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Abstract. Lattice-based algorithms in cryptanalysis often search for a
target vector satisfying integer linear constraints as a shortest or closest
vector in some lattice. In this work, we observe that these formulations
may discard non-linear information from the underlying application that
can be used to distinguish the target vector even when it is far from being
uniquely close or short.

We formalize lattice problems augmented with a predicate distinguishing
a target vector and give algorithms for solving instances of these prob-
lems. We apply our techniques to lattice-based approaches for solving
the Hidden Number Problem, a popular technique for recovering secret
DSA or ECDSA keys in side-channel attacks, and demonstrate that our
algorithms succeed in recovering the signing key for instances that were
previously believed to be unsolvable using lattice approaches. We carried
out extensive experiments using our estimation and solving framework,
which we also make available with this work.

1 Introduction

Lattice reduction algorithms [53, 72, 73, 34, 61] have found numerous applications
in cryptanalysis. These include several general families of cryptanalytic appli-
cations including factoring RSA keys with partial information about the secret
key via Coppersmith’s method [26, 64], the (side-channel) analysis of lattice-
based schemes [57, 8, 44, 4, 27], and breaking (EC)DSA and Diffie-Hellman via
side-channel attacks using the Hidden Number Problem.

In the usual statement of the Hidden Number Problem (HNP) [21], the
adversary learns some most significant bits of random multiples of a secret integer
modulo some known integer. This information can be written as integer-linear
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constraints on the secret. The problem can then be formulated as a variant of the
Closest Vector Problem (CVP) known as Bounded Distance Decoding (BDD),
which asks one to find a uniquely closest vector in a lattice to some target point
t. A sufficiently strong lattice reduction will find this uniquely close vector, which
can then be used to recover the secret.

The requirement of uniqueness constrains the instances that can be successfully
solved with this approach. In short, a fixed instance of the problem is not expected
to be solvable when few samples are known, since there are expected to be many
spurious lattice points closer to the target than the desired solution. As the
number of samples is increased, the expected distance between the target and
the lattice shrinks relative to the normalized volume of the lattice, and at some
point the problem is expected to become solvable. For some choices of input
parameters, however, the problem may be infeasible to solve using these methods
if the attacker cannot compute a sufficiently reduced lattice basis to find this
solution; if the number of spurious non-solution vectors in the lattice does not
decrease fast enough to yield a unique solution; or if simply too few samples
can be obtained. In the context of the Hidden Number Problem, the expected
infeasibility of lattice-based algorithms for certain parameters has been referred
to as the “lattice barrier” in numerous works [12, 30, 79, 75, 66].

Nevertheless, the initial cryptanalytic problem may remain well defined even
when the gap between the lattice and the target is not small enough to expect a
unique closest vector. This is because formulating a problem as a HNP instance
omits information: the cryptanalytic applications typically imply non-linear
constraints that restrict the solution, often to a unique value. For example, in
the most common application of the HNP to side-channel attacks, breaking
ECDSA from known nonce bits [18, 45], the desired solution corresponds to the
discrete logarithm of a public value that the attacker knows. We may consider
such additional non-linear constraints as a predicate h(:) that evaluates to true
on the unique secret and false elsewhere. Thus, we may reformulate the search
problem as a BDD with predicate problem: find a vector v in the lattice within
some radius R to the target t such that f(v —¢t) := h(g(v — t)) returns true,
where g(+) is a function extracting a candidate secret s from the vector v — .

Contributions. In this work, we define the BDD with predicate problem and
give algorithms to solve it. To illustrate the performance of our algorithms, we
apply them to the Hidden Number Problem lattices arising from side-channel
attacks recovering ECDSA keys from known nonce bits.

In more detail, in Section 3, we give a simple refinement of the analysis of the
“lattice barrier” and show how this extends the range of parameters that can be
solved in practice.

In Section 4 we define the Bounded Distance Decoding with predicate
(BDD,,f(.)) and the unique Shortest Vector with predicate (uSVPy(.)) prob-
lems and mention how Kannan’s embedding enables us to solve the former via
the latter.



We then give two algorithms for solving the unique Shortest Vector with
predicate problem in Section 5. One is based on lattice-point enumeration and in
principle supports any norm R of the target vector. This algorithm exploits the fact
that enumeration is exhaustive search inside a given radius. Our other algorithm
is based on lattice sieving and is expected to succeed when R < \/4/3 - gh(A)
where gh(A) is the expected norm of a shortest vector in a lattice A under the
Gaussian heuristic (see below).? This algorithm makes use of the fact that a
sieve produces a database of short vectors in the lattice, not just a single shortest
vector. Thus, the key observation exploited by all our algorithms is that efficient
SVP solvers are expected to consider every vector of the lattice within some
radius R. Augmenting these algorithms with an additional predicate check then
follows naturally. In both algorithms the predicate is checked (R/ gh(A))d+0(d)
times, where d is the dimension of the lattice, which is asymptotically smaller
than the cost of the original algorithms.

In Section 6, we experimentally demonstrate the performance of our algorithms
in the context of ECDSA signatures with partial information about nonce bits.
Here, although the lattice-based HNP algorithm has been a well-appreciated tool
in the side-channel cryptanalysis community for two decades [65, 55, 17, 70, 71,
63, 80, 46, 24], we show how our techniques allow us to achieve previous records
with fewer samples, bring problem instances previously believed to be intractable
into feasible range, maximize the algorithm’s success probability when only a
fixed number of samples are available, increase the algorithm’s success probability
in the presence of noisy data, and give new tradeoffs between computation time
and sample collection. We also present experimental evidence of our techniques’
ability to solve instances given fewer samples than required by the information
theoretic limit for lattice approaches. This is enabled by our predicate uniquely
determining the secret.

Our experimental results are obtained using a Sage [74]/Python framework
for cost-estimating and solving uSVP instances (with predicate). This framework
is available at [7] and attached to the electronic version of this work. We expect
it to have applications beyond this work.

Related work. There are two main algorithmic approaches to solving the
Hidden Number Problem in the cryptanalytic literature. In this work, we focus
on lattice-based approaches to solving this problem. An alternative approach, a
Fourier analysis-based algorithm due to Bleichenbacher [18], has generally been
considered to be more robust to errors, and able to solve HNP instances with
fewer bits known, but at the cost of requiring orders of magnitude more samples
and a much higher computational cost [30, 12, 75, 13]. Our work can be viewed as
extending the applicability of lattice-based HNP algorithms well into parameters
believed to be only tractable to Bleichenbacher’s algorithm, thus showing how

3 We note that this technique conflicts with “dimensions for free” [32, 5] and thus the
expected performance improvement when arbitrarily many samples are available is
smaller compared to state-of-the-art sieving (see Section 5.3 for details).



these instances can be solved using far fewer samples and less computational time
in practice (see Table 4), while gracefully handling input errors (see Figure 7).

In particular, our work can be considered a systematization, formalization,
and generalization of folklore (and often ad hoc) techniques in the literature on
lattice-reduction aided side-channel attacks such as examining the entire reduced
basis to find the target vector [22, 46] or the technique briefly mentioned in [17]
of examining candidates after each “tour” of BKZ (BKZ is described below).*

More generally, our work can be seen as a continuation of a line of recent
works that “open up” SVP oracles, i.e. that forgo treating (approximate) SVP
solvers as black boxes inside algorithms. In particular, a series of recent works
have taken advantage of the exponentially many vectors produced by a sieve:
in [10] the authors use the exponentially many vectors to cost the so-called
“dual attack” on LWE [69]; in [32, 52, 5] the authors exploit the same property
to improve sieving algorithms and block-wise lattice reduction; and in [31] the
authors use this fact to compute approximate Voronoi cells.

Our work may also be viewed in line with [27], which augments a BDD
solver for LWE with “hints” by transforming the input lattice. While these
hints must be linear(izable) (with noise), the authors demonstrate the utility
of integrating such hints to reduce the cost of finding a solution. On the one
hand, our approach allows us to incorporate arbitrary, non-linear hints, as long
as these can be expressed as an efficiently computable predicate; this makes
our approach more powerful. On the other hand, the scenarios in which our
techniques can be applied are much more restricted than [27]. In particular, [27]
works for any lattice reduction algorithm and, specifically, for block-wise lattice
reduction. Our work, in contrast, does not naturally extend to this setting; this
makes our approach less powerful in comparison. We discuss this in Section 5.4.

2 Preliminaries

We denote the logarithm with base two by log(-). We start indexing at zero.

2.1 Lattices

A lattice A is a discrete subgroup of RY. When the rows byg,...,bs_1 of B
are linearly independent we refer to it as the basis of the lattice A(B) =
{> v -b; | v; € Z}, i.e. we consider row-representations for matrices in this work.

The algorithms considered in this work make use of orthogonal projections 7; :
R? + span (by, . . ., bi,l)J‘ for i =0,...,d — 1. In particular 7o (-) is the identity.

The Gram-Schmidt orthogonalization (GSO) of B is B* = (b, ...,b}_,), where
the Gram—Schmidt vector b} is m;(b;). Then b = by and b} = b; — Z;;é Wi j -
bj for i=1,....d—1and p;; = %. Norms in this work are Euclidean and

4 For the purposes of this work, the CVP technique used in [17] is not entirely clear
from the account given there. We confirmed with the authors that is the analogous
strategy to their SVP approach: CVP enumeration interleaved with tours of BKZ.



denoted || - ||. We write A;(A) for the radius of the smallest ball centred at the
origin containing at least ¢ linearly independent lattice vectors, e.g. A1(A) is the
norm of a shortest vector in A.

The Gaussian heuristic predicts that the number |A N B| of lattice points
inside a measurable body B C R™ is approximately equal to Vol(B)/ Vol(A).
Applied to Euclidean d-balls, it leads to the following prediction of the length of
a shortest non-zero vector in a lattice.

Definition 1 (Gaussian heuristic). We denote by gh(A) the expected first
minimum of a lattice A according to the Gaussian heuristic. For a full rank lattice
A C R4, it is given by:

o 1/d day1/d
gh(A) = (M) = F(ljg) Vol(A) Y ~ ,/%e - Vol(A)!/?

where B4(R) denotes the d-dimensional Fuclidean ball with radius R.

2.2 Hard problems
A central hard problem on lattices is to find a shortest vector in a lattice.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice basis B,
find a shortest non-zero vector in A(B).

In many applications, we are interested in finding closest vectors, and we have
the additional guarantee that our target vector is not too far from the lattice.
This is known as Bounded Distance Decoding.

Definition 3 (a-Bounded Distance Decoding (BDD,)). Given a lattice
basis B, a vector t, and a parameter 0 < a such that the Fuclidean distance
between t and the lattice dist(t, B) < a-A1(A(B)), find the lattice vector v € A(B)
which is closest to t.

To guarantee a unique solution, it is required that o < 1/2. However, the
problem can be generalized to 1/2 < o < 1, where we expect a unique solution
with high probability. Asymptotically, for any polynomially-bounded v > 1 there
is a reduction from BDD, 3. to uSVP,, [14]. The unique shortest vector
problem (uSVP) is defined as follows:

Definition 4 (y-unique Shortest Vector Problem (uSVP,)). Given a lat-
tice A such that A2(A) > v - A1 (A) find a nonzero vector v € A of length A (A).

The reduction is a variant of the embedding technique, due to Kannan [48],

that constructs
B0
= (77)

where 7 is some embedding factor (the reader may think of 7 = E [||t —v|/ \/(ﬂ ).

If v is the closest vector to ¢ then the lattice A(L) contains (¢t — v, 7) which is
small.



2.3 Lattice algorithms

Enumeration [68, 47, 33, 73, 60, 2] solves the following problem: Given some
matrix B and some bound R, find v = Z?;()l u; - b; with u; € Z where at least one
u; # 0 such that ||v]|?> < R%. By picking the shortest vector encountered, we can
use lattice-point enumeration to solve the shortest vector problem. Enumeration
algorithms make use of the fact that the vector v can be rewritten with respect
to the Gram—Schmidt basis:

d—1 d—1 i—1 d—1 d—1
vV = U1b7: g - bz + ,LLiJ"bj = Uj+ Uq * Hij bj
=0 i=0 7=0 7=0 i=j+1

Since all the b} are pairwise orthogonal, we can express the norms of projec-
tions of v simply as

d—1 d—1 SR d—1 2
k()P =D Vw4 D wapay |05 =D (wi+ D wimy | - 16717
j=k i=j+1 =k i=j+1

In particular, vectors do not become longer by projecting. Enumeration algorithms
exploit this fact by projecting the problem down to a one dimensional problem of
finding candidate m4(v) such that ||m4 (v) ||* < R?. Each such candidate is then
lifted to a candidate m4_1(v) subject to the constraint |rq_1 (v)[|? < R2.

That is, lattice-point enumeration is a depth-first tree search through a tree
defined by the u;. It starts by picking a candidate for uy_; and then explores
the subtree “beneath” this choice. Whenever it encounters an empty interval of
choices for some u; it abandons this branch and backtracks. When it reaches the
leaves of the tree, i.e. ug then it compares the candidate for a full solution to the
previously best found and backtracks.

Lattice-point enumeration is expected [42] to consider

1 ) VOI(%d_k(R))
2 TIE el

nodes at level k£ and ZZ;(l) Hj. nodes in total. In particular, enumeration finds
the shortest non-zero vector in a lattice in d%(2¢)+°(@) time and polynomial
memory [42]. It was recently shown that when enumeration is used as the SVP
oracle inside block-wise lattice reduction the time is reduced to d4/8+(d) [2].
However, the conditions for this improvement are mostly not met in our setting.
Significant gains can be made in lower-order terms by considering a different R;
on each level 0 < ¢ < d instead of a fixed R. Since this prunes branches of the
search tree that are unlikely to lead to a solution, this is known as “pruning”
in the literature. When the R; are chosen such that the success probability is
exponentially small in d we speak of “extreme pruning” [35].

A state-of-the-art implementation of lattice-point enumeration can be found

in FPLLL [76]. This is the implementation we adapt in this work. It visits about
941924 _0.995 d+16.25

Hy, =

nodes to solve SVP in dimension d [2].



Sieving [1, 59, 16, 51, 15, 43] takes as input a list of lattice points, L C A, and
searches for integer combinations of these points that are short. If the initial list
is sufficiently large, SVP can be solved by performing this process recursively.
Each point in the initial list can be sampled at a cost polynomial in d [50]. Hence
the initial list can be sampled at a cost of \L|1+0(1).

Sieves that combine k points at a time are called k-sieves; 2-sieves take integer
combinations of the form w + v with w,v € L and u # +v. Heuristic sieving
algorithms are analyzed under the heuristic that the points in L are independently
and identically distributed uniformly in a thin spherical shell. This heuristic was
introduced by Nguyen and Vidick in [67]. As a further simplification, it is assumed
that the shell is very thin and normalized such that L is a subset of the unit
sphere in R?. As such, a pair (u,v) is reducible if and only if the angle between
u and v satisfies O(u,v) < /3, where 6(u,v) = arccos ({(u,v)/(||lu] - ||v])),

arccos(x) € [0, 7]. Under these assumptions, we require |L| & /4/3 in order to
see “collisions”, i.e. reductions. Lattice sieves are expected to output a list of
4/ 3)d/ 2@ hort lattice vectors [32, 5]. The asymptotically fastest sieve has a
heuristic running time of 20-292d+e(d) [15],

We use the performant implementations of lattice sieving that can be found
in G6K [78, 5] in this work, which includes a variant of [16] (“BGJ1”) and [43]
(3-Sieve). BGJ1 heuristically runs in time 20-349 #+e(d) and memory 20-205d+o(d),
The 3-Sieve heuristically runs in time 20-3724+0(@) and memory 20-189 d+o(d) 5

BKZ [72, 73] can be used to solve the unique shortest vector problem and thus
BDD. BKZ makes use of an oracle that solves the shortest vector problem in
dimension §. This oracle can be instantiated using enumeration or sieving. The
algorithm then asks the oracle to solve SVP on the first block of dimension 3
of the input lattice, i.e. of the lattice spanned by by, ...,bg_;. This vector is
then inserted into the basis and the algorithm asks the SVP oracle to return
a shortest vector for the block m (b1),...,m (bg). The algorithm proceeds in
this fashion until it reaches mg_o (bg—2),m4—2 (bg—1). It then starts again by
considering by, ..., bz_1. One such loop is called a “tour” and the algorithm will
continue with these tours until no more (or only small changes) are made to the
basis. For many applications a small, constant number of tours is sufficient for
the basis to stabilize.

The key parameter for BKZ is the block size 3, i.e. the maximal dimension of
the underlying SVP oracle, and we write “BKZ-5". The expected norm of the
shortest vector found by BKZ-5 and inserted into the basis as by for a random
lattice is ||bo|| ~ 5;,171 ~V01(/1)1/d for some constant §5 € O (81/(27)) depending
on 3.5

® In G6K the 3-Sieve is configured to use a database of size 2°-2059T°(d Ly default,
which lowers its time complexity.

® The constant is typically defined as ||bol| & 63 - Vol(A)** in the literature. From the
perspective of the (worst-case) analysis of underlying algorithms, though, normalizing
by d — 1 rather than d is appropriate.



In [10] the authors formulate a success condition for BKZ-3 solving uSVP on
a lattice A in the language of solving LWE. Let e be the unusually short vector in
the lattice and let ¢ be the Gram—Schmidt vectors of a typical BKZ-3 reduced
basis of a lattice with the same volume and dimension as A. Then in [10] it is
observed that when BKZ considers the last full block mq_g (bg—g) , ... ma—pg (ba—1)
it will insert m4—g (e) at index d — 3 if that projection is the shortest vector in
the sublattice spanned by the last block. Thus, when

Imas (e) | < il (1)
VB/d-Ele]|] < 8374 - vol(a)/ (2)

we expect the behavior of BKZ-8 on our lattice A to deviate from that of a
random lattice. This situation is illustrated in Figure 1. Indeed, in [6] it was
shown that once this event happens, the internal LLL calls of BKZ will “lift”
and recover e. Thus, these works establish a method for estimating the required
block size for BKZ to solve uSVP instances. We use this estimate to choose
parameters in Section 6: given a dimension d, volume Vol(A) and E[||e]|], we pick
the smallest 3 such that Inequality (2) is satisfied. Note, however, that in small
dimensions this reasoning is somewhat complicated by “double intersections” [6]
and low “lifting” probability [27]; as a result estimates derived this way are
pessimistic for small block sizes. In that case, the model in [27] provides accurate
predictions. Instead of only running BKZ, a performance gain can be achieved
by following BKZ with one SVP/CVP call in a larger dimension than the BKZ
block size [55, 5].

log, (II-11)

| | | | | | | |
0 20 40 60 80 100 120 140 160 180

projection index ¢

Fig. 1: BKZ— uSVP Success Condition. Expected norms for lattices of dimension
d = 183 and volume ¢™~"™ after BKZ-5 reduction for LWE parameters n =
65,m = 182,q = 521, standard deviation o = 8/\/% and $ = 56. BKZ is
expected to succeed in solving a uSVP instance when the two curves intersect at
index d — 8 as shown, i.e. when Inequality (1) holds. Reproduced from [6].



2.4 The Hidden Number Problem

In the Hidden Number Problem (HNP) [21], there is a secret integer a and a
public modulus n. Information about « is revealed in the form of what we call
samples: an oracle chooses a uniformly random integer 0 < t; < n, computes
s; = t; - @ mod n where the modular reduction is taken as a unary operator so
that 0 < s; < n, and reveals some most significant bits of s; along with ;. We
will write this as a; + k; = t; - @ mod n, where k; < 2¢ for some ¢ € Z that is a
parameter to the problem. For each sample, the adversary learns the pair (¢;, a;).
We may think of the Hidden Number Problem as 1-dimensional LWE [69].

2.5 Breaking ECDSA from nonce bits

Many works in the literature have exploited side-channel information about
(EC)DSA nonces by solving the Hidden Number Problem (HNP), e.g. [65, 19,
55, 12, 70, 75, 71, 63, 80, 46], since the seminal works of Bleichenbacher [18] and
Howgrave-Graham and Smart [45]. The latter solves HNP using lattice reduction;
the former deploys a combinatorial algorithm that can be cast as a variant of
the BKW algorithm [20, 3, 49, 40]. The latest in this line of research is [13]
which recovers a key from less than one bit of the nonce using Bleichenbacher’s
algorithm. More recently, in [56] the authors found the first practical attack
scenario that was able to make use of Boneh and Venkatesan’s [21] original
application of the HNP to prime-field Diffie-Hellman key exchange.

Side-channel attacks. Practical side-channel attacks against ECDSA typically
run in two stages. First, the attacker collects many signatures while performing
side-channel measurements. Next, they run a key recovery algorithm on a suitably
chosen subset of the traces. Depending on the robustness of the measurements,
the data collection phase can be quite expensive. As examples, in [62] the authors
describe having to repeat their attack 10,000 to 20,000 times to obtain one byte
of information; in [37] the authors measured 5,000 signing operations, each taking
0.1 seconds, to obtain 114 usable traces; in [63] the authors describe generating
40,000 signatures in 80 minutes in order to obtain 35 suitable traces to carry out
an attack.

Thus in the side-channel literature, minimizing the amount of data required
to mount a successful attack is often an important metric [70, 46]. Using our
methods as described below will permit more efficient overall attacks.

ECDSA. The global parameters for an ECDSA signature are an elliptic curve
E(F,) and a generator point G on E of order n. A signing key is an integer
0 < d < n, and the public verifying key is a point dG. To generate an ECDSA
signature on a message hash h, the signer generates a random integer nonce
k < n, and computes the values r = (kG), where x subscript is the « coordinate
of the point, and s = k= - (h + d - r) mod n. The signature is the pair (7, s).



ECDSA as a HNP. In a side-channel attack against ECDSA, the adversary
may learn some of the most significant bits of the signature nonce k. Without
loss of generality, we will assume that these bits are all 0. Then rearranging the
formula for the ECDSA signature s, we have —s™'-h+k = s -7 -dmodn,
and thus a HNP instance with a; = —s~'-h, t; =s 1 -7, and o = d.

Solving the HNP with lattices. Boneh and Venkatesan give this lattice for
solving the Hidden Number Problem with a BDD oracle:

0 0 0--- n 0
totits  tm1 1/n
The target is a vector (ag,...,am—1,0) and the lattice vector
(to-amodmn, ... ,ty—1-amodn, a/n)
is within v/m + 1 - 2¢ of this target when |k;| < 2°.

Most works solve this BDD problem via Kannan’s embedding i.e. by con-
structing the lattice generated by the rows of

[n 00+ 0 0 0
0OnO--- 0 0 0
000-- n 0 0
t() tl tg tm—l 22/’/1 0
LG0 a1 a2 - Qm—1 0 QZ_

This lattice contains a vector
(ko, k‘l, ey kmfl, QE . Oé/TL, 24)

that has norm at most v/m + 2 - 2. This lattice also contains (0,0,...,0,2¢ 0),
so the target vector is not generally the shortest vector. There are various
improvements we can make to this lattice.

Reducing the size of k by one bit. In an ECDSA input, k is generally positive, so
we have 0 < k; < 2¢. The lattice works for any sign of k, so we can reduce the
bit length of k by one bit by writing k} = k; — 2¢~1. This modification provides a
significant improvement in practice and is described in [65], but is not consistently
taken advantage of in practical applications.



Eliminating a. Given a set of input equations ag + kg = tg-amod n,...,am,—1 +

km—1 =tm_1-amod n, we can eliminate the variable a and end up with a new

set of equations o} + k1 =t} -komodn, ... ;al, | +kn_1=1t,, 1k modn.
For each relation, ¢ - (a; + ki) = t5* - (ap + ko) mod n; rearranging yields

ai—ti-tal~ao+kizti~tal-komodn.

Thus our new problem instance has m — 1 relations with a; = a; — t; - t; " - ag
and ) =t; - t5 "

This has the effect of reducing the dimension of the above lattice by 1, and
also making the bounds on all the variables equal-sized, so that normalization
is not necessary anymore, and the vector (0,0,...,0,2¢ 0) is no longer in the
lattice. Thus, the new target (ki, ko, ..., km_1, ko, 2%) is expected to be the unique
shortest vector (up to signs) in the lattice for carefully chosen parameters. We
note that this transformation is analogous to the normal form transformation for
LWE [11]. From a naive examination of the determinant bounds, this transfor-
mation would not be expected to make a significant difference in the feasibility
of the algorithm, but in the setting of this paper, where we wish to push the
boundaries of the unique shortest vector scenario, it is crucial to the success of
our techniques.

Let w = 21, With the above two optimizations, our new lattice A is
generated by:

(n 0 0--- 0 00
OnoO--- 0 00
00O0--- n 00
tothth -t 110
_all al2 aé"'a’;n—low_
and the target vector is vy = (k1 — w, ke —w, ..., kpm—1 — w, kg — w, w).

The expected solution comes from multiplying the second to last basis vector
with the secret (in this case, ko), adding the last vector, and reducing modulo n
as necessary. The entries 1 and w are normalization values chosen to ensure that
all the coefficients of the short vector will have the same length.

Different-sized k;s. We can adapt the construction to different-sized k; satisfying
|k;| < 2% by normalizing each column in the lattice by a factor of 2fma=z /2% [17]

3 The “lattice barrier”.

It is believed that lattice algorithms for the Hidden Number Problem “become
essentially inapplicable when only a very short fraction of the nonce is known for
each input sample. In particular, for a single-bit nonce leakage, it is believed that
they should fail with high probability, since the lattice vector corresponding to
the secret is no longer expected to be significantly shorter than other vectors in
the lattice” [13]. Aranha et al. [12] elaborate on this further: “there is a hard limit
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Fig. 2: Tllustrating the “lattice barrier”. BDD is expected to become feasible when
the length of the target vector ||v|| is less than the Gaussian heuristic gh(A); we
plot the upper bound in Equation (3) for log(n) = 256 against varying number
of samples m.

to what can be achieved using lattice reduction: due to the underlying structure
of the HNP lattice, it is impossible to attack (EC)DSA using a single-bit nonce
leak with lattice reduction. In that case, the ‘hidden lattice point’ corresponding
to the HNP solution will not be the closest vector even under the Gaussian
heuristic (see [66]), so that lattice techniques cannot work.” Similar points are
made in [30, 79, 75]; in particular, in [79] it is estimated that a 3-bit bias for a
256-bit curve is not easy and two bits is infeasible, and a 5- or 4-bit bias for a
384-bit curve is not easy and three bits is infeasible.

To see how prior work derived this “lattice barrier”, note that the volume of
the lattice is

Vol (A) =n™ 1w

and the dimension is m + 1. According to the Gaussian heuristic, we expect the
shortest vector in the lattice to have norm
D1+ (m+1)/2)

gh (A) ~ NG - Vol(A)Y/ (1)

fm+1 _ 1/(m+1)
~ 5o -(nm 1-w) .

Also, observe that the norm of the target vector v satisfies
lv]] < vVm+1-w. (3)

A BDD solver is expected to be successful in recovering v when ||v|| < gh(4).
We give a representative plot in Figure 2 comparing the Gaussian heuristic gh(A)
against the upper bound of the target vectors in Equation (3) for 1, 2, and
3-bit biases for a 256-bit ECDSA key recovery problem. The resulting lattice
dimensions explain the difficulty estimates of [79].

In this work, we make two observations. First, the upper bound for the target
vector is a conservative estimate for its length. Since heuristically our problem
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Fig. 3: Updated estimates for feasibility of lattice algorithms. We plot the expected
length of the target vector ||v|| against the Gaussian heuristic for varying number
of samples m for log(n) = 256. Compared to Figure 2, the crossover points result
in much more tractable instances. We can further decrease the lattice dimension
using enumeration and sieving with predicates (see Section 4).

instances are randomly sampled, we will use the expected norm of a uniformly
distributed vector instead. This is only a constant factor different from the upper
bound above, but this constant makes a significant difference in the crossover
points.

The target vector v we construct after the optimizations above has expected
squared norm

Ejlv|?] (Z >+w —m-E (ks - w)’] +w?
with _
E[(k - w)?] = 1/(2u). wz (i - w)?
1w 3 1w S 2wt 1) 3 u?
=w?/3+1 /16:0 - -

and we arrive at

=m-w?/3+m/6+w. (4)

E[[lv]?]

)

Using this condition, we observe that ECDSA key recovery problems previously
believed to be quite difficult to solve with lattices turn out to be within reach,
and problems believed to be impossible become merely expensive (see Tables 4
and 5). We illustrate these updated conditions for the example of log(n) = 256 in



Figure 3. The crossover points accurately predict the experimental performance
of our algorithms in practice; compare to the experimental results plotted in
Figure 4.

The second observation we make in this work is that we show that lattice
algorithms can still be applied when ||v|| > gh(A), i.e. when the “lattice vector
corresponding to the secret is no longer expected to be significantly shorter than
other vectors in the lattice” [13]. That is, we observe that the “lattice barrier’
is soft, and that violating it simply requires spending more computational time.
This allows us to increase the probability of success at the crossover points in
Figure 3 and successfully solve instances with fewer samples than suggested by
the crossover points.

An even stronger barrier to the applicability of any algorithm for solving the
Hidden Number Problem comes from the amount of information about the secret
encoded in the problem itself: each sample reveals log(n) — ¢ bits of information
about the secret d. Thus, we expect to require m > log(n)/(log(n) —£) in order to
recover d; heuristically, for random instances, below this point we do not expect
the solution to be uniquely determined by the lattice, no matter the algorithm
used to solve it. We will see below that our techniques allow us to solve instances
past both the “lattice barrier” and the information-theoretic limit.

i

4 Bounded Distance Decoding with predicate

We now define the key computational problem in this work:

Definition 5 (a-Bounded Distance Decoding with predicate (BDD, (.)))-
Given a lattice basis B, a vector t, a predicate f(-), and a parameter 0 < « such
that the Euclidean distance dist(t, B) < a-A1(B), find the lattice vector v € A(B)
satisfying f(v —t) = 1 which is closest to t.

We will solve the BDD,, 7.y using Kannan’s embedding technique. However,
the lattice we will construct does not necessarily have a unique shortest vector.
Rather, uniqueness is expected due to the addition of a predicate f(-).

Definition 6 (unique Shortest Vector Problem with predicate (uSVPy(.))).
Given a lattice A and a predicate f(-) find the shortest nonzero vector v € A

satisfying f(v) = 1.

Remark 1. Our nomenclature—“BDD” and “uSVP”—might be considered con-
fusing given that the target is neither unusually close nor short. However, the
distance to the lattice is still bounded in the first case and the presence of the
predicate ensures uniqueness in the second case. Thus, we opted for those names
over “CVP” and “SVP”.

Explicitly, to solve BDD,, r(.y using an oracle solving uSVP.), we consider

the lattice
B0
= (37)



where 7 = E [Hv — t||/\/3} is some embedding factor. If v is the closest vector

to t then the lattice A(L) contains (t — v, 7). Furthermore, we construct the
predicate f’() given f(-) as in Algorithm 1.

Input: v a vector of dimension d.
Input: f(-) predicate accepting inputs in R4
Output: Oor 1
if |vg—1| # 7 then
‘ return 0;
end
return f((vo,v1,...,v4—2));

Algorithm 1: uSVP predicate f’(-) from BDD predicate f().

LI R

Remark 2. Definitions 5 and 6 are more general than the scenarios used to
motivate them in the introduction. That is, both definitions permit the predicate
to evaluate to true on more than one vector in the lattice and will return the closest
or shortest of those vectors, respectively. In many—but not all—applications, we
will additionally have the guarantee that the predicate will only evaluate to true
on one vector. Definitions 5 and 6 naturally extend to the case where we ask for
a list of all vectors in the lattice up to a given norm satisfying the predicate.

5 Algorithms

We propose two algorithms for solving uSVPy(.), one based on enumeration—
easily parameterized to support arbitrary target norms—and one based on sieving,
solving uSVP ) when the norm of the target vector is < \/m - gh(A). We
will start with recounting the standard uSVP strategy as a baseline to compare
against later.

5.1 Baseline

When our target vector v is expected to be shorter than any other vector in the
lattice, we may simply use a uSVP solver to recover it. In particular, we may
use the BKZ algorithm with a block size 8 that satisfies the success condition
in Equation (2). Depending on 8 we may choose enumeration 8 < 70 or sieving
B > 70 to instantiate the SVP oracle [5]. When 8 = d this computes an HKZ
reduced basis and, in particular, a shortest vector in the basis. It is folklore in
the literature to search through the reduced basis for the presence of the target
vector, that is, to not only consider the shortest non-zero vector in the basis.
Thus, when comparing our algorithms against prior work, we will also do this,
and consider these algorithms to have succeeded if the target is contained in the
reduced basis. We will refer to these algorithms as “BKZ-Enum” and “BKZ-Sieve”



depending on the oracle used. We may simply write BKZ-5 or BKZ when the
SVP oracle or the block size do not need to specified. When 8 = d we will also
refer to this approach as the “SVP approach”, even though a full HKZ reduced
basis is computed and examined. When we need to spell out the SVP oracle used,
we will write “Sieve” and “Enum” respectively.

5.2 Enumeration

Our first algorithm is to augment lattice-point enumeration, which is exhaustive
search over all points in a ball of a given radius, with a predicate to immediately
give an algorithm that exhaustively searches over all points in a ball of a given
radius that satisfy a given predicate. In other words, our modification to lattice-
point enumeration is simply to add a predicate check whenever the algorithm
reaches a leaf node in the tree, i.e. has recovered a candidate solution. If the
predicate is satisfied the solution is accepted and the algorithm continues its
search trying to improve upon this candidate. If the predicate is not satisfied,
the algorithm proceeds as if the search failed. This augmented enumeration
algorithm is then used to enumerate all points in a radius R corresponding to the
(expected) norm of the target vector. We give pseudocode (adapted from [28])
for this algorithm in Algorithm 2. Our implementation of this algorithm is in the
class USVPPredEnum in the file usvp.py available at [7].

Theorem 1. Let A C R? be a lattice containing vectors v such that ||v|| < R =
&-gh(A) and f(v) = 1. Assuming the Gaussian heuristic, then Algorithm 2 finds
the shortest vector v satisfying f(v) = 1 in &% d¥/ ) +eld) steps. Algorithm 2
will make £41°@) calls to f(-).

Proof (sketch). Let R; = R. Enumeration runs in

%} Vol(By—r(R))
e § [

steps [42] which scales by g4t+old) when R scales by €. Solving SVP with enumer-
ation takes d%/ (2€)+o(d) gtepgs [42]. By the Gaussian heuristic we expect £ points
in B4(R) N A on which the algorithm may call the predicate f(-).

Implementation. Modifying FPLLL [76, 77] to implement this functionality is
relatively straightforward since it already features an Evaluator class to validate
full solutions—i.e. leaves—with high precision, which we subclassed. We then call
this modified enumeration code with a search radius R that corresponds to the
expected length of our target. We make use of (extreme) pruned enumeration by
computing pruning parameters using FPLLL’s Pruner module. Here, we make
the implicit assumption that rerandomizing the basis means the probability of
finding the target satisfying our predicate is independent from previous attempts.
We give some example performance figures in Table 1.



Input: Lattice basis bo,...,bg—1.
Input: Pruning parameters Ry, ..., Rg—1, such that R = Rp.
Input: Predicate f(-).
Output: umin such that ||v|| with v = Z?:_ol
Im; (0) 1| < Ry and f(w) =1 or L.
1 Umin & (1,0,...,0) € Z% // Final result
2 u <+ (1,0,...,0) € Z% // Current candidate
3 ¢+ (0,0,...,0) € R% // Centers
4 £+ (0,0,...,0) € Z%*: // Squared Norms
5 Compute p; ; and ||b;|| for 0 <4,j < d;

(Umin); - bi is minimal subject to

6 t<+ 0
7 while t < d do
8 backtrack < 1;
9 O < L1 + (ue +ce) - ||b7 )
10 if ét < R then
11 if t > 0 then
12 t<t—1;// Go down a layer
13 Ce = = S e i
14 ug < [ee];
15 backtrack < 0;
16 else if f(Z;i:_Ol u; - b;)) =1 and || Zf;ol u; - bl < | 2212—01 Umin,i - bi|
then
17 Umin < U;
18 backtrack < 1;
19 end
20 if backtrack = 1 then
21 t—t+1;
22 Pick next value for u: using the zig-zag pattern
(ct—I—O,ct + 1,Ct — 17Ct +2,Ct —2,...);
23 end
24 end
25 if f(3°¢7) (umin), - bi) = 1 then
26 ‘ return Umin;
27 else
28 ‘ return 1;
29 end

Algorithm 2: Enumeration with Predicate (Enum-Pred)



Table 1: Enumeration with predicate performance data

time #calls to f(+)
13 s/r observed expected observed (1.01¢)*
1.0287 62% 3.1h 2.4h 1104 30
1.0613 61% 5.1h 5.1h 2813 483

1.1034  62% 11.8h 15.1h 15274 15411
1.1384 64% 25.3h 40.1h 169950 248226

ECDSA instances (see Section 6) with d = 89 and USVPPredEnum. Expected running
time is computed using FPLLL’s Pruner module, assuming 64 CPU cycles are required
to visit one enumeration node. Our implementation of Algorithm 2 enumerates a radius
of 1.01- & - gh(A). We give the median of 200 experiments. The column “s/r” gives the
success rate of recovering the target vector in those experiments.

Relaxation. Algorithm 2 is easily augmented to solve the more general problem
of returning all satisfying vectors, i.e. with f(v) = 1 within a given radius R, by
storing all candidates in a list in line 17.

5.3 Sieving

Our second algorithm is simply a sieving algorithm “as is”, followed by a predicate
check over the database. That is, taking a page from [32, 5], we do not treat a
lattice sieve as a black box SVP solver, but exploit that it outputs exponentially
many short vectors. In particular, under the heuristic assumptions mentioned
in the introduction—all vectors in the database L are on the surface of a d-
dimensional ball—a 2-sieve, in its standard configuration, will output all vectors
of norm R < /4/3 - gh(A) [32].”7 Explicitly:

Assumption 1 When a 2-sieve algorithm terminates, it outputs a database L
containing all vectors with norm < 1/4/3 - gh(A).

Thus, our algorithm simply runs the predicate on each vector of the database.
We give pseudocode in Algorithm 3. Our implementation of this algorithm is in
the class USVPPredSieve in the file usvp.py available at [7].

Theorem 2. Let A C R be a lattice containing a vector v such that ||v|| < R =
\/4/3 - gh(A). Under Assumption 1 Algorithm 3 is expected to find the minimal

v satisfying f(v) = 1 in 20-2924+(d) steps and (4/3)d/2+0(d) calls to f(-).

Implementation. Implementing this algorithm is trivial using G6K [78]. How-
ever, some parameters need to be tuned to make Assumption 1 hold (approx-
imately) in practice. First, since deciding if a vector is a shortest vector is a

" The radius 1/4/3 - gh(A) can be parameterized in sieving algorithms by adapting the
required angle for a reduction and thus increasing the database size. This was used
in e.g. [31] to find approximate Voronoi cells.



hard problem, sieve algorithms and implementations cannot use this test to
decide when to terminate. As a consequence, implementations of these algorithms
such as G6K use a saturation test to decide when to stop: this measures the
number of vectors with norm bounded by C - gh(A) in the database. In G6K,
C = \/4/3 by default. The required fraction in [78] is controlled by the variable
saturation_ratio, which defaults to 0.5. Since we are interested in all vectors
with norms below this bound, we increase this value. However, increasing this
value also requires increasing the variable db_size_factor, which controls the size
of L. If db_size_factor is too small, then the sieve cannot reach the saturation
requested by saturation_ratio. We compare our final settings with the G6K
defaults in Table 2. We justify our choices with the experimental data presented
in Table 3. As Table 3 shows, increasing the saturation ratio increases the rate of
success and in several cases also decreases the running time normalized by the
rate of success. However, this increase in the saturation ratio benefits from an
increased database size, which might be undesirable in some applications.

Second, we preprocess our bases with BKZ-(d — 20) before sieving. This
deviates from the strategy in [5] where such preprocessing is not necessary.
Instead, progressive sieving gradually improves the basis there. However, in
our experiments we found that this preprocessing step randomized the basis,
preventing saturation errors and increasing the success rate. We speculate that
this behavior is an artifact of the sampling and replacement strategy used inside
G6K.

Relaxation. Algorithm 3 is easily augmented to solve the more general problem
of returning all satisfying vectors, i.e. with f(v) = 1, within radius 1/4/3 - gh(4),
by storing all candidates in a list in line 5.

Conflict with D4F. The performance of sieving in practice benefits greatly
from the “dimensions for free” technique introduced in [32]. This technique,
which inspired our algorithm, starts from the observation that a sieve will
output all vectors of norm /4/3 - gh(A). This observation is then used to

Input: Lattice basis bo,...,bg—1.
Input: Predicate f(-).
Output: v such that ||[v]| < y/4/3-gh(A(B)) and f(v) =1 or L.
r< 1
Run sieving algorithm on by, ...,bs—1 and denote output list as L;
for v € L do

if f(v)=1and (r =1 or ||v|| <|r||) then

| 7w

end
end
return 7r;

Algorithm 3: Sieving with Predicate (Sieve-Pred)

N oo W



Table 2: Sieving parameters
Parameter G6K  This work

BKZ preprocessing none d— 20
saturation_ratio 0.50 0.70
db_size_factor 3.20 3.50

Table 3: Sieving parameter exploration

3-sieve BGJ1
sat  dbf s/r  time time/rate s/r  time time/rate
0.5 3.5 61% 4062s 6715s 61% 4683s 7678s
0.5 4.0 60% 4592s 7654s 65% 4832s 7493s
0.5 4.5 60% 5061s 8508s 65% 5312s 8500s
0.5 5.0 58% 5652s 9831s 66% 5443s 8311s
0.6 3.5 65% 4578s 7098s 67% 4960s 7460s
0.6 4.0 64%  5003s 7819s 68% 4988s 7391s
0.6 4.5 68%  5000s 7408s 67% 5319s 7941s
0.6 5.0 65% 5731s 8887s 69% 5644s 8181s
0.7 3.5 72% 4582s 6410s 69% 6000s 8760s
0.7 4.0 69% 4037s 5895s 68% 5335s 7906s
0.7 4.5 68%  5509s 8102s 70% 6308s 9013s
0.7 5.0 69% 5693s 8312s 71% 6450s 9150s

We empirically explored sieving parameters to justify the choices in our experiments. In
this table, times are wall times. These results are for lattices A of dimension 88 where
the target vector is expected to have norm 1.1323-gh(A). The column “sat” gives values
for saturation_ratio; the column “dbf” gives values for db_size_factor; the columns
“s/r” give the rate of success.

solve SVP in dimension d using a sieve in dimension d' = d — ©(d/logd).
In particular, if the projection m4—_q4 (v) of the shortest vector v has norm
|ma—ar (v) || < \/4/3-gh(Ag—ar), where Ag_q is the lattice obtained by projecting
A orthogonally to the first d — d’ vectors of B then it is expected that Babai
lifting will find v. Clearly, in our setting where the target itself is expected to
have norm > gh(A) this optimization may not be available. Thus, when there is a
choice to construct a uSVP lattice or a uSVP () lattice in smaller dimension, we
should compare the sieving dimension d’ of the former against the full dimension
of the latter. In [32] an “optimistic” prediction for d’ is given as

~ dlog(4/3)
log(d/(2me))

which matches the experimental data presented in [32] well. However, we note
that G6K achieves a few extra dimensions for free via “on the fly” lifting [5]. We
leave investigating an intermediate regime—fewer dimensions for free—for future
work.

d=d (5)



5.4 (No) blockwise lattice reduction with predicate

Our definitions and algorithms imply two regimes: the traditional BDD/uSVP
regime where the target vector is unusually close to/short in the lattice (Sec-
tion 5.1) and our BDD/uSVP with predicate regime where this is not the case
and we rely on the predicate to identify it (Sections 5.2 and 5.3). A natural
question then is whether we can use the predicate to improve algorithms in the
uSVP regime, that is, when the target vector is unusually short and we have a
predicate. In other words, can we meaningfully augment the SVP oracle inside
block-wise lattice reduction with a predicate?

We first note that the predicate will need to operate on “fully lifted” can-
didate solutions. That is, when block-wise lattice reduction considers a block
mi(b;), ..., mi(bitp—1), we must lift any candidate solution to m(-) to check the
predicate. This is because projected sublattices during block-wise lattice reduction
are modeled as behaving like random lattices and we have no reason in general
to expect our predicate to hold on the projection.

With that in mind, we need to (Babai) lift all candidate solutions before
applying the predicate. Now, by assumption, we expect the lifted target to be
unusually short with respect to the full lattice. In contrast, we may expect all other
candidate solutions to be randomly distributed in the parallelepiped spanned by
by, ...,b;_; and thus not to be short. In other words, when we lift this way we
do not need our predicate to identify the correct candidate. Indeed, the strategy
just described is equivalent to picking pruning parameters for enumeration that
restrict to the Babai branch on the first ¢ coeflicients or to use “dimensions for
free” when sieving. Thus, it is not clear that the SVP oracles inside block-wise
lattice reduction can be meaningfully be augmented with a predicate.

5.5 Higher-level strategies

Our algorithms may fail to find a solution for two distinct reasons. First, our
algorithms are randomized: sieving randomly samples vectors and enumeration
uses pruning. Second, the gap between the target’s norm and the norm of the
shortest vector in the lattice might be larger than expected. These two reasons
for failure suggest three higher-level strategies:

plain Our “plain” strategy is simply to run Algorithms 2 and 3 as is.

repeat This strategy simply repeats running our algorithms a few times. This
addresses failures to solve due to the randomized nature of our algorithms.
This strategy is most useful when applied to Algorithm 3 as our implementa-
tion of Algorithm 2, which uses extreme pruning [35], already has repeated
trials “built-in”.

scale This strategy increases the expected radius by some small parameter, say
1.1, and reruns. When the expected target norm > \/m -gh(A) this strategy
also switches from Algorithm 3 to Algorithm 2.



6 Application to ECDSA key recovery

The source code for the experiments in this section is in the file ecdsa_hnp.py
available at [7].

Varying the number of samples m. We carried out experiments for common
elliptic curve lengths and most significant bits known from the signature nonce
to evaluate the success rate of different algorithms as we varied the number of
samples, thus varying the expected ratio of the target vector to the shortest
vector in the lattice.

As predicted theoretically, the shortest vector technique typically fails when
the expected length of the target vector is longer than the Gaussian heuristic, and
its success probability rises as the relative length of the target vector decreases.
We recall that we considered the shortest vector approach a success if the target
vector was contained in the reduced basis. Both the enumeration and sieving
algorithms have success rates well above zero when the expected length of the
target vector is longer than the expected length of the shortest vector, thus
demonstrating the effectiveness of our techniques past the “lattice barrier”.

Figure 4 shows the success rate of each algorithm for common parameters
of interest as we vary the number of samples. Each data point represents 32
experiments for smaller instances, or 8 experiments for larger instances. The
corresponding running times for these algorithms and parameters are plotted in
Figure 5. We parameterized Algorithm 2 to succeed at a rate of 50%. For some of
the larger lattice dimensions, enumeration algorithms were simply infeasible, and
we do not report enumeration results for these parameters. These experiments
represent more than 60 CPU-years of computation time spread over around two
calendar months on a heterogeneous collection of computers with Intel Xeon 2.2
and 2.3GHz E5-2699, 2.4GHz E5-2699A, and 2.5GHz E5-2680 processors.

Table 4 gives representative running times and success rates for Algorithm 3,
sieving with predicate, for popular curve sizes and numbers of bits known, and
lists similar computations from the literature where we could determine the
parameters used. It illustrates how our techniques allow us to solve instances
with fewer samples than previous work. We recall that most applications of
lattice algorithms for solving ECDSA-HNP instances seem to arbitrarily choose
a small block size for BKZ, and experimentally determine the number of samples
required. For 3 bits known on a 256-bit curve, there are multiple algorithmic
results reported in the literature. In [75] the authors report a running time of 238
CPU-hours to run the first phase of Bleichenbacher’s algorithm on 223 samples.
In [54] the authors report applying BKZ-20 followed by enumeration with linear
pruning to achieve a 21% success probability in five hours. Sieving with predicate
took 1.5 CPU-hours to solve the same parameters with a 63% success probability
using 87 samples.

Table 4 also gives running times and success rates for Algorithm 2, enumeration
with predicate, in solving instances beyond the information-theoretic barrier,
that is, when the number of samples available was not large enough to expect the
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Fig. 4: Comparison of algorithm success rates for ECDSA. We generated HNP
instances for common ECDSA parameters and compared the success rates of each
algorithm on identical instances. The z-axis labels show the number of samples m
and v = E[||v||] / E[||bo||], the corresponding ratio between the expected length
of the target vector v and the expected length of the shortest vector by in a
random lattice.
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Table 4: Performance for medium instances

log(n) bias m time alg. s/r  previous work

160 3 bits 53  3452s E 44%

160 2 bits 87  4311s S 62% enum, m = 100, s/r = 23% in [55]
160 1bit - - —  Bleichenbacher, m ~ 227, in [13]
192 3 bits 63 851s E 5%

192 2 bits 98 87500s S 56%

192 1bit - - - —  Bleichenbacher, m ~ 229, in [13]
256 4 bits 63  2122s E 41%

256 4 bits 65 76s S  66% BKZ-25 m~ 82, s/r=290% in [70]
256 3.6bits 73  69s S 66% BKZ-30, m =80, s/r = 94.5% in [36]
256 3bits 87 5400s S 63% enum, m = 100, s/r = 21% in [54]
256 2 bits - - - —  Bleichenbacher, m ~ 2%%, in [75]
384 5 bits 76 40026s E 60%

384 5bits 78 4125 S 91% BKZ-25, m ~ 94, s/r = 90% in [70]
384 4 bits 97  49200s S 88% BKZ-20, m =170, s/r = 90% in [9]
521 7 bits 74 16318s E 5%

521 7 bits 75 438s S 59%

521 6 bits 88  6643s S 7%

We compare the number of required samples m to previously reported results from
the literature, where available. Instances solved using Alg. 2 are labeled with “E” and
are solved using fewer samples than the information-theoretic barrier. Instances solved
with using Alg. 3 are labeled “S”. Time is in CPU-seconds. The success rate for our
experiments is taken over 32 experiments; see Figure 4 for how the success rate varies
with the number of samples.

Hidden Number Problem to contain sufficient information to recover the signing
key; breaking the “information-theoretic limit”. We recall that our techniques
can solve these instances because the predicate uniquely determines the target.

We give concrete estimates for the number of required samples and thus the
size of the resulting lattice problem in Table 5 for common ECDSA key sizes as
the number of known nonce bits varies. These estimates include both instances
we are able to solve, as well as problem sizes beyond our current computational
ability. When few bits are known, corresponding to large lattices, our approach
promises a smaller sieving dimension, but for small (that is, practical) dimensions,
“dimensions for free” is more efficient. Thus, when enough samples are available
it is still preferable to mount the uSVP attack. We note that Table 5 suggests
that there are feasible computations within range for future work with a suitably
cluster-parallelized implementation of Algorithm 3, in particular two bits known
for a 256-bit modulus, and three bits known for a 384-bit modulus. Furthermore,
Table 5 indicates that Algorithm 3 allows us to decode at almost the information-
theoretic limit for many instances. For comparison, we also give the expected
cost of Algorithm 2 when solving with one fewer sample than this limit.



Table 5: Resources required to solve ECDSA with known nonce bits.

log(n) = 160
bits known 8 7 6 5 4 3 2 1
Sieve m/d 21/ -2 25/9 29/15 35/23 45/33 61/49 99/84 258/232
Sieve-Pred m/d  21/22 24/25 28/29 33/34 42/43 57/58 87/88 193/194
Sieve-Pred cost 40.2 38.3 36.4 34.9 33.6 34.4 41.5 80.9
limit m 20 23 27 32 40 54 80 160
limit —1 cost 23.5 23.6 24.7 27.9 31.1 36.5 50.6 104.0
log(n) = 192
bits known 8 7 6 5 4 3 2 1
Sieve m/d 25/9 29/15 34/21 41/29 51/39 70/57 110/94 255/229
Sieve-Pred m/d  25/26 28/29 33/34 39/40 49/50 65/66 98/99 200/201
Sieve-Pred cost 37.8 36.4 349 33.9 33.7 35.7 45.2 83.5
limit m 24 28 32 39 48 64 96 192
limit —1 cost 23.7 23.7 26.0 27.2 31.5 38.3 54.2 118.6
log(n) = 256
bits known 8 7 6 5 4 3 2 1
Sieve m/d 33/20 38/26 45/33 54/42 69/56 93/79 146/128 341/310
Sieve-Pred m/d  33/34 37/38 43/44 52/53 65/66 87/88 131/132 267/268
Sieve-Pred cost 349 34.1 336 33.9 35.7 41.5 57.6 108.6
limit m 32 37 43 52 64 86 128 256
limit —1 cost 27.2 274  29.8 32.3 38.7 48.2 73.7 169.7
log(n) = 384
bits known 8 7 6 5 4 3 2 1
Sieve m/d 50/38 57/45 67/54 81/67 103/88 140/122 219/196 512/470
Sieve-Pred m/d  49/50 56/57 65/66 78/79 97/98 130/131 196/197 401/402
Sieve-Pred cost 33.7 343 35.7 38.8 44.9 57.2 82.0 158.8
limit m 48 55 64 ud 96 128 192 384
limit —1 cost 33.7 36.2 39.7 45.2 55.0 74.1 119.0 283.8
log(n) = 521
bits known 8 7 6 5 4 3 2 1
Sieve m/d 68/55 78/65 91/77 110/94 139/121 190/169 298/269 696/643
Sieve-Pred m/d  66/67 75/76 88/89 105/106 132/133 176/177 266/267 544/545
Sieve-Pred cost 35.9 38.0 41.8 47.9 58.0 74.5 108.2 212.5
limit m 66 75 87 105 131 174 261 521
limit —1 cost 38.0 43.7 50.9 59.4 75.6 105.5 174.1 419.1

Sieve Number of samples m required for solving uSVP as in Section 5.1 and sieving dimension

according to Equation (5) (called d’ there).
Sieve-Pred Number of samples m required for Algorithm 3 and sieving dimension d = m + 1.

Sieve-Pred cost Log of expected cost in CPU cycles; cost is estimated as 0.658 - d — 21.11 log(d) +
119.91 which does not match the asymptotics but approximates experiments up to dimension

100.

limit Information theoretic limit for m of pure lattice approach: [log(n)/bits known].

limit —1 cost Log of expected cost for Algorithm 2 in CPU cycles with m = [log(n)/bits known|—1

samples.



Fixed number of samples m. An implication of Table 5 is that our approach
allows us to solve the Hidden Number Problem with fewer samples than the
unique SVP bounds would imply. In some attack settings, the attacker may have
a hard limit on the number of samples available. Using Algorithms 2 and 3,
enumeration and sieving with predicate, allows us to increase the probability of
a successful attack in this case, and increase the range of parameters for which a
feasible attack is possible.

This scenario arose in [22], where the authors searched for flawed ECDSA
implementations by applying lattice attacks to ECDSA signatures gathered from
public data sources including cryptocurrency blockchains and internet-wide scans
of protocols like TLS and SSH. In these cases, the attacker has access to a fixed
number of signature samples generated from a given public key, and wishes to
maximize the probability of a successful attack against this fixed number of
signatures, for as few bits known as possible.
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Fig.6: Algorithm success rates in a small fixed-sample regime. We plot the
experimental success rate of each algorithm in recovering a varying number of
nonce bits using two samples. Each data point represents the success rate of the
algorithm over 100 experiments. Using sieving and enumeration with a predicate
allows the attacker to increase the probability of a successful attack even when
more samples cannot be collected. We parameterized enumeration with predicate
to succeed with probability 1/2.

The paper of [22] reported using BKZ in very small dimensions to find 287
distinct keys that used nonce lengths of 160, 128, 110, 64, and less than 32 bits
for ECDSA signatures with the 256-bit secp256k1 curve used for Bitcoin. They
reported finding two distinct keys using 128-bit nonces in two signatures each.

Experimentally, the BKZ algorithm only has a 70% success rate at recovering
the private key for 128-bit nonces with two signature samples, and the success rate
drops precipitously as the number of unknown nonce bits increases. In contrast,
sieving with predicate has a 100% success rate up to around 132-bit nonces. See



Figure 6 for a comparison of these algorithms as the number of signatures is fixed
to two and the number of unknown nonce bits varies.

We hypothesized that this failure rate may have caused the results of [22] to
omit some vulnerable keys. Thus, we ran our sieving with predicate approach
against the same Bitcoin blockchain snapshot data from September 2018 as used
in [22], targeting only 128-bit nonces using pairs of signatures. This snapshot
contained 569,396,463 signatures that had been generated by a private key that
generated two or more signatures. For the set of m signatures generated by each
distinct key, we applied the sieving with predicate algorithm to 2m pairs of
signatures to check for nonces of length less than 128 bits. Using this approach,
we were able to compute the private keys for 9 more distinct secret keys.
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Fig. 7: Search time in the presence of errors. We plot the experimental computation
time of the “scale” strategy to find the target vector as we varied the number of
errors in the sample. For these experiments, each “error” is a nonce that is one
bit longer than the length supplied to the algorithm. Increasing the number of
samples decreases the search time.

Handling errors. In practical side-channel attacks, it is common to have some
fraction of measurement errors in the data. In a common setting for ECDSA key
recovery from known nonce bits, the side channel leaks the number of leading
zeroes of the nonce, but the signal is noisy and thus data may be mislabeled. If
the estimate is below the true number, this is not a problem, since the target
vector will be even shorter than estimated and thus easier to find. However, if
the true number of zero bits is smaller than the estimate, then the desired vector
will be larger than estimated which can cause the key recovery algorithm to fail.

It is believed that lattice approaches to the Hidden Number Problem do not
deal well with noisy data [70] and “assume that inputs are perfectly correct” [13].
There are a few techniques in the literature to work around these limitations and
to deal with noise [46]. The most common approach is simply to repeatedly try



running the lattice algorithm on subsamples of the data until one succeeds [23].
Alternatively, one can use more samples in the lattice, in order to increase the
expected gap between the target vector and the lattice. For example, it was
already observed in [29] that using a lattice construction with more samples
increases the success rate in the presence of errors, even using the same block
size.

However, the most natural approach does not appear to have been considered
in the literature before: Use an estimate of the error rate to compute a new target
norm as in Eq. (4) and pick the block size or enumeration radius parameters
accordingly. That is, when the error rate can be estimated, this is simply a special
case of estimating the norm of the target vector. As before, even if the number
m of samples is limited, Algorithm 2 in principle can search out to arbitrarily
large target norms.

The most difficult case to handle is when more samples are not available
and the error rate is unknown or difficult to estimate properly. In this case, a
strategy is to repeatedly increase the expected target norm of the vector, pick an
algorithm that solves for this target norm R and attempt to solve the instance:
BKZ for R < gh(A), Algorithm 3 for R < /4/3 - gh(A) and Algorithm 2 for
R > \/4/3 - gh(A). We refer to this strategy as “scale” in Section 5.5.

Figure 7 illustrates how the running time of the “scale” strategy varies with
the fraction of errors and the number of samples used in the lattice.
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