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1. Introduction
1.1. Perfect submonoids

Let K be an algebraic closed field of characteristic 0 and G be a connected reductive
group over K. Let T be a maximal torus of G. Denote the weight lattice and the root
lattice of G by X*(T') and Q. Let X (T') be the set of dominant weights of G. For any
Xin X1 (T), we let L(\) be the irreducible representation of G' with highest weight .
For any two dominant weights A, u, define
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XA\ p)={ve X (T)|L(v) is a direct summand of L(A) @ L(u)}.
In the study of reductive monoids, Vinberg introduced the following definition.

Definition 1.1. [12, §1] A submonoid L of the additive group of dominant weights is called
perfect if

A, i € L implies X (A, p) C L.

In this paper, we give a complete characterization of perfect submonoids of dominant
weights for connected semisimple groups. We also discuss the perfect submonoids for
reductive groups.

1.2. Main results

The main result of this paper is the following.

Theorem A. Let G be a connected semisimple algebraic group with a mazximal torus T .
a) The perfect submonoids of X3 (T) with full component support are exactly the
intersections of X5 (T') with sublattices of X*(T') containing Q.
b) There is a natural bijection between the perfect submonoids of X (T) with full
component support and the subgroups of the center of G.

We refer to Definition 3.6 and Definition 3.11 for the definition of component sup-
port. Based on Theorem A, one can deduce the characterization for arbitrary perfect
submonoids of dominant weights.

1.3. Strategy of the proof

We first reduce the general case to simply connected case by considering the simply
connected cover. By applying PRV conjecture [10][7, Theorem 2.10], we show that if L
is a nonzero perfect submonoid of dominant weights, then for any dominant weight A in
L, the dominant weights which are also weights of L()\) are all contained in L. We define
the component support for each submonoid of dominant weights. Then we relate the
perfect submonoids of dominant weights with full component support to the subgroups
of the cocenter and prove Theorem A in simply connected case.

Then we prove Theorem A based on simply connected case. The general case for
arbitrary perfect submonoids of dominant weights can be deduced from Theorem A.

At the end of the paper, we look at the connected reductive groups. We also compare
our results with the classification of reductive monoids in [12].
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2. Preliminaries
2.1. Basic facts about algebraic groups

Recall that K is algebraically closed of characteristic 0 and G is a connected reduc-
tive algebraic group over K. Let T be a maximal torus of G. The root datum of G is
a quadruple (X*(T), R, X.(T),RV), where X*(T) is the weight lattice, X,(T) is the
coweight lattice, R is the set of roots and RV is the corresponding set of coroots.

Let @ = ZR be the root lattice of G. Let V.= X*(T) ® R, there is a natural pairing
(V: X*(T)Xx Xo(T) = Z and P:={x €V |(z,RY) CZ}. Then Q C X*(T) C P.If G
is simply connected, then X*(T) = P.

Choose the set of positive roots Ry C R. Let A = {a1,a9,...,a,} C Ry be the set
of simple roots. The fundamental dominant weights with respect to A are wi,wa, ..., Wn,.

For any two weights A\, p in X*(7T), write p < X if p= X — Z kic; where k; € Z>( for

1 <% < n.Let W be the Weyl group of G. Then W is generated by simple reflections
{si}_, where s; acts on X*(T') by s;(A\) = X — (\, o) )ay;, for all 1 < i < n.

Let X7 (T) be the set of dominant weights of G. Recall that for any dominant weight
Xin X% (T), L()) is the irreducible representation of G with highest weight . Let L(\)*
be its dual representation, which is irreducible with highest weight A*. Denote the set of
weights of L(A) by II(\). For any p € II(\), denote the p-weight space of L(A) by L(\),
and the dimension of L(X), by n,(A). It is well known that p € II(X) implies 1 < A.

We say a subset IT of X*(T) is saturated if for any A € Il,« € R and 0 < i < (), aV),
we have A — i € II. The following properties are well-known, see e.g. [4, §21].

o For any X' € II(\) and w € W, we have w(\') € II(A) and dimL(A\)y =
dim L(A)wiay:

o II()) is saturated and if y € X*(T), then p € II(\) is equivalent to that for any w €
W,w(p) = A. Therefore, TI(\) is a finite set and for any dominant weight pu < A, we
have p € II(A).

2.2. Tensor product decomposition

Let A, 4 be two dominant weights of G. We have the tensor product decomposition:

LANQL(w = @ L)

veXi(T)
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Here mf , is the tensor product multiplicity. By definition, my, >0 if and only if
v € X(\, p). Therefore, a perfect submonoid of dominant weights is closed under taking
direct summands of tensor product.

Recall the following classical results describing the possible weights in X (\, ).

Lemma 2.1. [6, Theorem 5.1] Let A, i, v be dominant weights in X3 (T). If v € X(\, p),
n

then v =X + p for some X' € II(\). In particular, v = X+ p— Y ko, where k; € Z>q
i=1
for1<i<n.

Lemma 2.2. [/, §24] Let X, i be dominant weights in X (T). Suppose that for any p' €
II(p), A+ p' is dominant. Then for any p' € M(p), A+ 1’ € X(A, p) with multiplicity

A+p
m/\,uﬂ = nu (1)

Another key ingredient in our proof is the PRV conjecture conjectured in [10], which
was first proved by Kumar.

Theorem 2.3. [7, Theorem 2.10] (PRV conjecture) Let G be a semisimple group with
Weyl group W over K. Let \ i be two dominant weights of G. For any w € W,
A+ wp € X(\, i), where X+ wy is the only dominant weight in the W -orbit of X+ wp.
In particular, if A+ wu is dominant, then A +wp € X (A, p).

3. Semisimple case
We prove Theorem A in this section.
3.1. Reduction

We first reduce the general case to the case when G is simply connected. Let G be
a connected semisimple algebraic group with a maximal torus T and center Z. Let G*¢
be the simply connected cover of G with a maximal torus 7°¢ and center Z*¢. We know
G ~ G*¢/Z', where Z' is a subgroup of Z*¢. We have the following exact sequence

1 — X*(T) — X*(T%°) — X*(Z') — 1,

and X7 (T) = {X € X7(1T°°) | A|z- = 1} is a subset of X} (7*¢) by natural inclusion.

Recall that the functor between tensor categories Rep(G) — Rep(G*©) is fully faith-
ful by [3]. Then the tensor product multiplicities m , are the same for G and G*¢ if
A, 1, v are dominant weights of G. This can also be seen in [8, Corollary 3.6]. Therefore, if
L is perfect as a submonoid of X7 (T), then it is also perfect as a submonoid of X7} (7).
Thus we may focus on the case when G is simply connected.
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3.2. Characterization of perfect submonoids of dominant weights

Assume G is semisimple simply connected, then there is a decomposition G = G1 X+ X
G, where each Gy, is simply connected quasi-simple with a maximal torus T}, center Zy,
and Weyl group Wy. Let Z = {1, ...,n} be the index set of quasi-simple factors. There are
also corresponding decompositions of the weight lattice X*(T) = X*(T1) @ --- P X*(T»)
and the root lattice Q = Q1 P - - - P Q. We also have

n

XHT)/Q~ @ X*(Ti)/Qx-

k=1

Let the set of simple roots of G be {«;}icr and the corresponding simple reflections be
n
{si}ier. Write I = | | I, where I} is the index set of simple roots of Gy.
k=1

First we give some perfect submonoids of dominant weights.

Proposition 3.1. Suppose that G is a simply connected semisimple group. If L is a sub-
lattice of X*(T) containing Q, then L N X1(T) is a perfect submonoid of X7 (T).

Proof. Let A, be two dominant weights in L. For any v € X (X, 1), by Lemma 2.1, we

have v = A+ u — > ko, where k; € Z>( for ¢ € I. Since L is a lattice containing
iel
Q, we have A\, p and — > k;a; are all in L. Thus v is also in L. Therefore, we have
iel
v € LNX3(T) and L N X% (T) is perfect. O

Next we focus on the necessary conditions for perfectness of a submonoid L € X7 (T).
By above decomposition of weight lattice, any weight A € X*(T') can be denoted by
(m1(A), -o; (X)), where m, : X*(T) — X*(T}) is the canonical projection, for 1 < k < n.
Suppose that A is dominant, define the support of A as

supp(A\) ={i € I | (\, ) > 0}.

For any 1 < k < n, say A is k-regular if supp(A) D Ix. If X is k-regular for all k, 1 < k < n,
then A is a regular dominant weight in X*(7T).

Definition 3.2. Let G be a semisimple group. For any dominant weight A\ of G, the
component support of X is the set {1 < k <n | m;(\) is nontrivial}.

Let L be a perfect submonoid of X7 (T'). It is clear that for any 1 < k < n, m;(L) is a
perfect submonoid of X7 (T}). We claim the existence of some certain k-regular dominant
weights in a nonzero perfect submonoid L of dominant weights.

Lemma 3.3. Suppose that G is simply connected semisimple and L is a nonzero perfect
submonoid of X (T). Let A be a dominant weight in L. Then there exists a dominant
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weight wy € L (not uniquely determined by \) such that for any 1 < k < n, wy is
k-reqular if w(\) is nontrivial.

Proof. It suffices to prove the lemma for quasi-simple group G. Indeed, suppose that
for any 1 < k < n such that m;(\) is nontrivial, there is a k-regular dominant weight
7k (pr) € (L), where pg € L. Then > i, is a desirable dominant weight
k,m (X) is nontrivial

wy € L.

Assume that G is quasi-simple. It suffices to show that for any dominant weight A € L
with supp(A) C I, there is another dominant weight p € L such that supp(p) 2 supp()).

Let D be the Dynkin diagram of G and A be a dominant weight in L with supp(X\) C 1.
There are vertices j € supp(A) and 41 ¢ supp(A) such that j and 4; are joint with each
other in D. Then (A, a}) > 0. Let I’ = {41,142, ..., %m, j } be the subset of I consisting of
all vertices joint with j and j itself. Consider the weight p = 2X + s;(\). We show it is
dominant.

For any i € I, we have

(o) = 3\ aff) = (A o Yoy, o).

If i = j, then (u,af) = (\,af) > 0.1f i € I'\ {j}, then (1, ;") > 3(\,@)) > 0 since
(aj,af) < 0.If i € I\ I, then (p, ) = 3(\,)) > 0 since (o, ;) = 0. By above
computations, we have p is dominant. Then by Theorem 2.3, we have p € X (2A, A) is
contained in L.

Now we look at the support. Still by above computations, for ¢ € I\ I’, we have i €
supp(u) if and only if ¢ € supp(X). We also have supp(u) contains I’ while i1 ¢ supp(A).

Therefore, we have supp(p) 2 supp(A) and the lemma is proved. O

Based on above property of wy and the fact that II()) is a finite set, we have a direct
corollary.

Corollary 3.4. Suppose that G is simply connected semisimple and L is a nonzero perfect
submonoid of X3 (T). Let X be a dominant weight in L. Then there is a positive integer
m such that p+ mwy € L for any weight p € TI(X).

We also need the following technical proposition, which will be proved in Section 4.

Proposition 3.5. Suppose that G is simply connected semisimple. If L is a nonzero perfect
submonoid of X7 (T'), then for any X € L, all the dominant weights in II(\) are contained
in L.

For the proof of Proposition 3.5 and our later discussions, we cannot reduce them
directly to the case when G is quasi-simple. This is because (1 (A1), 72(X2), ..., Tn(A\n))
may not be in L even if A\, ...,;\, are all in L.
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Definition 3.6. Let L be a submonoid of X7 (T'), the component support of L is the set
{1 <k<n|mp(L)# {0}}. If the component support of L is equal to {1,2,...,n}, then
L is said to have full component support. In particular, when G is quasi-simple, every
nonzero submonoid of X (T") has full component support.

We first restrict ourselves to perfect submonoids of X7 (7) with full component sup-
port.

Lemma 3.7. Suppose that G is simply connected semisimple. If L is a perfect submonoid
of X (T) with full component support, then for any 1 <k <n, we have Qi N X7 (T) is
contained in L. In particular, Q N X7 (T') is contained in L.

Proof. Let p be arbitrary in Q N X} (7). Since L has full component support, there
is a dominant weight A in L with full component support. By Lemma 3.3, there is

a regular dominant weight wy = (7‘(1(&))\),...,7'&'“(00)\)) in L. We know that w) is a
Q>p-combination of simple roots. Then one can take a positive integer m such that
mwy € Q N X5 (T). Moreover, since wy is regular, we have (wx,a;) > 0 for any

i € Ij. One can take m large enough such that (mwy, o)) > (u, ) for any i € Ij.
Then mmy(wy) — p is a Z>g-combination of simple roots in Q. Moreover, we have
mwy — b= (mm(wA), ey A1 (wy), Mg (wy) — @, magg1(wy), ...,mwn(w)\)) is a Z>o-
combination of simple roots and thus p < mwy. Then p € I(mwy) N X5 (T) is in L by
Proposition 3.5. Therefore, @ N X (T) is contained in L.

In particular, since L is a submonoid of X7 (T'), we have Q N X} (T') is contained in

L by adding QN X (T) for 1 <k <n. O

Based on the above lemma, we use the cocenter to characterize the perfect submonoids
of X3 (T'). Consider the canonical projection map p : X*(T') — X*(7)/Q. If L is a
perfect submonoid of X% (7") with full component support, then p(L) is a submonoid of
X*(T)/Q. Moreover, it is a subgroup of X*(7T")/Q since X*(T')/Q is finite.

Proposition 3.8. Suppose that G is simply connected semisimple and L is a perfect sub-
monoid of Xi(T) with full component support. Then L = p (L) N X3 (T) for some
subgroup L of X*(T)/Q.

Proof. Let £ = p(L) be a subgroup of X*(T)/Q. By definition we have L C p~1(£) N
X% (T). Then it suffices to show:

For any a € £, p~'(a) N X% (T) is contained in L.

Indeed, by our choice of £, there exists A € L such that p(A) = a. Let u be an arbitrary
dominant weight in p~'(a). Then A — u € Q. By same argument as in the proof of
Lemma 3.7, there exists a regular dominant weight w € L. Then there is a positive integer
m such that A\ — p 4 mw is dominant by regularity of w. Then X\ — p+mw € QN X7 (T)
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is a Z>o-combination of simple roots. By Proposition 3.5, u € II(A 4+ mw) N X} (T) is in
L. Therefore, we have p~*(a) N X% (T) C Land L=p Y(£L)N X3 (T). O

Based on above, we can give the characterization of perfect submonoids of dominant
weights.

Proposition 3.9. Let G be a simply connected semisimple group. The perfect submonoids
of X1(T) with full component support are exactly LN X3(T), where L is any sublattice
of X*(T) containing Q.

Proof. By Proposition 3.1, the intersection of sublattices of X*(T') containing @ with
X (T) is perfect. Moreover, these perfect submonoids clearly have full component sup-
port since @ N X7 (T') has full component support.

Let L be a perfect submonoid of X7 (7") with full component support. By Proposi-
tion 3.8, L = p~'(£) N X% (T) for some subgroup L of X*(T')/Q. We also have p~'(L)
is a subgroup of X*(T'). Moreover, p~1(L£) contains p~1(0) = Q. Therefore, the per-
fect submonoid L is the intersection of a sublattice p~1(L£) of X*(T) containing Q with
Xi(T). o

3.3. Reformulation of the characterization

In Proposition 3.8, we relate our perfect submonoids of X7 (7') with the cocenter of
G. Now we give a reformulation of perfect submonoids of dominant weights using central
characters. Still assume G is simply connected in this subsection. Keep the notations in
Subsection 3.2.

Let L be an arbitrary perfect submonoid of X7 (7T") with full component support.
Define a subset Z;, of Z as

Zp={z€Z | \Nz)=1,YA e L}.

Since Z;, = () Ker(\|z), we have that Zj, is a subgroup of Z.
el
Conversely, let Z’' be an arbitrary subgroup of Z. Define a subset Lz of X (T) as

Ly = {)\ € X_T_(T) | /\|Z/ = 1}

Then Lz is a perfect submonoid of X7 (7') with full component support. Indeed, there
is a unique (up to isomorphism) connected algebraic group G’ with simply connected
cover G such that G’ ~ G/Z'. By [2, §1.2], the maximal torus T’ of G’ satisfying

1—272 —T—T —1
gives rise to

1 — XYT") — X*(T) — X*(Z") — 1,
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and X% (T") = {\ € X5 (T) | M|z» = 1} = Lz/. Moreover, as weights in Q N X7 (T are
trivial on Z D Z’, we have Lz D Q N X} (T) and Ly is a perfect submonoid of X7 (T)
with full component support.

Proposition 3.10. Let G be a simply connected semisimple group. The maps ¢ : L — Zp,
Y Z' = Lz give a natural bijection between the perfect submonoids of X7 (T') with full
component support and the subgroups of Z.

Proof. Let L be an arbitrary perfect submonoid of X} (T) with full component support.
By Proposition 3.9, we have L = f/ﬁX_T_ (T) for some sublattice L of X*(T') containing Q.
Then there is a unique (up to isomorphism) connected semisimple group G’ with simply
connected cover G and a maximal torus 7" such that X*(7") = L. Since G’ ~ G/Z’ for
a unique subgroup Z’ of Z, we have X*(T") = {\ € X*(T) | A|z- = 1}. Then we have
L=LNXiT)={\€ X:(T) | ANz =1} = ¢(Z’') and ¢ is surjective. Meanwhile, by
uniqueness of G’, v is injective.

Now we show that ¢ and ¢ are inverse to each other. Consider (¢ o )(L) is also
a perfect submonoid of X7 (7T") with full component support. For any A € L and any
z € (L), we have A(z) = 1. Then by definition, A is in (1) 0 ¢)(L) and L C (v o )(L).
Meanwhile, since 1) is surjective, L = ¢ (Z’) for some subgroup Z’ of Z. Then (L)
contains Z'. Then (¢ o)(L) is a subset of ¥)(Z') = L. Therefore, we have (pop)(L) = L.
For any Z' < Z, we have (o po)(Z’) = 1(Z') by above. Since v is injective, we have
(po)(Z') = Z'. Therefore, the pair (p,1)) gives a bijection and it is clearly natural by
definition. O

3.4. Proof of the main result

Now we return to the setting in Subsection 3.1 and prove Theorem A. Let L be a
submonoid of X7 (7). We first define the component support of L.

Definition 3.11. Let L be a submonoid of X7 (7). The component support of L is the
component support of L as a submonoid of X7 (7*¢) (see Definition 3.6).

a) Let L be a perfect submonoid of X7} (T") with full component support. By our
discussion above, L is also a perfect submonoid of X7 (7°°¢) with full component support.
Therefore, by Proposition 3.9, we have L = L N X3 (T°°) where L is a sublattice of
X*(T*¢) containing the root lattice (). Since L is contained in X7} (T), we have L =
LN X%(T). One can also write L = (]3 N X*(T)) N X3(T). Clearly, LNX*T)is a
sublattice of X*(T") containing Q.

Conversely, let L = L N X7 (T) where L is a sublattice of X*(T") containing @. Then
L is also a sublattice of X*(T*¢) containing Q. We also know LN X% (T) = LN X3 (T%°)
since L C X*(T). Then by Proposition 3.9, L is a perfect submonoid of X (7¢) with
full component support and is also a perfect submonoid of X7 (T') with full component
support.
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b) Since G ~ G*¢/Z" and Z ~ Z%¢/Z', then it suffices to show: There is a natural
bijection between the perfect submonoids of X7 (T") with full component support and
the subgroups of Z°¢/Z’.

Recall that perfect submonoids of X% (T') with full component support are also perfect
submonoids of X} (7°¢) with full component support. By Proposition 3.10, there is a
natural bijection between perfect submonoids of X} (7*¢) with full component support
and subgroups of Z*°¢ given by

po:Lr— Z5¢={z¢€ Z% | \z) =1,Y\ e L},
and its inverse
Y (Z°°) = Lgsey = {X € X3(T%°) | A|(zsey = 1}.
Note that
XH(T) = (A€ X(T™) | Az = 1),

If L is a perfect submonoid of X7 (7') with full component support, then ¢(L) = Z3°
contains Z’.

Conversely, for any subgroup (Z°¢)" of Z*¢ containing Z’, ((Z°°)") = L(zse) is ac-
tually a perfect submonoid of X7 (7). Then the restrictions of ¢ and 1 actually give
a natural bijection between perfect submonoids of X7 (7T") with full component support
and subgroups of Z*¢ containing Z’. Since there is a natural bijection between subgroups
of Z5¢ containing Z’ and subgroups of Z%¢/Z’, one can combine two natural bijections
together and get the required bijection.

3.5. Characterization for arbitrary perfect submonoids

In this subsection we drop the assumption that L has full component support and
deal with arbitrary perfect submonoids. Indeed, we only need to consider the nonzero
perfect submonoids.

Recall that E = {1,2,...,n} is the index set of quasi-simple factors of G*¢. Let Z,
be an arbitrary nonempty subset of = and L be a perfect submonoid of X7 (T') with
component support Zg. Then L is also a perfect submonoid of X (7%¢) with component
support Zg. Let X*(T)g, = X*(T) N X*(T%%)g, and Q=, = Q N X*(T%°)z,, where

XH(T5)z, 1= {(1(A); coes T (X)) | A € X*(T5¢), mi(A) = 0 for any k ¢ So} © X*(T¢).

It is clear that X*(T*°¢)z, and @z, are isomorphic to the weight lattice and the root lat-
tice of GZ¥ = [ Gj°, respectively. Then L is contained in X7} (T)z, C X} (7°¢)z, and

=)
keEp
one can view L as a perfect submonoid of dominant weights of GZ; with full component

support.
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Then we can slightly modify the maps ¢ and v. Recall that G ~ G*°¢/Z". Let Z2¢ =
];[ZE?EU < 7%, where Zjo = Z;° for k € Zg and Z;% = {1} < Z;° for k & Z,.

Let ZL = Z' N Z& . Define the map ¢z, from perfect submonoids of X7 (7°¢) with
component support =g to subgroups of Z£° as ¢=,(L) = (ZZ°)r, where

(25)L = {z € 2 | A(z) = LA € L.

For the inverse direction, define the map ¢z, as ¢z, ((Zéf))' ) =L S where
L(Zéf))/ = {A 6 X_T_(TSC)EU | )\|(Zég)/ = 1}

One can also write

Lizgey ={A € XL(T*) | Mlzge ) = 1, A

T3e == 17vk ¢ EO}

Then we deduce the characterization for perfect submonoids of X7 (T") with component
support =g C = and its reformulation as a corollary of Theorem A.

Corollary 3.12. Let G be a connected semisimple algebraic group. Then

a) The perfect submonoids of X (T) with component support Zg C Z are exactly
LN X3(T), where L is any sublattice of X*(T)z, containing Q=,;

b) There is a natural bijection between the perfect submonoids of X5 (T) with compo-

nent support Zo C = and the subgroups of Z£ [ZL .
Proof. a) One notices that X*(7T")z, is a sublattice of X*(T*¢)z, containing Q=,. Then
X*(T)z, and Qz, can be viewed as the weight lattice and the root lattice of a connected
semisimple group G’EO with simply connected cover GZ , respectively. Then one can check
perfect submonoids of X} (T)=, with full component support are also perfect submonoids
of X (T*°) contained in X} (T') with component support Zy. Then by our discussions
above, perfect submonoids of X7} (7T') with component support Z are exactly perfect
submonoids of X7 (T)z, with full component support.

We view X (T')g, as the set of dominant weights of Gz . Then by applying Theorem A
to perfect submonoids of X7} (T)z, with full component support, part a) is proved.

b) Identify X (7°¢)z, with the set of dominant weights of GZ7. Then there is a natural
bijection between the perfect submonoids of X7 (7%¢) with component support =y and
the perfect submonoids of X7 (7%¢)z, with full component support. Then by applying
Proposition 3.10 to GZ; , we have the maps ¢z, and ¢z, give a natural bijection between

the perfect submonoids of X7} (7°¢) with component support =y and the subgroups of

SC

o

Moreover, same as the proof of Theorem A, the restrictions of ¢z, and =, actually
give a natural bijection between perfect submonoids of X} (7') with component support
Eo and subgroups of ZZ° containing Z’EO. Since there is a natural bijection between
subgroups of ZZ7 containing Z’EO and subgroups of ZZ° /Z’EO, again we can combine two

bijections together and get the required natural bijection. O
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4. Proof of Proposition 3.5

In this section, we keep the notations in Subsection 3.2 and prove Proposition 3.5.
We first give the idea of the proof. Then we reduce it to the case when G is quasi-simple
and finally give the computations in different types.

4.1. Idea

Let A be a dominant weight in L with component support =y C =. We may assume
Zo = {1,2,...,n0}. Take the dominant weight wy € L in Lemma 3.3 such that for any
1 <k < ng, wy is k-regular. By Lemma 3.4, there is a positive integer m such that for
any p € II(X\), g+ mwy is in L. Without loss of generality, we assume m = 1.

Now let u be an arbitrary dominant weight in II(A). Then the component support of
1 is contained in Zy. Our idea is finding a dominant weight 1 in L based on w), such
that o+ n is also in L and wg(n) = —n, where wy is the longest element in W. Then
we have u = u+n+ wo(n) € X(uw+n,n) C L by Theorem 2.3. Since p is arbitrary, all
dominant weights in II(\) are contained in L, which proves Proposition 3.5.

4.2. Reduction

As in Subsection 3.2, one can write wy = (m(wA),...,wn(wA)), where 7 (wy) €
X1 (Ty). For any k ¢ Zg, we know m(wy) = 0. For any w € W, we write
w = (w(l),w(z),...,w(”)), where w(®) is in the Weyl group W, of Gj. In particular,

(1), (2) (n) (k)
0

wo = (wy ', wy ..., Wy ), where wy is the longest element in Wj,. We construct n by

some lemmas.

Lemma 4.1. Suppose that G is simply connected quasi-simple and w € L is regqular.
There is a sequence {vy = w,v1,...,Vr} of nonzero dominant weights in L such that
wo(vr) = —vp and for any 0 <1 <r —1, 41 = B + o1(y) for some B,y € {vo,..., 1}
and o € W.

Proof. We give the precise computations for this lemma in different types in Subsec-
tion 4.3. O

Lemma 4.2. Let 1 < kg < ng and w = (m(w), ..., (w)) be any dominant weight in L
with component support Zg such that, p +w € L and w s kg-reqular. Then there is a
dominant weight Oy, = (Wl(ﬁko), ...,ﬂ'n(ﬁko)) in L with component support Zg such that
w0y, €L, w(()ko)(ﬂko (Oko)) = —To (Ory) and 7 (0k,) is a positive integral multiple of

mr(w) for k€ g\ {ko}.

Proof. Recall that 7y, (L) is a perfect submonoid of X7 (T%,) with full component support
since L is perfect and Gy, is quasi-simple. Then there is a regular dominant weight 7y, (w)
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of Gy, in 7y, (L). Take the sequence {vy = i, (w), ..., v} in 7, (L) in Lemma 4.1. For
any 0 <1 <r—1, one can write vj411 = 5 + O’lko
O’l(ko) € Wi,.

Based on above sequence, we can define a sequence {og, 1, ..., I, } of nonzero weights
in X*(T) as follows:
1) g = w;

(v) for some B;,v € {vo, ..., } and

2) Suppose we have defined {79, 71,...,1} and viy1 = Ve, + al(ko)(ubl+l) for some

ai+1,b141 € {0,1,...,1}. Then set
171-&-1 = f/az+1 + 6l(ﬁbz+1)7
o") .k =k

Id®) | k#k
Then we claim that for any 0 < [ < r, both 7, and u + 7; are in L with component

where &; = (551), ...,Erl(")) is given by 5'l(k) =

support =g. Moreover, 7, (;) = v; and 74 () is a positive integral multiple of 7y (w) for
ke Zy \ {k‘o}

Prove the claim by induction on [. For [ = 0, the claim is clearly true since 7y = w.
Suppose that the claim is true for {0,1,...,1}. Since D141 = U, , + G1(,,,), we have

Tkq (Dal+l) + 5l(k0) (wko(ﬁbz+1)) = Va4 + Ul(kO)(VbL+1) = Vi+1, k= k07
7Tk(51+1) = Wk(ﬁaul) + 5l(k) (77/6(17514-1)) = ﬂ-k(DaH-l) + 7T-/’C(ﬂbz+1>7 ke=o \ ko,
Wk(DaH_l)+0:l(k)(77k(17b1+1)) =0, k¢50

We have mp(9141) = 7 (Payy,) + Tk(Pb,,,) is a positive integral multiple of m;(w) for
k € 20\ {ko} by induction hypothesis. Since mg, (Z14+1) = vj+1 is dominant, we have ;41
and p + 7j41 are both dominant with component support =y by above computation.
Then we have 711 € X (Pay,y» Uy, ) and p+ 01 € X (0 + Uayy s O, ) by Theorem 2.3.
Therefore, 7,41 and p + 741 are both in L. Then the claim is true for (I 4+ 1)-case. By
induction, the claim is true.

Consider the dominant weight 7, in the sequence. From above claim, We know . and
w1+, are both in L with component support Zqg and for k € Zg\ {ko}, 71 (#r) is a positive
integral multiple of 7 (w). Since 7y, (7,) = v, we also have wéko) (ko (7)) = — o (1)
by Lemma 4.1. Then #, is a desirable dominant weight 0x,. O

Lemma 4.3. There is a dominant weight n in L, such that p+n € L and wo(n) = —1.

Proof. Indeed we show there is a sequence {1y = wx, 1,72, -, n, } of dominant weights
with component support Zg satisfying, for any 1 < k; < ng:

a) Nk, € Land p+ng, € L;

b) wi™) (T, (M) = —7ky (Miy) and i (ne, ) is a positive integral multiple of mx(nx, —1)
for k€ 20\ {k1};

¢) For any k1 + 1 < k < ng, nx, is k-regular.
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Construct the sequence by induction. Since 7y = wy, it is dominant in L with compo-
nent support Zy. We know w), is 1-regular and p+wy € L. Then by applying Lemma 4.2
to kg = 1 and w = w,, one can obtain a dominant weight 7, in L with component
support Zg. Directly by Lemma 4.2, n; satisfies condition a) and b). Moreover, for any
2 < k < ng, m(m) is a positive integral multiple of 7 (wy), which is k-regular. Thus 7,
is k-regular for any 2 < k < kg. Then we have constructed n; satisfying all conditions.

Suppose we have constructed {n,...,m;} satisfying all conditions. By induction hy-
pothesis, we have 7n; and p + 7; are in L with component support =y. We also have 7
is (I 4+ 1)-regular. Therefore, we can apply Lemma 4.2 to kg = [+ 1 and w = ;. Then
we obtain a dominant weight 7,11 in L with component support Zy. Again directly by
Lemma 4.2, ;41 satisfies condition a) and b). Moreover, for any [ +2 < k < ng, mg(M4+1)
is a positive integral multiple of 7 (n;), which is k-regular. Then 7,41 also satisfies con-
dition ¢). Then we have constructed ;11 satisfying all conditions. By induction, we have
shown the existence of such sequence.

Now we take n = n,, € L. Condition a) tells that u +n € L. For any 1 < k < ny,
Condition b) tells that w(()k) (75 (o)) = =Tk (1hny)- Then wo(n) = —n. O

Therefore, by our discussion in Subsection 4.1, the proof of Proposition 3.5 reduces
to the proof of Lemma 4.1.

4.8. Proof of Lemma /.1
For Lemma 4.1, our computations depend on the type of G. There are four cases in
total and the following computations are base on some basic facts of Dynkin diagrams

and root data (see e.g. [1, §6.4]).

431 Type A17 Bn7 Cn7D27L7 E77 E87 F47 G2

In these types, we know wg = —1. Thus the sequence can be chosen as {w}.
4.3.2. Type Eg
Label the vertices of the Dynkin diagram of Fg as follows:
o
O O -

aq a3 Qg Qs (675

For convenience, we denote weights in the following way. Let v be any weight. It is a Q-
6 k
combination of simple roots, i.e., v = > k;a;. Denote v by the 6-tuple ( 2 ).
i=1 k17k33k47k57k6
Therefore, one can write down the list of fundamental weights as 6-tuples:

1 3 2 1 6

=30 56420 2=(535) “s =305 10,12.8.4

);
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3 1 6 1 3

24,642 “=30 8121057 394654

Wy = (
In this type, we have wq transforms g, as, ag, aq, as, ag into —ag, —aa, —as, —Qu,
—az, —a, respectively. Then we have wy(wz) = —wq and wo(ws) = —wy. Therefore, we
want the dominant weight v, to be a nonnegative linear combination of wy and wy.
Now we give the construction of the sequence {v1, ..., v, }. First we set v1 := w+ sg(w).
k2 ko
k1, ks, ka, ks, ke k1, ks, ka, ks, ks — ke
for fundamental weights, we have

For any weight v = ( ), we have sg(v) = ( ). Thus

we + s6(we) = ws,
wi+86(wi) :2&)7;, 1 S’L §5

5
Therefore, we have 11 € ) Z>ow; is dominant. Then 11 = w + s¢(w) € X (w,w) C L by
i=1
Theorem 2.3.
ko

h =
klv k37 k47 k57 kﬁ )7 e have 85(1/)

Then we set vo := vy +55(v1). For any weight v = (

ko

( oy ks ko et Ko — k. Ko ). Thus for fundamental weights, we have

ws + 85(ws) = wa + we,
w; + 85((4]1‘) =2w;, 1 75 5.

Therefore, v is dominant by above computation. Then we have vo = vy + s5(v1) €
X (vy,v1) C L by Theorem 2.3.

Then set vz := vo + 8gs5(v1) = 11 + s5(v1) + ses5(v1). By above computations, we
have

36(w4+w6—w5):w4—w6, 1 =09,
s685(wi) = ¢ se(wg) = ws — ws, 1 =6,
Sg(wi):wi7 i:1,2,3,4.

Then we have

ws + 55(ws) + 5655(ws) = Wy + we + wg — wWe = 2wy,
w; + 85((.02') + 8685(0.1@‘) =3w;, 1<i<4.

5 4
Since vy € Y, Z>ow;, we have vs € Y Z>ow; is dominant. Still by Theorem 2.3, we have

i=1 i=1
V3 = Vg + 8685(V1) S X(V27l/1) C L.

4
Now we have obtained v5 € L and v3 € Y Z>ow;. Actually, the coeflicients of ws and
i=1
wg vanished in the process of obtaining v3. By symmetry of the Dynkin diagram of type
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Es and the simple roots, we can make the coefficient of w; and ws vanished in a similar

4
way. Set vy := v3 + s1(v3), one can check vy € > Z>ow; is dominant and is in L by
i=2
Theorem 2.3. Then we set v5 = v4+53(v4) and v = vs+8153(v4) = va+53(va)+5153(v4).

Similar to v, and v3, we have v5 and v are in L and vg € Z>owz +Z>ows. Then we have
wo(vg) = —ve by our computations before. Therefore, {11, ..., 5} is a desirable sequence
for Lemma 4.1 in type FEg.

4.8.3. Type Ap(n >2)
Label the vertices of the Dynkin diagram of A,, as follows:

For convenience, we still denote each weight v by a n-tuple (kq, k2, ..., k), where v =

> kija;. Then for any 1 < ¢ < n, the fundamental weight w; is denoted by
i=1

w; = %H(n —i4+1,2n—i+1),...,i(n—i+1),i(n —1),...,2i,1).
In this type, wq transforms «; into —ay,+1—;. Then we have wg(w1) = —w, and wg(wy,) =
—w1i. Therefore, we want the dominant weight v, to be a nonnegative linear combination
of wi and w,,.

Now we give the construction of the sequence {v1, ..., ;. }. First we claim that there is
n

a sequence {(;}7_; of dominant weights in L such that, forany 1 <i <mn, {; € > Zsow;.

By symmetry, there is also a sequence {6;}}* ; of nonzero dominant weights linZ L such
that, forany 1 <i<mn, 6; € n% ZZ>0wl.
We proceed to prove the cleiinll. Construct the sequence {¢;}1 ; as follows:
(a) G =w;
(b) Cit1 =G+ 5:(G) + 8i—18:(¢i) + ... + 8152...8,-18:({;). For any 1 < m < i+ 1, denote
the sum of first m terms of right hand side by (41 m.
By symmetry, we construct the sequence {6;}_; as follows:
(a) 61 = w;
(b) Oiy1 =0 + snr1-i(05) + Spp1—(i—1)Snt1-i(0i) + . + SnSn—1-Spp1—(i—1)Snt1-i(0;)-
For any 1 < m < i+ 1, denote the sum of first m terms of right hand side by 641 .
Then we check these sequences satisfy our requirements by induction on 7. By sym-
metry of the Dynkin diagram of type A, and the simple roots, we only need to check
for {¢;}1,. For any weight v = (k1, k2, ..., k), we have

(kth, ---7ki—17ki—1 —+ ki+l — ki,ki+1, ...,kn), Z 7é 1,71,
Si(V) = (kg7kl,kg,...,ki_l,ki,k’i_;'_l,...,kn), ’L:L
(k17k27...,ki_17ki7ki+1,...,kn_l —kn), Z:’I’L
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Thus for fundamental weights, we have

w1 twgr—w, 2<l=1<n-1,

) _ W — Wi, lZiZl,
si(wr) = I—ic
Wn—1 — Wn, =t=n,
wi, l;él

n
For i = 1, it is clear that (; = w isin L and w € Y Zsow;. Suppose that {(1,...,(}

=1
satisfies our requirements where ¢ < n. Then we look at (;41. We first compute w; +
si(w;) + si—18i(w;) + ... + s182...8;-15;(w;). For this we need the following lemma. Set
wo = 0 for convenience.

Lemma 4.4. Suppose that 1 <i <mn—1. Then s;—j41...8;—15;(W;) = Wi—| — Wi—14+1 + Wit1
for1 <[ <.

Proof. Proceed by induction on I. For [ = 1, we have s;(w;) = w;—1 — w; + w;+1 by our
computations above. Suppose that the equation holds for [ — 1. Then for I, we have

5i7l+1~~5i715i(wi) = 3i71+1(wi71+1 — Wi—l+2 + wi+1)
=Wi—] — Wi—l+1 T Wi—j42 — Wi—42 T Wit1

= Wi—| — Wi—[4+1 T Wit1.

Therefore, the equation also holds for [. By induction, the lemma is proved. 0O

n
We know (; € Y Z~ow; by induction hypothesis. Now by Lemma 4.4, we have w; +
I=i
si(wi) —+ si_lsi(wi) —+ ...+ 8182...81'_181'((,02') = W; —+ (wi_l — Wj + wi+1) —+ (wi_z — Wi—1 —+
Wit1) + . + (Wo — w1 + wiy1) € Zsowit+1. This equation together with the fact that
n
81,82, ..y 8; fix wy for i + 1 <[ < n show that ;41 is contained in Y Zsouw;.
I=i+1

Then we show that (;41 is in L. Recall our construction of {¢;}7; and {Cit1,m e+l

m=1"
Again by Lemma 4.4, for any 1 < m < i+ 1, the sum of the first m terms of w; + s;(w;) +
5i—18i(Wi)F...F8182...8,_15;(w;) I8 Wit(Wi—1 —witwip 1)+ H(Wimmp1 —Wiemy2FWit1) =
(m—1)w;414w;i—m+1, which is dominant. Still together by the fact that sy, s, ..., s; fix w;
for i+1 <1 < n, (;11,m is always dominant for 1 < m < ¢+1. Then for any 2 <m < i+1,
we have Giy1.m € X(Cit1,m—1,¢). Since ;41,1 = ¢; is in L by induction hypothesis, we
have (iy1,m are in L for all 1 < m < i+ 1 by applying Theorem 2.3 successively.
In particular, ¢;+1 = (41,541 is in L. Therefore, the claim is true by induction and
symmetry.

Now that the claim is true. Then we have (,, = aw,, € L and 0,, = bw; € L for some
positive integers a, b. We set ¢ = b(,,+ab,, € L. Notice that wo({) = abwo (w1 +wy) = —C.
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By above construction, we have two sequences {Q’m |2 <i<n2<m<i}and
{0im |2<i<n,2<m<i}in L. We know that

G2 = w+ s1(w),

0220 = w + sp(w),

Giv1,m = Gitlym—1 + Simm2.-5:(Cii), 12>2,2<m < i+ 1,

Giv1,2 = Gii +5i(Gia)y 12> 2,

97,'+1,m = 9i+1,m71 + 3n+1—i+(m—2)~~8n+17i(9i,i)7 1>2,2<m<1+1,
Oiv12="0i; + snt1-i(6i;), ©>2,

WCnm=0U—-1)Con+Con, 1>2,

Onn=>U0-1)0nn+0pn 1>2

¢ =bCnn+ abp n.

Then consider the following sequence in L,

{w, <2,2» CB,Q, 4-3,3; sy gn.,na 2<n,na ceey an,n; 92,2, 03,27 03,3a ceey an,n, 29n,na eeey aan,na C}

This is a desirable sequence for Lemma 4.1 in type A,, by equations above.

4.3.4. Type Dap i1
Label the vertices of the Dynkin diagram of Dy, as follows:

2n+1
For convenience, we still denote each weight v = > kia; by a (2n + 1)-tuple
i=1

(k1,ka, ..., kon, kant1). Then we have the list of fundamental weights as (2n + 1)-tuples

(1 271 2n—1 2n+1 27171)

Wan = 2a2_ 9000y 9 ) 4 ) 4 )
12 2n—1 2n—1 2n+1

Won+1 = (5; 5 = 1a seey 2 ’ 4 ) 4 )7

wy = (1,2,...,1‘—1,@,1’,...,1‘,%,%), 1<i<o2n-—1.

In this type, we have wq transforms gy, aapt1 into —agn41, —, and acts as —1 on
other simple roots. Then we have wg(w;) = —w; for 1 < i < 2n — 1. Therefore, we want
2n—1
the dominant weight v, to liein > Z>ow;.
i=1
Now we give the construction of the sequence {v1, ..., v, }. First set v1 := w+$9p41 (w).
For any Welght V= (kl, kg, ceey k2n+1), we have 52n+1(l/) = (kl, kQ, veey kgn_l, k‘gn, kgn_l —
kan+1). Thus for fundamental weights, we have
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Wan41 + S2n41(Wont1) = Wan—1,
wi + sang1(wi) = 2wy, i #2n+ 1

2n
Therefore, we have v1 € ) Z>ow; is dominant. By Theorem 2.3, we have 11 = w +
i=1

Sont1(w) € X (w,w) C L.
Then we set vo := v1 + So2,(11). For any weight v = (k1, ko, ..., kan+1), we have
son (V) = (k1,kay ooy kon—1, kan—1 — kan, kan+1). Thus for fundamental weights, we have

Wan + Son(Wan) = Won—1,
w; + Szn(wi) =2w;, 1 75 2n.

2n 2n—1

Since v1 € Y Z>ow;, we have vo € > Z>ow; is dominant. By Theorem 2.3 we have
i=1 i=1

2n—1

vy =11+ Son(11) € X(v1,11) C L. Since vy € )" Z>ow;, we have wo(v2) = —vo by our
i=1

computations before. Therefore, we have {11,112} is a desirable sequence for Lemma 4.1

in type Dapq1.
5. Reductive case and comparison
5.1. Comparison with Vinberg’s results

The definition of perfect submonoids was given by Vinberg in [12, §1]. Vinberg used
this definition to develope his classification of reductive algebraic monoids. All algebraic
monoids in this subsection are assumed to be linear and irreducible.

Let G be a connected reductive algebraic group with a maximal torus 7. The natural
action of G x G on K[G] induces an isomorphism [9, I1.3.1 Satz 3]

K|Gl~ & KI[G]a,
AEXT (T)

where K[G]y ~ L(A\)*@) L(A) is the linear space spanned by matrix entries of L(\).

Every (G x G)-stable subspace of K[G] has the form of K[G]|;, = @ K][G]x for some
AEL
subset L of X% (T). Let M be a reductive monoid with unit group G. Then K[M] is

a G x G-stable subalgebra of K[G]. By checking the multiplication of K[M], we have
K[M] = K[G];, where L is a perfect submonoid of X% (T'). Vinberg gave a description
of reductive monoids with unit group G.

Theorem 5.1. [12, Theorem 1] A submonoid L of X (T') defines an algebraic monoid M
with unit group G, if and only if L is perfect, finitely generated and generating X*(T')
as a group.
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Moreover, based on the fact that every algebraic monoid admits a normalization
[11, Proposition 3.15], Vinberg gave a classification of normal reductive monoids in [12,
Theorem 2]. This classification is important in Vinberg’s construction of Vinberg monoids
in [12, Theorem 5].

By [5, Lemma 1.1], if L is perfect, finitely generated and generates X*(T') as a group,
then the reductive monoid M defined by L is normal if and only if L C X*(T') is saturated
in the following sense.

Definition 5.2. [5, Definition 1.2] Let L be a subset of X*(T'). Suppose that for any
A € X*(T), if there is an integer n > 1 such that n\ € L, then A € L. Then L is called
saturated.

Remark 5.3. Note this definition is different from the definition of saturated in Section 2.
For example, let A be a dominant weight. The subset II(2)\) C X*(T) is not always
saturated in the sense of Definition 5.2 since A may not be in II(2)). In this section we
are always using the definition from [5].

Therefore, Vinberg’s results give a characterization for perfect submonoids of X7 (T')
which are finitely generated, saturated and generates X *(7T') as a group. Then we compare
our results with Vinberg’s results on perfect submonoids of dominant weights.

5.1.1. Semisimple case
Suppose that G is semisimple. Let G*¢ be the simply connected cover of G with a
maximal torus 7°¢, and Z = {1,2,...,n} be the index set of the quasi-simple factors of

G*°.

Lemma 5.4. Suppose that G is a connected semisimple group. The perfect submonoids of
X1(T) are all finitely generated.

Proof. Recall the notations in Subsection 3.5. By Subsection 3.5, every perfect sub-
monoid L of X} (T) with component support Zg C Z can be viewed as a perfect
submonoid of X% (1T°¢)z, with full component support. Therefore, we may assume that
G is simply connected and L has full component support. Then L = L N X3 (T), where
L is a sublattice of X*(T') containing Q, by Theorem A. Therefore, we have L is the set
of dominant weights of a connected semisimple group G’ with simply connected cover

G. Thus L is clearly finitely generated. 0O

Therefore, our result differs from Vinberg’s theorem in the sense that, we do not
assume that L is saturated or generates X*(T') as a group. Actually, these two conditions
do not hold in general. In conclusion, our results give a complete characterization of all
perfect submonoids of dominant weights in semisimple case.
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5.1.2. Reductive case

Suppose that G is reductive but not necessarily semisimple. Let G be its derived
subgroup and Z° be its connected center. Fix a maximal unipotent subgroup U and a
Borel subgroup B = TU of G. Let Ty = T NGy be a maximal torus of Gg. Since T is an
almost direct product of Ty and Z°, there is an natural embedding

it XN(T) — X*(To) P X*(2°)

given by restrictions. Therefore, we identify each dominant weight A € X% (7T') with a
pair i(\) = (p, ), where g = A|g, € X% (Tp) and v = A|z0 € X*(Z°). Then we naturally
relate perfect submonoids of X% (T') to perfect submonoids of X (1) @ X*(Z°).

Proposition 5.5. The perfect submonoids of X5 (T') are exactly the perfect submonoids of
X1 (To) @B X*(Z°) contained in the image of i : X*(T) — X*(Tp) P X*(2°).

Proof. It is clear that the embedding i gives a 1-1 correspondence between submonoids
of X% (T') with submonoids of X (Ty) @ X*(Z°) contained in Im(i). It remains to show
that L C X7 (T) is perfect if and only if i(L) C X% (Ty) @ X*(Z") is perfect.

Let (p1,v1) = i(A1) and (pe, v2) = i(A2) be arbitrary. We have

X ((p1,m), (p2,v2)) = {(, 1 +12) | € X (1, p2) © X3 (To)}

By Lemma 2.1 and the fact that the simple roots of G are exactly the simple roots of
Gy, we have

Z(X()\l,)\Q)) = {()\lTO,I/l + 1/2) | AE X()\l,)\g)}

Now we consider the tensor product decomposition

L@ LA) = @ LT,

AEX (A1,A2)

We know that L(A\) = {f € K[G] | f(tg) = A\(t)f(g),Vt € T,g € G}. By restricting on
Gy, we have L())|g, is clearly a nonzero Gp-module. Let i(A) = (u,v), which means
A, = p. Then by decomposing L(\)|g, into a direct sum of irreducible Go-modules, we
have L()\) = Lo(p)®% for some positive integer ay, where Lo(u) denotes the irreducible
Go-module with highest weight p. Therefore, the restriction of above equation on Gy
gives

A
Lo(u)®* @ Lo(u2) > = @) Lo(Alz,)* ™2,
AEX (A1,)A2)

Recall the tensor product decomposition of Gg-modules
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Lo(m) R Lo(pz) = @D Lo(p)®™inwa.

MGX(Ml 7“2)

By comparing the direct summands of the right hand side of two equations, we have
{)\|T0 | A E X()\1,)\2)} = X(/Ll,ug). Then X((ul,ul), ([J,27l/2)) == ’L(X()\l,)\z)) Then
X ((p1,v1), (p2,v2)) C (L) is equivalent to X (A1, A2) C L. Therefore, we have L C
X% (T) is perfect if and only if i(L) C X7 (Tp) @ X*(Z°) is perfect and the proposition
is proved. O

Now Let L be a submonoid of X7 (Tp) @ X*(Z°) and prz(L) be the projection of L
to X*(Z°). One can write L as

L= U {ww) el

veprz (L)

where L, := {p € X[ (Ty) | (u,v) € L}. In general, the perfect submonoids of
X3 (To) B X*(Z°) could be complicated when G is reductive but not semisimple. To
see that, we consider the following example in which Lo = {0}.

Example 5.6. Construct the perfect submonoid L of X (Tp) @ X*(Z°) as follows.

Let prz(L) be Z>ov, where v is a nonzero dominant weight in X*(Z°). We construct
L;, (i € Z>p) inductively. For i = 0, let Ly = {0}. Suppose we have already constructed
L;, for i < m. For i = m, we take an arbitrary subet X,, of X_T_(T) and construct L,,,
as

m—1

Ly, = ( U X(LkmL(m—k)u)) UXma
k=1

where X (Lyy, L(m—r),) denotes the union of sets X (A, u) for all A\ € Ly, and pu €
L(mfk)z/-

We check the perfectness of L. Let (u1,iv), (u2,jv) be any two dominant weights in
L. By our discussion in Proposition 5.5, every dominant weight in X((ul, ), (ug,ju))
has the form of (M, (¢ +j)y) for some p € X (p1, p2) C X(Liy, Lj,). By our construction
above, u € L(t4), and thus (,u7 (i +j)l/) € L. Then L is perfect. Since X, are all
arbitrarily chosen, it is difficult to characterize such L.
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