

THE OPEN BOOK SERIES 4 (2020)

Fourteenth Algorithmic Number Theory Symposium

https://doi.org/10.2140/obs.2020.4.39

msp

Faster computation of isogenies of large prime degree

Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith

Dedicated to the memory of Peter Lawrence Montgomery

Let E/Fq be an elliptic curve, and P a point in E(Fq) of prime order ℓ. Vélu’s formulæ let us compute a
quotient curve E ′= E/〈P〉 and rational maps defining a quotient isogeny φ : E→ E ′ in Õ(ℓ) Fq -operations,
where the Õ is uniform in q . This article shows how to compute E ′, and φ(Q) for Q in E(Fq), using only
Õ(
√
ℓ) Fq -operations, where the Õ is again uniform in q . As an application, this article speeds up some

computations used in the isogeny-based cryptosystems CSIDH and CSURF.

1. Introduction

Let E be an elliptic curve over a finite field Fq of odd characteristic, and let P be a point in E(Fq) of

order n. The point P generates a cyclic subgroup G ⊆ E(Fq), and there exists an elliptic curve E ′ over

Fq and a separable degree-n quotient isogeny

φ : E −→ E
′ with kerφ = G = 〈P〉 ;

the isogeny φ is also defined over Fq . We want to compute φ(Q) for a point Q in E(Fq) as efficiently as

possible.

If n is composite, then we can decompose φ into a series of isogenies of prime degree. Computation-

ally, this assumes that we can factor n, but finding a prime factor ℓ of n is not a bottleneck compared to

the computation of an ℓ-isogeny by the techniques considered here. We thus reduce to the case where

n = ℓ is prime.

Date: 2020.09.30.

For the long version of this article see [6]. Thanks to the anonymous referees for their comments. Author list in alphabetical
order; see https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf. Part of this work was carried out while the
first author was visiting the Simons Institute for the Theory of Computing. This work was supported by the Cisco University
Research Program, by DFG Cluster of Excellence 2092 “CASA: Cyber Security in the Age of Large-Scale Adversaries”, and
by the U.S. National Science Foundation under grant 1913167. “Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation”
(or other funding agencies). Permanent ID of this document: 44d5ade1c1778d86a5b035ad20f880c08031a1dc.
MSC2020: 11Y16.
Keywords: isogenies, resultants.

39

40 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

Vélu introduced formulæ for φ and E ′ (see [56] and [38, §2.4]): for E defined by y2 = x3+ a2x2+
a4x + a6 and ℓ≥ 3, we have

φ : (X, Y) 7−→
(
8G(X)

9G(X)2
,

Y�G(X)

9G(X)3

)

where

9G(X)=
∏(ℓ−1)/2

s=1

(
X − x([s]P)

)
,

8G(X)= 4(X3+ a2 X2+ a4 X + a6)(9
′
G(X)

2−9 ′′G(X)9G(X))

− 2(3X2+ 2a2 X + a4)9
′
G(X)9(X)+ (ℓX −

∑ℓ−1
s=1 x([s]P))9G(X)

2 ,

�G(X)=8′G(X)9G(X)− 28G(X)9
′
G(X) .

The obvious way to compute φ(Q) is to compute the rational functions shown above, i.e., to compute

the coefficients of the polynomials 9G,8G, �G ; and then evaluate those polynomials. This takes Õ(ℓ)

operations. (If we need the defining equation of E ′, then we can obtain it by evaluating φ(Q) for a few

Q outside G, possibly after extending Fq , and then interpolating a curve equation through the resulting

points. Alternatively, Vélu gives further formulas for the defining equation.) We emphasize, however,

that the goal is not to compute the coefficients of these functions; the goal is to evaluate the functions at

a specified point.

The core algorithmic problem falls naturally into a more general framework: the efficient evaluation

of polynomials and rational functions over Fq whose roots are values of a function from a cyclic group

to Fq .

Fix a cyclic group G (which we will write additively), a generator P of G, and a function f : G→ Fq .

For each finite subset S of Z, we define a polynomial

hS(X)=
∏

s∈S

(X − f ([s]P)) ,

where [s]P denotes the sum of s copies of P . The kernel polynomial 9G(x) above is an example of this,

with f = x and S = {1, . . . , (ℓ− 1)/2}. Another example is the cyclotomic polynomial 8n , where f

embeds Z/nZ in the roots of unity of Fq , and 8n(X)= hS(X) where S = {i | 0≤ i < n, gcd(i, n)= 1}.
More generally, if f maps i 7→ ζ i for some ζ , then hS(X) is a polynomial whose roots are various powers

of ζ ; similarly, if f maps i 7→ iβ for some β, then hS(X) is a polynomial whose roots are various integer

multiples of β.

Given f and S, then, we want to compute hS(α) =
∏

s∈S(α − f ([s]P)) for any α in Fq . One can

always directly compute hS(α) in O(#S) Fq -operations; this is the standard way to compute 9G(α). But

if S has enough additive structure, and if f is sufficiently compatible with the group structure on G, then

we can compute hS(α) in Õ(
√

#S) Fq -operations, as we will see in §2, §3, and §4. Our main theoretical

result is Theorem 4.11, which shows how to achieve this quasi-square-root complexity for a large class of

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 41

S when f is the x-coordinate on an elliptic curve. We apply this to the special case of efficient ℓ-isogeny

computation in §5. We discuss applications in isogeny-based cryptography in §6.

Most of this paper focuses on asymptotic exponents, in particular improving ℓ-isogeny evaluation

from cost Õ(ℓ) to cost Õ(
√
ℓ). However, this analysis hides polylogarithmic factors that can swamp the

exponent improvement for small ℓ. In the full version [6], we instead analyze costs for concrete values

of ℓ, and ask how large ℓ needs to be for the Õ(
√
ℓ) algorithms to outperform conventional algorithms.

1.1. Model of computation. We state our framework for Fq for concreteness. All time complexities are

in Fq -operations, with the O and Õ uniform over q .

The ideas are more general. The algorithms here are algebraic algorithms in the sense of [16], and

can further be lifted to algorithms defined over Z[1/2] and in some cases over Z. In other words, the

algorithms are agnostic to the choice of q in Fq , except for sometimes requiring q to be odd; and the

algorithms can also be applied to more general rings, as long as all necessary divisions can be carried

out.

Restricting to algebraic algorithms can damage performance. For example, for most input sizes, the

fastest known algorithms to multiply polynomials over Fq are faster than the fastest known algebraic

algorithms for the same task. This speedup is only polylogarithmic and hence is not visible at the level

of detail of our analysis (the full version [6] contains a detailed analysis of concrete performances), but

implementors should be aware that simply performing a sequence of separate Fq -operations is not always

the best approach.

2. Strassen’s deterministic factorization algorithm

As a warmup, we review a deterministic algorithm that provably factors n into primes in time Õ(n1/4).

There are several such algorithms in the literature using fast polynomial arithmetic, including [53], [12],

[23], and [34]; there is also a separate series of lattice-based algorithms surveyed in, e.g., [4]. Strassen’s

algorithm from [53] has the virtue of being particularly simple, and is essentially the algorithm presented

in this section.

The state of the art in integer factorization has advanced far beyond Õ(n1/4). For example, ECM [39],

Lenstra’s elliptic-curve method of factorization, is plausibly conjectured to take time no(1). We present

Strassen’s algorithm because Strassen’s main subroutine is the simplest example of a much broader

speedup that we use.

2.1. Factorization via modular factorials. Computing gcd(n, ℓ! mod n) reveals whether n has a prime

factor ≤ℓ. Binary search through all ℓ ≤
√

n then finds the smallest prime factor of n. Repeating this

process completely factors n into primes.

The rest of this section focuses on the problem of computing ℓ! mod n, given positive integers ℓ and n.

The algorithm of §2.3 uses Õ(
√
ℓ) additions, subtractions, and multiplications in Z/nZ, plus negligible

overhead. For comparison, a straightforward computation would use ℓ− 1 multiplications modulo n.

The Õ here is uniform over n.

42 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

2.2. Modular factorials as an example of the main problem. Define G as the additive group Z, define

P = 1, define f : G→ Z/nZ as s 7→ s, and define hS(X)=
∏

s∈S(X − f ([s]P)) ∈ (Z/nZ)[X]. Then, in

particular, hS(X)= (X − 1) · · · (X − ℓ) for S = {1, . . . , ℓ}, and one can compute ℓ! mod n by computing

hS(ℓ+ 1) or, alternatively, by computing (−1)ℓhS(0). This fits the modular-factorials problem, in the

special case that n is a prime number q , into the framework of §1.

2.3. An algorithm for modular factorials. Compute b= ⌊
√
ℓ⌋, and define I = {0, 1, 2, . . . , b−1}. Use

a product tree to compute the polynomial h I (X)= X (X − 1)(X − 2) · · · (X − (b− 1)) ∈ (Z/nZ)[X].
Define J = {b, 2b, 3b, . . . , b2}. Compute h J (X), and then compute the resultant of h J (X) and h I (X).

This resultant is h I (b)h I (2b)h I (3b) · · · h I (b
2), i.e., (b2)! mod n.

One can compute the resultant of two polynomials via continued fractions; see, e.g., [54]. An alter-

native here, since h J is given as a product of linear polynomials, is to use a remainder tree to compute

h I (b), h I (2b), . . . , h I (b
2) ∈ Z/nZ, and then multiply. Either approach uses Õ(

√
ℓ) operations.

Finally, multiply by (b2+ 1)(b2+ 2) · · · ℓ modulo n, obtaining ℓ! mod n.

3. Evaluation of polynomials whose roots are powers

Pollard [49] introduced a deterministic algorithm that provably factors n into primes in time O(n1/4+ǫ).

Strassen’s algorithm from [53] was a streamlined version of Pollard’s algorithm, replacing O(n1/4+ǫ)

with Õ(n1/4).

This section reviews Pollard’s main subroutine, a fast method to evaluate a polynomial whose roots

(with multiplicity) form a geometric progression. For comparison, Strassen’s main subroutine is a fast

method to evaluate a polynomial whose roots form an arithmetic progression. See §2.3 above.

3.1. A multiplicative version of modular factorials. Fix ζ ∈ (Z/nZ)∗. Define G=Z, define P=1, define

f : G→ (Z/nZ)∗ as s 7→ ζ s , and define hS(X) =
∏

s∈S(X − f ([s]P)) =
∏

s∈S(X − ζ s) ∈ (Z/nZ)[X].
(For comparison, in §2, f was s 7→ s, and hS(X) was

∏
s∈S(X − s).)

In particular, hS(X) =
∏ℓ

s=1(X − ζ s) for S = {1, 2, 3, . . . , ℓ}. Given α ∈ Z/nZ, one can straight-

forwardly evaluate hS(α) for this S using O(ℓ) algebraic operations in Z/nZ. The method in §3.2

accomplishes the same result using only Õ(
√
ℓ) operations. The O and Õ are uniform in n, and all of

the algorithms here can take ζ as an input rather than fixing it. There are some divisions by powers of ζ ,

but divisions are included in the definition of algebraic operations.

Pollard uses the special case hS(1)=
∏ℓ

s=1(1−ζ s). This is (1−ζ)ℓ times the quantity (1+ζ)(1+ζ +
ζ 2) · · · (1+ ζ +· · ·+ ζ ℓ−1). It would be standard to call the latter quantity a “q-factorial” if the letter “q”

were used in place of “ζ”; beware, however, that it is not standard to call this quantity a “ζ -factorial”. For

a vast generalization of Pollard’s algorithm to q-holonomic sequences, see [11]; in §4, we will generalize

it in a different direction.

3.2. An algorithm for the multiplicative version of modular factorials. Compute b= ⌊
√
ℓ⌋, and define

I = {1, 2, 3, . . . , b}. Use a product tree to compute the polynomial h I (X)=
∏b

i=1(X − ζ i).

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 43

Define J ={0, b, 2b, . . . , (b−1)b}, and use a remainder tree to compute h I (α/ζ
j) for all j ∈ J . Pollard

uses the chirp-z transform [50] (Bluestein’s trick) instead of a remainder tree, saving a logarithmic factor

in the number of operations, and it is also easy to save a logarithmic factor in computing h I (X), but

these speedups are not visible at the level of detail of the analysis in this section.

Multiply ζ jb by h I (α/ζ
j) to obtain

∏b
i=1(α − ζ i+ j) for each j , and then multiply across j ∈ J to

obtain
∏b2

s=1(α− ζ s). Finally, multiply by
∏ℓ

s=b2+1(α− ζ s) to obtain the desired hS(α).

One can view the product
∏b2

s=1(α−ζ s) here, like the product (b2)! in §2, as the resultant of two degree-

b polynomials. Specifically,
∏

j h I (α/ζ
j) is the resultant of

∏
j (X−α/ζ j) and h I ; and

∏
j ζ

jbh I (α/ζ
j)

is the resultant of
∏

j (ζ
j X −α) and h I . One can, if desired, use continued-fraction resultant algorithms

rather than multipoint evaluation via a remainder tree.

3.3. Structures in S and f . We highlight two structures exploited in the above computation of
∏ℓ

s=1(α−
ζ s). First, the set S = {1, 2, . . . , ℓ} has enough additive structure to allow most of it to be decomposed

as I + J , where I and J are much smaller sets. Second, the map s 7→ ζ s is a group homomorphism,

allowing each ζ i+ j to be computed as the product of ζ i and ζ j ; we will return to this point in §4.1.

We now formalize the statement regarding additive structure, focusing on the Fq case that we will

need later in the paper. First, some terminology: we say that sets of integers I and J have no common

differences if i1 − i2 6= j1 − j2 for all i1 6= i2 in I and all j1 6= j2 in J . If I and J have no common

differences, then the map I × J → I + J sending (i, j) to i + j is a bijection.

Lemma 3.4. Let q be a prime power. Let ζ be an element of F
∗
q . Define hS(X)=

∏
s∈S(X − ζ s) ∈ Fq [X]

for each finite subset S of Z. Let I and J be finite subsets of Z with no common differences. Then

h I+J (X)= ResZ (h I (Z), HJ (X, Z))

where ResZ (·, ·) is the bivariate resultant, and

HJ (X, Z) :=
∏

j∈J

(X − ζ j Z).

Proof. ResZ (h I (Z), HJ (X, Z))=
∏

i∈I

∏
j∈J (X − ζ iζ j)=

∏
(i, j)∈I×J (X − ζ i+ j)= h I+J (X) since the

map I × J → I + J sending (i, j) to i + j is bijective. �

Algorithm 1 is an algebraic algorithm that outputs hS(α) given α. The algorithm is parameterized by

ζ and the set S, and also by finite subsets I, J ⊂ Z with no common differences such that I + J ⊆ S. The

algorithm and the proof of Proposition 3.5 are stated using generic resultant computation (via continued

fractions), but, as in §2.3 and §3.2, one can alternatively use multipoint evaluation.

Proposition 3.5. Let q be a prime power. Let ζ be an element of F
∗
q . Let I, J be finite subsets of Z with

no common differences. Let K be a finite subset of Z disjoint from I + J . Given α in Fq , Algorithm 1

outputs
∏

s∈S(α− ζ s) using Õ(max(#I, #J, #K)) Fq -operations, where S = (I + J)∪ K .

44 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

Algorithm 1: Computing hS(α)=
∏

s∈S(α− ζ s)

Parameters: a prime power q; ζ ∈ F
∗
q ; finite subsets I, J, K ⊆ Z such that I and J have no

common differences and (I + J)∩ K = {}; ζ s for each s ∈ I ∪ J ∪ K

Input: α in Fq

Output: hS(α) where hS(X)=
∏

s∈S(X − ζ s) and S = (I + J)∪ K

1 h I ←
∏

i∈I (Z − ζ i) ∈ Fq [Z]
2 HJ ←

∏
j∈J (α− ζ j Z) ∈ Fq [Z]

3 h I+J ← ResZ (h I , HJ) ∈ Fq

4 hK ←
∏

k∈K (α− ζ k) ∈ Fq

5 return h I+J · hK

The Õ is uniform in q. Instead of taking ζ and various precomputed powers of ζ as parameters, the

algorithm can take ζ as an input, at the cost of computing ζ i for i ∈ I , ζ j for j ∈ J , and ζ k for k ∈ K .

This preserves the time bound if the elements of I, J, K each have polylog(max(#I, #J, #K)) bits.

Proof. Since S \ K = I + J , we have hS(α)= h I+J (α) · hK (α), and Lemma 3.4 shows that h I+J (α)=
ResZ (h I (Z), HJ (α, Z)). Line 1 computes h I (Z) in Õ(#I) Fq -operations; Line 2 computes HJ (α, Z) in

Õ(#J) Fq -operations; Line 3 computes h I+J (α) in Õ(max(#I, #J)) Fq -operations; and Line 4 computes

hK (α) in Õ(#K) Fq -operations. The total is Õ(max(#I, #J, #K)) Fq -operations. �

3.6. Optimization. The best conceivable case for the time bound in Proposition 3.5, as a function of #S,

is Õ(
√

#S). Indeed, #S = #I · #J + #K , so max(#I, #J, #K)≥
√

#S+ 1/4− 1/2.

To reach Õ(
√

#S) for a given set of exponents S, we need sets I and J with no common differences

such that I + J ⊆ S with #I , #J , and #(S \ (I + J)) in Õ(
√

#S). Such I and J exist for many useful

sets S. Example 3.7 shows a simple form for I and J when S is an arithmetic progression.

Example 3.7. Suppose S is an arithmetic progression of length n: that is,

S = {m,m+ r,m+ 2r, . . . ,m+ (n− 1)r}

for some m and some nonzero r . Let b = ⌊
√

n⌋, and set

I := {ir | 0≤ i < b} and J := {m+ jbr | 0≤ j < b} ;

then I and J have no common differences, and I + J = {m+ kr | 0≤ k < b2}, so

I + J = S \ K where K = {m+ kr | b2 ≤ k < n} .

Now #I = #J = b, and #K = n−b2 ≤ 2b, so we can use these sets to compute hS(α) in Õ(b)= Õ(
√

n)

Fq -operations, following Proposition 3.5. (In the case r = 1, we recognise the index sets driving Shanks’

baby-step giant-step algorithm.)

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 45

4. Elliptic resultants

The technique in §3 for evaluating polynomials whose roots are powers is well known. Our main theoret-

ical contribution is to adapt this to polynomials whose roots are functions of more interesting groups: in

particular, functions of elliptic-curve torsion points. The most important such function is the x-coordinate.

The main complication here is that, unlike in §3, the function x is not a homomorphism.

4.1. The elliptic setting. Let E/Fq be an elliptic curve, let P ∈ E(Fq), and define G = 〈P〉. Let S be a

finite subset of Z. We want to evaluate

hS(X)=
∏

s∈S

(X − f ([s]P)) , where f : Q 7−→
{

0 if Q = 0 ,

x(Q) if Q 6= 0 ,

at some α in Fq . Here x : E→ E/〈±1〉 ∼= P
1 is the usual map to the x-line.

Adapting Algorithm 1 to this setting is not a simple matter of replacing the multiplicative group with

an elliptic curve. Indeed, Algorithm 1 explicitly uses the homomorphic nature of f : s 7→ ζ s to represent

the roots ζ s as ζ iζ j where s= i+ j . This presents an obstacle when moving to elliptic curves: x([i+ j]P)
is not a rational function of x([i]P) and x([j]P), so we cannot apply the same trick of decomposing

most of S as I + J before taking a resultant of polynomials encoding f (I) and f (J).

This obstacle does not matter in the factorization context. For example, in §3, a straightforward

resultant
∏

i, j (α/ζ
j − ζ i) detects collisions between α/ζ j and ζ i ; our rescaling to

∏
i, j (α− ζ i+ j) was

unnecessary. Similarly, Montgomery’s FFT extension [44] to ECM computes a straightforward resul-

tant
∏

i, j (x([i]P)− x([j]P)), detecting any collisions between x([i]P) and x([j]P); this factorization

method does not compute, and does not need to compute, a product of functions of x([i + j]P). The

isogenies context is different: we need a product of functions of x([i + j]P).
Fortunately, even if the x-map is not homomorphic, there is an algebraic relation between x(P), x(Q),

x(P + Q), and x(P − Q), which we will review in §4.2. The introduction of the difference x(P − Q)

as well as the sum x(P + Q) requires us to replace the decomposition of most of S as I + J with a

decomposition involving I + J and I − J , which we will formalize in §4.5. We define the resultant

required to tie all this together and compute h I±J (α) in §4.8.

4.2. Biquadratic relations on x-coordinates. Lemma 4.3 recalls the general relationship between x(P),

x(Q), x(P + Q), and x(P − Q). Example 4.4 gives explicit formulæ for the case that is most useful in

our applications.

Lemma 4.3. Let q be a prime power. Let E/Fq be an elliptic curve. There exist biquadratic polynomials

F0, F1, and F2 in Fq [X1, X2] such that

(X − x(P + Q))(X − x(P − Q))= X2+
F1(x(P), x(Q))

F0(x(P), x(Q))
X +

F2(x(P), x(Q))

F0(x(P), x(Q))

for all P and Q in E such that 0 /∈ {P, Q, P + Q, P − Q}.

46 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

Proof. The existence of F0, F1, and F2 is classical (see e.g. [17, p. 132] for the Fi for Weierstrass models);

indeed, the existence of such biquadratic systems is a general phenomenon for theta functions of level 2

on abelian varieties (see e.g. [47, §3]). �

Example 4.4 (biquadratics for Montgomery models). If E is defined by an affine equation By2 = x(x2+
Ax + 1), then the polynomials of Lemma 4.3 are

F0(X1, X2)= (X1− X2)
2 ,

F1(X1, X2)=−2((X1 X2+ 1)(X1+ X2)+ 2AX1 X2) ,

F2(X1, X2)= (X1 X2− 1)2 .

The symmetric triquadratic polynomial (X0 X1− 1)2+ (X0 X2− 1)2+ (X1 X2− 1)2− 2X0 X1 X2(X0+
X1+ X2+ 2A)− 2 is X2

0 F0(X1, X2)+ X0 F1(X1, X2)+ F2(X1, X2).

Montgomery curves By2= x(x2+Ax+1), and the remarkably simple formula (X1 X2−1)2/(X1−X2)
2

for the product x(P + Q)x(P − Q) on these curves, were introduced by Montgomery in [43, Section

10.3.1]. See [7] for more information about Montgomery curves.

4.5. Index systems. In §3, we represented most of S as I + J ; requiring I and J to have no common

differences ensured this representation had no redundancy. Now we will represent most elements of S

as elements of (I + J)∪ (I − J), so we need a stronger restriction on I and J to avoid redundancy.

Definition 4.6. Let I and J be finite sets of integers.

(1) We say that (I, J) is an index system if the maps I×J→Z defined by (i, j) 7→ i+ j and (i, j) 7→ i− j

are both injective and have disjoint images.

(2) If S is a finite subset of Z, then we say that an index system (I, J) is an index system for S if I + J

and I − J are both contained in S.

If (I, J) is an index system, then the sets I + J and I − J are both in bijection with I × J . We write

I ± J for the union of I + J and I − J .

Example 4.7. Let m be an odd positive integer, and consider the set

S = {1, 3, 5, . . . ,m}

in arithmetic progression. Let

I := {2b(2i + 1) | 0≤ i < b′} and J := {2 j + 1 | 0≤ j < b}

where b = ⌊
√

m+ 1/2⌋; b′ = ⌊(m+ 1)/4b⌋ if b > 0; and b′ = 0 if b = 0. Then (I, J) is an index system

for S, and S \ (I ± J)= K where K = {4bb′+ 1, . . . ,m− 2,m}. If b > 0 then #I = b′ ≤ b+ 2, #J = b,

and #K ≤ 2b− 1.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 47

4.8. Elliptic resultants. We are now ready to adapt the results of §3 to the setting of §4.1. Our main

tool is Lemma 4.9, which expresses h I±J as a resultant of smaller polynomials.

Lemma 4.9. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be an element of E(Fq). Let

n be the order of P. Let (I, J) be an index system such that I , J , I + J , and I − J do not contain any

elements of nZ. Then

h I±J (X)=
1

1I,J

·ResZ (h I (Z), E J (X, Z))

where

E J (X, Z) :=
∏

j∈J

(
F0(Z , x([j]P))X2+ F1(Z , x([j]P))X + F2(Z , x([j]P))

)

and 1I,J := ResZ (h I (Z), DJ (Z)) where DJ (Z) :=
∏

j∈J F0(Z , x([j]P)).

Proof. Since (I, J) is an index system, I + J and I − J are disjoint, and therefore we have h I±J (X)=
h I+J (X) · h I−J (X). Expanding and regrouping terms, we get

h I±J (X)=
∏

(i, j)∈I×J

(X − x([i + j]P)) (X − x([i − j]P))

=
∏

i∈I

∏

j∈J

(
X2+

F1(x([i]P), x([j]P))
F0(x([i]P), x([j]P))

X +
F2(x([i]P), x([j]P))
F0(x([i]P), x([j]P))

)

by Lemma 4.3. Factoring out the denominator, we find

h I±J (X)=
∏

i∈I E J (X, x([i]P))∏
i∈I

∏
j∈J F0(x([i]P), x([j]P))

=
∏

i∈I E J (X, x([i]P))∏
i∈I DJ (x([i]P))

;

and finally
∏

i∈I E J (X, x([i]P)) = ResZ (h I (Z), E J (X, Z)) and
∏

i∈I DJ (x([i]P)) = ResZ (h I (Z),

DJ (Z))=1I,J , which yields the result. �

4.10. Elliptic polynomial evaluation. Algorithm 2 is an algebraic algorithm for computing hS(α); it is

the elliptic analogue of Algorithm 1. Theorem 4.11 proves its correctness and runtime.

Theorem 4.11. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be an element of E(Fq). Let

n be the order of P. Let (I, J) be an index system for a finite set S ⊂ Z. Assume that I , J , and S contain

no elements of nZ. Given α in Fq , Algorithm 2 computes

hS(α)=
∏

s∈S

(
α− x([s]P)

)

in Õ(max(#I, #J, #K)) Fq -operations, where K = S \ (I ± J).

In particular, if #I , #J , and #K are in Õ(
√

#S), then Algorithm 2 computes hS(α) in Õ(
√

#S) Fq-

operations. The Õ is uniform in q . Instead of taking P and various x([s]P) as parameters, Algorithm 2

can take P as an input, at the cost of computing the relevant multiples of P .

48 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

Algorithm 2: Computing hS(α)=
∏

s∈S

(
α− x([s]P)

)
for P ∈ E(Fq)

Parameters: a prime power q; an elliptic curve E/Fq ; P ∈ E(Fq); a finite subset S ⊂ Z; an index

system (I, J) for S such that S ∩ nZ= I ∩ nZ= J ∩ nZ= {}, where n is the order

of P; x([s]P) for each s ∈ I ∪ J ∪ K

Input: α in Fq

Output: hS(α) where hS(X)=
∏

s∈S(X − x([s]P))
1 h I ←

∏
i∈I (Z − x([i]P)) ∈ Fq [Z]

2 DJ ←
∏

j∈J F0(Z , x([j]P)) ∈ Fq [Z]
3 1I,J ← ResZ (h I , DJ) ∈ Fq

4 E J ←
∏

j∈J

(
F0(Z , x([j]P))α2+ F1(Z , x([j]P))α+ F2(Z , x([j]P))

)
∈ Fq [Z]

5 R← ResZ (h I , E J) ∈ Fq

6 hK ←
∏

k∈S\(I±J)(α− x([k]P)) ∈ Fq

7 return hK · R/1I,J

Proof. The proof follows that of Proposition 3.5. Since S \ K = I ± J , we have hS(α) = h I±J (α) ·
hK (α). Using the notation of Lemma 4.9: Line 1 computes h I (Z) in Õ(#I) Fq-operations; Line 2

computes DJ (Z) in Õ(#J) Fq-operations; Line 3 computes 1I,J in Õ(max(#I, #J)) Fq-operations;

Line 4 computes E J (α, Z) in Õ(#J) Fq -operations; Line 5 computes ResZ (h I (Z), E J (α, Z)), which is

the same as 1I,J h I±J (α) by Lemma 4.9, in Õ(max(#I, #J)) Fq -operations; Line 6 computes hK (α) in

Õ(#K) Fq -operations; and Line 7 returns hS(α)= hK (α) · h I±J (α). The total number of Fq -operations

is in Õ(max(#I, #J, #K)). �

Example 4.12 (evaluating kernel polynomials). We now address a problem from the introduction: eval-

uating 9G , the radical of the denominators of the rational functions defining the ℓ-isogeny φ : E→ E ′

with kernel G = 〈P〉, for ℓ odd. Here

9G(X)= hS(X)=
∏

s∈S

(X − x([s]P)) where S = {1, 3, . . . , ℓ− 2}

(the set S may be replaced by any set of representatives of ((Z/ℓZ) \ {0})/〈±1〉). Following Example 4.7,

let I = {2b(2i + 1) | 0 ≤ i < b′} and J = {1, 3, . . . , 2b − 1} with b = ⌊
√
ℓ− 1/2⌋ and (for b > 0)

b′ = ⌊(ℓ− 1)/4b⌋; then (I, J) is an index system for S, and Algorithm 2 computes hS(α)=9G(α) for

any α in Fq in Õ(
√
ℓ) Fq -operations.

Example 4.13 (evaluating derivatives of polynomials). Algorithm 2 can evaluate hS at points in any Fq -

algebra, at the cost of a slowdown that depends on how large the algebra is. These algebras need not be

fields. For example, we can evaluate hS(α+ǫ) in the algebra Fq [ǫ]/ǫ2 of 1-jets, obtaining hS(α)+ǫh′S(α).

We can thus evaluate derivatives, sums over roots, etc. The algebra of 1-jets was used the same way in,

e.g., [46; 40; 5]; [2] also notes Zagier’s suggested terminology “jet plane”.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 49

4.14. Irrational generators. The point P in Lemma 4.9, Algorithm 2, and Theorem 4.11 need not be in

E(Fq): everything is defined over Fq if x(P) is in Fq . More generally, take P in E(Fqe) with x(P) in Fqe

for some minimal e ≥ 1. The q-power Frobenius π on E maps P to π(P)= [λ]P for some eigenvalue

λ in Z/nZ of order e in (Z/nZ)∗. Let L = {λa | 0≤ a < e}. For hS(X) to be in Fq [X], we need S = L S′

for some S′ ⊆ Z (modulo n): that is, S = {λas ′ | 0≤ a < e, s ′ ∈ S′}. Then

hS(X)=
∏

s′∈S′

e−1∏

a=0

(X − x([λas ′]P))=
∏

s′∈S′

gs′(X)

where the polynomial

gs′(X)=
e−1∏

a=0

(X − x([λas ′]P))=
e−1∏

a=0

(X − x(πa([s ′]P)))=
e−1∏

a=0

(X − x([s ′]P)qa

)

is in Fq [X], and can be easily computed from x([s]P).
To write h I , DJ , and E J as products of polynomials over Fq , we need the index system (I, J) for

S to satisfy (I, J) = (L I ′, L J ′) for some index system (I ′, J ′) for S′. While this does not affect the

asymptotic complexity of the resulting evaluation algorithms at our level of analysis, it should be noted

that the requirement that (I, J) = (L I ′, L J ′) is quite strong: typically e is in O(ℓ), so #L is not in

Õ(
√

#S), and a suitable index system (I, J) with #I and #J in Õ(
√

#S) does not exist.

4.15. Other functions on E . We can replace x with more general functions on E , though for completely

general f there may be no useful analogue of Lemma 4.3, or at least not one that allows a Lemma 4.9

with conveniently small index system. However, everything above adapts easily to the case where x is

composed with an automorphism of P
1 (that is, f = (ax + b)/(cx + d) with a, b, c, d in Fq such that

ad 6= bc). Less trivially, we can take f = ψx for any isogeny ψ : E→ E ′′. In this case, the F0, F1, and

F2 of Lemma 4.3 are derived from the curve E ′′, not E .

4.16. Abelian varieties. It is tempting to extend our results to higher-dimensional principally polarized

abelian varieties (PPAVs), replacing E with a PPAV A/Fq , and x with some coordinate on A, but evaluat-

ing the resulting hS using our methods is more complicated. The main issue is the analogue of Lemma 4.3.

If we choose any even coordinate x on A, then the classical theory of theta functions yields quadratic

relations between x(P + Q), x(P − Q), and the coordinates of P and Q, but not only x(P) and x(Q):

they also require the other even coordinates of P and Q. (The simplest example of this is seen in the

differential addition formulæ for Kummer surfaces: see [22, §6], [31, §3.2], and [18, §4.4].) This means

that an analogue of Algorithm 2 for PPAVs would require multivariate polynomials and resultants; an

investigation of this is well beyond the scope of this article.

50 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

5. Computing elliptic isogenies

We now apply the techniques of §4 to the problem of efficient isogeny computation. The task is divided

in two parts: evaluating isogenies on points (§5.1), and computing codomain curves (§5.2). Our crypto-

graphic applications use isogenies between Montgomery models of elliptic curves, and we concentrate

exclusively on this case here; but our methods adapt easily to Weierstrass and other models.

5.1. Evaluating isogenies. Let E/Fq : y2 = x(x2+ Ax + 1) be an elliptic curve in Montgomery form,

and let P be a point of prime order ℓ 6= 2 in E(Fq). Costello and Hisil give explicit formulæ in [25] for a

quotient isogeny φ : E→ E ′ with kernel G = 〈P〉 such that E ′/Fq : y2 = x(x2+ A′x+1) is a Montgomery

curve:

φ : (X, Y) 7−→
(
φx(X), c0Yφ′x(X)

)

where c0 =
∏

0<s<ℓ/2 x([s]P) and

φx(X)= X
∏

0<s<ℓ

x([s]P)X − 1

X − x([s]P)
. (1)

See [51] for generalizations and a different proof, and see the earlier paper [45] for analogous Edwards-

coordinate formulas.

Our main goal is to evaluate φ on the level of x-coordinates: that is, to compute φx(α) given α = x(Q)

for Q in E(Fq). This is sufficient for our cryptographic applications. Applications that also need the y-

coordinate of φ(Q), namely c0 y(Q)φ′x(α), can compute c0 as (−1)(ℓ−1)/2hS(0), and can compute φ′x(α)

together with φx(α) by the technique of Example 4.13. To compute φx(α), we rewrite Eq. (1) as

φx(X)=
Xℓ · hS(1/X)2

hS(X)2
where S = {1, 3, . . . , ℓ− 2} .

Computing φx(α) thus reduces to two applications of Algorithm 4.11, using (for example) the index

system (I, J) for S in Example 4.7. The constant 1I,J appears with the same multiplicity in the numer-

ator and denominator, so we need not compute it. All divisions in the computation are by nonzero field

elements except in the following cases, which can be handled separately: if Q = 0 then φ(Q) = 0; if

Q 6= 0 but hS(α)= 0 for α = x(Q) then φ(Q)= 0; if Q = (0, 0) then φ(Q)= (0, 0).

5.2. Computing codomain curves. Our other main task is to determine the coefficient A′ in the defining

equation of E ′.

One approach is as follows. We can now efficiently compute φ(Q) for any Q in E(Fq). Changing the

base ring from Fq to R = Fq [α]/(α2+ Aα+ 1) (losing a small constant factor in the cost of evaluation)

gives us φ(Q) for any Q in E(R). In particular, Q = (α, 0) is a point in E[2](R), and computing

φ(Q)= (α′, 0) reveals A′ =−(α′+ 1/α′). An alternative—at the expense of taking a square root, which

is no longer a q-independent algebraic computation—is to find a point (α, 0) in E(Fq2) with α 6= 0.

Sometimes α is in Fq , and then extending to Fq2 is unnecessary.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 51

Another approach is to use explicit formulas for A′. The formulas from [25] give A′ = c2
0(A− 3σ)

where c2
0 =

∏
0<s<ℓ x([s]P) and σ =

∑
0<s<ℓ(x([s]P) − 1/x([s]P)). As pointed out in [42] in the

context of CSIDH, one can instead transform to twisted Edwards form and use the formulas from [45],

obtaining A′ = 2(1+ d)/(1− d) where

d =
(

A− 2

A+ 2

)ℓ (∏

s∈S

x([s]P)− 1

x([s]P)+ 1

)8

=
(

A− 2

A+ 2

)ℓ (
hS(1)

hS(−1)

)8

.

We can thus compute A′ using Õ(
√
ℓ) operations: every task we need can be performed by some evalu-

ations of hS and some (asymptotically negligible) operations.

6. Applications in isogeny-based cryptography

With the notable exception of SIDH/SIKE [36; 27; 1], most isogeny-based cryptographic protocols need

to evaluate large-degree isogenies. Specifically, CRS [52; 26], CSIDH [20], CSURF [19], etc. use large-

degree isogenies, since not enough keys are fast compositions of isogenies of a few small prime degrees.

The largest isogeny degree, with standard optimizations, grows quasi-linearly in the pre-quantum security

level. For the same post-quantum security level, known quantum attacks require an asymptotically larger

base field but do not affect the largest isogeny degree; see [20, Remark 11].

Concretely, targeting 128 bits of pre-quantum security, CSIDH-512 fixes

p = 4 ·(3 · 5 · · · 373)︸ ︷︷ ︸
73 first odd primes

· 587− 1

and uses isogenies of all odd prime degrees ℓ | p+ 1. Similarly, CSURF-512 fixes

p = 8 · 9 ·(5 · 7 · · · 337)︸ ︷︷ ︸
66 consecutive primes

·349 · 353 ·(367 · · · 389)︸ ︷︷ ︸
6 consecutive primes

−1

and uses isogenies of all prime degrees ℓ | p+ 1, including ℓ= 2.

The CSIDH and CSURF algorithms repeatedly sample a random point of order dividing p+1 in E/Fp,

multiply it by an appropriate cofactor to get P , and then apply Vélu’s formulas for each of the primes

ℓ | ord(P) to obtain E ′ = E/〈P〉. Our algorithm seamlessly replaces Vélu’s formulas in both systems.

Computing E ′ is easy in CSURF: all curves involved have rational 2-torsion, and can thus be represented

by a root of α2+ Aα− 1 in Fp. For CSIDH, we can apply the techniques of §5.2; alternatively, we can

walk to the surface and represent curves as in CSURF.

B-SIDH [24] is an SIDH variant using smaller prime fields, at the cost of much larger prime isogeny

degrees. One participant uses isogenies of degree ℓ | p+ 1, and the other uses ℓ | p− 1. Since primes p

such that p−1 and p+1 both have many small prime factors are rare, some of the ℓ involved in B-SIDH

tend to be even larger than in CSIDH and CSURF. The B-SIDH algorithm starts from a single point P

and computes E/〈P〉 together with the evaluation of φ : E→ E/〈P〉 at three points. Unlike CSIDH and

52 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

CSURF, there is no repeated random sampling of points: a single ℓ-isogeny evaluation for each prime

ℓ | p± 1 is needed.

Our asymptotic speedup in isogeny evaluation implies asymptotic speedups for CRS, CSIDH, CSURF,

and B-SIDH as the security level increases. This does not imply, however, that there is a speedup for

(e.g.) pre-quantum security 2128.

The Appendix of this paper’s full version [6] addresses the question of how large ℓ needs to be before

our algorithms become faster than the conventional algorithms. It looks more closely at performance and

quantifies the cross-over point by considering different metrics such as time in several software or the

number of multiplications. More precisely, we present four implementations: one in magma [10], one

in julia [9] (with nemo [29] for the underlying arithmetic) and two in C (a first one using the underlying

arithmetic of FLINT [32] and the second one on top of the arithmetic subroutines of [20]). In each of the

metrics considered there, the cross-over point is within the range of primes used in CSIDH-512. The new

ℓ-isogeny algorithm sets new speed records for CSIDH-512 and CSIDH-1024 by small but measurable

percentages, and has more effect on protocols that use larger ℓ-isogenies. Our code is available from

https://velusqrt.isogeny.org.

Cryptographic protocols that exploit the KLPT algorithm [37] for isogeny path renormalization, such

as the signature scheme [30] and the encryption scheme SÉTA [28], need to work with irrational torsion

points. They may thus benefit from the technique of §4.14. We did not investigate these protocols further.

References

[1] Reza Azarderakhsh, Brian Koziel, Matt Campagna, Brian LaMacchia, Craig Costello, Patrick Longa, Luca De Feo,
Michael Naehrig, Basil Hess, Joost Renes, Amir Jalali, Vladimir Soukharev, David Jao, and David Urbanik. Supersingular
isogeny key encapsulation, 2017. https://sike.org.

[2] Karim Belabas, Hendrik W. Lenstra, Jr., and Don B. Zagier. Explicit methods in number theory, 2011. Oberwolfach report
35/2011. https://publications.mfo.de/handle/mfo/3250.

[3] Daniel J. Bernstein. Scaled remainder trees, 2004. https://cr.yp.to/papers.html#scaledmod.

[4] Daniel J. Bernstein. Reducing lattice bases to find small-height values of univariate polynomials. In Joe Buhler and Pe-
ter Stevenhagen, editors, Algorithmic number theory: lattices, number fields, curves and cryptography, pages 421–446.
Cambridge University Press, 2008. https://cr.yp.to/papers.html#smallheight.

[5] Daniel J. Bernstein. Jet list decoding, 2011. https://cr.yp.to/talks/2011.11.24/slides.pdf.

[6] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of isogenies of large prime
degree. Cryptology ePrint Archive, Report 2020/341, 2020. https://eprint.iacr.org/2020/341.

[7] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. In Joppe W. Bos and Arjen K.
Lenstra, editors, Topics in computational number theory inspired by Peter L. Montgomery, pages 82–115. Cambridge
University Press, 2017. https://eprint.iacr.org/2017/293.

[8] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum circuits for the CSIDH: optimizing
quantum evaluation of isogenies. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT, volume 11477 of Lecture

Notes in Computer Science, pages 409–441, 2019. https://ia.cr/2018/1059.

[9] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach to numerical computing. SIAM

Review, 59(1):65–98, 2017. https://arxiv.org/abs/1411.1607.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 53

[10] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Com-

put., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993). https://www.math.ru.nl/ bosma/
pubs/JSC1997Magma.pdf.

[11] Alin Bostan. Computing the N-th term of a q-holonomic sequence. In Proceedings of the 45th International Symposium on

Symbolic and Algebraic Computation, ISSAC ’20, page 46–53, New York, NY, USA, 2020. Association for Computing
Machinery.

[12] Alin Bostan, Pierrick Gaudry, and Éric Schost. Linear recurrences with polynomial coefficients and application to integer
factorization and Cartier–Manin operator. SIAM Journal on Computing, 36(6):1777–1806, 2007. https://hal.inria.fr/inria-
00514132.

[13] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, and Bernd Wiebelt. Complexity issues in bivariate polynomial fac-
torization. ISSAC 2004, pages 42–49. Association for Computing Machinery, 2004. https://specfun.inria.fr/bostan/publi-
cations/BoLeSaScWi04.pdf.

[14] Alin Bostan, Grégoire Lecerf, and Éric Schost. Tellegen’s principle into practice. ISSAC 2003, pages 37–44. Association
for Computing Machinery, 2003. https://specfun.inria.fr/bostan/publications/BoLeSc03.pdf.

[15] Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication. Journal of the ACM, 28:521–534,
1981. https://maths-people.anu.edu.au/ brent/pub/pub055.html.

[16] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity theory, volume 315 of
Grundlehren der mathematischen Wissenschaften. Springer, 1997.

[17] J. W. S. Cassels. Lectures on Elliptic Curves, volume 24 of London Mathematical Society Student Texts. Cambridge
University Press, 1991.

[18] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of genus 2, volume 230 of London

Mathematical Society Lecture Note Series. Cambridge University Press, 1996.

[19] Wouter Castryck and Thomas Decru. CSIDH on the surface. 2019. https://ia.cr/2019/1404.

[20] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: an efficient post-quantum
commutative group action. In ASIACRYPT (3), volume 11274 of Lecture Notes in Computer Science, pages 395–427,
2018. https://ia.cr/2018/383.

[21] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De Feo, Francisco Rodríguez-Henríquez,
and Benjamin Smith. Stronger and faster side-channel protections for CSIDH. In Progress in Cryptology – LATINCRYPT

2019, pages 173–193, 2019. https://ia.cr/2019/837.

[22] David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers generated by addition in formal groups and new
primality and factorization tests. Advances in Applied Mathematics, 7(4):385–434, 1986. https://core.ac.uk/download/pdf/
82012348.pdf.

[23] Edgar Costa and David Harvey. Faster deterministic integer factorization. Mathematics of Computation, 83(285):339–345,
2014. https://arxiv.org/abs/1201.2116.

[24] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion, 2019. https://ia.cr/2019/1145.

[25] Craig Costello and Hüseyin Hisil. A simple and compact algorithm for SIDH with arbitrary degree isogenies. In ASI-

ACRYPT (2), volume 10625 of Lecture Notes in Computer Science, pages 303–329, 2017. https://eprint.iacr.org/2017/504.

[26] Jean-Marc Couveignes. Hard homogeneous spaces, 2006. https://ia.cr/2006/291.

[27] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014. https://ia.cr/2011/506.

[28] Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit, and Javier Silva. SÉTA: supersingular encryption from
torsion attacks, 2019. https://ia.cr/2019/1291.

[29] Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson. Nemo/Hecke: Computer algebra and number
theory packages for the Julia programming language. ISSAC 2017, pages 157–164, New York, NY, USA, 2017. ACM.
https://arxiv.org/abs/1705.06134v1.

[30] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols and signature schemes based on supersin-
gular isogeny problems. In ASIACRYPT, 2017. https://ia.cr/2016/1154.

54 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

[31] Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. J. Mathematical Cryptology, 1(3):243–265, 2007.
https://ia.cr/2005/314.

[32] William B. Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for Number Theory, 2020. Development
version, http://flintlib.org.

[33] David Harvey. Faster algorithms for the square root and reciprocal of power series. Mathematics of Computation, 80(273):
387–394, 2011. https://arxiv.org/abs/0910.1926.

[34] Markus Hittmeir. A babystep-giantstep method for faster deterministic integer factorization. Mathematics of Computation,
87(314):2915–2935, 2018. https://arxiv.org/abs/1608.08766v1.

[35] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarderakhsh. Further optimizations of CSIDH: A systematic
approach to efficient strategies, permutations, and bound vectors, 2019. https://ia.cr/2019/1121.

[36] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In
PQCrypto 2011, pages 19–34, 2011. https://ia.cr/2011/506.

[37] David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tignol. On the quaternion ℓ-isogeny path problem.
https://ia.cr/2014/505.

[38] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California at Berkeley,
1996. http://iml.univ-mrs.fr/ kohel/pub/thesis.pdf.

[39] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of mathematics, pages 649–673, 1987. https://www.
math.leidenuniv.nl/ hwl/PUBLICATIONS/1987c/art.pdf.

[40] Gregorio Malajovich and Jorge P. Zubelli. Tangent Graeffe iteration. Numerische Mathematik, 89(4):749–782, 2001.
https://arxiv.org/abs/math/9908150.

[41] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators: An efficient constant-time implementation of
CSIDH. In Jintai Ding and Rainer Steinwandt, editors, PQCrypto 2019, pages 307–325, 2019. https://ia.cr/2018/1198.

[42] Michael Meyer and Steffen Reith. A faster way to the CSIDH. In INDOCRYPT, volume 11356 of Lecture Notes in

Computer Science, pages 137–152. Springer, 2018. https://ia.cr/2018/782.

[43] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation,
48(177):243–264, 1987.

[44] Peter Lawrence Montgomery. An FFT extension of the elliptic curve method of factorization. PhD thesis, UCLA, 1992.
https://cr.yp.to/bib/1992/montgomery.pdf.

[45] Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves.
Mathematics of Computation, 85(300):1929–1951, 2016. https://ia.cr/2011/430.

[46] Jacques Morgenstern. Algorithmes linéaires tangents et complexité. Comptes Rendus Hebdomadaires des Séances de

l’Académie des Sciences, Série A, 277:367–369, septembre 1973. https://gallica.bnf.fr/ark:/12148/cb34416987n/date.

[47] David B. Mumford. On the equations defining abelian varieties. I. Inventiones Mathematicae, 1(4):287–354, 1966. https://
dash.harvard.edu/handle/1/3597241.

[48] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short Paper) A faster constant-time algo-
rithm of CSIDH keeping two points. In Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in Information and

Computer Security, pages 23–33, 2019. https://ia.cr/2019/353.

[49] John M. Pollard. Theorems on factorization and primality testing. Mathematical Proceedings of the Cambridge Philosoph-

ical Society, 76(3):521–528, 1974. https://doi.org/10.1017/S0305004100049252.

[50] Lawrence R. Rabiner, R. W. Schafer, and Charles M. Rader. The chirp-z transform algorithm. IEEE Transactions on Audio

and Electroacoustics, 17:86–92, 1969. https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/015_czt.pdf.

[51] Joost Renes. Computing isogenies between Montgomery curves using the action of (0, 0). PQCrypto 2018, pages 229–247,
2018. https://ia.cr/2017/1198.

[52] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies, 2006. https://ia.cr/2006/145.

[53] Volker Strassen. Einige Resultate über Berechnungskomplexität. Jahresbericht der Deutschen Mathematiker-Vereinigung,
78:1–8, 1976.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 55

[54] Volker Strassen. The computational complexity of continued fractions. SIAM Journal on Computing, 12:1–27, 1983.

[55] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020. https://www.sagemath.org.

[56] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci-

ences, Série A, 273:238–241, juillet 1971. https://gallica.bnf.fr/ark:/12148/cb34416987n/date.

Received 28 Feb 2020. Revised 28 Feb 2020.

DANIEL J. BERNSTEIN: Department of Computer Science, University of Illinois at Chicago, USA

and

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

LUCA DE FEO: IBM Research Zürich, Switzerland
antsXIV@defeo.lu

ANTONIN LEROUX: antonin.leroux@polytechnique.org

DGA, Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

BENJAMIN SMITH: smith@lix.polytechnique.fr

Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

msp

VOLUME EDITORS

Stephen D. Galbraith

Mathematics Department

University of Auckland

New Zealand

https://orcid.org/0000-0001-7114-8377

The cover image is based on an illustration from the article “Supersingular

curves with small noninteger endomorphisms”, by Jonathan Love and Dan

Boneh (see p. 9).

The contents of this work are copyrighted by MSP or the respective authors.

All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/4

and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-07-1 (print), 978-1-935107-08-8 (electronic)

First published 2020.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

	1. Introduction
	1.1. Model of computation

	2. Strassen's deterministic factorization algorithm
	2.1. Factorization via modular factorials
	2.2. Modular factorials as an example of the main problem
	2.3. An algorithm for modular factorials

	3. Evaluation of polynomials whose roots are powers
	3.1. A multiplicative version of modular factorials
	3.2. An algorithm for the multiplicative version of modular factorials
	3.3. Structures in S and f
	3.6. Optimization

	4. Elliptic resultants
	4.1. The elliptic setting
	4.2. Biquadratic relations on x-coordinates
	4.5. Index systems
	4.8. Elliptic resultants
	4.10. Elliptic polynomial evaluation
	4.14. Irrational generators
	4.15. Other functions on E
	4.16. Abelian varieties

	5. Computing elliptic isogenies
	5.1. Evaluating isogenies
	5.2. Computing codomain curves

	6. Applications in isogeny-based cryptography
	References

