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1. Abstract 

 
An important goal in neuroscience has been to map the surface of the human brain, and many researchers have 
developed sophisticated methods to parcellate the cortex.  However, many of these methods stop short of developing a 
framework to apply existing cortical maps to new subjects in a consistent fashion.  The computationally complex step is 
often the initial mapping of a large set of brains, and it is inefficient to repeat these processes for every new data sample. 
In this analysis, we propose the use of a library of training brains to build a statistical model of the parcellated cortical 
surface and to act as templates for mapping new data. We train classifiers on training data sampled from local 
neighborhoods on the cortical surface, using features derived from training brain connectivity information, and apply 
these classifiers to map the surfaces of previously unseen brains.  We demonstrate the performance of 3 different 
classifiers, each trained on 3 different types of training features, to accurately predict the map of new brain surfaces.  
 

2. Background 
 
A fundamental assumption [1-4] in neuroscience is that the human neocortex can be compartmentalized into discrete 
subunits, based on cellular histology, activation patterns, gene expression, connectivity, etc. To identify and characterize 
these cortical subunits is an important, albeit difficult, goal and has been approached in a variety of ways.  One of the 
first studies examined cortical cyto-architecture using Nissl staining, and these results are still a reference for cortical 
discretization for many research projects [5]. Recently, with the rise of machine learning and high-performance 
computing, various groups have applied data-driven approaches to discovering the hidden substructure of the cortex 
using unsupervised clustering. These methods attempt to find hidden structure in the cortical data by grouping cortical 
voxels with similar properties into higher-order latent clusters [6]. Few studies, however, have examined how to adapt an 
existing cortical map, or set of maps, to a new brain image in a way that conforms both to the existing maps and the new 
data. In this work, we propose an approach to mapping the brain surface of a new subject, using a training dataset of 
previously mapped brains and data regularly acquired in standard functional MRI scans, i.e. diffusion and resting-state 
data. 
 
We process a set of high-quality MRI imaging data acquired by the Human Connectome Project (HCP) [7, 8] along with 
a set of labels that were derived for the HCP data using resting-state fMRI, task-based fMRI, and various cortical surface 
scalar measures and vetted by trained neuroanatomists [7, 8]. We then treat the HCP fMRI-connectivity-based labels as 
the dependent variables, and train classifiers to distinguish between each label, based on the characteristics of the 
functional and structural connectivity data associated with it. We apply these classifiers to previously unseen subjects in 
the HCP dataset, and characterize the accuracy of the new parcellations as a function of classifier type, input feature 
data, and weighting schemes.  Additionally, we examine the regional homogeneity of predicted regions, defined by the 
aggregate similarity of the feature vectors within a region, in relation to the homogeneity of the original HCP maps 
(“ground truth” maps).  We show that the new maps are generally consistent with the ground truth maps and demonstrate 
similar degrees of within-parcel homogeneity. 
 

3. Methods 
3.1 Data 
 
We use a set of 85 subjects acquired by the HCP. For each subject, there are 4 resting state images, a diffusion weighted 
image (DWI), and a structural T1 image. The data were minimally preprocessed by the HCP consortium using a custom 
pipeline specifically designed for the HCP data [8], and converted to a CIFTI data format, mapping each grey matter 
voxel or surface vertex to a single index in a vector, referred to as “grayordinates” by the HCP. Importantly, each 
subject’s brain mesh has the same number of vertices, represented by two different vertex resolutions.  Additionally, 
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each subject’s surface has been spatially normalized to the Montreal Neurological Institute (MNI) template space, such 
that a given vertex is always in approximately the same area of the brain across subjects. 
 
As described in [8], the minimal preprocessing steps performed by the HCP include running FreeSurfer [9, 10] to 
generate a white matter surface mesh, which is then registered to MNI space and resampled to 32K vertices. We use this 
mesh throughout our analysis.  The resting state time series are mapped onto the mesh, as are the cortical segmentations 
and scalar maps generated by FreeSurfer. Additionally, the HCP has released a set of connectivity-based parcellations 
(CBP), with roughly 180 regions per hemisphere, computed from boundary maps derived from resting-state, task-based 
fMRI, and various cortical scalar metrics [7]. We use these labels, taking values in {1, 2, …, 180}, as the response 
variable in our three classifiers. 
 
3.2 Pre-Processing 
 
Each of the 4 resting state acquisitions, with 32k surface vertices and 1200 time-points each, was acquired 
independently.  In order to meaningfully compare the four acquisitions, we first normalize each acquisition to have zero 
mean and unit variance at each vertex and then concatenate the four matrices together to generate a 4800 time-point 
matrix.  We then compute a 32Kx32K Pearson’s correlation matrix, where each vertex is described by the correlation of 
its aggregated time series vector with the time series of all other vertices.  We also run FSL’s bedpostx and probtrackx2 
[11] on each DWI to model water diffusion in each voxel in the brain, and generate cortex-to-cortex and cortex-to-
subcortex probabilistic tractography counts, using the parameter sets recommended by the HCP. 
 
For both data types, we apply a simple dimensionality reduction scheme to reduce the noise in the features.  For each 
vertex, we compute the median correlation of its time series with the time series of vertices in each of the 75 ipsilateral 
Destrieux regions and 7 ipsilateral subcortical regions (accumbens, amygdala, caudate, hippocampus, pallidum, 
putamen, thalamus). We also compute the total number of probabilistic streamlines projecting from each vertex to all 
ipsilateral cortical and subcortical regions.  We then take the log-transform of these summed streamline counts to 
generate log-normal count distributions and to reduce the bias towards short-range streamline connections present in 
tracking algorithms [12].  This dimensionality reduction scheme produces 4 matrices: 2 of size 32Kx75, representing 
median correlations and log-transform streamline counts to 75 Destrieux cortical regions, and 2 of size 32Kx7, 
representing median correlations and log-transform streamline counts to 7 subcortical regions. 
 
It is important to note that unique spatial normalization steps applied by the HCP preprocessing pipeline allow for direct, 
meaningful comparisons between the same grayordinates across subjects.  For example, with regards to the full 
32Kx32K correlation matrix (but without loss of generality with regards to specific data type), it would be acceptable to 
compare the correlation of index (k,l) in subject A with index (k,l) in subject B, because indices k and l correspond to 
approximately the same anatomical locations in the two subjects.  However, it cannot be assumed that all future studies 
will apply the same preprocessing steps as the HCP -- these studies might not acquire the same images, and those studies 
that do might not acquire the same quality data as the HCP dataset.  In cases where sophisticated spatial normalization of 
surfaces has not been, or cannot be, applied, it would not be reasonable to assume that indices k and l correspond to the 
same anatomical locations across subjects. 
 
In order to alleviate this constraint, we make the conservative assumption that most studies interested in performing 
connectivity analyses will first run FreeSurfer to generate low-resolution cortical maps.  With this in mind, we then 
aggregate the high-resolution connectivity vectors over these FreeSurfer cortical maps.  In this way, we can then 
guarantee that the column indices in the low-dimensional connectivity vectors of each surface vertex actually represent 
comparable connection profiles across subjects (because they represent large-scale anatomical regions), allowing us to 
make legitimate and meaningful comparisons of the feature vectors. 
 
3.3 Surface Registration 
 
The goal of our method is to parcellate the cortical surface of any subject, given the resting state or structural 
connectivity fingerprints of its surface vertices. While one possible approach could train classifiers to distinguish all 180 
HCP labels from each other in a one-vs.-one or one-vs.-all classification scheme, we instead constrain the label search 
space to a localized neighborhood using surface registration. Using a non-rigid, spectral-feature based surface 
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registration method [13], we match vertices on one surface to vertices on another on the basis of local similarity in 
surface geometry. We compute a weighted adjacency matrix of each surface, compute its graph Laplacian, L, and 
diagonalize L. The eigenvectors of L, along with the regionalized, low-dimensional connectivity vectors, are used as 
features in the point-set registration between the two surfaces.  The registration produces two directed matches, where 
for each brain pair (s1,s2), every vertex in s1 maps to a single vertex in s2, and vice versa, though the two mappings are 
only approximate inverses of each other. 
 
It is important to note that, although in this proposal we are predicting the cortical map of a new subject based on a set of 
template maps derived for the HCP parcellations with labels in 1,2… 180 , we can apply this same methodology to any 
set of template cortical maps with any number of unique labels.  For example, we could also predict a new cortical map 
based on the Destrieux parcellation scheme with 75 unique regions [14], the Desikan-Killiany parcellation scheme with 
35 unique regions [15], or the Yeo et al. cortical map with 7 (17) intrinsic functional connectivity regions [16].   
 
We represent a surface mesh as a graph 𝐺 = 𝑉,𝐸 , with 𝑉 representing the vertices and E the edges.  For two arbitrary 
surface meshes, s and t, we define 𝑓!,!: 𝑠 ↦ 𝑡 as the mapping of vertices from mesh s to mesh t.  Without loss of 
generality with regards to the template cortical map dependent variable, we define 𝑙𝑎𝑏 𝑣, 𝑠, 𝑝  as the true label of 
vertex 𝑣 ∈ 𝑉(𝑠) in an arbitrary mesh  s for template map p.  Given a new brain surface mesh t, a set 𝑆 =  {𝑠!… 𝑠!} of n 
target surface meshes, a set 𝑃 =  𝑝!… 𝑝!  of n target label maps, and a set 𝐹 =  {𝑓!… 𝑓!} of mappings 𝑡 ↦ 𝑠! ,∀ 𝑖 ∈
{1… 𝑛}, we define 
 

𝑠𝑡 𝑣, 𝑆,𝐹 =  𝑙𝑎𝑏 𝑓! 𝑡(𝑣) , 𝑠! , 𝑝!  ∀ 𝑖 ∈ 1… 𝑛   
 
as the set of labels that vertex 𝑣 ∈ 𝑉(𝑡) maps to over the whole set of target brains in S.  We can then associate a discrete 
probability distribution to each vertex in the new brain, describing the empirical frequency with which that vertex maps 
to any given label across the entire set of target brains.  An example of this data is displayed in Figure 1.a.  We pick an 
arbitrary vertex with a true HCP label of 52 and show that this vertex most frequently maps to other vertices whose true 
HCP labels are 9, 39, 51, and 52 – not coincidently, this vertex maps most frequently to vertices with the same label as 
itself.   
 
It is important to note that 𝑠𝑡 𝑣, 𝑆,𝐹  acts as a sort of discrete prior distribution on the label of vertex v, where the prior 
probabilities are defined by the frequency with which vertex v maps to any of the regions 𝑚 ∈ 𝑀.  Our prior beliefs are 
then updated by the probability a given classifier assigns to each label. 
 

 
 

Figure 1.  a. Vertex-to-label mapping frequencies for a single test vertex with true label = 52.  This specific vertex maps 
predominantly to regions 9, 39, 51, and 52. Only these regions are considered in the final classification step.  b. Confusion 
set mapping frequencies for label 52.  Label 52 is most often confused with labels 9, 42, 47, 51, 116, and 117.  The classifier 
for label 52 is then trained on data for these confusion labels. 
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In predicting the label of a new test vertex, given its connectivity data, it would not be efficient to consider all labels as 
equally likely candidates – for example, if we know a vertex is within the temporal lobe, it would not make sense to 
consider labels associated with the visual cortex as viable candidates.  As such, we can constrain the candidate labels for 
a new test vertex to 𝑠𝑡 𝑣, 𝑆,𝐹 , as described above.  
 
Likewise, given that in the current proposal there exist up to 180 possible regions in label set 𝑀 = 1,2… 180  with 
which a test vertex could be labeled, it would also be inefficient to train a single classification model to distinguish all 
180 regions from one another.  Without loss of generality on the size of set 𝑀 of possible labels, given a training set 
𝑆 =  𝑠!… 𝑠!  of target brain meshes with labeled cortices 𝑃 =  𝑝!… 𝑝! , for each label value 𝑚 ∈ 𝑀, we compute all 
pairwise surface mappings between training brains.  We define 𝑣𝑡𝑥 𝑚 =  𝑣 ∈ 𝑉 𝑠  ∀ 𝑠 ∈ 𝑆  𝑙𝑎𝑏 𝑣, 𝑠, 𝑝 = 𝑚 }, as the 
set of vertices across all training brains with the true label m.  For each 𝑠 ∈ 𝑆, and its mappings to all remaining training 
brains 𝐹! =  {𝑓!,!!  𝑠 ↦ 𝑠! ∀ 𝑠! ∈ 𝑆\𝑠}, we compute 𝑠𝑡 𝑣, 𝑠,𝐹!  ∀ 𝑣 ∈ 𝑉(𝑠).  Next, for each label 𝑚 ∈ 𝑀, we define 
 

𝑙𝑠𝑡 𝑚 = { 𝑠𝑡 𝑣, 𝑠,𝐹!) ∀ 𝑣 ∈ 𝑉 𝑠 , 𝑠 ∈ 𝑆 | 𝑣 ∈ 𝑣𝑡𝑥 𝑚   
 
as the set of all labels to which any vertex with label m maps to, based only on surface registration, across the full set of 
training brains.  Because the surface registration produces a smooth mapping, the labels in 𝑙𝑠𝑡 𝑚  will all be in the 
immediate neighborhood of m. We refer colloquially to 𝑙𝑠𝑡 𝑚  as the “confusion” set of label m – those labels that are 
most often confused with m on the basis of the surface registration.  An example of this data is displayed in Figure 1.b.  
In the figure, we show the confusion set mapping frequencies for the label 52, and see that the labels most often 
confused with label 52 are 9, 42, 47, 51, 116, and 117. 
 
Given a set of training data, we compute 𝑙𝑠𝑡 𝑚  ∀ 𝑚 ∈ 𝑀, and then train |M| classifiers.  The m-th classifier is trained 
only on the training data corresponding to those vertices with labels in 𝑙𝑠𝑡 𝑚 , classifying label m against 𝑙𝑠𝑡 𝑚  \
 {𝑚} ≪ 𝑀  regions. We emphasize that 𝑙𝑠𝑡 𝑚  \ 𝑠𝑡(𝑣, 𝑠,𝐹!) does not always = ∅, indicating that the confusion set of a 
label, and the labels that a given vertex maps, to do not always perfectly overlap.  For example, in Figures 1.a and 1.b, 
we see that while there is overlap in the mapping distribution of vertex with label 52 and the confusion set distribution of 
label 52, the relative complement of the two sets is not empty. 
 
For any given test brain, t, we register t to all training brains 𝑠 ∈ 𝑆. For each vertex 𝑣 ∈ 𝑉(𝑡), we compute 𝑠𝑡 𝑣, 𝑡,𝐹! .  
We define 𝑚!"# = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑠𝑡 𝑣, 𝑡,𝐹!   as the label to which vertex v maps to most frequently.  After training each 
classifier, we then constrain the softmax-classification probabilities of vertex v to 𝑙𝑠𝑡(𝑚!"#) ∩  𝑠𝑡 𝑣, 𝑡,𝐹!  -- that is, we 
only consider those labels in the intersection of the confusion set of 𝑚!"# and the labels to which vertex v maps to. 
 
3.4 Training Data and Classifiers 
 
We generate 3 sets of training features for each test vertex:  1) – regionalized cortical (1 x 75) and subcortical (1 x 7) 
resting state correlations, 2) – regionalized log-normal cortical (1 x 75) and subcortical (1 x 7) tractography streamline 
counts, and 3) -- regionalized resting state correlations and regionalized streamine counts combined.  All 3 sets include 
the sulcal depth, myelin density, and Gaussian curvature scalar maps (1 x 3) from the HCP dataset.  We train 3 
classifiers: Gaussian Mixture Models (GMM), Random Forests (RF), and Neural Networks (NN). For each classifier, for 
each of the 3 sets of input features, we perform 5 permutations of cross-validation, averaging the results over 5 sets of 75 
training subjects and 10 test subjects to ensure that our classifier results are independent of the training and test sets.  
 
Gaussian Mixture Model Training: For each region 𝑚 ∈ 𝑀, we aggregate all the training data for vertices assigned to 
label 𝑚 and fit a 2-component GMM, with diagonal covariance matrices (hyper-elliptical) for each component. 
Empirical tests showed that fitting more than 2 components, or using full covariance matrices, did not improve the 
classification accuracy of our model.  We assign a test vertex to the region, among the set of candidate regions for that 
vertex, whose model-based likelihood is maximal.   
 
Random Forest Training: For each of the training subjects 𝑠 ∈ 𝑆, for each region 𝑚 ∈ 𝑀, we aggregate the training data 
for vertices assigned to labels in lst(m) and fit a random forest to the aggregated data, using 60 tree estimators per forest 
and a maximum tree depth of 5 nodes. Empirical tests showed that larger, more-shallow forests outperformed forests 
with fewer, deeper trees.  We assign a vertex to a region based on the output of the random forest.   
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Neural Network Training:  For each 𝑚 ∈ 𝑀, we aggregate the training data for all 𝑣 ∈ 𝑣𝑡𝑥 𝑚  for all training subjects.  
We down-sample the number of samples for each label so that each label has the same number of data points as the 
minimally-represented class in that model.  We then aggregate the down-sampled training data for each 𝑚 ∈ 𝑀. Using 
the Keras software package, which can be downloaded from (https://keras.io/) [17], we construct a dense, feed-forward 
neural network with one input layer, three hidden layers with 150 nodes each, and one output layer with 180 nodes. We 
use the rectified linear unit activation function, apply batch normalization, and train the model for 40 epochs.  We assign 
a vertex to a region based on the output layer node that maximizes that classification probability.  
 
3.5 Classifier Prediction 
 
We perform 3 types of cortical map predictions on the test data.  In the first prediction scheme, operating as a type of 
control, we use only the results of the surface registration to define the final prediction – feature vectors are not included 
in this prediction step.  For a test vertex 𝑣 ∈ 𝑉(𝑡), we compute 𝑠𝑡 𝑣, 𝑡,𝐹! , which we can represent as vector of 
frequencies that we call 𝒇(𝑣) ∈ ℝ!𝟎

|𝑴|.  For each 𝑖 ∈ {1… 𝑀 }, 𝑓[𝑖] > 0 if vertex 𝑣 maps to region 𝑖 with frequency 𝑓! 
and 0 otherwise, and where 𝑓! = 1|!|

!!! .  We define the predicted label of vertex 𝑣 as 
 

𝑐𝑙𝑎𝑠𝑠!"#$#%& 𝑣 = 𝑚!"# = 𝑎𝑟𝑔𝑚𝑎𝑥  𝒇(𝑣)  
 
For the remaining two prediction schemes, for a given test vertex v, we compute the prediction probabilities only for 
those labels in {𝑠𝑡 𝑣, 𝑡,𝐹! ∩ 𝑙𝑠𝑡(𝑚!"#)} – that is, we consider only those predictions made for classes within the 
vertex-to-label mapping set and the confusion set of 𝑚!"#.  For a given classification model 𝑸, we represent the raw 
classification probabilities of a test vertex 𝑣 ∈ 𝑉(𝑡), as a vector of probabilities that we call 𝒑(𝑣,𝑸) ∈ ℝ!𝟎

|𝑴|.  For each 
𝑖 ∈ 1… 𝑀 , 𝑝 𝑖 ≥ 0 is the probability assigned to label 𝑖 for vertex v by model 𝑸 if 𝑖 ∈ {𝑠𝑡 𝑣, 𝑡,𝐹! ∩ 𝑙𝑠𝑡(𝑚!"#)}, 
and 0 otherwise.  In the second prediction scheme, we define the predicated label of vertex 𝑣 given model 𝑸 as the 
following: 
 

𝑐𝑙𝑎𝑠𝑠!"#$%&!!"# 𝑣 =  𝑎𝑟𝑔𝑚𝑎𝑥  𝒑 𝑣,𝑸   
 
In the third prediction scheme, for a given test vertex 𝑣 ∈ 𝑉(𝑡), we weight the probabilities 𝒑(𝑣,𝑸) for the candidate 
labels by the frequencies with which a vertex maps to each candidate, 𝒇(𝑣).  We assign the vertex to the label with the 
highest weighted classification probability.  For a given classification model 𝑸 and test vertex v, we define the predicted 
label of v as the label that maximizes the following expression: 
 

𝑐𝑙𝑎𝑠𝑠!"#$!!"# 𝑣 =  𝑎𝑟𝑔𝑚𝑎𝑥  𝒇 𝑣 ∗ 𝒑 𝑣,𝑸   
 
Taken together, we represent the predicted label of a test vertex v for prediction schemes 2 and 3, given a classifier 
model, as 
 

𝑐𝑙𝑎𝑠𝑠 𝑣 =  𝑎𝑟𝑔𝑚𝑎𝑥  𝒇 𝑣 𝒘 ∗ 𝒑 𝑣,𝑸   
 
where the scalar 𝑤 ∈ {0,1} is the exponent applied to the frequencies.  If 𝑤 = 0, then 𝑐𝑙𝑎𝑠𝑠 𝑣 =  𝑐𝑙𝑎𝑠𝑠!"#$%&!!"# 𝑣  is 
based only on the unweighted classification probabilities, and if 𝑤 = 1, then 𝑐𝑙𝑎𝑠𝑠 𝑣 =  𝑐𝑙𝑎𝑠𝑠!"#$!!"# 𝑣  is based on 
the frequency-weighted classification probabilities. 
 
3.6 Regional Homogeneity 
 
As an additional method of comparing the predicted cortical maps to the ground truth cortical maps, we characterize the 
regional homogeneity of all of the cortical regions for each predicted map, and compare the computed metrics to the 
regional homogeneity of the corresponding ground truth regions.  For a given cortical map, we define regional 
homogeneity to be the mean of all pairwise Pearson correlations of feature vectors for vertices within a given region – 
we compute the homogeneity for all regions in a cortical map, and then average across all regions to generate a mean 
homogeneity metric for that cortical map. Based on the cortical field hypothesis [1-3], we expect the connectivity 
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profiles of vertices within a region to be more similar to each other than to vertices in other regions.  In total, we 
generate predicted cortical maps for 18 different parameter combinations for 3 models (Gaussian Mixture Model, 
Random Forest, and Neural Network), 3 types of training data (regionalized resting state correlations, regionalized 
structural connectivity counts, and both combined), and 2 prediction schemes (unweighted with w = 0, and weighted 
with w = 1).  For each set of predicted cortical maps generated with a single combination of parameters, we compute the 
regional homogeneity of those maps, using only the regionalized resting state correlations or regionalized structural 
connectivity feature data to compute homogeneity estimates for each map.  In total, we generate 36 sets of homogeneity 
metrics, for all possible combinations of model, training data, weighting scheme, and similarity data.   
 
We also compute the regional homogeneity for all regions in the ground truth HCP maps, as well as all regions in maps 
computed only from the surface registration, using the same sets of similarity data.  As controls, we compute the 
regional homogeneities for the Desikan-Killiany and Destrieux atlas cortical maps generated by FreeSurfer.  We expect 
the variability of features to increase, and therefore similarity to decrease, as a function of distance between vertices 
(Figure 2).  Because the Destrieux and Desikan-Killiany cortical regions are larger than the HCP regions, we expect the 
mean similarity of the Desikan-Killiany and Destrieux regions to be lower than regions in the ground truth HCP maps, 
and possibly also lower than the predicted maps. 
 

 
Figure 2.  Similarity of feature vectors as a function of geodesic distance between vertices on surface mesh.  Structural 
connectivity features (red) display higher similarity at a given geodesic distance than resting state connectivity features. 

 
3.7 Spatial Overlap of Predicted Parcels with Ground Truth Maps 
 
As a final method of comparing the predicted cortical parcellations with the ground truth parcellations, we compute the 
Dice coefficient between each ground truth map and predicted maps.  The Dice coefficient is defined as 
 

𝐷𝑖𝑐𝑒 𝑋,𝑌 =  
2|𝑋 𝑌|
𝑋 + |𝑌|

 

 
where 𝑋 in our case is the true cortical map (given by the HCP labels), and 𝑌 is the predicted cortical map. 
 

4. Results 
 
We compute classification accuracy relative to the “ground truth” HCP maps as a function of model, weighting scheme, 
and feature data type.  We also report the classification accuracy for the parcels produced using only the surface 
registration data.  We average the classification accuracies across the 5 rounds of cross-validation.  We then report 
regional homogeneity of the features of each cortical map, and characterize the misclassified vertices. 
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4.1 Classification Accuracy 
 
In Figure 3 [a-d] we examine the classification accuracy of each classifier, stratified by training data type and the 
weighting exponent, w, as well as the accuracy of the cortical maps computed by using surface registration alone.  The 
Gaussian Mixture models (a) and Random Forest models (b) both outperform the Neural Network models (c) when 
applying the vertex-to-label frequencies as weights (exponent w = 1) to the classifier probabilities.  However, the Neural 
Network models outperform both the Gaussian Mixture models and Random Forests models when using unweighted 
classifier probabilities.  We see a dramatic improvement in classification accuracy for both the Gaussian Mixture models 
and Random Forest models when incorporating the frequencies as weights, and only a slight improvement for the Neural 
Network models.  All three models, irrespective of training data type and exponent weight, are outperformed by surface 
registration prediction scheme (d). 
 
In Figure 4, we show an example of a ground truth HCP map (top row), and a predicted cortical map.  The predicted 
map was generated using a Random Forest model, using the combined resting state and structural connectivity features 
as training and testing data.  We see that the resulting predicted map strongly resembles the true map in terms of label 
topology.  Additionally, from visual inspection, the predicted regions are spatially homogenous and noise-free. 
 

 
 

 
 

Figure 3.  Classification accuracies for maps predicted by each model, and by surface registration. a. Gaussian Mixture 
Model. b. Random Forest. c. Neural networks. d. Surface Registration.  [a-c] are averaged across hemisphere. 
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Figure 4.  Comparison of true map (a) to predicted cortical map (b). 
 
When we split the model accuracies by hemisphere, we see that there is in fact a trend towards higher prediction 
accuracies for the right hemisphere, when compared to the accuracies for the left hemisphere (Table 5).  
Interestingly, maps computed using the combined resting state and structural connectivity information showed 
no discernable differences in accuracy with respects to maps derived from each of the features individually. 

 

 
 

Figure 5.  Classification accuracies for maps predicted by each model and by surface registration, now split by hemisphere. 
 

4.2 Characterizing Misclassified Vertices 
 
In addition to computing the classification accuracy of each predicted cortical map, we also characterize the labels of the 
misclassified vertices for each model.  Specifically, we are interested in how “close” the label of a misclassified vertex is 
to the true label of that vertex.  To this end, for each HCP cortical map 𝑝, with a corresponding surface mesh 
𝑠 represented as a graph 𝐺 = 𝑉,𝐸 , we compute a label graph 𝐿 = 𝑀,𝑁 , with 𝑀 the set of labels in the cortical map, 
and 𝑁 the set of edges between labels.  For two labels 𝑚 ! ,𝑚 !  ∈ 𝑀, if [ ∃ 𝑣 ∈ 𝑉: 𝑙𝑎𝑏 𝑣, 𝑠, 𝑝 = 𝑚 ! ∧  ∃ 𝑢 ∈
𝑉\𝑣: 𝑙𝑎𝑏 𝑢, 𝑠, 𝑝 = 𝑚 ! ∧   𝑣, 𝑢 ∈ 𝐸  ]  →  𝑚 ! ,𝑚 ! ∈ 𝑁 .  That is, if there exist two adjacent vertices 𝑣, 𝑢 , 
one with label 𝑚 !  and the other with label 𝑚 ! , we consider those two labels to be adjacent in the label adjacency 
graph, 𝐿 (Figure 6).  Then, using Dijkstra’s algorithm, we compute the shortest path length between all pairs of nodes in 
𝐿.  For a given predicted cortical map, we compute the following: 

Proc. of SPIE Vol. 10578  105782T-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Homogeneity Metrics

HCP

Similarity Features
Struct. Rest.

0.763 0.623

Surface

Registration

Similarity Features
Struct. Rest.

0.769 0.622

Example Adjacency Structure of Network Labels

sfi_
a)11

Shortest Path Lengths Between Misclassified and True Labels
w=0 Training Data w=1 Training Data

Struct. Rest. Comb. Struct. Rest. Comb.
Random Forest 1.076 1.100 1.081 Random Forest 1.044 1.058 1.0436

GMM 1.104 1.090 1.097 GMM 1.044 1.038 1.0509
Neural Network 1.067 1.092 1.068 Neural Network 1.059 1.078 1.0591

1
𝑁

𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝑐𝑙𝑎𝑠𝑠 𝑣 , 𝑙𝑎𝑏 𝑣, 𝑠, 𝑝  ∀ 𝑣 ∈ 𝑉 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 𝑣  ! = 𝑙𝑎𝑏(𝑣, 𝑠, 𝑝)
!

!!!

 

 
representing the mean shortest path length between the predicted label and the true label of all misclassified vertices 
(Figure 7).  We see that, on average, the mean shortest path length between the true label and the classified label of 
misclassified vertices is close to 1, indicating that generally, if a vertex is misclassified, it is typically misclassified as a 
label directly adjacent to the true label.  This is expected given how the candidate labels at a particular vertex are 
constrained. 
 

 
Figure 6.  Example label adjacency structure of cortical parcellation, with label values in {1…10}.  We can then compute 
the shortest paths and lengths of these paths between all pairs of nodes (labels) using Dijkstra’s algorithm. 

 

 
 

Figure 7.  Mean shortest path length between classified label and true label for unweighted (left) and weighted (right) 
predicted cortical maps. 

 
4.3 Regional Homogeneity of Parcels 
 
For each classifier, we generate cortical maps derived from 3 types of feature data (resting state connectivity only, 
structural connectivity only, and both combined), and compute the homogeneity using only the resting state connectivity 
or the structural connectivity.  For each of these 6 permutations, we average over the left and right hemispheres, and 
report the results after splitting on the exponent, w. 
 

 
 

Figure 8. Mean homogeneity estimates for ground truth HCP maps (top) and surface-registration cortical maps (bottom). 
Homogeneity is displayed as a function of features used to compute regional homogeneity. 

 

Proc. of SPIE Vol. 10578  105782T-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Homogeneity Metrics

Destrieux
Atlas

Similarity Features
Struct. Rest.

0.719 0.522

Homogeneity Metrics
Desikan-

Killiany
Atlas

Similarity Features
Struct. Rest.

0.645 0.431

Homogeneity Metrics

w=0 Similarity Features
Struct.

Random

Forest

GMM

Neural
Network

Training
Data

Struct.
Rest.

Comb.

0.755
0.739
0.754

Struct.
Rest.

Comb.

0.717
0.740
0.727

Struct.
Rest.

Comb.

0.758
0.748
0.758

Rest.

0.592
0.596
0.591
0.562
0.592
0.565
0.580
0.596
0.582

w=1 Similarity Features
Struct. Rest.

Random

Forest

GMM

Neural
Network

Training
Data

Struct.
Rest.

Comb.

0.777
0.768
0.774

0.625
0.622
0.624

Struct.
Rest.

Comb.

0.766
0.769
0.765

0.617
0.618
0.615

Struct.
Rest.

Comb.

0.767
0.762
0.767

0.596
0.616
0.599  

 
Figure 9. Mean homogeneity estimates for predicted cortical maps (w = 0, top, and w=1, bottom).  Homogeneity is 
displayed as a function of model, training data, and features used to compute regional homogeneity. 

 
In Figure 8, we see that the homogeneity estimates of the surface registration very closely resemble those for the ground 
truth HCP maps.  In Figure 9, we see that the mean homogeneity estimates computed from the resting state feature data 
are consistently lower than the metrics computed using the structural connectivity data.  However, all 3 classifier models 
produce similar estimates of homogeneity, regardless of the feature data used to compute the similarity metrics.  When 
using an exponent parameter of w = 1, the homogeneity estimates are greater than when using an exponent parameter of 
w = 0. In Figure 10, we show the homogeneity estimates for the Destrieux atlas (with 75 regions per hemisphere) and 
the Desikan-Killiany atlas (with 35 regions per hemisphere).  We see that the homogeneity estimates for both the 
Destrieux atlas and the Desikan-Killiany atlas are less than the estimates for the ground truth maps, surface registration 
maps, and predicted cortical maps; this is expected since the 75 Destrieux atlas regions and 35 Desikan-Killiany atlas 
regions are larger than the 180 parcels. 
 

 

 
 

Figure 10. Mean homogeneity estimates for the Destrieux atlas cortical maps (top) and the Desikan-Killiany atlas cortical 
maps (bottom).  Homogeneity is displayed as a function of features used to compute regional homogeneity. 

 
In addition to mean homogeneity estimates, we examine the empirical distributions of the homogeneity for each cortical 
map for all predicted regions, aggregated across all 5 folds of cross-validation.  We show the results for the Random 
Forest model as an example, and compare the Random Forest empirical distributions to the homogeneity of the HCP 
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cortical maps and the surface registration maps in Figure 11.  We see that the homogeneity metrics across the three map 
types produce similarly distributed estimates – the structural connectivity homogeneity is much less variable than the 
resting state connectivity homogeneity.  Additionally, homogeneity metrics of maps generated using only surface 
registration closely mirror the HCP cortical maps.  Along with the results in Figures 5, 8, and 9, this provides evidence 
against the use of classification models and in support of simply applying a surface-based registration and computing 
which region a given vertex maps to most frequently. 
 
 

 

 

 
Figure 11. Empirical homogeneity distributions for the ground truth maps, surface registration maps, and single set of 
Random Forest-derived maps. 

 
As a final comparison of predicted cortical parcellations in relation to the ground truth maps, we also compute the Dice 
coefficient of each predicted cortical map with the ground truth cortical map to analyze the spatial overlap of the 
predicted labels with the ground truth HCP maps.  We report these results in Figure 12 below.  In correspondence with 
our previous results, we see that a weight exponent w = 0 generates cortical maps with less spatial overlap with the true 
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map than a weight exponent w = 1.  The Random Forest models have the highest spatial overlap with the true map, when 
compared to both the Gaussian Mixture models and the Neural Network models.  However, cortical maps generated 
using only the surface registration results produce larger Dice coefficient estimates than any of the model-based maps. 
 
With regards to the training data types, there is no apparent pattern of increasing or decreasing spatial overlap.  However, 
as with the accuracy measures in Figure 5, we see that there is in fact a trend towards larger Dice coefficients for the 
right hemisphere, when compared to the Dice coefficients for the left hemisphere 
 

 

 
 

Figure 12.  Dice coefficient for model-based predicted cortical maps and for surface-registration based cortical maps, 
stratified by hemisphere. 

 
5. Discussion 

 
In this analysis, we developed a framework to apply existing sets of cortical maps to a new subject’s data, driven only by 
local surface geometry and resting state and structural connectivity features.  We tested this framework using 3 
classification models, 3 types of training data, and 2 prediction schemes, and assessed the performance of these models 
using classification accuracy and metrics to characterize the intra-regional feature similarity and regional spatial overlap 
of predicted cortical maps. 
 
Traditional methods to apply cortical maps to new data typically rely on some form of volumetric registration to 
spatially normalize the cortices between a template brain and a target brain [9, 10, 18].  However, these methods often 
suffer from complications and inaccuracies related to voxel-wise interpolation.  Additionally, they do not take into 
account the unique connectivity information related to each point they are trying to label.  Our framework does not 
suffer from either of these drawbacks.  While our method does incorporate a surface registration, the results of this 
registration act primarily as a prior on the possible labels to assign to a given surface point.  We are then able to 
incorporate the connectivity data in a pseudo-Bayesian approach to predict the cortical map of a new test subject. 
 
As it stands, however, our method suffers from a few drawbacks.  Referring back to Figure 2 showing the similarity of 
feature vectors as a function of geodesic distance, we see that the features we used to train our models, and specifically 
the regionalized resting state data, is highly variable, with standard deviations close to 0.2, even at short distances.  
Whether this high variability in feature data is a result of the dimensionality reduction scheme we applied or a 
manifestation of noise inherent to the original data is unclear, and would be worth examining more closely.  Specifically, 
if we are able generate cleaner data, or perhaps represent our data in a more accurate lower-dimensional embedding, it 
might be the case that our classification scheme outperforms the surface registration. 
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Additionally, in considering the classification accuracy and regional homogeneity of our predicted maps, we found that 
there was a trend towards greater accuracy and regional homogeneity in the right hemisphere.  This trend was also 
present in the Desikan-Killiany and Destrieux atlas maps that were used as controls.  While we have not yet studied the 
possible cause of these right-hemisphere asymmetries, one possible explanation might be related to the left hemisphere 
language specialization [19].  The hemispheric asymmetry related to language might be correlated with increased 
variability of the connectivity profiles in the left hemisphere, and therefore could be a driver of the accuracy and 
homogeneity discrepancies that we saw in our results. 
 
It is important to note from our results that the surface registration produced the most accurate predictions of the cortical 
maps, as well regional similarity measures that were most similar to the ground truth estimates.   The weighted Random 
Forest and weighted Gaussian Mixture models classification models, however, performed only slightly worse than the 
surface registration.  Of particular interest is the fact that the Gaussian Mixture Model performed most similar to the 
surface registration, in terms of pure accuracy.  While we made the assumption of multivariate normality, the feature 
vectors themselves are also quite noisy, as evidenced by error bars displayed in Figure 2.  It would be worth exploring 
whether or not a different mixture model, such as a multivariate Student’s-T mixture model, which would be more 
robust to noise, performs better than a mixture of Gaussians.  Likewise, we can also explore more complex neural 
network architectures.  Specifically, it has been shown that there are certain network architectures that perform better on 
biological data [20] – these architectures might be particularly applicable to cortical mapping.  Nevertheless, we have 
shown that, by using a general framework of training a classification model on connectivity data and using this model to 
predict the cortical map of new images, we are able to generate cortical parcellations for new data that are reasonably 
accurate and have similar regional connectivity profiles to the original maps. 
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