BasicBlocker: ISA Redesign to Make Spectre-lmmune CPUs

Faster
Jan Philipp Thoma Jakob Feldtkeller Markus Krausz
jan.thoma@rub.de jakob.feldtkeller@rub.de markus.krausz@rub.de

Horst-Gortz Institute
Ruhr-University Bochum
Bochum, Germany

Tim Giineysu
tim.gueneysu@rub.de
Horst-Gortz Institute

Ruhr-University Bochum
Bochum, Germany

DFKI GmbH, Cyber-Physical Systems

Bremen, Germany

ABSTRACT

Recent research has revealed an ever-growing class of microar-
chitectural attacks that exploit speculative execution, a standard
feature in modern processors. Proposed and deployed countermea-
sures involve a variety of compiler updates, firmware updates, and
hardware updates. None of the deployed countermeasures have
convincing security arguments, and many of them have already
been broken.

The obvious way to simplify the analysis of speculative-execution
attacks is to eliminate speculative execution. This is normally dis-
missed as being unacceptably expensive, but the underlying cost
analyses consider only software written for current instruction-
set architectures, so they do not rule out the possibility of a new
instruction-set architecture providing acceptable performance with-
out speculative execution. A new ISA requires compiler and hard-
ware updates, but these are happening in any case.

This paper introduces BasicBlocker, a generic ISA modification
that works for all common ISAs and that allows non-speculative
CPUs to obtain most of the performance benefit that would have
been provided by speculative execution. To demonstrate the fea-
sibility of BasicBlocker, this paper defines a variant of the RISC-V
ISA called BBRISC-V and provides a thorough evaluation on both a
5-stage in-order soft core and a superscalar out-of-order processor
using an associated compiler and a variety of benchmarks.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; - Computer systems organization — Architectures.

This work is licensed under a Creative Commons Attribution International
4.0 License.

RAID °21, October 6-8, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9058-3/21/10.
https://doi.org/10.1145/3471621.3471857

Horst-Gortz Institute
Ruhr-University Bochum
Bochum, Germany

Horst-Gortz Institute
Ruhr-University Bochum
Bochum, Germany

Daniel J. Bernstein
djp@cr.yp.to
Horst-Gortz Institute
Ruhr-University Bochum
Bochum, Germany
University of Illinois at Chicago
Chicago, USA

KEYWORDS
Spectre, Hardware, RISC-V

ACM Reference Format:

Jan Philipp Thoma, Jakob Feldtkeller, Markus Krausz, Tim Giineysu, and Daniel
J. Bernstein. 2021. BasicBlocker: ISA Redesign to Make Spectre-Immune
CPUs Faster. In 24th International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID ’21), October 68, 2021, San Sebastian, Spain. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3471621.3471857

1 INTRODUCTION

The IBM Stretch computer in 1961 automatically speculated that a
conditional branch would not be taken: it began executing instruc-
tions after the conditional branch, and rolled the instructions back
if it turned out that the conditional branch was taken [9]. More
sophisticated branch predictors appeared in several CPUs in the
1980s, and in Intel’s first Pentium CPU in 1993 [24].

Software analyses in the 1980s reported that programs branched
every 4-6 instructions [17]. Each branch needed 3 extra cycles on
the Pentium, a significant cost on top of 4-6 instructions, especially
given that the Pentium could often execute 2 instructions per cycle.
However, speculative execution removed this cost whenever the
branch was predicted correctly.

Subsequent Intel CPUs split instructions into more pipeline
stages to support out-of-order execution and to allow higher clock
speeds. The penalty for mispredictions grew past 10 cycles. Mean-
while the average number of instructions per cycle grew past 2, so
the cost of each mispredicted branch was more than 20 instructions.
Intel further improved its branch predictors to reduce the frequency
of mispredictions. See generally [24].

Today the performance argument for branch prediction is stan-
dard textbook material. Accurate branch predictors are normally de-
scribed as “critical” for performance, “essential”, etc.; e.g., [11, 28, 31].
Deployed CPUs vary in pipeline lengths, but speculative execution
is common even on tiny CPUs with just a few pipeline stages, and
is universal on larger CPUs.

This pleasant story of performance improvements was then
rudely interrupted by Spectre [35], which exploited speculative

RAID °21, October 6-8, 2021, San Sebastian, Spain

behavior in various state-of-the-art CPUs to bypass critical secu-
rity mechanisms such as memory protection, stealing confidential
information via hardware-specific footprints left by speculatively
executed instructions. This kicked off an avalanche of emergency
software security patches, firmware updates, CPU modifications,
papers proposing additional countermeasures targeting various
software and hardware components in the execution flow with
an impact on performance, and further attacks. The literature is
reviewed below. Some countermeasures have been already broken,
and it is difficult to analyze whether the unbroken countermeasures
are secure.

1.1 Our Contributions

At this point the security auditor asks “Can’t we just get rid of
speculative execution?”—and is immediately told that this would
be a performance disaster. Every control-flow instruction would
cost P cycles where P is close to the full pipeline length, and would
thus cost the equivalent of P X I instructions where I is the number
of instructions per cycle. This extra P X I-instruction cost would be
incurred every 4-6 instructions. The emergency security patches de-
scribed above also sacrificed performance, but clearly were nowhere
near this bad.

We observe, however, that this performance analysis makes an
implicit assumption regarding the instruction set architecture. We
introduce an ISA feature, BasicBlocker, that undermines this as-
sumption. BasicBlocker is simple and can be efficiently implemented
in hardware. We show how modifications to the compiler utilize
the BasicBlocker design to minimize the performance penalty of
removing not only branch prediction, but also speculative fetching
(that is, instructions are fetched but never executed) from a pro-
cessor. The resulting processor design is less complex than current
speculative CPUs and therefore simplifies a CPU security audit.

To evaluate performance and demonstrate feasibility of Basic-
Blocker, we start with an existing compiler and an existing CPU for
an existing ISA; we modify all of these to support BasicBlocker; and
we compare the performance of the modified CPU to the perfor-
mance of the original CPU. We selected the RISC-V ISA [4] given
its openness. To demonstrate the compatibility to different types of
CPUs, we selected two implementation platforms, one in-order soft
core (a CPU simulated by an FPGA) and a simulated superscalar
out-of-order processor to allow evaluations without manufacturing
a chip. Full details of our BBRISC-V ISA appear later in the paper.

The Spectre authors stated that they “believe that long-term so-
lutions will require fundamentally changing instruction set architec-
tures” [35]. Our performance results rely on a synergy between
changes to the CPU and changes to the compiler, mediated by
changes to the ISA. To improve deployability, we explain how a
CPU supporting BasicBlocker can also run code compiled for the
old ISA. Our protection against Spectre relies solely on a simple
change to the CPU, namely disabling speculation, so it applies
both to old code and to new code. Recompilation is necessary only
for performance reasons to relieve occasional hot spots, not for
security.

Scope of This Work. Beyond branch prediction, CPU designers
have added many forms of speculation in the pursuit of every last
bit of performance, and the only safe assumption is that every

104

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

form of speculation threatens security. For example, there are now
known attacks exploiting the prediction of return addresses [36] or
speculative store-load forwarding [29].

BasicBlocker addresses specifically the performance loss of dis-
abling control-flow speculation. This includes among others branch
prediction and return-address speculation. Focusing on one form
is essential to make the analysis tractable, and branch prediction
in particular clearly qualifies as an important target. To protect
against attacks exploiting other forms of speculation (e.g., “Spectre-
STL”), we recommend that the CPU designer disable all forms of
speculation, not just control-flow speculation. This is easy for any
form of speculation with sufficiently small benefits, but otherwise
raises ISA-design challenges and performance-analysis challenges.

1.2 The BasicBlocker Concept in a Nutshell

The P-cycle branch-misprediction cost mentioned above is the time
from early in the pipeline, when instructions are fetched, to late
in the pipeline, when a branch instruction computes the next pro-
gram counter. If a branch passes through the fetch stage and is
mispredicted, then the misprediction will not be known until P
cycles later, when the next program counter is computed. Every
instruction fetched in the meantime needs to be rolled back.

The implicit assumption is that the ISA defines the branch in-
struction to take effect starting immediately with the next instruc-
tion. This assumption was already challenged by “branch delay
slots” on the first RISC architecture in the 1980s; see generally [19].
A branch delay slot means that a branch takes effect only after
the next instruction. The compiler compensates by moving the
branch up by one instruction, if there is an independent previous
instruction in the basic block, the contiguous sequence of instruc-
tions preceding the branch. A branch delay slot reduces the cost
of a branch misprediction by 1 instruction, and the first RISC CPU
pipeline was short enough that this removed any need for branch
prediction.

A few subsequent CPUs used double branch delay slots, reducing
the branch-misprediction cost by 2 instructions. Obviously one can
define an architecture with K = P X I delay slots after each branch.
However, code compiled for that architecture can only run on a
processor with exactly K delay slots. Since an optimal K depends
on the CPU, code would have to be compiled for every target CPU
individually.

In a BasicBlocker ISA, there is a “basic block N” instruction
guaranteeing that the next N instructions! will all be executed
consecutively. These instructions include, optionally, a branch in-
struction, which takes effect after the N instructions, no matter
where the branch is located within the N instructions. The same
ISA supports all values of N simultaneously.

It is the CPU’s responsibility to disable all speculative behavior,
including speculative fetching. With BasicBlocker, a significant part
of the performance lost from disabling control-flow speculation can
be regained in many cases. The BasicBlocker ISA lets the compiler
declare the basic-block size and move the branch up as far as possi-
ble within the block. The declaration of the basic-block size lets the
CPU fetch all instructions in the basic block, without speculation.

!t is natural to consider a variant that counts N fixed-length words (as an extreme,
N bytes) on an architecture with variable-length instructions.

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

If the branch instruction is not too close to the end of the block
then the CPU can immediately continue with the next basic block,
again without speculation. The overall performance benefit of this
rescheduling for each basic block matches the benefit of whatever
number of delay slots could be useful for that microarchitecture,
without the disadvantage of having to be compiled differently for
each number of delay slots. The new instruction further allows for
tight integration of further optimizations such as hardware loop
counters.

2 RELATED WORK

ISA Modifications. There is a long history of security features in
ISAs including extensions to enforce control-flow integrity (CFI) [2,
18], memory protection (e.g. ARM-MTE [1]), or the flushing of
microarchitectural states [59]. Other extensions simplify the se-
cure implementation of complicated and security-critical aspects,
e.g. by adding an instruction for AES computations [27]. All these
ISA extensions introduce new instructions, that can be used by a
programmer or compiler to harden a program against some spe-
cific attacks. Usage of the new features (and hence the protection)
requires some modification of the binary (mostly through recompi-
lation), but unmodified binaries run correctly as well. In all cases
hardware changes are required to support the new instructions.

Some ISAs remove incentives for control-flow speculation, al-
though not motivated by security. Berkley’s Precision Timed (PRET)
machines [38] target real-time computing applications which re-
quire a minimal worst-case runtime. Hence, control-flow specu-
lation is substituted by a round-robin scheduling of instructions
from different thread contexts. With BasicBlocker we focus on
single-threaded applications to still perform well without control-
flow speculation, but thread parallelism is likely to further improve
performance. VLIW architectures [23] introduce instruction level
parallelism by explicitly declaring instructions that can be executed
in parallel at compile time. VLIW further uses compiler heuristics
to make an educated guess about the direction of a branch. If the
branch is resolved in a different direction, the compiler places com-
pensating code at the branch target. This technique relocates the
speculation problem to the compiler level. A major drawback of
VLIW is the strict compiler dependency on the target platform:
many microarchitecture decisions are embedded into the ISA, and
code must be recompiled whenever those decisions change. Ba-
sicBlocker is carefully designed to not re-introduce speculation at
compiler level and the code generated by the compiler does not
depend on the microarchitecture of the target CPU. Furthermore,
the experience with VLIW architectures has shown that it is hard
to find enough instruction-level parallelism.

Spectre Countermeasures. Transient-execution attacks, including
speculative-execution attacks, gained widespread attention after
the disclosure of Spectre [35] and Meltdown [40]. Since then sev-
eral attacks have shown many ways that transient execution can
undermine memory protection and violate basic security assur-
ances [12, 15, 35, 36, 40, 41, 47, 52-54, 57]. General surveys of at-
tack vectors and countermeasures are provided by Kiriansy and
Waldspurger [34], Szefer [48], and Cannella et al. [13, 14]. In the
following we will focus on countermeasures against control-flow

105

RAID °21, October 6-8, 2021, San Sebastian, Spain

speculation based attacks. Typically, such attacks arrange for mis-
predicted instructions to access sensitive data. The instructions are
eventually rolled back but still leave footprints in the microarchi-
tectural state.

Some countermeasures prevent the attacker from controlling the
branch prediction [51, 65]. Such countermeasures are specialized
to prevent a specific type of Spectre attack in a specific setting.
Other approaches close a specific covert channel, most prominently
the timing channel introduced through caches [3, 10, 32, 33, 39, 45,
50, 55, 58-60, 64]. Again those countermeasures are targeted at a
specific setting and other covert channels remain exploitable.

A more general approach of countermeasures targets the at-
tackers ability to create a secret-dependent, transient CPU state
in combination with a covert channel. This can be done by lim-
iting the microarchitectural operations that can be performed on
sensitive values [5, 46, 56, 61-63]. Such approaches require the
knowledge which values are considered as secret as well as a model
that defines which kind of behavior (instructions or group of in-
structions in a transient setting) is dangerous. The security and
performance overhead is highly dependent on the selection of this
security model and the definition is not trivial, as new channels are
discovered constantly (e.g., [6]). Reported overheads reach from
10% [5] to 125% [56], but require the consideration of the specific
measurement environment.

Like most of the mentioned countermeasures, BasicBlocker re-
quires changes to the hardware mediated by the ISA. In contrast to
other approaches, BasicBlocker does not aim to fix the problems
induced by control-flow speculation, but rather tries to mitigate
the performance penalty caused by removing control-flow spec-
ulation entirely. The reasoning behind this approach is that only
the removal of speculative behavior is guaranteed to remove all
speculation-based attack vectors, by removing speculation as root
cause of the vulnerability. The comparability of the resulting per-
formance overhead is limited, as we also consider the impact of
speculative fetching, which is mostly ignored by state-of-the-art
Spectre countermeasures.

This paper focuses on speculative-execution attacks. It should
be possible to similarly address fault-based, transient-execution
attacks by “preponing” fault detection, removing most of the per-
formance benefit of transient execution after faults, but further
investigation of this idea is left to future work.

3 SPECULATION IN PROCESSORS

In a pipelined processor, each instruction passes through multi-
ple pipeline stages before it eventually retires. A textbook series
of stages is Instruction Fetch (IF), Instruction Decode (ID), Execu-
tion (EX), Memory Access (MEM) and Write Back (WB) [49]. More
complex CPUs can have many more stages.

If each stage takes one cycle then a branch instruction will be
fetched on cycle n in IF, decoded on cycle n + 1 in ID, and executed
on cycle n + 2 in EX, so at the end of cycle n + 2 the CPU knows
whether the branch is taken or not. Without branch prediction, IF
stalls on cycles n+ 1 and n + 2, because it does not know yet which
instructions to fetch after the branch. With branch prediction, IF
speculatively fetches instructions on cycles n + 1 and n + 2, and
ID speculatively decodes the first of those instructions on cycle

RAID °21, October 6-8, 2021, San Sebastian, Spain

n + 2. If the prediction turns out to be wrong then the speculatively
executed instructions are rolled back: all of their intermediate results
are removed from the pipeline.

The functional effects of instructions are visible only when the
instructions retire, but side channels sometimes reveal microar-
chitectural effects of instructions that have been rolled back. As
Spectre illustrates, this complicates the security analysis: one can
no longer trust a branch to stop the wrong instructions from being
visibly partially executed.

The standard separation of fetch from decode also means that ev-
ery instruction is being speculatively fetched. An instruction fetched
in cycle n could be a branch (or other control-flow instruction), but
the CPU knows this only after ID decodes the instruction in cycle
n + 1, so IF is speculatively fetching an instruction in cycle n + 1.
We emphasize that this behavior is present even on CPUs without
branch prediction: the CPU cannot know whether the instruction
changes the control flow before decoding it.

Disabling all control-flow speculation execution thus means that
every branch must stall fetching until it is executed, and, perhaps
even more importantly, that every instruction must stall fetching un-
til it is decoded. BasicBlocker addresses both of these performance
problems, as shown below.

4 CONCEPT

In this section, we outline the rationale behind our approach as
well as the modifications to the ISA that allow the elimination
of control-flow speculation within the microarchitecture. Though
we use the RISC-V instruction set in the following examples, our
solution is generally applicable to any ISA or processor as motivated
in Section 4.4 and 4.5.

4.1 Design Rationale

It is conceptually simple to thwart security issues arising from
control-flow speculation by entirely removing it, but is generally
believed to incur a severe loss in performance. BasicBlocker ad-
dresses this by providing metadata through an ISA modification to
assist non-speculative hardware with efficient execution of software
programs.

The CPU has a limited view of programs, accessing only a small
number of instructions at a time. With current ISAs, control-flow
instructions appear without advance notice, and their result is
available only after multiple pipeline stages, even though this result
is needed immediately to infer the next instruction.

BasicBlocker takes the concept of basic blocks to the hardware
level using novel instructions (in contrast to the textbook definition,
we require a basic block to be terminated by all control-flow instruc-
tions, i.e. also calls). At compile time a holistic view of the program
is available in form of a control-flow graph, including code struc-
tures such as basic blocks and control-flow changes. BasicBlocker
uses the information available at compile time, specifically the
length of individual basic blocks, and makes it available to the CPU
during execution. This allows a non-speculative CPU to avoid most
pipeline stalls, through the advance notice of control flow changes.

4.2 Basic Block Instruction

We introduce a new instruction, called basic block instruction (bb),
which lays the foundation for BasicBlocker. Currently, most CPUs

106

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

use control-flow speculation to gain performance. Enabling fast but
non-speculative fetching requires additional information for the
CPU, since normally we know that we can fetch the next instruction
only after the prior instruction was decoded and it is ensured that
the control flow does not deviate. Hence, normally the fetch unit
would have to be stalled until the previous instruction was decoded.
To avoid that delay, we define a new bb instruction that encodes
the size of the basic block. Within this basic block, the CPU is
allowed to fetch instructions, knowing that upcoming instructions
can be found in sequential order in memory and will definitely
be executed. That is, since per definition no control-flow changes
can occur within the basic block. The instruction further provides
information whether the basic block is sequential, stating that the
control flow continues with the next basic block in the sequence in
memory, i.e. the block does not contain a control-flow instruction.
Figure 1 shows the transformation of traditional code (left) to code
with bb instructions (right). The fetch unit of the CPU is responsible
for counting the remaining instructions in a given block and only
fetch until the end of the basic block. From there, the program
continues executing the next basic block which itself starts with a
bb instruction.

We also modified the behavior of existing control-flow instruc-
tions, such as bne, j and jlre. The goal is to give advance notice
of upcoming control-flow changes to the CPU. Since the processor
knows the number of remaining instructions per basic block, we
can schedule control-flow instructions within basic blocks as early
as data dependencies allow, and still perform the change of the
control flow at the end of the basic block. This key feature allows
the CPU to correctly determine the control flow before the end
of the basic block, and renders branch prediction in many cases
obsolete.

As a result, the only time that the CPU needs to stall fetching
is at the transition of two basic blocks, because the following bb
instruction needs to be executed before knowing the size and, hence,
being able to continue fetching. To avoid this delay, it is sufficient
to add the capability of representing one additional set of basic
block information internally and request this information as early
as possible. This means that the CPU interposes the bb instruction
of the next basic block as soon as the next basic block is known,
regardless whether there are instructions left in the current basic
block or not.

In Figure 2, this principle is illustrated for the code of Figure 1
(right side). The bb instruction of the second basic block is fetched
as soon as the branch target of bne is known. Afterwards, the
execution of the first basic block continues. Execution of the second
basic block can start as soon as the first basic block is consumed
and the size of the second basic block is known (after EX of bb). If
the current basic block does not contain a control-flow instruction,
which is indicated by the sequential flag of the bb instruction, the
CPU can fetch the next bb instruction directly. Otherwise, the next
bb instruction will be fetched after the control-flow instruction
passes the execution stage.

While the early fetching of the bb instruction changes the ex-
ecution order, it does not affect security or correctness since the
instruction is only fetched after the execution path is known for
certain.

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

; Start of first basic block

add a5, a0, a4

add t4,a3,a4

addi a4 ,a4,8

mul al,t3,t2

1h t2,0(a5)

bne a4,a6,80... ; compute branch and change PC
; Start of 2nd basic block
1h a7,0(al)

li a4,0

; Start of 3rd basic block
sh al,0(a0)

RAID ’21, October 6-8, 2021, San Sebastian, Spain

bb 6, @ ; first bb, size = 6, not seq
add a5,a0, a4

add t4,a3,a4

addi a4, a4,8

bne a4,a6,80... ; compute branch result
mul al,t3,t2

1h t2,0(a5) ; change PC after this instr.
bb 2, 1 ; 2nd bb, size = 2, seq

1h a7,0(al)

1i a4,0

bb 16, @ ; 3rd bb, size = 16, not seq
sh al,0(a0)

Figure 1: Example code for the new bb instruction. Left: Traditional RISC-V code does not contain information about the size
of upcoming basic blocks. The bne instruction terminates the first block and conditionally branches. Right: The bb instruction
gives information about upcoming code parts. The first basic block is terminated by the size given in the line 1 and performs
a conditional branch based on the outcome of the bne instruction, whose result is already determined earlier.

pne | IF | ID | EX [MEM| WB
mul IF | ID | EX |[MEM| WB

1n IF [ID | EX [MEM| WB

bb IF | ID | EX [MEM| WB
addi IF | ID | EX [MEM| WB

mul IF | ID | EX [MEM| WB

‘New Basic Block
1n IF | ID | EX [MEM

Figure 2: Pipeline diagram for optimal code. The bb instruc-
tion of the next basic block is fetched as soon as the branch
was executed. The branch only takes effect at the end of
the current basic block. When the branch instruction is
sufficiently early rescheduled, the next basic block can be
fetched without stalls.

Even with these changes it is sometimes necessary to stall the
CPU at the transition of two basic blocks until the size of the new
basic block is known. Therefore, this concept works best with soft-
ware that contains many large basic blocks with opportunities
to reschedule control-flow instructions at compile time. Software
with a large number of small basic blocks is therefore less efficient,
leading to pipeline stalls.

The worst case is a control-flow instruction that could not be
rescheduled, since then the CPU needs to be stalled both for the
information from the control-flow instruction as well as from the
bb instructions. This case is depicted in Figure 3. We address the
performance impact of small basic blocks in Section 4.3.

Overall, the rescheduling concept can be imagined as a variably-
sized branch delay slot. There are two core advantages of our con-
cept over traditional branch delay slots:

e The CPU does not need special constructs for the branch
delay instructions. At the end of a basic block, the CPU can
simply fetch the instruction at the target address, regardless

107

IF | ID | EX |MEM

IF | ID | EX |MEM| WB

New Basic Block

IF EX |MEM

Figure 3: The worst case scenario has a branch instruction
at the end of a basic block.

of the type of instructions that were executed prior. If the
basic block was sequential, the target register defaults to
PC + 4. If any control-flow operations were executed, the
target register points to the target address.

By having a variably-sized branch delay mechanism, the
code is compatible to all hardware architectures that support
the bb instruction. Since the control-flow instructions were
rescheduled as early as possible, the code is optimal for those
hardware architectures. For fixed size branch delay slots,
CPUs with smaller pipelines may introduce unnecessary
nop instructions.

See also Section 4.3 for further optimizations that integrate tightly
with the bb instruction.

4.2.1 ISA-Extension Specification. We now define the changes re-
quired by BasicBlocker more precisely. A processor supporting the
bb instruction is required to have an instruction counter IC, a target
register T, a branch flag B, and an exception flag E, all initialized to
0 on processor reset and used only as defined below. The functional
behavior of the bb instruction is given in Definition 4.1, the changes
to the control flow in Definition 4.2 and the behavior that raises an
exception in Definition 4.3.

Definition 4.1 (BB Instruction). The bb instruction takes a size
parameter n > 0 and a sequential flag seq, and is executed as follows.
IfIC = 0: IC « n;if seq = 0 then B «— 1;if seq = 1 then B < 0
and T is set to the address of the n + 1-th instruction following the
bb instruction. Otherwise, if IC # 0, then IC « 0 and E « 1 to
catch illegal bb instructions.

RAID °21, October 6-8, 2021, San Sebastian, Spain

Thus, on a functional level, Definition 4.1 only sets IC, T, B, and
E but has no further effect on the execution of a program. The
subsequent definitions have further effects.

Definition 4.2 (BB-Delayed Branches). The execution of non-bb
instructions is modified as follows:

o Before every non-bb instruction: if IC > 0 then IC « IC - 1.

e During every control-flow instruction: any write to PC is
instead written to T if B > 0, and is ignored if B = 0.

o After every control-flow instruction: if B = 0 then E « 1;
otherwise B < B — 1.

e Subsequently, after every non-bb instruction: if IC = 0 then
PC « T;andif IC=0and B > 0 then E « 1.

BasicBlocker raises an exception (E = 1) whenever the bb in-
struction is used in an illegal way.

Definition 4.3 (BB Exceptions). After every instruction, an excep-
tion is raised if IC = 0 and E # 0.

In other words, after the n instructions covered by a bb instruc-
tion, an exception is raised if any of the following occurred:

e seq = 0 and there was not exactly one control-flow instruc-
tion in the n instructions;

e seq = 1 and there was a control-flow instruction in the n
instructions.

e A bb instruction appears within the n instructions indicated
by the previous bb instruction.

All three definitions are required, in order to add BasicBlocker to
an arbitrary ISA. The following extra requirement, a requirement
to use bb instructions, slightly simplifies the implementation of
BasicBlocker, although later we consider dropping this requirement
for compatibility.

Definition 4.4 (Enforced BB). In a BasicBlocker CPU with en-
forced BB: Before every non-bb instruction (and before IC is decre-
mented), an exception is raised if IC = 0.

To achieve an increased performance, an implementation of Ba-
sicBlocker can pre-execute bb instructions (cf. Figure 2) as defined
in Definition 4.5. This pre-execution affects the microarchitecture
and timing but not the ISA semantics.

Definition 4.5 (BB Prefetching). A BasicBlocker CPU with prefetch-
ing pre-executes a bb instruction bb;,1 during the execution of a
block, indicated by the bb instruction bb;, as soon as:

o if bb; is sequential: bb; is resolved.
e if bb; is not sequential: the first control flow instruction of
the block is resolved.

This requires an additional register P which holds the values n and
seq until execution reaches the instruction following the prefetched
bb instruction. More precisely, when IC = 0 and E = 0:

e [C « n taken from P.
e if seq = 0in P than B « 1 else B « 0.

If the prefetch address is invalid, or if the prefetch address is valid
but the prefetched instruction is not a bb instruction, then pre-
execution is skipped and does not raise an exception.

108

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

4.3 Further Optimizations

The above presented concept can be further optimized by providing
the information contained in the bb instruction as soon as possible
using pipeline forwarding. By construction, none of the information
contained in the bb instructions affects any other element of the
CPU than the fetch unit. Hence, it is possible to wire these bits back
to the fetch unit directly after the decode stage without further
changes to the design. Another clock cycle can be saved by using
a bit mask to fast-decode the output of the instruction memory
directly, with only marginal overhead.

A significant boost for performance can be achieved by intro-
ducing an additional interface to the instruction memory (or cache)
that is used to access bb instructions. This would allow the fetch
unit to request and process bb instructions in parallel with the nor-
mal instructions and, therefore, eliminate the entire performance
overhead that is introduced though the addition of these instruc-
tions. Since a basic block contains always at least one instruction
additional to the bb instruction, this instruction can be fetched
before knowing the size of the basic block, without violating the
above stated principles.

Further optimizations are possible with additional changes to
the ISA. For example, the 1-bit sequential flag can be replaced by a
multi-bit counter of the number of control-flow instructions in the
upcoming block, so (e.g.) if (a&8&b&&c) can be expressed as three
branches out of a single block. This also changes the branch flag B
to a multi-bit branch counter.

The idea to announce upcoming control-flow changes early on is
also the foundation of hardware loop counters, as already discussed
in the literature [20, 44]. Here, the software announces a loop to
the hardware, which then takes responsibility for the correct exe-
cution. We can seamlessly support hardware loop counters in our
design concept. One new instruction (lcnt) is necessary to store
the number of loop iterations into a dedicated register. The start
and end address of a loop can be encoded into the bb instruction,
by indicating with two separate flags whether the corresponding
basic block is the start (s-flag) or end (e-flag) block of the loop. This
allows the hardware to know the next basic block, as soon as the
bb instruction of the end block gets executed. The fast execution
of nested loops can be supported by adding multiple start and end
flags to the bb instruction as well as adding multiple registers for
the number of loop iterations. A more detailed description of the
loop counter integration to our concept can be found in Appendix
A.

4.4 Compatibility

For simplicity and comprehension all examples above consider
an in-order, single issue processor with a generic five stage RISC
pipeline. Control-flow speculation is widely used in such proces-
sors: e.g., the ARM Cortex-A53, which has shown to be vulnerable
against speculative-execution attacks [42]. There is also tremen-
dous interest in larger, super-scalar, out-of-order processors, where
control-flow speculation is universal.

Adding support for out-of-order processors is trivial as per de-
sign, every instruction that is fetched by the processor will be retired
- that is, if none of the instructions raise an exception. Once the CPU
fetches the instruction, reordering is permitted as far as functional

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

correctness is ensured. Utilizing the two counter sets, reordering
can be done beyond basic block borders if the bb instruction of the
following basic block has been executed.

Similarly, support for superscalarity is easy to achieve. Once the
bb instruction is executed, the CPU may fetch and execute all in-
structions within the current basic block in an arbitrary amount of
cycles. If the successor basic block is known the CPU may fetch in-
structions from both basic blocks in one cycle. Secondary pipelines
may also be useful to pre-execute bb instructions for the following
basic block in parallel as described earlier.

Generally, the pipeline length can be chosen flexibly. However,
as the CPU needs to wait for results of branch and bb instructions,
it is desirable to make the results of these instructions available as
early as possible.

A major feature of modern systems is the support of interrupts
and context switches. We note that our concept does not impede
such features; it merely increases the necessary CPU state that
needs to be saved in such an event. More specifically, it is necessary
to save the already gathered information about the current and
upcoming basic blocks as well as the state of the loop counter, in
addition to all information usually saved during a context switch.
It is important that this data is secured against manipulation but
that is true for all data stored during a context switch (e.g. register
values, FPU state, ...).

Our proposal includes one new instruction and a modification
to existing control-flow instructions. For easier deployability, it is
desirable for a BasicBlocker CPU to be backwards-compatible. One
could define new BasicBlocker control-flow instructions separate
from the previous control-flow instructions. However, it suffices to
interpret a control-flow instruction as having the new semantics if
it is within the range of a bb instruction, and otherwise as having
the old semantics, dropping Definition 4.4. Legacy code compiled
for the non-BasicBlocker ISA will then run correctly but with low
performance, and code recompiled to use bb will run correctly with
high performance.

It would also be possible to integrate our solution into a secure
enclave by providing a modified fetch unit for the enclave. Secu-
rity critical applications could run in the protected enclave while
legacy software can be executed on the main processor without
performance losses.

We do not expect major problems for implementing BasicBlocker
in JIT compilers. In some cases, JIT compilers already need to know
the basic-blocks of the program and in general one can artificially
insert sequential basic-blocks according to the window size of the
compiler.

4.5 BasicBlocker for Generic ISAs

In the following, we outline the changes necessary to implement the
BasicBlocker concept in arbitrary ISAs. We observe that in common
ISAs, branches are realized with three basic operations which are
performed by a varying number of instructions.

(1) First, the operands on which the branch decision will be
made are compared. The result of the comparison may be
saved in a special purpose flag (e.g. Intel x86, ARM), a register
value, or used immediately (e.g. RISC-V, some Intel x86).

109

RAID °21, October 6-8, 2021, San Sebastian, Spain

(2) Based on the outcome of the comparison, the target address
is computed.

(3) The instruction pointer is changed to the target address
computed in the previous stage.

For most ISAs, steps 2) and 3) are combined to one instruction.
RISC-V is unusual in having only branch instructions that combine
all three operations.

A BasicBlocker ISA is required to separate operation 1) and 2)
from 3), thus avoiding the need for speculative instruction fetch-
ing. Hence, a BasicBlocker ISA needs at least one instruction that
compares the operands and computes the target address. Operation
3) is handled implicitly by the bb instruction at the beginning of
the basic block, which indicates after how many instructions the
instruction pointer is updated to the target register. A BasicBlocker
ISA may separate operation 1) and 2) arbitrarily. For example, an
ARM version of BasicBlocker could keep the decoupled compare
instruction. The branch instructions would only compute the target
address based on the compare and the instruction pointer would be
updated to the target address at the end of a basic block, indicated
by the previous bb instruction.

4.6 Security

BasicBlocker was carefully designed with security in mind and the
following section provides an overview of the security argument.

4.6.1 Defense Against Spectre-type Attacks. The first and foremost
goal of BasicBlocker is to allow removing control-flow speculation
to prevent Spectre-type attacks. CPUs that implement BasicBlocker
should be designed after the following principle: The microarchitec-
tural state of a CPU is affected only by instructions that will eventually
be retired. Processors adhering to this principle are not allowed to
do any type of control-flow speculation, including speculative fetch-
ing, as speculation always affects the microarchitectural state at
least temporarily. This strict and simple design principle leads di-
rectly to the conclusion that the CPU is not vulnerable against any
Spectre-type attack exploiting control-flow speculation, including
Spectre-PHT, Spectre-BPB, and Spectre-RSB (taking the classification
from Canella et al. [14]). BasicBlocker enables fast and efficient
execution of code while maintaining the above stated principle.

Since BasicBlocker inherently does not provide mechanisms
targeting the performance impact of disabling data-flow speculation
(e.g. store-load forwarding, data cache prefetching), we consider
attacks exploiting data-flow speculation such as Spectre-STL (again
taking the classification fromCanella et al. [14]) out of scope for this
paper. It is the CPU designer’s responsibility to prevent exploitation
of data-flow speculation which can either be achieved by disabling it
entirely or by implementing appropriate countermeasures. It is also
possible to extend BasicBlocker to provide performance recovering
mechanisms for data-flow speculation, e.g. by flagging allowed
store to load forwarding code constructs at compile time, but we
leave this for future work. We also do not discuss exception-based
attacks such as Meltdown [40].

4.6.2 Manipulation of BB Instruction Arguments. In the following,
we consider a powerful attacker that is able to manipulate the bb
instruction arguments or the internal state of the bb registers. An
attacker able to manipulate arguments of the bb instruction is in

RAID °21, October 6-8, 2021, San Sebastian, Spain

control of certain parts of the control flow, by either flipping the
sequential flag, decreasing the basic block size, or increasing the
basic block size. Flipping the sequential flag will always lead to an
exception, due to Definition 4.3. Decreasing the basic block size
allows to skip the last instructions of a basic block, which might be
critical, e.g. the removal of a secret key. Increasing the basic block
size raises an exception in the enforced BB mode (Definition 4.4), but
allows the execution of additional instructions in the legacy mode.
Such additional instructions might be sufficient to form a covert
channel, if the required gadgets can be found in the executable.

While those attacks may be harmful, this attacker model requires
full control over the code executed on the victim’s device and/or
the register state. Generally, there are two points in time where an
attacker can inject the manipulations described above: 1) at compile
time and 2) at runtime. For 1), the attacker must be in control of the
compiler which gives full control over the code anyway. In addition,
a simple static analysis is sufficient to verify the correctness of all bb
arguments of a specific binary. 2) Manipulation at run time comes
down to either code injection or manipulation of internal values
of the CPU for a particular program state, e.g. during a context
switch or physical fault attack. Both, an attacker in control of the
register state and an attacker able to perform code injection, have
full control over the code executed by the victim’s device in any
case. BasicBlocker does not affect important OS security features
like access rights management and therefore does not facilitate
such attacks.

5 IMPLEMENTATION

We now give a specific example of BasicBlocker applied to an ISA,
by defining BBRISC-V, a BasicBlocker modification of the RISC-
V ISA. We further present a proof-of-concept implementation on
a BBRISC-V soft core as well as a timing accurate simulator. To
allow running a variety of benchmarks, we also provide a modified
compiler for the BBRISC-V ISA.

Our modified ISA additionally specifies support for hardware
loop counters, as proposed in Section 4.3, which we partly evaluate
in Appendix A.

5.1 BBRISC-VISA

The BasicBlocker modification requires the definition of the bb
instruction as well as semantic changes to all control-flow instruc-
tions.

The bb instruction does not fit into any of the existing RISC-V
instruction types so we defined a new instruction type to achieve
an optimal utilization of the instruction bits. The instruction does
not take any registers as input but rather parses the information
directly from the bitstring. The size is encoded as a 16-bit immediate,
enabling basic blocks with up to 65536 instructions. One can split
a larger basic block into multiple sequential blocks if necessary.
The sequential flag is a one-bit immediate value. The behavior of
all RISC-V control-flow instructions (JAL, JALR, BEQ, BNE, BLT, BGE,
BLTU, BGEU) is changed so that they alter the control flow at the
end of the current basic block.

110

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

5.2 CPU Implementation

VexRiscv. For the soft core variant of an in-order CPU, we chose
the 32-bit VexRiscv core [43], written in SpinalHDL. This soft core
is highly configurable by the use of plugins, which can be easily
extended and modified to include new functionalities. We use a
configuration with five stages (IF, ID, EX, MEM, WB) and 4096 byte,
one-way instruction- and data caches. The result of control-flow
instructions is available after the memory stage. We compare the
modified BasicBlocker version of VexRiscv against the original core
with the best available branch predictor (dynamic target). To enable
a fair comparison, the BasicBlocker version has minimal configu-
ration delta to the original core, that is we disabled control-flow
speculation, by stalling the CPU until the next instruction is known,
and added the logic described in Section 4. Other pipeline charac-
teristics, e.g., cache misses behavior or jump target computation,
remain unchanged.

Although speculation based attacks mostly get linked to out-of-
order CPUs with deep pipelines, they are also feasible on smaller,
in-order architectures that are more comparable to the VexRiscv
[42].

gemb. To simulate the performance of CPUs with superscalar pipe-
lines and out-of-order execution, we modified the 64-bit O3 CPU
model of the gem5 simulator [8]. The gem5 implementation allows
high configurability, for example arbitrary length pipelines can
easily be simulated by modifying the delays between two stages.

In the default configuration, we use a superscalar pipeline with
width 2, i.e. each pipeline stage can handle two instructions simul-
taneously. If not stated otherwise, we use the default configura-
tion supplied in the se.py configuration file. The simulated CPU
is equipped with 64kB L1 data cache and 32kB instruction cache.
Using a 192 instruction entry sized reorder buffer, the CPU can exe-
cute instructions out-of-order. As for the VexRiscv implementation,
the BasicBlocker version makes minimal configuration changes to
enable a fair comparison of performance results.

5.3 Compiler Modification

To be able to evaluate the performance of our concept with well
known benchmark programs we developed a compiler supporting
and optimizing towards our instructions. Our compiler is based
on the LLVM [37] Compiler Framework version 10.0.0, where we
modified the RISC-V backend by introducing our ISA extension and
inserting new compilation passes at the very end of the compilation
pipeline to not interfere with other passes that do not support our
new instructions.

First of all we split basic blocks for all occurrences of call in-
structions since they break the consecutive fetching and execution
of instructions. As a next step we insert the bb instructions at the
beginning of each basic block that include the number of instruc-
tions in the block. This is done directly before code emission to
ensure that the number of instructions does not change due to
optimizations. Linker relaxation, however, is one optimization that
could reduce the number of instructions by substituting calls with a
short jumping distance by a single jump instruction instead of two
instructions (aupic and jalr). Since linker relaxation is not a major
optimization, we simply disabled it, but it would also be possible to
modify the linker to implement BasicBlocker-aware relaxation.

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

Our modifications to the semantics of terminating instructions
(branches, calls, returns and jumps) allow them to be scheduled
before the end of a basic block and rescheduling them earlier is also
crucial to the performance of the code. This is done in a top-down
list scheduler that is placed after register allocation and prioritizes
terminating instructions. Additionally, we run another pass after-
wards that relocates the terminating instructions to earlier positions
in the basic blocks if this is supported by register dependencies.

6 EVALUATION

In the following we provide a performance evaluation of BasicBlocker
on VexRiscv and gem5 by comparing the execution time of differ-
ent variants of the two CPUs. Thereby, special care is given to the
impact of CPU features and code characteristics.

6.1 Selection of Benchmarks

Both implementations of BasicBlocker presented in this paper en-
force the presence of exactly one bb instructions in every basic
block (i.e. misplaced or missing bb instructions cause a program to
crash). This ensures that the benchmarks only measure the perfor-
mance of BasicBlocker without noise from legacy code snippets,
e.g. library functions, but also requires all code to be compiled by
our modified compiler. Since this forces us to perform the bench-
marks bare-metal (i.e. without OS support), it is quite difficult to
run typical user level benchmarks such as SPEC.

We chose the benchmarks included in the Embench benchmark
suite [25], the well-known Coremark benchmark [26] and our own
pointer-chasing benchmark for our evaluation. The selection of pro-
grams within the Embench suite resemble code from different use
cases such as cryptography (nettle-sha, nettle-aes), image process-
ing (picojpeg) and matrix multiplication (matmult-int). For three of
the programs we also included our own optimized version (-opt),
targeted at general architectures and discussed in more detail in
Appendix B. All those programs are characterized by minimal de-
pendencies and are thus well suited for bare-metal benchmarking.

Since all of the benchmarks require the libc library (and some
also 1ibm), we compiled Newlib [30] using our modified LLVM com-
piler. However, some of the benchmark programs require further
dependencies, e.g. 1libgcc, and could thus not be compiled for our
target. For the evaluation we included all available benchmark pro-
grams that compiled with the modified 1ibc and 1ibm and passed
the test for functional correctness.

We compiled three versions of each benchmark program, as
listed in Table 1: one without BasicBlocker, one with a new compile
flag enabling the insertion of bb instructions, and one with bb plus
rescheduling of terminator instructions. Except for these differ-
ences, the compiler and compile flags are identical. The compile
flags are listed in Appendix C. We ran those programs on several
variants of VexRiscv and gemb5, as listed in Table 2. The simplest
non-speculative variant (NoSpec) disables branch prediction and
speculative fetching. The control-flow speculation configuration
(CFS) implements the unmodified version of the CPU with the de-
fault branch predictor. As we execute our benchmarks bare-metal,
we observe only minimal noise through the microarchitectural state
of the VexRiscv. The gem5 platform has no noise at all, as it is a
deterministic simulation with a reset prior to each run.

111

RAID °21, October 6-8, 2021, San Sebastian, Spain

Table 1: Compiled versions used for benchmarking.

Name Description

Baseline Standard RISC-V version.

BB Info As in Baseline, but every basic block starts with
a bb instruction.

BB Resched As in BB Info, but with high-priority reschedul-

ing of terminator instructions.

Table 2: Processor instantiation options. BB: supports bb in-
struction. SF: speculative fetching. BP: branch predictor

Name BB SF BP
NoSpec no no no
Control-Flow Speculation (CFS) no yes yes
BasicBlocker (this work) yes no no

6.2 VexRiscv Evaluation

We first evaluate the performance of BasicBlocker on VexRiscv,
which resembles a small-scale, in-order, embedded-like processor,
by comparing the execution time of the CPU variants in Table
2 together with the program versions of Table 1. We chose the
strictly non-control-flow-speculative processor as a naive but secure
baseline and report the relative execution time of the other variants
in Figure 4. The average speedup over all benchmarks is 2.88x
and 2.12x for the version using control-flow speculation (CFS)
and the BasicBlocker version with instruction rescheduling (BB
Resched), respectively. The maximal and minimal speedups are
3.93% (cre32) and 1.44X (pointer-chase) for control flow speculation
and 3.09% (crc32-opt) and 1.07X (pointer-chase) for BasicBlocker
with rescheduling.

For several benchmarks the speedup of control-flow speculation
is comparable to BasicBlocker with instruction rescheduling. This
is true for ud, matmult-int, nettle-sha, nettle-aes, and crc32-opt. For
nettle-aes and crc32-opt BasicBlocker with instruction rescheduling
even outperforms control-flow speculation (speedup of 2.88% vs.
2.78x and 3.09% vs. 2.79X respectively). This is possible as with
enough rescheduling opportunities no pipeline stalls are necessary
at all. For other benchmarks, control-flow speculation outperforms
BasicBlocker with a larger margin (e.g. minver, Coremark, nbody,
and huffbench).

In general, BasicBlocker performs best for benchmarks that have
large basic blocks and less branches (e.g. nettle-aes, and nettle-sha)
whereas the large difference of speedup between control-flow spec-
ulation and BasicBlocker occurs for branch heavy code with small
basic blocks (e.g. minver). A more thorough analysis of code char-
acteristics is given in Section 6.4. We emphasize that many opti-
mization techniques for execution time tend also to prefer large
basic blocks with less branches over small basic blocks with a lot
of branches, e.g. loop unrolling, or function inlining.

6.3 Gemb5 Evaluation

We conduct the same performance analysis with the gem5 simula-
tor, which resembles a more sophisticated, out-of-order, and multi-
scalar processor. Again, the strictly non-control-flow-speculative

RAI

D ’21, October 6-8, 2021, San Sebastian, Spain). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

NoSpec baseline
BB Info N BB Resched IN CFS

NoSpec VexRiscv

Clock Cycles relative to

Figure 4: Performance results for various benchmarks on VexRiscv measured in clock cycles. The results are relative to the
NoSpec configuration of VexRiscv (red line). Sorted descended by speedup delta in BB Resched vs CFS case. Lower delta is better.

For abbreviations see Tables 1 and 2.

)
- &3 NoSpec baseline
e 3 BB Info N BB Resched WM CFS
i=Ne)
S
2%
2 oo
° 3
= a
wn
=}
N . X \ N
7 S F TS FLFE TSP F S
‘6‘\\ (\Q .\00\ ‘b’;& OQ\ 19 S & & S &@ &,Q cr:,)q/ &6 0\
T ¥ L & & ¢ & & &
Q4 >N &
¥ N

Figure 5: Performance results for various benchmarks on gem5 measured in simulation ticks. The results are relative to the
NoSpec configuration of gem5 (red line). Sorted descended by speedup delta in BB Resched vs CFS case. Lower delta is better.
For abbreviations see Tables 1 and 2. Huffbench and Coremark did not compile for the 64-bit target.

processor variant serves as a naive but secure baseline. The gem5
CPU model processes up to two instructions in every clock cycle.
The strictly non-speculative version cannot utilize this capacity as
fetching multiple instructions at once implies speculative fetching.
The relative execution time of the benchmarks for the evaluated
processor variants are reported in Figure 5. The average speedup
over all running benchmarks is 3.69x and 2.13x for the version us-
ing control-flow speculation and BasicBlocker with rescheduling of
instruction respectively. The maximum and minimum speedups are
4.80% (minver) and 1.07X (pointer-chase) for control-flow specula-
tion and 3.09% (crc32-opt) and 1.07X (pointer-chase) for BasicBlocker
with rescheduling. Hence, the speedup achieved by BasicBlocker
on gemb> is overall comparable to the speedup achieved on VexRiscv
and for well performing cases slightly higher. However, the speedup
achieved by the means of control-flow speculation is higher than
in the VexRiscv example.

Taking a closer look at specific benchmarks reveals again some
cases where BasicBlocker matches the performance of control-flow
speculation, e.g. pointer-chase crc32-opt, nettle-sha, or matmult-int
while for others control-flow speculation is considerably faster,

112

e.g. minver, nbody, or picojpeg. As analyzed in the following, the
code characteristics have a high influence on the performance.
The low speedup for pointer-chase at all gem5 architectures is ex-
pected, as memory-access time clearly dominates any pipeline char-
acteristic for this benchmark. The results show the applicability of
BasicBlocker on superscalar, out-of-order processors. We further
analyze the influence of processor characteristics in Section 6.5.

6.4 Influence of Code Characteristics

To analyze how the structure of the code influences the perfor-
mance of BasicBlocker, we evaluate the code characteristics of each
benchmark regarding the average size of basic blocks and aver-
age rescheduling of control-flow instructions. Since the impact of
basic blocks that are executed frequently during the benchmarks
is higher than those that are executed only once, we perform a
dynamic hotspot analysis and weight the results based on the fre-
quency of invocation. In Figure 6 the resulting distribution of basic
block sizes is pictured. The figure shows, that there are strong differ-
ences in the basic block sizes for the benchmarks. For matmult-int,
nettle-aes and nettle-sha, the highest arithmetic average size of the

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

aha-mont 4+ +H____§ |———"-
aha-mont-opt + +H__ [& ——
crc32 + Hi Dl]
crc32-opt + -
cubic t H{_Te¢}—H
edn 1
huftbench + H_ ¢ +——
matmult-int + [}— .
minver { [[¢&—
nbody + +—{_® }—H
nettle-aes + [o
nettle-sha + —{_T +—— -
picojpeg + s
qrduino + H__T ¢ ——H
st H—{ ¢ +—H
st-opt | —{ ¢—
statemate [[J+—
ud + [T« —H
coremark + H{ [eb—+ | 1 1 N
0 5 10 15 20 25
Instructions

imedian ¢ arithmetic mean

Figure 6: Distribution of basic block sizes, weighted by
the number of invocations, dynamically derived from the
hotspot analysis.

aha-mont + (¢ +—
aha-mont-opt + [_»—
crc32 | |

[e

edn |
huffbench +
matmult-int
minver |
nbody +
nettle-aes | |
nettle-sha
picojpeg |
qrduino |
st +
st-opt { ¢
statemate | [
ud
coremark t

10
Instructions
imedian ¢ arithmetic mean

Figure 7: Distribution of instruction rescheduling per basic
block, weighted by the number of invocations, dynamically
derived from the hotspot analysis.

basic blocks executed during the benchmark is reached with more
than 25 instructions, whereas minver and coremark have a rela-
tively small average basic block size, below five instructions. The
optimized versions of aha-mont, crc32 and st increase the mean
basic block size by enabling more inlining and thus contribute to
a smaller delta in the benchmarks between the BasicBlocker and
speculative version of the CPU. For cre32-opt the distribution of ba-
sic block sizes changed dramatically and lead to a speedup of 2.13x
and more for all CPU versions compared to the original benchmark.

Figure 7 shows the average number of instructions that follow
the control flow instruction (this is only relevant for the BB Resched
case, not for the BB Info). The intuitive assumption is that large basic
blocks allow for higher rescheduling of control flow instructions.
This assumption is confirmed by the results shown in the figure.
While the average rescheduling number for the aforementioned

113

RAID °21, October 6-8, 2021, San Sebastian, Spain

-10°

3 4

Q

>

]

5 27

2

@]
0 T
01 2 3 4 5 6 7 8 9 10

Pipeline Delay
—CFS BB Info — BB Resched —— Early Decode

Figure 8: Influence of additional pipeline stages on the exe-
cution time for the benchmark matmult-int on VexRiscv.

-106

g 2

S 15+

]

< Lt

&

g 051
0 ey
01 2 3 4 5 6 7 8 9 10

Pipeline Delay
—CFS BB Info — BB Resched —— Early Decode

Figure 9: Influence of additional pipeline stages on the exe-
cution time for the benchmark minver on VexRiscv.

benchmarks with large basic blocks is high (above 15 instructions on
average), benchmarks with smaller basic blocks such as Coremark
and minver offer less average rescheduling opportunities.

The performance results in Figure 4 and 5 show, that programs
with large basic blocks in their core functions (and therefore good
rescheduling opportunities) perform better with BasicBlocker than
those benchmarks with small basic blocks. For real world workloads,
the core functions that are regularly executed are often well opti-
mized and - in many cases - try to avoid branches to gain improved
performance [16, 21, 22].

6.5 Influence of Pipeline Characteristics

Pipeline Length. We analyze the influence of additional pipeline
stages on the execution time of our benchmarks to give an estima-
tion of run time on other CPU architectures. As for space restric-
tions we analyze the influence of the pipeline length for a smaller
sample of the above shown benchmarks. With matmult-int and
minver, we chose one well performing benchmark and one with
higher performance penalty. We modified the VexRiscv soft core
and placed additional dummy pipeline stages between fetch and
decode such that the original architecture has a pipeline delay of
zero and each additional stage increments the pipeline delay by
one. The results are shown in Figure 8 and Figure 9 for matmult-int
and minver respectively.

The data clearly show that additional pipeline stages have nearly
no effect when control-flow speculation is used (CFS), which is
expected as the longer pipeline only introduces a penalty if a mis-
sprediction occurs. Also, the linearly increasing penalty for the
naive BasicBlocker implementation is to be expected, since a con-
stant amount of additional clock cycles is added to all transitions

RAID °21, October 6-8, 2021, San Sebastian, Spain

-10°

Ticks

1 2 3 4 5 6 7
Pipeline Width

—CFS BB Info — BB Resched — NoSpec

Figure 10: Influence of superscalarity on the performance of
BasicBlocker using the matmult-int benchmark on gem5.

between basic blocks. More interesting is the case where the com-
piler is allowed to reschedule control-flow instructions. Here we
can see clear differences between the benchmarks. While the im-
pact of additional stages is only small and non-linear in the case of
matmult-int running on VexRiscv, we can observe a mirroring of
the naive BasicBlocker behavior for minver running on VexRiscv.
We can explain this as an artifact of the code structure, as discussed
earlier. Minver is composed of mostly small basic blocks resulting
in only a few rescheduling options. Hence, the impact of the longer
pipeline is preserved nearly entirely. In contrast, matmult-int has
better options for rescheduling, and hence, the penalty can be better
absorbed through the early determination of the next basic block.

We also analyzed one additional configuration, where we im-
plemented a decoding of the bb instruction directly after the in-
struction cache, and hence, before the pipeline delay is introduced.
Figures 8 and 9 show that this can reduce the performance impact
of longer pipelines, as the penalty only occurs for the computation
of the next basic block and not for the determination of the basic
block length and sequential flag.

We conducted a similar analysis for the gem5 out-of-order pro-
cessor and the results show the same behavior as the discussed
examples.

Superscalarity. By using superscalarity modern processors can pro-
cess several instructions in parallel within a single clock cycle. We,
therefore, modify our gem5 implementation to evaluate the per-
formance impact of superscalar processors using BasicBlocker. As
described above, our default configuration for the gem5 uses a 2x
superscalar pipeline. Figure 10 and 11 show the performance results
for an up to 7x superscalar pipeline for matmult-int and minver
respectively.

The red line in Figures 10 and 11 show the strictly non-speculative
version of the CPU. Since it is not allowed to do speculative fetching,
only one instruction can be fetched at a time. Thus, the superscalar-
ity has no effect in this scenario. The results for the well-performing
matmult-int benchmark strikingly demonstrate the potential of Ba-
sicBlocker using superscalar pipelines. The bb info version as well
as the rescheduled version incur minimal performance overhead
over the original configuration using speculation. That is, large
basic blocks allow optimal utilization of the superscalar pipeline.
For the minver benchmark, which has much smaller basic blocks,
it shows that the additional pipeline slots can barely be filled for a

114

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

108

Ticks
S N~ N

1 2 3 4 5 6 7
Pipeline Width

——CFS BB Info — BB Resched — NoSpec

Figure 11: Influence of superscalarity on the performance of
BasicBlocker using the minver benchmark on gemb5.

superscalarity larger than two. The lines for bb info and resched-
uled converge for a large pipeline width. That is, small basic blocks
will eventually be fetched within a single clock cycle, making any
rescheduling irrelevant to the performance.

7 CONCLUSION

In this work, we demonstrated a universal countermeasure against
control-flow speculation attacks such as Spectre. We have chosen a
path of conservative security assumptions that completely address
a large number of current and upcoming attacks. Despite the con-
sensus that control-flow speculation is inevitable, we demonstrate
in this work a practical alternative.

We propose a novel concept to transport control-flow informa-
tion from the software to the hardware, enabling practical imple-
mentations of strictly non-control-flow-speculative processors. The
performance evaluation clearly shows that BasicBlocker maintains
current levels of performance for code with large basic blocks, a
characteristic that is common in highly optimized code (i.e. func-
tion inlining, loop unrolling). For branch-heavy code control-flow
speculation is clearly faster, however, this is at the cost of security.

In contrast to other work, BasicBlocker allows to remove control-
flow speculation, including speculative-fetching, entirely, and hence,
tackles a basic necessity for a complete class of attacks. This simpli-
fies the security analysis, is securely backwards compatible, and the
resulting code is independent of the underlying microarchitecture.

We showcase our concept by specifying the BBRISC-V ISA, in-
cluding a concrete implementation of that ISA based on VexRiscv
and gem5, accompanied by an optimizing compiler that rests on
the LLVM Compiler Framework. We emphasize that BasicBlocker
is a generic solution that can be applied to other ISAs as well. Our
prototype implementations show that BasicBlocker is applicable
for a variety of processor types and we point to code-optimization
strategies, that can further enhance the performance.

In Section 4.3 we present possible architectural and microar-
chitectural improvements for BasicBlocker that are interesting to
investigate in future work. More aggressive inlining and lineariza-
tion within superblocks are opportunities to reduce the amount of
control-flow instructions emitted by the compiler. By taking the
algorithmic level into consideration further optimizations can be
achieved; see Appendix B. In addition, we expect extensions to im-
prove the performance and security of BasicBlocker, most notably
hardware loop counters, that can be seamlessly integrated into our

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

concept (see Appendix A), or extensions dealing with fault-based
transient-execution attacks.

ACKNOWLEDGMENTS

The authors would like to thank Bastian Kuttig for his support
on the gem5 evaluation. Funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972; by the DFG
under the Priority Program SPP 2253 Nano Security (Project RAIN-
COAT - Number: 440059533); by the Cisco University Research
Program; and by the U.S. National Science Foundation under grant
1913167. "Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation"
(or other funding agencies). Date of this document: 02 July 2021.

REFERENCES

(1]

[2

=

(3]

[4

flaan

[10

[11]

[12]

[15

2020. Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile. Technical Report. ARM.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1-40.

Onur Acii¢mez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on
Instruction Cache Attacks. In Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-
20, 2010. Proceedings (Lecture Notes in Computer Science), Stefan Mangard and
Francois-Xavier Standaert (Eds.), Vol. 6225. Springer, Santa Barbara, CA, 110-124.
https://doi.org/10.1007/978-3-642-15031-9_8

Krste Asanovi¢ and David A. Patterson. 2014. Instruction Sets Should Be Free: The
Case For RISC-V. (2014). https://people.eecs.berkeley.edu/~krste/papers/EECS-
2014-146.pdf.

Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.
Specshield: Shielding speculative data from microarchitectural covert channels.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 151-164.

Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos V. Rozas, Adam
Morrison, Frank McKeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher,
Abhishek Basak, and Alaa R. Alameldeen. 2020. Speculative Interference At-
tacks: Breaking Invisible Speculation Schemes. CoRR abs/2007.11818 (2020).
arXiv:2007.11818 https://arxiv.org/abs/2007.11818

Daniel J. Bernstein. 2019. djbsort. (2019). https://sorting.cr.yp.to/

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1-7.

Erich Bloch. 1959. The engineering design of the Stretch computer. In Papers pre-
sented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference.
48-58.

Benjamin A Braun, Suman Jana, and Dan Boneh. 2015. Robust and efficient
elimination of cache and timing side channels. arXiv preprint arXiv:1506.00189
(2015).

Brad Calder and Dirk Grunwald. 1994. Fast and Accurate Instruction Fetch and
Branch Prediction. In Proceedings of the 21st Annual International Symposium
on Computer Architecture. Chicago, IL, USA, April 1994, David A. Patterson (Ed.).
IEEE Computer Society, 2-11. https://doi.org/10.1109/ISCA.1994.288166
Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al. 2019.
Fallout: Leaking data on meltdown-resistant CPUs. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 769-784.
Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled N
Khasawneh. 2020. Evolution of defenses against transient-execution attacks. In
Proceedings of the 2020 on Great Lakes Symposium on VLSL 169-174.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security Symposium. extended classification tree at https://transient fail/.
Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhigiang Lin, and
Ten H Lai. 2019. SgxPectre: Stealing intel secrets from SGX enclaves via spec-
ulative execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142-157.

115

[16]

(17

(18]

=
)

[20

[21

[22]

[23

[24

[25

[26

[27]

[28

[29]

@
=

[31

(32

[33

[34

[35

[36

[37

[38

[39

[40

RAID °21, October 6-8, 2021, San Sebastian, Spain

Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. 2001. The im-
pact of if-conversion and branch prediction on program execution on the intel
itanium processor. In Proceedings. 34th ACM/IEEE International Symposium on
Microarchitecture. MICRO-34. Citeseer, 182-182.

Douglas W. Clark and Henry M. Levy. 1982. Measurement and analysis of
instruction use in the VAX-11/780. (1982), 9-17 pages. https://dl.acm.org/doi/
pdf/10.1145/1067649.801709.

Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koe-
berl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015. HAFIX: Hardware-assisted
flow integrity extension. In 2015 52nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC). IEEE, 1-6.

John A. DeRosa and Henry M. Levy. 1987. An Evaluation of Branch Architec-
tures. In Proceedings of the 14th Annual International Symposium on Computer
Architecture. Pittsburgh, PA, USA, June 1987, Daniel C. St. Clair (Ed.). 10-16.
https://doi.org/10.1145/30350.30352

Scott DiPasquale, Khaled Elmeleegy, CJ Ganier, and Erik Swanson. 2003. Hard-
ware Loop Buffering. (2003).

Reem Elkhouly, Ahmed El-Mahdy, and Amr Elmasry. 2015. Pattern-Driven
Branchless Code Generation. JEC-ECC (2015).

Amr Elmasry and Jyrki Katajainen. 2013. Branchless search programs. In Inter-
national Symposium on Experimental Algorithms. Springer, 127-138.

Joseph A Fisher. 1983. Very long instruction word architectures and the ELI-
512. In Proceedings of the 10th annual international symposium on Computer
architecture. 140-150.

Agner Fog. 2020. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers. (2020).
https://www.agner.org/optimize/.

Free and Open Source Silicon Foundation. 2020. Embench IOT. https://www.
embench.org/. (May 2020). Accessed: 2020-05-29.

Shay Gal-On and Markus Levy. 2012. Exploring coremark a benchmark maximiz-
ing simplicity and efficacy. The Embedded Microprocessor Benchmark Consortium
(2012).

Shay Gueron. 2010. Intel Advanced Encryption Standard (AES) New Instructions
Set. (2010). https://www.intel.com/content/dam/doc/white-paper/advanced-
encryption-standard-new-instructions-set-paper.pdf.

Linley Gwennap. 2010. Sandy Bridge spans generations. (2010). http:
//people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/Microprocessor-
Report-Sandy-Bridge- Spans-Generations-243901.pdf.

Jann Horn. 2018. speculative execution, variant 4: speculative store bypass. (2018).
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528/.

J Johnston and T Fitzsimmons. 2021. The newlib homepage. URL http://sourceware.
org/newlib (2021).

Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. 1998. Dynamic History-length
Fitting: A Third Level of Adaptivity for Branch Prediction. In Proceedings of
the 25th Annual International Symposium on Computer Architecture, ISCA 1998,
Barcelona, Spain, June 27 - July 1, 1998, Mateo Valero, Gurindar S. Sohi, and Doug
DeGroot (Eds.). IEEE Computer Society, 155-166. https://doi.org/10.1109/ISCA.
1998.694771

Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2018. SafeSpec:
Banishing the Spectre of a Meltdown with Leakage-Free Speculation. CoRR
abs/1806.05179 (2018).

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974-987.

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1-19.

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Edward A. Lee, Jan Reineke, and Michael Zimmer. 2017. Abstract PRET Machines.
In 2017 IEEE Real-Time Systems Symposium, RTSS 2017, Paris, France, December
5-8, 2017. 1-11. https://doi.org/10.1109/RTSS.2017.00041

Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional
speculation: An effective approach to safeguard out-of-order execution against
spectre attacks. In 2019 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 264-276.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security

RAID °21, October 6-8, 2021, San Sebastian, Spain

Symposium (USENIX Security 18). 973-990.

Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution

using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. 2109-2122.

Hamed Nemati, Roberto Guanciale, Pablo Buiras, and Andreas Lindner. 2020.

Speculative Leakage in ARM Cortex-A53. arXiv preprint arXiv:2007.06865 (2020).

Charles Papon. 2020. VexRiscv. https://github.com/SpinalHDL/VexRiscv. (May

2020). Accessed: 2020-05-28.

Praveen Raghavan, Andy Lambrechts, Murali Jayapala, Francky Catthoor, and

Diederik Verkest. 2008. Distributed loop controller for multithreading in

unithreaded ILP architectures. IEEE Trans. Comput. 58, 3 (2008), 311-321.

Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-

nus Sjilander. 2019. Efficient invisible speculative execution through selective

delay and value prediction. In 2019 ACM/IEEE 46th Annual International Sympo-

sium on Computer Architecture (ISCA). IEEE, 723-735.

Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,

and Daniel Gruss. 2020. Context: A generic approach for mitigating spec-

tre. In Proc. Network and Distributed System Security Symposium. https://doi.

org/10.14722/ndss, Vol. 10.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary

data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security. 753-768.

[48] Jakub Szefer. 2019. Survey of microarchitectural side and covert channels, attacks,

and defenses. Journal of Hardware and Systems Security 3, 3 (2019), 219-234.

Andrew S Tanenbaum. 2016. Structured computer organization. Pearson Education

India.

Jan Philipp Thoma, Christian Niesler, Dominic A. Funke, Gregor Leander, Pierre

Mayr, Nils Pohl, Lucas Davi, and Tim Giineysu. 2021. ClepsydraCache - Pre-

venting Cache Attacks with Time-Based Evictions. CoRR abs/2104.11469 (2021).

arXiv:2104.11469 https://arxiv.org/abs/2104.11469

Paul Turner. 2018. Retpoline: A software construct for preventing branch-target-

injection. URL https:/support. google. com/faqs/answer/7625886 (2018).

[52] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the keys to the intel SGX kingdom with transient

out-of-order execution. In 27th USENIX Security Symposium (USENIX Security

18). 991-1008.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. Addendum

to RIDL: Rogue in-flight data load. (2019). https://mdsattacks.com/.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:

Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).

IEEE, 88-105.

Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. 2014.

Scheduler-based defenses against cross-VM side-channels. In 23rd USENIX Secu-

rity Symposium (USENIX Security 14). 687-702.

Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris Kasikci. 2019.

NDA: Preventing speculative execution attacks at their source. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

572-586.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient

Out-of-Order Execution. Technical report (2018). See also USENIX Security paper

Foreshadow.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks

via Cache Set Randomization. In 28th USENIX Security Symposium, USENIX

Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and

Patrick Traynor (Eds.). USENIX Association, 675-692. https://www.usenix.org/

conference/usenixsecurity19/presentation/werner

Nils Wistoff, Moritz Schneider, Frank K. Giirkaynak, Luca Benini, and Gernot

Heiser. 2020. Prevention of Microarchitectural Covert Channels on an Open-

Source 64-bit RISC-V Core. arXiv preprint arXiv:2005.02193 (2020).

Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher

Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution

invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 428-441.

[61] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W Fletcher. 2019.
Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance
Computing.. In NDSS.

[62] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Com-
prehensive Protection for Speculatively Accessed Data. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’52). Association for Computing Machinery, New York, NY, USA, 954-968.

[41]

[42]
[43]

[44

[45]

[46]

[47

[49]

[50]

[51]

[53]

o
it

[55]

[56]

[57]

[58]

[59]

[60]

116

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

https://doi.org/10.1145/3352460.3358274

Drew Zagieboylo, G Edward Suh, and Andrew C Myers. 2019. Using information
flow to design an isa that controls timing channels. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE, 272-27215.

Yingian Zhang and Michael K Reiter. 2013. Diippel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
827-838.

Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang, Lixin Zhang,
Xuehai Qian, and Dan Meng. 2020. A Lightweight Isolation Mechanism for
Secure Branch Predictors. arXiv preprint arXiv:2005.08183 (2020).

[63

[64

[65

A LOOP COUNTER

Loops are often the execution hotspots in programs and contribute
considerably to diverging control flow. Therefore the concept of
hardware supported loops can be profitable as already discussed in
the literature [20, 44] and implemented in various architectures.

In general, hardware loop counters are realized by a hardware
counter which is set by a dedicated instruction with a value rep-
resenting the maximum trip count for the loop. The trip count
must be computable at compile time to be inserted by an immediate
value or available in a register at run-time before entering the loop.
Information about which instructions are included in the loop is
expressed via labels or additional specific instructions. The hard-
ware loop counter decrements the start value after each iteration
and induces a branch back to the start of the loop as long as the
counter is unequal to zero. This can be done implicitly at the end
of the loop or explicitly with an instruction.

Performance improvements by the usage of hardware loops re-
sult from reduced instruction size and dedicated loop control logic
that does not have to be calculated by the ALU. For our BasicBlocker
concept, hardware loops are actually much more valuable for per-
formance when only applied to loops that will not terminate early,
because in this case the control flow for all loop iterations is known
when entering the loop.

We can seamlessly support hardware loop counters in our design
concept, by introducing a new instruction and adding two argu-
ments to the bb instruction. The new I-Type instruction named lcnt
requires a 12 bit immediate value as well as a source and a target reg-
ister. The counter value is then computed as cnt = imm + rs.value
and saved to the loop counter set defined in rd. To fully support
loop counters we also add four start and end flags to the bb instruc-
tions, to support a maximum of four loop counter sets. The two
flags in the bb instruction are necessary for each loop counter set,
which means that the bb instruction needs 2n bits to support n loop
counter sets.

bb 2, 1, 00, 00 ; len = 2, seq = 1
add a0, a0, al

lent 3, 1lcl ; 3 iterations, set 1
bb 2, @, 01, @1 ; loop start/end

add al, a2, a2

mul a2, al, a2

bb 7, @, 00, 00 ; after loop

Listing 1: Single basic block loop with 3 iterations in counter
set 1; Colors correspond to the execution trace in 2

Listing 1 shows the exemplary use of the hardware loop counter.
In line 3, the counter in loop set 1s1 is initialized to 3. The following

BasicBlocker: ISA Redesign to Make Spectre-Immune CPUs Faster

bb instruction has the start- and end flag for loop set 1 enabled
which indicates a loop that starts at the beginning of this basic
block and stretches until the end of the same basic block. Each
bit in the flags represents one loop counter set, allowing nested
loops with the same start- or end address and nested loops sharing
the same basic block as start or end. It is possible to model loops
that stretch across multiple basic blocks by setting the start and
end flags in the respective basic blocks accordingly. When the bb
instruction with the start flag is executed, the current PC is saved as
start address in the corresponding loop counter set. Simultaneously,
the counter value of that set is decremented by one. When the
execution reaches the bb instruction with the corresponding end
flag, the target address (which determines where the CPU continues
execution) is set to the corresponding start address if the counter
is not zero. Otherwise, the basic block is handled like a normal
sequential basic block and the loop will exit.

bb 2, 1, 00, 00
bb 2, 0, 01, 01
add a0, a0, al

; len = 2, seq. block
; loop: start L1, end L1

lent 2, 1cl ; 2
bb 2, 0, 01, 01
add al, a2, a2

iterations, set 1

; loop: start L1, end L1

mul a2, al, a2
bb 2, @, 01, @1 ; loop: start L1, end L1
add al, a2, a2
mul a2, al, a2
bb 7, 0, 00, 00

add al, a2, a2

; after loop

mul a2, al, a2

Listing 2: Execution trace of CPU with color matched
instructions to the code sequence in 1.

In Listing 2, the instruction trace of the program snippet from
Listing 1 is shown as it is executed by the CPU. Since the first bb
instruction indicates a sequential basic block, the CPU immediately
fetches the bb instruction of the next basic block which notifies
the fetch unit that the second basic block is the start and end block
of the loop. After that, the remaining add and lcnt instructions
are executed to finish the first basic block. From now on the loop
counter determines the execution flow. Since the second basic block
is the only basic block of the loop, the bb instruction of this block
is fetched again, to prepare the second loop round, before the basic
block is executed to complete the first round. This happens again
until the loop counter is zero, resulting in fetching the last bb
instruction, to exit the loop, before the last round of the loop is
executed. Afterwards the execution continues outside of the loop
with the normal instruction flow.

We Implemented our proposed hardware loop counter concept
in the VexRiscv core and added elementary compiler support for
one loop counter set. Because the loop counter can only be used
for loops that do not contain calls and have a fixed trip count, it
can only be applied by the compiler to a small subset of the loops
in the benchmarks. While the impact of the hardware loop counter
is neglegtable for most benchmarks, it substantially improves the

117

RAID °21, October 6-8, 2021, San Sebastian, Spain

speed on others. The speedup for edn improved from 2.63X to
2.70%, getting closer to the 2.85% speedup of the speculative version
compared to the non-speculative baseline. For ud the hardware loop
counter enabled the BasicBlocker variant to match the speed of
the speculative version. The biggest impact can be observed for
aha-mont where the speedup increased from 2.27X to 3.13X.

B SYNERGIES BETWEEN BASICBLOCKER
AND ALGORITHMIC IMPROVEMENTS

There are continual announcements of performance improvements
in software packages to handle computational “hot spots”, such
as the inner loops in audio/video processing. The main point of
this appendix is that the natural pursuit of higher-speed software
favors BasicBlocker: software changes that improve performance
on current non-BasicBlocker CPUs tend to produce even larger
improvements on BasicBlocker CPUs.

B.1 Dimensions of performance analysis

The performance evaluation in Section 6 focuses on measuring the
impact of changing (1) an existing CPU with an existing compiler to
(2) a BasicBlocker CPU with a BasicBlocker-aware compiler. Each
of the benchmarks being compiled and run—for example, the st
software in the middle of the graphs in that section—is treated as
being set in stone. There is no effort in Section 6 to modify st for
better performance, whether by explicit changes in the st code or
by additions to the compiler’s built-in optimizations beyond the
BasicBlocker support described earlier.

This appendix instead treats the software as a third variable be-
yond the compiler and the CPU, reflecting the reality that software
evolves for the pursuit of performance. For example, we modified
the st software to obtain the st-opt software described below, com-
puting the same results as st at higher speed. Our goal in changing
st to st-opt was to match what typical programmers familiar with
performance would naturally do if st turned out to be a bottleneck.
We used a profiler (specifically gcc -pg) to see bottlenecks on an
existing CPU (specifically the ARM Cortex-A7 CPU in a Raspberry
Pi 2), inspected the software to identify underlying inefficiencies,
and removed those inefficiencies, while retaining portability.

We selected three case studies for these software modifications:
st, aha-mont, and crc32. We were aiming here for a spread of
different types of code. Within our benchmarks, aha-mont is at the
worst quartile for BasicBlocker, while st and crc32 are slightly bet-
ter than median; st uses floating-point arithmetic, while aha-mont
and crc32 do not.

It is important to observe that our modifications remove cross-
platform inefficiencies. Switching from st, aha-mont, and crc32
to st-opt, aha-mont-opt, and crc32-opt saves time on current
CPUs. The same changes save time on BasicBlocker—and, as our
measurements show, reduces the cost of BasicBlocker compared to
current CPUs. We summarize the inefficiencies below for each case
study, and explain why the benefits for BasicBlocker should not be
viewed as a surprise.

B.2 From st to st-opt

See the full version of this paper. Brief summary: Embench de-
scribes st as a “statistics” benchmark. The benchmark computes

RAID °21, October 6-8, 2021, San Sebastian, Spain

statistics regarding two arrays. However, profiling immediately
shows that most of the time in st is spent initializing the arrays.
There are many easily removable inefficiencies in st, such as re-
dundant loops recomputing variances, a loop constantly calling a
separate RandomInteger function, and failures of unrolling. The
overall increase from st compiled code size to st-opt compiled
code size is negligible: around 100 bytes, depending on the instruc-
tion set.

B.3 From aha-mont to aha-mont-opt

See the full version of this paper. Brief summary: Embench de-
scribes aha-mont as a “Montgomery multiplication” benchmark.
Montgomery multiplication is a well-known method to carry out
integer operations modulo a specified odd modulus m without using
divisions by m. The aha-mont code is a slightly modified version of
a snippet from Warren’s “Hacker’s Delight” code corpus. However,
profiling shows that 65% of the aha-mont time is spent in divisions
by m; Warren’s snippet includes a main routine with tests, and the
tests use divisions. We took faster division code from Warren’s
corpus and incorporated it into aha-mont-opt.

B.4 From crc32 to crc32-opt

See the full version of this paper. Brief summary: Embench describes
crc32 as a “CRC error checking 32b” benchmark. Profiling once
again shows that most of the time is spent on something else: each
iteration of the crc32 loop calls a function in a separate file to gen-
erate random input. The compiler does not inline the function. The
only changes from crc32 to crc32-opt are (1) putting the random-
number-generation function into the same file for inlining and (2)
marking the main loop with UNROLL (4). The unrolling increases
code size, while the inlining reduces code size since unnecessary
function prologs and epilogs disappear; both changes in code size
are negligible.

B.5 Patterns observed, and consequences for
BasicBlocker

In each of these case studies, many of the inefficiencies in the
original code arise directly from loop overhead (and, analogously,
function-call overhead in the crc32 case). Branch prediction does
not magically make loop overhead (and function-call overhead)
disappear; it can reduce the overhead, but extremely short loops
(and functions) are generally performance problems if they are in
hot spots. The standard response is unrolling (plus inlining) for hot
spots, saving time on current CPUs—and saving even more time
for BasicBlocker.

Further inefficiencies were handled by copy elimination (e.g.,
removing the repeated reads and writes of *Sum), strength reduc-
tion (e.g., replacing divisions by 8095 with multiplications), and
common-subexpression elimination (e.g., eliminating the repeated
computation of variance)—which can indirectly increase branch
frequency by reducing the time spent on arithmetic operations
between branches. However, having fewer instructions in a loop
usually allows more unrolling for the same code size, and then
branch frequency drops again.

BasicBlocker avoids all hot-spot stalls if each hot-spot branch
condition can be computed enough cycles ahead of the branch to

118

). Thoma,). Feldtkeller, M. Krausz, T. Giineysu, D. J. Bernstein

cover the pipeline length. The obvious way to find computations
that are intrinsically bad for BasicBlocker, rather than being bad as a
result of easily fixable failures of unrolling and inlining, is to look for
computations bottlenecked by one data-dependent branch feeding
into another data-dependent branch, such as the bit-by-bit data-
dependent branches in modul64 and xbinGCD inside aha-mont. We
emphasize that these computations also perform poorly on existing
CPUs; we saved time across platforms by replacing these algorithms
with faster algorithms.

These case studies are not necessarily representative. Are there
important computations where the fastest algorithms involve one
data-dependent branch after another? There is a textbook example
at this point, namely sorting integer arrays. Embench includes a
wikisort benchmark (which did not compile for our target), stably
sorting 400 64-bit records, where each record has a 32-bit integer
key used for sorting and 32 bits of further data. The algorithm
used inside wikisort is a complicated merge-sort variant; overall
wikisort has 1117 lines, several kilobytes of compiled code.

However, the textbook picture of the fastest sorting algorithms
has been challenged by the recent speed records in [7] for sorting
various types of arrays on Intel CPUs. The software in [7] has no
data-dependent branches. For a size-400 array, this software uses a
completely predictable pattern of 7199 comparators (size-2 sorting
operations, i.e., min-max operations); merge sort, heap sort, etc. use
half as many comparisons but in an unpredictable pattern, incurring
so much overhead as to be non-competitive.

This raises a research question: exactly how far is wikisort
from optimal on smaller CPUs? An application where sorting is
critical will select the fastest sorting routine from among many
options—not just comparison-based sorts such as merge sort but
also radix sort, sorting networks, etc. The time taken by wikisort
is, presumably, an overestimate of the time needed for the same
task on current CPUs, and an even more severe overestimate of the
time needed for the same task on BasicBlocker CPUs.

More broadly, algorithms without data-dependent branches are
an essential part of the modern software-optimization picture for
large CPUs, especially because of the role of these algorithms inside
vectorized code. This does not imply that these algorithms have the
same importance on today’s smaller CPUs, but in any case they are
among the options available for small and large BasicBlocker CPUs.
Taking advantage of this software flexibility brings BasicBlocker
CPUs even closer to current CPUs in overall performance.

C COMPILE FLAGS

This Appendix lists the flags used to compile the benchmarks. For
Coremark, we used 03, march = rv32im, mabi = ilp32, target
= riscv32-unknown-elf, mno-relax, lc, nostartfiles, ffree-
standing and for Embench we used 03, march = [rv32im /
rv64imfd],mabi = [i1p32/1p64d], riscv[32/64]-unknown-elf,
mno-relax, fnostrict-aliasing.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 The BasicBlocker Concept in a Nutshell

	2 Related Work
	3 Speculation in Processors
	4 Concept
	4.1 Design Rationale
	4.2 Basic Block Instruction
	4.3 Further Optimizations
	4.4 Compatibility
	4.5 BasicBlocker for Generic ISAs
	4.6 Security

	5 Implementation
	5.1 BBRISC-V ISA
	5.2 CPU Implementation
	5.3 Compiler Modification

	6 Evaluation
	6.1 Selection of Benchmarks
	6.2 VexRiscv Evaluation
	6.3 Gem5 Evaluation
	6.4 Influence of Code Characteristics
	6.5 Influence of Pipeline Characteristics

	7 Conclusion
	Acknowledgments
	References
	A Loop Counter
	B Synergies between BasicBlocker and algorithmic improvements
	B.1 Dimensions of performance analysis
	B.2 From st to st-opt
	B.3 From aha-mont to aha-mont-opt
	B.4 From crc32 to crc32-opt
	B.5 Patterns observed, and consequences for BasicBlocker

	C Compile Flags

