocenter of 

G. Now we give a reformulation of perfect submonoids of dominant weights using central 
characters. Still assume G is simply connected in this subsection. Keep the notations in 
Subsection 3.2.

Let L be an arbitrary perfect submonoid of X∗
+(T ) with full component support. 

Define a subset ZL of Z as

ZL = {z ∈ Z | λ(z) = 1, ∀λ ∈ L}.

Since ZL =
⋂

λ∈L

Ker(λ|Z), we have that ZL is a subgroup of Z.

Conversely, let Z ′ be an arbitrary subgroup of Z. Define a subset LZ′ of X∗
+(T ) as

LZ′ = {λ ∈ X∗
+(T ) | λ|Z′ = 1}.

Then LZ′ is a perfect submonoid of X∗
+(T ) with full component support. Indeed, there 

is a unique (up to isomorphism) connected algebraic group G′ with simply connected 
cover G such that G′ 
 G/Z ′. By [2, §1.2], the maximal torus T ′ of G′ satisfying

1 −→ Z ′ −→ T −→ T ′ −→ 1

gives rise to

1 −→ X∗(T ′) −→ X∗(T ) −→ X∗(Z ′) −→ 1,
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and X∗
+(T ′) = {λ ∈ X∗

+(T ) | λ|Z′ = 1} = LZ′ . Moreover, as weights in Q ∩ X∗
+(T ) are 

trivial on Z ⊃ Z ′, we have LZ′ ⊃ Q ∩ X∗
+(T ) and LZ′ is a perfect submonoid of X∗

+(T )
with full component support.

Proposition 3.10. Let G be a simply connected semisimple group. The maps ϕ : L �→ ZL, 
ψ : Z ′ �→ LZ′ give a natural bijection between the perfect submonoids of X∗

+(T ) with full 
component support and the subgroups of Z.

Proof. Let L be an arbitrary perfect submonoid of X∗
+(T ) with full component support. 

By Proposition 3.9, we have L = L̃∩X∗
+(T ) for some sublattice L̃ of X∗(T ) containing Q. 

Then there is a unique (up to isomorphism) connected semisimple group G′ with simply 
connected cover G and a maximal torus T ′ such that X∗(T ′) = L̃. Since G′ 
 G/Z ′ for 
a unique subgroup Z ′ of Z, we have X∗(T ′) = {λ ∈ X∗(T ) | λ|Z′ = 1}. Then we have 
L = L̃ ∩ X∗

+(T ) = {λ ∈ X∗
+(T ) | λ|Z′ = 1} = ψ(Z ′) and ψ is surjective. Meanwhile, by 

uniqueness of G′, ψ is injective.
Now we show that ϕ and ψ are inverse to each other. Consider (ψ ◦ ϕ)(L) is also 

a perfect submonoid of X∗
+(T ) with full component support. For any λ ∈ L and any 

z ∈ ϕ(L), we have λ(z) = 1. Then by definition, λ is in (ψ ◦ ϕ)(L) and L ⊂ (ψ ◦ ϕ)(L). 
Meanwhile, since ψ is surjective, L = ψ(Z ′) for some subgroup Z ′ of Z. Then ϕ(L)
contains Z ′. Then (ψ◦ϕ)(L) is a subset of ψ(Z ′) = L. Therefore, we have (ψ◦ϕ)(L) = L. 
For any Z ′ < Z, we have (ψ ◦ ϕ ◦ ψ)(Z ′) = ψ(Z ′) by above. Since ψ is injective, we have 
(ϕ ◦ ψ)(Z ′) = Z ′. Therefore, the pair (ϕ, ψ) gives a bijection and it is clearly natural by 
definition. �
3.4. Proof of the main result

Now we return to the setting in Subsection 3.1 and prove Theorem A. Let L be a 
submonoid of X∗

+(T ). We first define the component support of L.

Definition 3.11. Let L be a submonoid of X∗
+(T ). The component support of L is the 

component support of L as a submonoid of X∗
+(T sc) (see Definition 3.6).

a) Let L be a perfect submonoid of X∗
+(T ) with full component support. By our 

discussion above, L is also a perfect submonoid of X∗
+(T sc) with full component support. 

Therefore, by Proposition 3.9, we have L = L̃ ∩ X∗
+(T sc) where L̃ is a sublattice of 

X∗(T sc) containing the root lattice Q. Since L is contained in X∗
+(T ), we have L =

L̃ ∩ X∗
+(T ). One can also write L =

(
L̃ ∩ X∗(T )

)
∩ X∗

+(T ). Clearly, L̃ ∩ X∗(T ) is a 
sublattice of X∗(T ) containing Q.

Conversely, let L = L̃ ∩ X∗
+(T ) where L̃ is a sublattice of X∗(T ) containing Q. Then 

L̃ is also a sublattice of X∗(T sc) containing Q. We also know L̃ ∩ X∗
+(T ) = L̃ ∩ X∗

+(T sc)
since L̃ ⊂ X∗(T ). Then by Proposition 3.9, L is a perfect submonoid of X∗

+(T sc) with 
full component support and is also a perfect submonoid of X∗

+(T ) with full component 
support.
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b) Since G 
 Gsc/Z ′ and Z 
 Zsc/Z ′, then it suffices to show: There is a natural 
bijection between the perfect submonoids of X∗

+(T ) with full component support and 
the subgroups of Zsc/Z ′.

Recall that perfect submonoids of X∗
+(T ) with full component support are also perfect 

submonoids of X∗
+(T sc) with full component support. By Proposition 3.10, there is a 

natural bijection between perfect submonoids of X∗
+(T sc) with full component support 

and subgroups of Zsc given by

ϕ : L �−→ Zsc
L = {z ∈ Zsc | λ(z) = 1, ∀λ ∈ L},

and its inverse

ψ : (Zsc)′ �−→ L(Zsc)′ = {λ ∈ X∗
+(T sc) | λ|(Zsc)′ = 1}.

Note that

X∗
+(T ) = {λ ∈ X∗

+(T sc) | λ|Z′ = 1}.

If L is a perfect submonoid of X∗
+(T ) with full component support, then ϕ(L) = Zsc

L

contains Z ′.
Conversely, for any subgroup (Zsc)′ of Zsc containing Z ′, ψ((Zsc)′) = L(Zsc)′ is ac-

tually a perfect submonoid of X∗
+(T ). Then the restrictions of ϕ and ψ actually give 

a natural bijection between perfect submonoids of X∗
+(T ) with full component support 

and subgroups of Zsc containing Z ′. Since there is a natural bijection between subgroups 
of Zsc containing Z ′ and subgroups of Zsc/Z ′, one can combine two natural bijections 
together and get the required bijection.

3.5. Characterization for arbitrary perfect submonoids

In this subsection we drop the assumption that L has full component support and 
deal with arbitrary perfect submonoids. Indeed, we only need to consider the nonzero 
perfect submonoids.

Recall that Ξ = {1, 2, ..., n} is the index set of quasi-simple factors of Gsc. Let Ξ0
be an arbitrary nonempty subset of Ξ and L be a perfect submonoid of X∗

+(T ) with 
component support Ξ0. Then L is also a perfect submonoid of X∗

+(T sc) with component 
support Ξ0. Let X∗(T )Ξ0 = X∗(T ) ∩ X∗(T sc)Ξ0 and QΞ0 = Q ∩ X∗(T sc)Ξ0 , where

X∗(T sc)Ξ0 := {
(
π1(λ), ..., πn(λ)

)
| λ ∈ X∗(T sc), πk(λ) = 0 for any k /∈ Ξ0} ⊂ X∗(T sc).

It is clear that X∗(T sc)Ξ0 and QΞ0 are isomorphic to the weight lattice and the root lat-
tice of Gsc

Ξ0
=

∏
k∈Ξ0

Gsc
k , respectively. Then L is contained in X∗

+(T )Ξ0 ⊂ X∗
+(T sc)Ξ0 and 

one can view L as a perfect submonoid of dominant weights of Gsc
Ξ0

with full component 
support.



C. Duan / Journal of Algebra 573 (2021) 509–531 519
Then we can slightly modify the maps ϕ and ψ. Recall that G 
 Gsc/Z ′. Let Zsc
Ξ0

=∏
k

Zsc
k,Ξ0

< Zsc, where Zsc
k,Ξ0

= Zsc
k for k ∈ Ξ0 and Zsc

k,Ξ0
= {1} < Zsc

k for k /∈ Ξ0. 

Let Z ′
Ξ0

= Z ′ ∩ Zsc
Ξ0

. Define the map ϕΞ0 from perfect submonoids of X∗
+(T sc) with 

component support Ξ0 to subgroups of Zsc
Ξ0

as ϕΞ0(L) = (Zsc
Ξ0

)L, where

(Zsc
Ξ0

)L = {z ∈ Zsc
Ξ0

| λ(z) = 1, ∀λ ∈ L}.

For the inverse direction, define the map ψΞ0 as ψΞ0

(
(Zsc

Ξ0
)′) = L(Zsc

Ξ0
)′ , where

L(Zsc
Ξ0

)′ = {λ ∈ X∗
+(T sc)Ξ0 | λ|(Zsc

Ξ0
)′ = 1}.

One can also write

L(Zsc
Ξ0

)′ = {λ ∈ X∗
+(T sc) | λ|(Zsc

Ξ0
)′ = 1, λ|T sc

k
= 1, ∀k /∈ Ξ0}.

Then we deduce the characterization for perfect submonoids of X∗
+(T ) with component 

support Ξ0 ⊂ Ξ and its reformulation as a corollary of Theorem A.

Corollary 3.12. Let G be a connected semisimple algebraic group. Then
a) The perfect submonoids of X∗

+(T ) with component support Ξ0 ⊂ Ξ are exactly 
L̃ ∩ X∗

+(T ), where L̃ is any sublattice of X∗(T )Ξ0 containing QΞ0 ;
b) There is a natural bijection between the perfect submonoids of X∗

+(T ) with compo-
nent support Ξ0 ⊂ Ξ and the subgroups of Zsc

Ξ0
/Z ′

Ξ0
.

Proof. a) One notices that X∗(T )Ξ0 is a sublattice of X∗(T sc)Ξ0 containing QΞ0 . Then 
X∗(T )Ξ0 and QΞ0 can be viewed as the weight lattice and the root lattice of a connected 
semisimple group G′

Ξ0
with simply connected cover Gsc

Ξ0
, respectively. Then one can check 

perfect submonoids of X∗
+(T )Ξ0 with full component support are also perfect submonoids 

of X∗
+(T sc) contained in X∗

+(T ) with component support Ξ0. Then by our discussions 
above, perfect submonoids of X∗

+(T ) with component support Ξ0 are exactly perfect 
submonoids of X∗

+(T )Ξ0 with full component support.
We view X∗

+(T )Ξ0 as the set of dominant weights of G′
Ξ0

. Then by applying Theorem A
to perfect submonoids of X∗

+(T )Ξ0 with full component support, part a) is proved.
b) Identify X∗

+(T sc)Ξ0 with the set of dominant weights of Gsc
Ξ0

. Then there is a natural 
bijection between the perfect submonoids of X∗

+(T sc) with component support Ξ0 and 
the perfect submonoids of X∗

+(T sc)Ξ0 with full component support. Then by applying 
Proposition 3.10 to Gsc

Ξ0
, we have the maps ϕΞ0 and ψΞ0 give a natural bijection between 

the perfect submonoids of X∗
+(T sc) with component support Ξ0 and the subgroups of 

Zsc
Ξ0

.
Moreover, same as the proof of Theorem A, the restrictions of ϕΞ0 and ψΞ0 actually 

give a natural bijection between perfect submonoids of X∗
+(T ) with component support 

Ξ0 and subgroups of Zsc
Ξ0

containing Z ′
Ξ0

. Since there is a natural bijection between 
subgroups of Zsc

Ξ0
containing Z ′

Ξ0
and subgroups of Zsc

Ξ0
/Z ′

Ξ0
, again we can combine two 

bijections together and get the required natural bijection. �
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4. Proof of Proposition 3.5

In this section, we keep the notations in Subsection 3.2 and prove Proposition 3.5. 
We first give the idea of the proof. Then we reduce it to the case when G is quasi-simple 
and finally give the computations in different types.

4.1. Idea

Let λ be a dominant weight in L with component support Ξ0 ⊂ Ξ. We may assume 
Ξ0 = {1, 2, ..., n0}. Take the dominant weight ωλ ∈ L in Lemma 3.3 such that for any 
1 ≤ k ≤ n0, ωλ is k-regular. By Lemma 3.4, there is a positive integer m such that for 
any μ ∈ Π(λ), μ + mωλ is in L. Without loss of generality, we assume m = 1.

Now let μ be an arbitrary dominant weight in Π(λ). Then the component support of 
μ is contained in Ξ0. Our idea is finding a dominant weight η in L based on ωλ, such 
that μ + η is also in L and w0(η) = −η, where w0 is the longest element in W . Then 
we have μ = μ + η + w0(η) ∈ X(μ + η, η) ⊂ L by Theorem 2.3. Since μ is arbitrary, all 
dominant weights in Π(λ) are contained in L, which proves Proposition 3.5.

4.2. Reduction

As in Subsection 3.2, one can write ωλ =
(
π1(ωλ), ..., πn(ωλ)

)
, where πk(ωλ) ∈

X∗
+(Tk). For any k /∈ Ξ0, we know πk(ωλ) = 0. For any w ∈ W , we write 

w = (w(1), w(2), ..., w(n)), where w(k) is in the Weyl group Wk of Gk. In particular, 
w0 = (w(1)

0 , w(2)
0 , ..., w(n)

0 ), where w(k)
0 is the longest element in Wk. We construct η by 

some lemmas.

Lemma 4.1. Suppose that G is simply connected quasi-simple and ω ∈ L is regular. 
There is a sequence {ν0 = ω, ν1, ..., νr} of nonzero dominant weights in L such that 
w0(νr) = −νr and for any 0 ≤ l ≤ r − 1, νl+1 = βl + σl(γl) for some βl, γl ∈ {ν0, ..., νl}
and σl ∈ W .

Proof. We give the precise computations for this lemma in different types in Subsec-
tion 4.3. �
Lemma 4.2. Let 1 ≤ k0 ≤ n0 and ω =

(
π1(ω), ..., πn(ω)

)
be any dominant weight in L

with component support Ξ0 such that, μ + ω ∈ L and ω is k0-regular. Then there is a 
dominant weight θk0 =

(
π1(θk0), ..., πn(θk0)

)
in L with component support Ξ0 such that 

μ + θk0 ∈ L, w(k0)
0

(
πk0(θk0)

)
= −πk0(θk0) and πk(θk0) is a positive integral multiple of 

πk(ω) for k ∈ Ξ0 \ {k0}.

Proof. Recall that πk0(L) is a perfect submonoid of X∗
+(Tk0) with full component support 

since L is perfect and Gk0 is quasi-simple. Then there is a regular dominant weight πk0(ω)
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of Gk0 in πk0(L). Take the sequence {ν0 = πk0(ω), ..., νr} in πk0(L) in Lemma 4.1. For 
any 0 ≤ l ≤ r − 1, one can write νl+1 = βl + σ

(k0)
l (γl) for some βl, γl ∈ {ν0, ..., νl} and 

σ
(k0)
l ∈ Wk0 .

Based on above sequence, we can define a sequence {ν̃0, ̃ν1, ..., ̃νr} of nonzero weights 
in X∗(T ) as follows:
1) ν̃0 = ω;
2) Suppose we have defined {ν̃0, ̃ν1, ..., ̃νl} and νl+1 = νal+1 + σ

(k0)
l (νbl+1) for some 

al+1, bl+1 ∈ {0, 1, ..., l}. Then set

ν̃l+1 := ν̃al+1 + σ̃l(ν̃bl+1),

where σ̃l = (σ̃(1)
l , ..., ̃σ(n)

l ) is given by σ̃(k)
l =

{
σ

(k0)
l , k = k0

Id(k), k �= k0
.

Then we claim that for any 0 ≤ l ≤ r, both ν̃l and μ + ν̃l are in L with component 
support Ξ0. Moreover, πk0(ν̃l) = νl and πk(ν̃l) is a positive integral multiple of πk(ω) for 
k ∈ Ξ0 \ {k0}.

Prove the claim by induction on l. For l = 0, the claim is clearly true since ν̃0 = ω. 
Suppose that the claim is true for {0, 1, ..., l}. Since ν̃l+1 = ν̃al+1 + σ̃l(ν̃bl+1), we have

πk(ν̃l+1) =

⎧⎪⎨
⎪⎩

πk0(ν̃al+1) + σ̃l
(k0)(πk0(ν̃bl+1)

)
= νal+1 + σ

(k0)
l (νbl+1) = νl+1, k = k0,

πk(ν̃al+1) + σ̃l
(k)(πk(ν̃bl+1)

)
= πk(ν̃al+1) + πk(ν̃bl+1), k ∈ Ξ0 \ k0,

πk(ν̃al+1) + σ̃l
(k)(πk(ν̃bl+1)

)
= 0, k /∈ Ξ0.

We have πk(ν̃l+1) = πk(ν̃al+1) + πk(ν̃bl+1) is a positive integral multiple of πk(ω) for 
k ∈ Ξ0 \ {k0} by induction hypothesis. Since πk0(ν̃l+1) = νl+1 is dominant, we have ν̃l+1
and μ + ν̃l+1 are both dominant with component support Ξ0 by above computation. 
Then we have ν̃l+1 ∈ X(ν̃al+1 , ̃νbl+1) and μ + ν̃l+1 ∈ X(μ + ν̃al+1 , ̃νbl+1) by Theorem 2.3. 
Therefore, ν̃l+1 and μ + ν̃l+1 are both in L. Then the claim is true for (l + 1)-case. By 
induction, the claim is true.

Consider the dominant weight ν̃r in the sequence. From above claim, We know ν̃r and 
μ +ν̃r are both in L with component support Ξ0 and for k ∈ Ξ0\{k0}, πk(ν̃r) is a positive 
integral multiple of πk(ω). Since πk0(ν̃r) = νr, we also have w(k0)

0
(
πk0(ν̃r)

)
= −πk0(ν̃r)

by Lemma 4.1. Then ν̃r is a desirable dominant weight θk0 . �
Lemma 4.3. There is a dominant weight η in L, such that μ + η ∈ L and w0(η) = −η.

Proof. Indeed we show there is a sequence {η0 = ωλ, η1, η2, ..., ηn0} of dominant weights 
with component support Ξ0 satisfying, for any 1 ≤ k1 ≤ n0:
a) ηk1 ∈ L and μ + ηk1 ∈ L;
b) w(k1)

0
(
πk1(ηk1)

)
= −πk1(ηk1) and πk(ηk1) is a positive integral multiple of πk(ηk1−1)

for k ∈ Ξ0 \ {k1};
c) For any k1 + 1 ≤ k ≤ n0, ηk1 is k-regular.
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Construct the sequence by induction. Since η0 = ωλ, it is dominant in L with compo-
nent support Ξ0. We know ωλ is 1-regular and μ +ωλ ∈ L. Then by applying Lemma 4.2
to k0 = 1 and ω = ωλ, one can obtain a dominant weight η1 in L with component 
support Ξ0. Directly by Lemma 4.2, η1 satisfies condition a) and b). Moreover, for any 
2 ≤ k ≤ n0, πk(η1) is a positive integral multiple of πk(ωλ), which is k-regular. Thus η1
is k-regular for any 2 ≤ k ≤ k0. Then we have constructed η1 satisfying all conditions.

Suppose we have constructed {η1, ..., ηl} satisfying all conditions. By induction hy-
pothesis, we have ηl and μ + ηl are in L with component support Ξ0. We also have ηl

is (l + 1)-regular. Therefore, we can apply Lemma 4.2 to k0 = l + 1 and ω = ηl. Then 
we obtain a dominant weight ηl+1 in L with component support Ξ0. Again directly by 
Lemma 4.2, ηl+1 satisfies condition a) and b). Moreover, for any l +2 ≤ k ≤ n0, πk(ηl+1)
is a positive integral multiple of πk(ηl), which is k-regular. Then ηl+1 also satisfies con-
dition c). Then we have constructed ηl+1 satisfying all conditions. By induction, we have 
shown the existence of such sequence.

Now we take η = ηn0 ∈ L. Condition a) tells that μ + η ∈ L. For any 1 ≤ k ≤ n0, 
Condition b) tells that w(k)

0
(
πk(ηn0)

)
= −πk(ηn0). Then w0(η) = −η. �

Therefore, by our discussion in Subsection 4.1, the proof of Proposition 3.5 reduces 
to the proof of Lemma 4.1.

4.3. Proof of Lemma 4.1

For Lemma 4.1, our computations depend on the type of G. There are four cases in 
total and the following computations are base on some basic facts of Dynkin diagrams 
and root data (see e.g. [1, §6.4]).

4.3.1. Type A1, Bn, Cn, D2n, E7, E8, F4, G2
In these types, we know w0 = −1. Thus the sequence can be chosen as {ω}.

4.3.2. Type E6
Label the vertices of the Dynkin diagram of E6 as follows:

◦
α1

◦
α3

◦
α4

◦
α5

◦
α6

◦α2

.

For convenience, we denote weights in the following way. Let ν be any weight. It is a Q-

combination of simple roots, i.e., ν =
6∑

i=1
kiαi. Denote ν by the 6-tuple ( k2

k1, k3 , k4 , k5, k6
). 

Therefore, one can write down the list of fundamental weights as 6-tuples:

ω1 = 1
3( 3

4, 5, 6, 4, 2
), ω2 = ( 2

1, 2, 3, 2, 1
), ω3 = 1

3( 6
5, 10, 12, 8, 4

),
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ω4 = ( 3
2, 4, 6, 4, 2

), ω5 = 1
3( 6

4, 8, 12, 10, 5
), ω6 = 1

3( 3
2, 4, 6, 5, 4

).

In this type, we have w0 transforms α1, α2, α3, α4, α5, α6 into −α6, −α2, −α5, −α4,

−α3, −α1, respectively. Then we have w0(ω2) = −ω2 and w0(ω4) = −ω4. Therefore, we 
want the dominant weight νr to be a nonnegative linear combination of ω2 and ω4.

Now we give the construction of the sequence {ν1, ..., νr}. First we set ν1 := ω+s6(ω). 

For any weight ν = ( k2
k1, k3 , k4 , k5, k6

), we have s6(ν) = ( k2
k1, k3 , k4 , k5, k5 − k6

). Thus 

for fundamental weights, we have{
ω6 + s6(ω6) = ω5,

ωi + s6(ωi) = 2ωi, 1 ≤ i ≤ 5.

Therefore, we have ν1 ∈
5∑

i=1
Z≥0ωi is dominant. Then ν1 = ω + s6(ω) ∈ X(ω, ω) ⊂ L by 

Theorem 2.3.
Then we set ν2 := ν1 +s5(ν1). For any weight ν = ( k2

k1, k3, k4, k5, k6
), we have s5(ν) =

( k2
k1, k3 , k4 , k4 + k6 − k5, k6

). Thus for fundamental weights, we have

{
ω5 + s5(ω5) = ω4 + ω6,

ωi + s5(ωi) = 2ωi, i �= 5.

Therefore, ν2 is dominant by above computation. Then we have ν2 = ν1 + s5(ν1) ∈
X(ν1, ν1) ⊂ L by Theorem 2.3.

Then set ν3 := ν2 + s6s5(ν1) = ν1 + s5(ν1) + s6s5(ν1). By above computations, we 
have

s6s5(ωi) =

⎧⎪⎨
⎪⎩

s6(ω4 + ω6 − ω5) = ω4 − ω6, i = 5,

s6(ω6) = ω5 − ω6, i = 6,

s6(ωi) = ωi, i = 1, 2, 3, 4.

Then we have {
ω5 + s5(ω5) + s6s5(ω5) = ω4 + ω6 + ω4 − ω6 = 2ω4,

ωi + s5(ωi) + s6s5(ωi) = 3ωi, 1 ≤ i ≤ 4.

Since ν1 ∈
5∑

i=1
Z≥0ωi, we have ν3 ∈

4∑
i=1

Z≥0ωi is dominant. Still by Theorem 2.3, we have 

ν3 = ν2 + s6s5(ν1) ∈ X(ν2, ν1) ⊂ L.

Now we have obtained ν3 ∈ L and ν3 ∈
4∑

i=1
Z≥0ωi. Actually, the coefficients of ω5 and 

ω6 vanished in the process of obtaining ν3. By symmetry of the Dynkin diagram of type 
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E6 and the simple roots, we can make the coefficient of ω1 and ω3 vanished in a similar 

way. Set ν4 := ν3 + s1(ν3), one can check ν4 ∈
4∑

i=2
Z≥0ωi is dominant and is in L by 

Theorem 2.3. Then we set ν5 = ν4+s3(ν4) and ν6 = ν5+s1s3(ν4) = ν4+s3(ν4) +s1s3(ν4). 
Similar to ν2 and ν3, we have ν5 and ν6 are in L and ν6 ∈ Z≥0ω2 +Z≥0ω4. Then we have 
w0(ν6) = −ν6 by our computations before. Therefore, {ν1, ..., ν6} is a desirable sequence 
for Lemma 4.1 in type E6.

4.3.3. Type An(n ≥ 2)
Label the vertices of the Dynkin diagram of An as follows:

◦
α1

◦
α2

◦
αn−1

◦
αn

.

For convenience, we still denote each weight ν by a n-tuple (k1, k2, ..., kn), where ν =
n∑

i=1
kiαi. Then for any 1 ≤ i ≤ n, the fundamental weight ωi is denoted by

ωi = 1
n+1 (n − i + 1, 2(n − i + 1), ..., i(n − i + 1), i(n − i), ..., 2i, i).

In this type, w0 transforms αi into −αn+1−i. Then we have w0(ω1) = −ωn and w0(ωn) =
−ω1. Therefore, we want the dominant weight νr to be a nonnegative linear combination 
of ω1 and ωn.

Now we give the construction of the sequence {ν1, ..., νr}. First we claim that there is 
a sequence {ζj}n

i=1 of dominant weights in L such that, for any 1 ≤ i ≤ n, ζi ∈
n∑

l=i

Z>0ωl. 

By symmetry, there is also a sequence {θi}n
i=1 of nonzero dominant weights in L such 

that, for any 1 ≤ i ≤ n, θi ∈
n+1−i∑

l=1
Z>0ωl.

We proceed to prove the claim. Construct the sequence {ζi}n
i=1 as follows:

(a) ζ1 = ω;
(b) ζi+1 = ζi + si(ζi) + si−1si(ζi) + ... + s1s2...si−1si(ζi). For any 1 ≤ m ≤ i + 1, denote 
the sum of first m terms of right hand side by ζi+1,m.

By symmetry, we construct the sequence {θi}n
i=1 as follows:

(a) θ1 = ω;
(b) θi+1 = θi + sn+1−i(θi) + sn+1−(i−1)sn+1−i(θi) + ... + snsn−1...sn+1−(i−1)sn+1−i(θi). 
For any 1 ≤ m ≤ i + 1, denote the sum of first m terms of right hand side by θi+1,m.

Then we check these sequences satisfy our requirements by induction on i. By sym-
metry of the Dynkin diagram of type An and the simple roots, we only need to check 
for {ζi}n

i=1. For any weight ν = (k1, k2, ..., kn), we have

si(ν) =

⎧⎪⎨
⎪⎩

(k1, k2, ..., ki−1, ki−1 + ki+1 − ki, ki+1, ..., kn), i �= 1, n,

(k2 − k1, k2, ..., ki−1, ki, ki+1, ..., kn), i = 1,

(k , k , ..., k , k , k , ..., k − k ), i = n.
1 2 i−1 i i+1 n−1 n
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Thus for fundamental weights, we have

si(ωl) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωl−1 + ωl+1 − ωl, 2 ≤ l = i ≤ n − 1,

ω2 − ω1, l = i = 1,

ωn−1 − ωn, l = i = n,

ωl, l �= i.

For i = 1, it is clear that ζ1 = ω is in L and ω ∈
n∑

l=1
Z>0ωl. Suppose that {ζ1, ..., ζi}

satisfies our requirements where i < n. Then we look at ζi+1. We first compute ωi +
si(ωi) + si−1si(ωi) + ... + s1s2...si−1si(ωi). For this we need the following lemma. Set 
ω0 = 0 for convenience.

Lemma 4.4. Suppose that 1 ≤ i ≤ n − 1. Then si−l+1...si−1si(ωi) = ωi−l − ωi−l+1 + ωi+1

for 1 ≤ l ≤ i.

Proof. Proceed by induction on l. For l = 1, we have si(ωi) = ωi−1 − ωi + ωi+1 by our 
computations above. Suppose that the equation holds for l − 1. Then for l, we have

si−l+1...si−1si(ωi) = si−l+1(ωi−l+1 − ωi−l+2 + ωi+1)

= ωi−l − ωi−l+1 + ωi−l+2 − ωi−l+2 + ωi+1

= ωi−l − ωi−l+1 + ωi+1.

Therefore, the equation also holds for l. By induction, the lemma is proved. �
We know ζi ∈

n∑
l=i

Z>0ωl by induction hypothesis. Now by Lemma 4.4, we have ωi +

si(ωi) + si−1si(ωi) + ... + s1s2...si−1si(ωi) = ωi + (ωi−1 − ωi + ωi+1) + (ωi−2 − ωi−1 +
ωi+1) + ... + (ω0 − ω1 + ωi+1) ∈ Z>0ωi+1. This equation together with the fact that 
s1, s2, ..., si fix ωl for i + 1 ≤ l ≤ n show that ζi+1 is contained in 

n∑
l=i+1

Z>0ωl.

Then we show that ζi+1 is in L. Recall our construction of {ζi}n
i=1 and {ζi+1,m}i+1

m=1. 
Again by Lemma 4.4, for any 1 ≤ m ≤ i +1, the sum of the first m terms of ωi +si(ωi) +
si−1si(ωi) +... +s1s2...si−1si(ωi) is ωi+(ωi−1−ωi+ωi+1) +... +(ωi−m+1−ωi−m+2+ωi+1) =
(m −1)ωi+1+ωi−m+1, which is dominant. Still together by the fact that s1, s2, ..., si fix ωl

for i +1 ≤ l ≤ n, ζi+1,m is always dominant for 1 ≤ m ≤ i +1. Then for any 2 ≤ m ≤ i +1, 
we have ζi+1,m ∈ X(ζi+1,m−1, ζi). Since ζi+1,1 = ζi is in L by induction hypothesis, we 
have ζi+1,m are in L for all 1 ≤ m ≤ i + 1 by applying Theorem 2.3 successively. 
In particular, ζi+1 = ζi+1,i+1 is in L. Therefore, the claim is true by induction and 
symmetry.

Now that the claim is true. Then we have ζn = aωn ∈ L and θn = bω1 ∈ L for some 
positive integers a, b. We set ζ = bζn+aθn ∈ L. Notice that w0(ζ) = abw0(ω1+ωn) = −ζ.
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By above construction, we have two sequences {ζi,m | 2 ≤ i ≤ n, 2 ≤ m ≤ i} and 
{θi,m | 2 ≤ i ≤ n, 2 ≤ m ≤ i} in L. We know that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ2,2 = ω + s1(ω),
θ2,2 = ω + sn(ω),
ζi+1,m = ζi+1,m−1 + si−m+2...si(ζi,i), i ≥ 2, 2 < m ≤ i + 1,

ζi+1,2 = ζi,i + si(ζi,i), i ≥ 2,

θi+1,m = θi+1,m−1 + sn+1−i+(m−2)...sn+1−i(θi,i), i ≥ 2, 2 < m ≤ i + 1,

θi+1,2 = θi,i + sn+1−i(θi,i), i ≥ 2,

lζn,n = (l − 1)ζn,n + ζn,n, l ≥ 2,

lθn,n = (l − 1)θn,n + θn,n, l ≥ 2,

ζ = bζn,n + aθn,n.

Then consider the following sequence in L,

{ω, ζ2,2, ζ3,2, ζ3,3, ..., ζn,n, 2ζn,n, ..., bζn,n, θ2,2, θ3,2, θ3,3, ..., θn,n, 2θn,n, ..., aθn,n, ζ}.

This is a desirable sequence for Lemma 4.1 in type An by equations above.

4.3.4. Type D2n+1

Label the vertices of the Dynkin diagram of D2n+1 as follows:

◦
α1

◦
α2

◦
α2n−1

◦α2n

◦α2n+1

.

For convenience, we still denote each weight ν =
2n+1∑
i=1

kiαi by a (2n + 1)-tuple 

(k1, k2, ..., k2n, k2n+1). Then we have the list of fundamental weights as (2n + 1)-tuples

ω2n = (1
2 ,

2
2 = 1, ...,

2n − 1
2 ,

2n + 1
4 ,

2n − 1
4 ),

ω2n+1 = (1
2 ,

2
2 = 1, ...,

2n − 1
2 ,

2n − 1
4 ,

2n + 1
4 ),

ωi = (1, 2, ..., i − 1, i, i, ..., i,
i

2 ,
i

2), 1 ≤ i ≤ 2n − 1.

In this type, we have w0 transforms α2n, α2n+1 into −α2n+1, −α2n and acts as −1 on 
other simple roots. Then we have w0(ωi) = −ωi for 1 ≤ i ≤ 2n − 1. Therefore, we want 

the dominant weight νr to lie in 
2n−1∑
i=1

Z≥0ωi.

Now we give the construction of the sequence {ν1, ..., νr}. First set ν1 := ω+s2n+1(ω). 
For any weight ν = (k1, k2, ..., k2n+1), we have s2n+1(ν) = (k1, k2, ..., k2n−1, k2n, k2n−1 −
k2n+1). Thus for fundamental weights, we have
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{
ω2n+1 + s2n+1(ω2n+1) = ω2n−1,

ωi + s2n+1(ωi) = 2ωi, i �= 2n + 1.

Therefore, we have ν1 ∈
2n∑

i=1
Z≥0ωi is dominant. By Theorem 2.3, we have ν1 = ω +

s2n+1(ω) ∈ X(ω, ω) ⊂ L.
Then we set ν2 := ν1 + s2n(ν1). For any weight ν = (k1, k2, ..., k2n+1), we have 

s2n(ν) = (k1, k2, ..., k2n−1, k2n−1 − k2n, k2n+1). Thus for fundamental weights, we have

{
ω2n + s2n(ω2n) = ω2n−1,

ωi + s2n(ωi) = 2ωi, i �= 2n.

Since ν1 ∈
2n∑

i=1
Z≥0ωi, we have ν2 ∈

2n−1∑
i=1

Z≥0ωi is dominant. By Theorem 2.3 we have 

ν2 = ν1 + s2n(ν1) ∈ X(ν1, ν1) ⊂ L. Since ν2 ∈
2n−1∑
i=1

Z≥0ωi, we have w0(ν2) = −ν2 by our 

computations before. Therefore, we have {ν1, ν2} is a desirable sequence for Lemma 4.1
in type D2n+1.

5. Reductive case and comparison

5.1. Comparison with Vinberg’s results

The definition of perfect submonoids was given by Vinberg in [12, §1]. Vinberg used 
this definition to develope his classification of reductive algebraic monoids. All algebraic 
monoids in this subsection are assumed to be linear and irreducible.

Let G be a connected reductive algebraic group with a maximal torus T . The natural 
action of G × G on K[G] induces an isomorphism [9, II.3.1 Satz 3]

K[G] 

⊕

λ∈X∗
+(T )

K[G]λ,

where K[G]λ 
 L(λ)∗ ⊗
L(λ) is the linear space spanned by matrix entries of L(λ). 

Every (G × G)-stable subspace of K[G] has the form of K[G]L =
⊕

λ∈L

K[G]λ for some 

subset L of X∗
+(T ). Let M be a reductive monoid with unit group G. Then K[M ] is 

a G × G-stable subalgebra of K[G]. By checking the multiplication of K[M ], we have 
K[M ] = K[G]L where L is a perfect submonoid of X∗

+(T ). Vinberg gave a description 
of reductive monoids with unit group G.

Theorem 5.1. [12, Theorem 1] A submonoid L of X∗
+(T ) defines an algebraic monoid M

with unit group G, if and only if L is perfect, finitely generated and generating X∗(T )
as a group.
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Moreover, based on the fact that every algebraic monoid admits a normalization 
[11, Proposition 3.15], Vinberg gave a classification of normal reductive monoids in [12, 
Theorem 2]. This classification is important in Vinberg’s construction of Vinberg monoids 
in [12, Theorem 5].

By [5, Lemma 1.1], if L is perfect, finitely generated and generates X∗(T ) as a group, 
then the reductive monoid M defined by L is normal if and only if L ⊂ X∗(T ) is saturated
in the following sense.

Definition 5.2. [5, Definition 1.2] Let L be a subset of X∗(T ). Suppose that for any 
λ ∈ X∗(T ), if there is an integer n > 1 such that nλ ∈ L, then λ ∈ L. Then L is called 
saturated.

Remark 5.3. Note this definition is different from the definition of saturated in Section 2. 
For example, let λ be a dominant weight. The subset Π(2λ) ⊂ X∗(T ) is not always 
saturated in the sense of Definition 5.2 since λ may not be in Π(2λ). In this section we 
are always using the definition from [5].

Therefore, Vinberg’s results give a characterization for perfect submonoids of X∗
+(T )

which are finitely generated, saturated and generates X∗(T ) as a group. Then we compare 
our results with Vinberg’s results on perfect submonoids of dominant weights.

5.1.1. Semisimple case
Suppose that G is semisimple. Let Gsc be the simply connected cover of G with a 

maximal torus T sc, and Ξ = {1, 2, ..., n} be the index set of the quasi-simple factors of 
Gsc.

Lemma 5.4. Suppose that G is a connected semisimple group. The perfect submonoids of 
X∗

+(T ) are all finitely generated.

Proof. Recall the notations in Subsection 3.5. By Subsection 3.5, every perfect sub-
monoid L of X∗

+(T ) with component support Ξ0 ⊂ Ξ can be viewed as a perfect 
submonoid of X∗

+(T sc)Ξ0 with full component support. Therefore, we may assume that 
G is simply connected and L has full component support. Then L = L̃ ∩ X∗

+(T ), where 
L̃ is a sublattice of X∗(T ) containing Q, by Theorem A. Therefore, we have L is the set 
of dominant weights of a connected semisimple group G′ with simply connected cover 
G. Thus L is clearly finitely generated. �

Therefore, our result differs from Vinberg’s theorem in the sense that, we do not 
assume that L is saturated or generates X∗(T ) as a group. Actually, these two conditions 
do not hold in general. In conclusion, our results give a complete characterization of all 
perfect submonoids of dominant weights in semisimple case.
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5.1.2. Reductive case
Suppose that G is reductive but not necessarily semisimple. Let G0 be its derived 

subgroup and Z0 be its connected center. Fix a maximal unipotent subgroup U and a 
Borel subgroup B = TU of G. Let T0 = T ∩ G0 be a maximal torus of G0. Since T is an 
almost direct product of T0 and Z0, there is an natural embedding

i : X∗(T ) −→ X∗(T0)
⊕

X∗(Z0)

given by restrictions. Therefore, we identify each dominant weight λ ∈ X∗
+(T ) with a 

pair i(λ) = (μ, ν), where μ = λ|T0 ∈ X∗
+(T0) and ν = λ|Z0 ∈ X∗(Z0). Then we naturally 

relate perfect submonoids of X∗
+(T ) to perfect submonoids of X∗

+(T0) 
⊕

X∗(Z0).

Proposition 5.5. The perfect submonoids of X∗
+(T ) are exactly the perfect submonoids of 

X∗
+(T0) 

⊕
X∗(Z0) contained in the image of i : X∗(T ) → X∗(T0) 

⊕
X∗(Z0).

Proof. It is clear that the embedding i gives a 1-1 correspondence between submonoids 
of X∗

+(T ) with submonoids of X∗
+(T0) 

⊕
X∗(Z0) contained in Im(i). It remains to show 

that L ⊂ X∗
+(T ) is perfect if and only if i(L) ⊂ X∗

+(T0) 
⊕

X∗(Z0) is perfect.
Let (μ1, ν1) = i(λ1) and (μ2, ν2) = i(λ2) be arbitrary. We have

X
(
(μ1, ν1), (μ2, ν2)

)
= {(μ, ν1 + ν2) | μ ∈ X(μ1, μ2) ⊂ X∗

+(T0)}.

By Lemma 2.1 and the fact that the simple roots of G are exactly the simple roots of 
G0, we have

i
(
X(λ1, λ2)

)
= {(λ|T0 , ν1 + ν2) | λ ∈ X(λ1, λ2)}.

Now we consider the tensor product decomposition

L(λ1)
⊗

L(λ2) =
⊕

λ∈X(λ1,λ2)

L(λ)⊕mλ
λ1,λ2 .

We know that L(λ) = {f ∈ K[G] | f(tg) = λ(t)f(g), ∀t ∈ T, g ∈ G}. By restricting on 
G0, we have L(λ)|G0 is clearly a nonzero G0-module. Let i(λ) = (μ, ν), which means 
λ|T0 = μ. Then by decomposing L(λ)|G0 into a direct sum of irreducible G0-modules, we 
have L(λ) = L0(μ)⊕aλ for some positive integer aλ, where L0(μ) denotes the irreducible 
G0-module with highest weight μ. Therefore, the restriction of above equation on G0
gives

L0(μ1)⊕aλ1
⊗

L0(μ2)⊕aλ2 =
⊕

λ∈X(λ1,λ2)

L0(λ|T0)⊕aλmλ
λ1,λ2 .

Recall the tensor product decomposition of G0-modules
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L0(μ1)
⊗

L0(μ2) =
⊕

μ∈X(μ1,μ2)

L0(μ)⊕mμ
μ1,μ2 .

By comparing the direct summands of the right hand side of two equations, we have 
{λ|T0 | λ ∈ X(λ1, λ2)} = X(μ1, μ2). Then X

(
(μ1, ν1), (μ2, ν2)

)
= i

(
X(λ1, λ2)

)
. Then 

X
(
(μ1, ν1), (μ2, ν2)

)
⊂ i(L) is equivalent to X(λ1, λ2) ⊂ L. Therefore, we have L ⊂

X∗
+(T ) is perfect if and only if i(L) ⊂ X∗

+(T0) 
⊕

X∗(Z0) is perfect and the proposition 
is proved. �

Now Let L be a submonoid of X∗
+(T0) 

⊕
X∗(Z0) and prZ(L) be the projection of L

to X∗(Z0). One can write L as

L =
⋃

ν∈prZ (L)

{(μ, ν) | μ ∈ Lν},

where Lν := {μ ∈ X∗
+(T0) | (μ, ν) ∈ L}. In general, the perfect submonoids of 

X∗
+(T0) 

⊕
X∗(Z0) could be complicated when G is reductive but not semisimple. To 

see that, we consider the following example in which L0 = {0}.

Example 5.6. Construct the perfect submonoid L of X∗
+(T0) 

⊕
X∗(Z0) as follows.

Let prZ(L) be Z≥0ν, where ν is a nonzero dominant weight in X∗(Z0). We construct 
Liν (i ∈ Z≥0) inductively. For i = 0, let L0 = {0}. Suppose we have already constructed 
Liν for i < m. For i = m, we take an arbitrary subet Xm of X∗

+(T ) and construct Lmν

as

Lmν =
( m−1⋃

k=1

X(Lkν , L(m−k)ν)
) ⋃

Xm,

where X(Lkν , L(m−k)ν) denotes the union of sets X(λ, μ) for all λ ∈ Lkν and μ ∈
L(m−k)ν .

We check the perfectness of L. Let (μ1, iν), (μ2, jν) be any two dominant weights in 
L. By our discussion in Proposition 5.5, every dominant weight in X

(
(μ1, iν), (μ2, jν)

)
has the form of 

(
μ, (i + j)ν

)
for some μ ∈ X(μ1, μ2) ⊂ X(Liν , Ljν). By our construction 

above, μ ∈ L(i+j)ν and thus 
(
μ, (i + j)ν

)
∈ L. Then L is perfect. Since Xm are all 

arbitrarily chosen, it is difficult to characterize such L.
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