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Abstract. This paper analyzes and optimizes quantum circuits for computing discrete
logarithms on binary elliptic curves, including reversible circuits for fixed-base-point
scalar multiplication and the full stack of relevant subroutines. The main optimization
target is the size of the quantum computer, i.e., the number of logical qubits required,
as this appears to be the main obstacle to implementing Shor’s polynomial-time
discrete-logarithm algorithm. The secondary optimization target is the number of
logical Toffoli gates.

For an elliptic curve over a field of 2" elements, this paper reduces the number of
qubits to 7n + |logy(n)] + 9. At the same time this paper reduces the number of
Toffoli gates to 48n° + 8n'°82(+1 1 35212 log, (n) + 512n2 + O(n'°52(®) with double-
and-add scalar multiplication, and a logarithmic factor smaller with fixed-window
scalar multiplication. The number of CNOT gates is also O(n?). Exact gate counts
are given for various sizes of elliptic curves currently used for cryptography.
Keywords: Quantum cryptanalysis - elliptic curves - quantum resource estimation
- quantum gates - Shor’s algorithm

1 Introduction

Current cryptographic systems used on the Internet rely on the Diffie-Hellman key exchange,
a way to create shared secret keys over a public channel. One of the most common Diffie-
Hellman variants uses elliptic-curve cryptography (ECC). The key-exchange schemes rely
on problems that are hard to solve with a classical computer. However, a quantum
computer has advantages against these problems and can solve them exponentially faster.

Current quantum computers are very small compared to classical computers. However,
a time will soon come when quantum computers can threaten computer security. This
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paper looks at a specific instance of a currently used cryptographic system and analyzes
how large a quantum computer would have to be to quickly break it.

Optimizing quantum algorithms for concrete cryptanalysis has a lot in common with
hardware design. The extra challenge is that quantum algorithms are required to be
reversible. Reversible circuits are composed of a fixed set of reversible gates — NOT,
CNOT, and Toffoli — which match the functionality of NOT, XOR, and AND with the
extra condition that they return enough of the inputs to make the operations reversible.
This creates an additional challenge for space efficient algorithms as trivial applications of
the gate translation would amass a lot of qubits.

1.1 When will RSA and ECC be broken?

The number of years left for RSA and ECC depends on advances in building quantum
computers, but also on advances in optimizing Shor’s algorithm, and on the selected key
sizes. Normally RSA and ECC key sizes are chosen to provide equal strength against
non-quantum attacks, but this does not mean that they have equal strength against
quantum attacks. Overheads in quantum elliptic-curve arithmetic make Shor’s algorithm
more challenging to optimize for ECC, but, as pre-quantum security levels increase, RSA
chooses relatively large key sizes to protect against subexponential-time non-quantum
factorization attacks. This creates a cross-over point in pre-quantum security levels, below
which Shor’s algorithm is faster for RSA than for ECC and above which Shor’s algorithm
is faster for ECC than for RSA.

At Asiacrypt 2017, Rétteler, Naehrig, Svore and Lauter [RNSL17] presented concrete
quantum cryptanalysis of elliptic curve cryptography over prime fields. Their paper was the
first to give a detailed study of this problem for prime fields and found a cross-over point
much smaller than previously thought. Last year, Gidney and Ekerd [GE19] improved the
cost of breaking RSA, leading again to a later cross-over point between RSA and ECC.

For binary elliptic curves, several papers have studied different curve shapes and
approaches to the arithmetic, generally pointing to a later cross-over point than [RNSL17].
The most recent paper in that sequence of publications is [ARS13] by Amento, Rotteler
and Steinwandt. That paper uses depth as its singular metric, sacrificing space to improve
latency, whereas [RNSL17] emphasized space and gate count, so the results are not directly
comparable. Furthermore, [ARS13] does not specify the entirety of Shor’s algorithm,
leaving open how exactly the presented results would be combined.

1.2 Contributions of this paper

This paper focuses on binary ECC and improves upon previous papers at all levels of
arithmetic. We optimize operations in the finite field Fon of 2" elements; use fewer
operations in the elliptic-curve arithmetic; and study windowing as a way to speed up
Shor’s algorithm using table access in superposition. This paper uses space as its primary
metric and gate count as its secondary metric, for comparability to [RNSL17].

For the finite field multiplication, we use Van Hoof’s [Ho020] recent space-efficient
quantum Karatsuba multiplication. The division algorithm in [RNSL17] uses a method
based on greatest common divisor algorithms, which is common for division in prime
fields; for binary fields it is often more efficient to use inversion algorithms based on
Fermat’s little theorem, such as Itoh and Tsujii [IT88]. This approach was considered in
[ARS13] along with using projective coordinates to avoid most inversions. We introduce
an optimized quantum version of a recent ged algorithm by Bernstein and Yang [BY19],
and give a concrete comparison of Fermat’s little theorem-based division algorithms versus
extended-Euclid greatest-common-divisor-based algorithms.

Putting all levels of the computation together, we obtain a cost without windowing of
n + |logy(n)| + 9 qubits, 48n3 + 8n'°82(3)+1 135212 10g, (n) 4 512n2 + O(n'°82(3)) Toffoli
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gates, and O(n®) CNOT gates. The costs with windowing are more complicated but
smaller by a logarithmic factor. We present exact gate counts for standard ECC sizes from
163 bits through 571 bits in Tables 5 and 6 (considering windows).

A preliminary form of this paper was included in the third author’s master’s thesis
in 2019 and achieved the same 7n + [logy(n)] + 9 qubits for binary-field ECDLP. An
independent paper [HINT20] achieved about 8n + 10.2[logy(n)| — 1 qubits for prime-field
ECDLP. The previous paper [RNSL17] used 9n + 2[logy(n)]| + 10 qubits for prime-field
ECDLP. See Section 9 for a more detailed comparison of our work to other work.

1.3 Organization of the paper

Sections 2 and 3 consist of background on elliptic curves and quantum computing respec-
tively, while clarifying notation and goals. Section 4 details Shor’s algorithm, the general
quantum algorithm we use to solve discrete logarithm problems. Section 5 introduces
basic finite-field operations like addition and constant multiplication. Section 6 details and
compares two methods to do division: a new algorithm using extended greatest common
divisor and an algorithm using Fermat’s little theorem. In Section 7 we put this together
to achieve point addition on binary elliptic curves. Section 8 presents a quantum version
of scalar multiplication using windowing. For both approaches, the resulting resource
count and a comparison to other work is given in Section 9. Finally, Section 10 draws a
conclusion and details future work.

2 Binary elliptic curve discrete logarithm

This section contains a very brief introduction into binary elliptic curve cryptography,
the primary application of this paper. For more background on elliptic curves see, e.g.,
[ACDT05].

2.1 Binary elliptic curves

Binary elliptic curves are elliptic curves defined over a binary field Fo». We use a polynomial
representation for Fon, i.e., the elements are represented as polynomials of degree less than
n with coefficients in Fo. Computations use that Fon = Fa[z]/m(z), where m(z) € Fa[z]
is an irreducible polynomial of degree n, i.e., all computations are done modulo m(z).
Binary elliptic curves are standardized in [KG13], for the defining polynomials m(z) used
for those curves see table 1.

We consider only ordinary binary elliptic curves, as the supersingular ones have stronger
attacks. An ordinary binary elliptic curve is given by y? + zy = 2% 4+ az? + b, where a € Fy
and b € F,. Points on this curve are tuples P = (z,y) € F3, satisfying the curve equation
along with a special point O called the “point at infinity”.

The set of points on an elliptic curve forms a group under point addition defined
as follows. The neutral element is O. The negative of a point P; = (z1,y1) is —P; =
(z1,y1 + x1), so that Py + (—P1) = O. Two points P, = (z1,y1) and Py = (22,y2) # Py
are added to produce Py + P> = P3 = (23,y3) as

w3 = AN H A+ a2 +a, Y3 = (02 +23)A + 23 +yo with A = (y1 +y2)/ (21 + 22).
and P; # —P; is doubled to produce [2]P; = (x3,y3) as
3 =X+ A+a, yz3=2a7+ N+ 1Dz with X\ =z, +yi/z1.

By Hasse’s theorem [Has36] the number of points on an elliptic curve over Fan is at
most 2" + [2"/2F1| 4 1; this is less than 2"+! for n > 2. The order ord(P) of a point P is
the smallest positive integer such that [ord(P)]P = O. The order of a point divides the
number of points on the elliptic curve.
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Table 1: List of irreducible polynomials for binary finite fields used in this paper.

Degree | Irreducible polynomial Source
8 X+t +22+2x+1 | [ACDV05]
16 o+ 2+ 23+ +1 | [ACDT05]

127 o2 1 [ACDT05]
163 2103 42T+ 28+ 23 +1 [KG13]
233 2238 4 2141 [KG13]
283 | 2?3 +212 42T+ 25 +1 | [KG13]
571 | 2571 4+ 210 425 422 41| [KG13]

2.2 Elliptic curve Diffie-Hellman

Elliptic curve Diffie-Hellman, the primary key-exchange mechanism using elliptic curves,
works as follows: Alice and Bob want to privately agree on a secret point on a public
curve while communicating in a public space. To do this, each takes a secret integer a
and [ respectively. Publicly, they agree on a point P with a large prime order. Then,
they calculate and tell each other P, = [a|P and Ps = [§]P. Finally, they calculate their
shared point P,3 = [+ 8]P = [@]P3 = [f]Pa. The problem of computing « from P, and
P is called the elliptic curve discrete logarithm problem (ECDLP). The best non-quantum
attacks on the ECDLP take exponential time in ord(P). Shor’s algorithm [Sho94] computes
a in time polynomial in ord(P) with a quantum computer.

3 Quantum background

This section contains a brief overview of quantum computing. For more details we refer to
Ronald de Wolf’s lecture notes available online [Wol19].

3.1 Qubits

A classical bit can take 2 values: 0 or 1, measuring that bit does nothing to it and using
transistors we can have gates like AND or OR. In the quantum case we have quantum
bits qubits, for which these things are not true. The qubits can take a superposition of
values, meaning that the qubit can be in two states at once, and measuring a qubit changes
its value by collapsing it to take value 0 or 1. The base states of a qubit are written
in ket notation as |0) and |1) and a superposition is a weighted sum of these two base
states «|0) + B|1), where o, 3 € C and |o?| + |3%| = 1. The chance to observe 0 in the
measurement equals |a?|. A qubit with |a| = ||, such as %|0) - %H), is said to be in
uniform superposition; it has equal chance of being measured as 0 or 1.
Combining n qubits provides a superposition over 2" states

on_1 on_1
Z Qilqn—1,iGn—2,i - - - q1,i90,;) With Z af =1,
=0 =0

where i = (¢n—1,i9n—2, - - - 41,i40,i)2 is the representation of i in base 2. Measuring outputs
i with probability |a?|. For simplicity we write Z?:S " )i} in the following.

3.2 Quantum Gates

Quantum computing requires reversible gates. Unlike classical gates like AND or XOR
reversible gates are bijective (every input state corresponds to exactly one output state)
and require an equal number of input and output qubits. In the following sections we state
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our algorithms only in terms of these gates applied to classical states, but the gates we use
can be applied to superpositions of qubits in states |1) and |0). Each state then behaves
as expected individually: applying a NOT-gate to «|0) + §]1) turns it into «|1) + §]0).
For elliptic-curve computations we need the following gates (see also Circuit 1):

o The NOT gate. It has one input and one output: if the input is |0), the output is
|1) and vice versa. It is its own inverse.

e The CNOT (controlled NOT), or Feynman, gate is the reversible equivalent of XOR.
This gate has 2 qubits as inputs and adds one of the qubits to the other qubit:
(a,b) — (a ® b,b). It is its own inverse: applying a CNOT to (a @ b, b) results in
(a®b®bb) = (a,b). By abuse of notation we write this as a + CNOT(a,b) in
algorithms to highlight the position that changes.

o The Toffoli (TOF) gate is the reversible equivalent of AND. This gate has 3 qubits
as inputs and adds the first qubit multiplied with the second qubit to the third qubit:
(a,b,c) = (a,b,c® (a-b)). It is also its own inverse: (a,b,c® (a-b) B (a-b)) = (a,b,c).
Circuit 1b has an example. We write this as ¢ <~ TOF(a, b, ¢) in algorithms.

e The SWAP operation swaps two qubits a and b, after a swap we refer to qubit a as
“b” and qubit b as “a”. This is free in the cost metrics we use.

¢ 469; a@b b ——— b a b
—— b ¢ —B— c@(a-b) b I a

(a) The CNOT gate. (b) The TOF gate. (c) The swap operation.

Circuit 1: Basic quantum gates used in this paper, beyond NOT.

Quantum computing has other gates and actions, which are purely quantum and not
available in classical reversible computing. In Shor’s algorithm, the following gates are
necessary: the Hadamard gate (H ), the phase shift gate (Ry), and measurement, indicated
by a meter symbol. Shor’s algorithm is described in the next section. Our results can use
this algorithm as a black box so we do not describe these gates.

Quantum mechanics has a unique property called entanglement that is not present in the
classical world. When 2 qubits interact, they become entangled. Using this entanglement
we can make quantum algorithms.

3.3 Quantum Algorithms

Quantum algorithms consist of operations on registers of qubits. We divide those qubits
into two types:

e Input and output qubits. These qubits contain the input and will contain the output
after running the algorithm, potentially with some qubits being in the same state
as before. For example, a Toffoli gate has 3 input and output qubits, but only 1 of
them changes.

e Ancillary qubits. These qubits are used by the algorithm, but do not contain the
input and output. For this paper we restrict ancillary qubits to always start and end
in a fixed state of |0).



456 Concrete quantum cryptanalysis of binary elliptic curves

3.3.1 Efficiency

There are several methods to measure the efficiency of algorithms:

e On the most basic level, we can compare the number of gates. However, quantum
Toffoli gates are expected to be much more expensive than CNOT gates, with the
exact difference depending on the physical realization of the quantum computer. As
such, minimizing the number of Toffoli gates alone can be considered a better goal.
The number of Toffoli gates will be an important concern in this paper.

e Furthermore, the number of qubits an algorithm uses is something very relevant
to implementations today. Actual quantum computers are slowly increasing their
number of qubits. As such the space, or width, of an algorithm is also relevant. The
lower this space, the sooner the algorithm can be implemented on a real quantum
computer. Space will be the primary concern in this work.

e In addition to this, we can parallelize quantum circuits well: applying a circuit once
on a set of qubits and once on a different set of qubits can be done twice as fast as
applying that circuit twice on some of the same qubits. For example, CNOT(a, b) and
CNOT(b, ¢) has to be done sequentially in 2 steps, while CNOT(a, b) and CNOT(c, d)
can be done in one step. This measure of how many gates we need sequentially is
called depth. In this work, depth will not be explored in-depth, but will be reported
and optimization left to future work.

e Finally, all of the above assumes quantum computers will not have errors. Precise
quantum states are difficult to maintain and errors come quickly. Error correction
has to be implemented to create what are called logical qubits, qubits on which
operations can be performed with a reasonable degree of certainty. Error correction
is not considered in this work and any mention of qubits refers to logical qubits.

An ideal analysis would give a parameterized algorithm in all of the above. However, users
of cryptography need a concrete number to see how close to broken binary ECC is. Thus
we prioritize the number of qubits and the number of Toffoli gates as those have been
used in previous work [RNSL17]. We explore adding a small (constant or logarithmic)
number of qubits to reduce the gate count, but minimize the number of qubits down to
contributions linear in n.

4 Shor’s algorithm

In 1994, Peter Shor described how to use quantum computers to break traditional asym-
metric cryptography [Sho94]. While his primary example detailed how to break RSA by
factoring integers in polynomial time on a quantum computer, he also showed how to
extend his algorithm to any discrete logarithm problem, which includes the ECDLP. We
use the same version as used in [RNSL17] to show the basics of Shor’s algorithm.

Shor’s algorithm for solving discrete logarithms works as follows: we have two points
P,Q € E(F3.) with Q = [a]P. We want to find a. Take 2 registers k and ¢ of size

n4l_
n + 1 each in uniform superposition Qn% ié:o 1|k7€). Take another 2n qubits in a state

representing |O). Conditional on the first 2 registers, add classically precomputed points
[20]P, [21]P, ..., [2"]P and [2°]Q, [2Y]@, ..., [2"]@Q to the last 2n qubits to obtain

ontl_q

o 2 Ik P+ [1Q).

k,0=0

A quantum Fourier transform (QFT), consisting of specific phase shift gates and Hadamard
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o)

o) (]
0) —{H]
: QFT

|0) 4@ o
|0) 2 fypl—... +2"P +Q o w—

Circuit 2: Shor’s algorithm for finding elliptic curve discrete logarithm.
H1 Hon+1

QFT

D B &

+2'Q

Circuit 3: Shor’s algorithm for finding elliptic curve logarithms with a semiclassical Fourier
transform.

gates is applied to the first 2 registers'. Those two registers are then measured, and the
measurement result can be used to compute « classically [Sho97]. Measuring the last 2n
qubits gives a point R, for which k, ¢ exist such that [k]P + [(]Q = R. Shor’s algorithm
finds the hidden period v such that [k + 1]P + [{ +v]Q = R, giving o = —1/v mod ord(P).
In Circuit 2 the general algorithm is drawn. Note that it does not matter when the final
2n qubits are measured, so these can be measured when measuring the entire state or even
after the result of the quantum Fourier transform is measured.

By taking measurements after every step, we can compress the quantum Fourier trans-
form on the first 2n + 2 qubits into a single qubit [GN96]. The phase shift after every step
depends on the previous measurement outcomes pg, ..., flon+1 With 8, = —m Z;:& 2k_j,uj.
In Circuit 3 the algorithm has been drawn.

What matters for our analysis is that Shor requires the conditional addition of pre-
computed classical points to an intermediate point given in superposition, where the
condition is also given in superposition. This requires computations in Fo» and elliptic
curve operations that fit this data flow and are reversible.

5 Basic arithmetic

In this section we discuss reversible in-place algorithms for the basic arithmetic of binary
polynomials modulo a field polynomial m(z), i.e. elements of Fan.

5.1 Addition and binary shift

The first operation we consider, addition, can easily be implemented for binary polynomials.
FEach addition in Fy takes one CNOT gate. The addition of two polynomials of degree at
most n — 1 takes n CNOT gates with depth 1. This operation uses no ancillary qubits and
the result of the addition replaces either of the inputs. Since addition is component-wise,
addition for polynomials over Fs is the same as addition for elements of the field Fon.
For polynomials in Fy[z] multiplication by z is a shift of the coefficient vector. This
requires no quantum computation by doing a series of swaps. In a finite field, we want
to do a multiplication of a polynomial g(z) of degree at most n — 1 by z followed by a

1Quantum Fourier transforms as well as the other gates are not detailed in this paper as the primary
focus is on the elliptic curve operations.
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|90) |h1)
|91) |h2)
l92) —P— |h3)
lg3) —+— |ha)
9a) ——— |hs)
95) —— |h)
l96) ——— |h7)
lg7) ——— |hs)
gs) ——— |h9)
|99) —&—— |ho)

Circuit 4: Binary shift circuit for Foio with go+- - -+ g92° as the input and ho+---+hgz® =
go + 9oz + g122 + (92 + g9)2> + g3zt + - -+ + go2¥ as the output.

modular reduction by a fixed irreducible weight-w degree-n polynomial m(z). For our
purposes w will always be 3 or 5. We represent m(z) as M where M is an ordered list of
length w that contains the degrees of the nonzero terms in descending order, for example
if m(z) =1+ 23+ 219 we get M = [10,3,0]. Let g(z) = Z?;OI giz':

e Step 1: For every qubit g; change its index so that it represents the coefficient of
Zitlmodn Tet b be the coefficients of the relabeled polynomial, i.e. Riy1 mod n = Gi-

e Step 2: Apply CNOT controlled by the 2° term hg (gn—1 before Step 1) to h;, with
j=M,...,M,_5. In the example of 1 + 22 + 2'° we would apply 1 CNOT to hs
controlled by hg.

See Circuit 4 for an example. After a multiplication by z without reduction the coefficient
of 20 is always 0. As m(z) is irreducible, it always has coefficient 1 for 20, so after a
reduction by m(z) that qubit will be 1 and if no reduction takes place that qubit will be
0, which means our modular shift algorithm is reversible. This results in a total of w — 2
CNOT gates for a modular reduction, with depth w — 2 and we do not use ancillary qubits.
Running this circuit in reverse corresponds to dividing by z modulo m(z).

5.2 Multiplication

For multiplication we use a space-efficient Karatsuba algorithm by Van Hoof [Hoo20] which
uses O(n?) CNOT gates, O(n'°823) Toffoli gates and 3n total qubits: 2n qubits for the
input, f,g, and n separate qubits for the output, h. The algorithm is detailed in the full
version of this paper [BBvHL20, Appendix A]. An implementation in Q# is available in
[BBvHL20, Appendix B]. It adds the multiplication result to the output qubits, h + f - g.

5.3 Squaring

Squaring in Fa» is a lot easier than in the general case since:

n—1 2 n—1
E a;z' | = g a; - 2% mod m(z)
i=0 i=0

If we do not consider the mod operation, this would be ‘free,” as we just need to shuffle
zeroes between our registers. We can see two approaches for squaring in Fan: a circuit
that takes the result of squaring a polynomial of degree at most n — 1 and stores it in n
separate qubits, or a circuit that replaces the input with the result. The second approach
is only possible for finite fields with 2™ elements since squaring is bijective.
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5.3.1 Squaring and replacing the input

To square and replace the input, we make use of the fact that squaring is a linear map
and we can write that map as an n by n matrix. Using an LUP-decomposition, we get a
lower triangular, upper triangular and permutation matrix, which can be translated into a
circuit consisting of at most n2 —n CNOT gates and a number of swaps.?

5.3.2 Squaring and storing the result separately

For this approach, we can take schoolbook squaring mod m(z): for every i from 0 to
n—1 add a;2% mod m(z) to the output qubits which start in state |0). For fixed m(z) we
can exactly compute the number of CNOT gates required depending on it. For example,
squaring modulo 1 + 23 + z'© requires 16 CNOT gates.

There are families of polynomials m(z) where this algorithm uses a quadratic number
of CNOT gates. However, the attacker can move to an isomorphic field, for example
replacing 2127 + 2126 4 1 with 2'27 + 2 4 1. Standard conjectures imply that every n > 2
has an irreducible degree-n trinomial or pentanomial with the second non-zero term having
degree at most n/2, and then this algorithm uses O(n) CNOT gates.

6 Inversion and division in binary finite fields

The most computationally intensive step is the division step. For the purpose of this paper
we treat division by a field element as multiplication by the inverse of that element. There
are two different ways these inverses are calculated, which we compare in this section.

6.1 Inversion using extended GCD

The first variant we look at is using the extended greatest common divisor (GCD) or Euclid’s
algorithm. Roetteler, Naehrig, Svore and Lauter [RNSL17] propose a straightforward
variant using Kaliski’s binary GCD algorithm for inversion in F,. In the quantum setting
this has a problem because Kaliski’s algorithm terminates in a number of steps dependent
on the input polynomial. To circumvent this, a qubit stores whether the algorithm has
terminated and log(n) qubits store how long ago the algorithm terminated. This ends
up introducing a rather large number of conditional CNOT and conditional Toffoli gates
at each step, which balloons the total Toffoli gate cost. This algorithm ends up having
32n?log(n) Toffoli gates while using only 8n + 2[log(n)] + 9 qubits.

Recently Bernstein and Yang [BY19] introduced streamlined constant-time inversion
algorithms for integers and polynomials. We introduce a reversible variant of the polynomial
algorithm in [BY19]. We have chosen notation to help the reader see how the steps in
the optimized reversible computation here correspond to the steps in the optimized non-
reversible algorithm in [BY19, Section 7.1]: in particular, the arrays f,g,v,r here are
the arrays of coefficients of the polynomials f, g, v,r in [BY19]. To minimize the number
of qubits and, secondarily, the number of Toffoli gates, we carefully track the sizes of
intermediate results and of inputs that need to be recorded for reversibility.

2Mufioz-Coreas and Thapliyal [MCT17] propose a design which uses a small number of gates for
reversible squaring by shuffling the qubits cleverly. The number of CNOT gates saved for their squaring
compared to squaring with separate output is equal to n, and they use no ancillary qubits. Their algorithm
as proposed, however, does not take into account cases where qubits in the upper \_%J registers have to
interact. For example, if n = 8 and m(z) = 242+ 28 4241, we have 262 = 27 + 25 + 23 + 2 + 1.
This means the qubit corresponding to z% in the input has to be added to qubits that also have to add
themselves to the qubit corresponding to 28 in the input, regardless of which output qubit you use to
represent input qubits 2%, 2%, 27. This does not obviously translate into a quantum algorithm and their
code is not publicly accessible.
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Algorithm 1: GCD_DIV. Reversible algorithm for division using inversion with
an extended GCD algorithm. CNOT(4[0, ..., [log(n)] + 1],a) is shorthand for
CNOT(4[0], a), ...,CNOT (8[| log(n) | + 1], a) and similar shorthand is used for TOF
gates.

[V

[ I B N

o

10
11
12
13
14
15
16
17
18

19
2

o

21
22

Fixed input : A constant field polynomial m of degree n > 0 as an array M

as in Subsection 5.1, A = min(2n — 2 — ¢,n) and
A=min({+ 1,n).

Quantum input :

A non-zero binary polynomial R;(z) of degree up to n — 1 stored in array g of size n

to invert.

A binary polynomial Ra(2) of degree up to n — 1 to multiply with the inverse stored

in array B.
A binary polynomial R3(z) of degree up to n — 1 for the result stored in array C.
4 arrays of size n + 1: f, r, v, go initialized to an all-|0) state.

1 array of size [log(n)] + 2 initialized to an all-|0) state: &, which will be treated as

an integer.

2 qubits to store ancillary qubits a, g[n] initialized to |0).
Refer to g[n], g[n — 1], ..., 9[3] as go[n + 1], go[n + 2], ..., go[2n — 2] when applicable.
Refer to d[[log(n)] + 1] as sign with sign = 1 if § > 2L1°e(™]+1 and 0 otherwise.

Result: Everything except C' the same as their input, C as R3 + Ra/R;
for i in M do
| fln—i] < 1) // Reverse m
sign « |1)
r[0] « [1)
fori=0,..,[2] —1do

2

| SWAP(g[i], g[n — 1 —i]) // Reverse g

for /=0,...,2n— 2 do
0[0, ..., n] + RIGHTSHIFT(0[0, ..., n])
a < TOF(sign, ¢[0], a)
[0, ..., [log(n) ] + 1] + CNOT(4[0, ..., |log(n)| + 1], a)
CSWAP,(f]0,...,A], g[0, ..., A]) // A=min(2n —2—{,n)
CSWAP, (70, ..., A],v[0, ..., \]) // A=min({+1,n)
5[0, ..., [log(n)] + 1] + INC1,4(d]0, ..., |log(n) | + 1])
a < CNOT(a,v[0]) // Uncompute a
gol¢] <= CNOT(go[4], g[0])
90, ..., A] + TOF(f0, ..., Al, go[], g0, ..., A]) // A+ 1 TOF gates
[0, ..., A] « TOF(v[0, ..., A], go[4], [0, ..., A]) // A+ 1 TOF gates
9]0, ..., A] + LEFTSHIFT(g[0, ..., A])

for i =0,.., 2] —1do
L SWAP (v[i],v[n — 1 —1])

clo,.

.,n — 1] «+ MODMULT (v[0, ...,n — 1], B[O, ...,n — 1], C[0, ..., n — 1])

UNCOMPUTE lines 1-20

Using these strategies, we arrive at Algorithm 1. The loop is repeated 2n — 1 times,
each round uses the following actions:

o RIGHTSHIFT and LEFTSHIFT shift the contents using only swap gates.
e a is the qubit used to decide whether to swap or not. Since v is always odd after a

swap takes place and even if no swap has taken place, we can uncompute it directly.
Unfortunately, v is always even before the swap takes place and whether r is odd



Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof and Tanja Lange 461

depends on g, so keeping track of the sign is necessary.

« ¢ is almost the integer ¢ in [BY19], but offset by 2l°e(I+1 _ 1 5o that the § > 0
test in [BY19] turns into a single-bit test, checking the bit at position |log(n)]| + 1.
The series of CNOT gates to negate 0 also increments §, which is why § is only
incremented with the incrementer circuit if a is 0.

e CSWAP is a conditional swap using 2 CNOT and 1 TOF gate to swap 2 qubits
based on a.

o It is not possible to uncompute gg within a single step. In [RNSL17] a similar value,
called m;, is stored. We reduce some of the space by observing that f and g start to
decrease in size after n steps but at step n the registers v, r, f, g, go all need mostly
full n4 1 qubit arrays. This means the number of qubits for these arrays is 5n + O(1)
at least.

e INCj4, is a controlled incrementing algorithm. Using the n borrowed bits design
from [Gid15] (we easily have log(n) qubits laying around for borrowing), we turn
the CNOT gates into TOF and TOF into 3 TOF gates using ancillary qubit go[¢] at
step ¢ which is still zero at this point. This leads to 22|log(n)] 4+ 26 TOF gates and
2|log(n)] + 3 CNOT gates.

o In total we get 2(A + \) + 5 TOF gates at step £ and 4(A + X\) + 3 CNOT gates in
addition to the gates from INC, with A = min(2n — 2 — ¢, n) and A = min(¢ + 1, n).

By keeping track of the maximum sizes of f, g, v, r we get two distinct benefits: the CSWAP
and TOF steps take fewer gates and we free up some space to store some of the decisional
qubits. On average, both A and A have size 3n/4 4+ O(1) since we have n — 1 steps of size
n and n steps where the size is increasing or decreasing by 1 per step.

We need to do the loop 4n — 2 times in total: 2n — 1 for computing and 2n — 1 for
uncomputing. Not including the multiplication (step 21 on Algorithm 1), this gives us
12n2 + (88n — 44)|log(n)| + 116n — 62 TOF gates and 24n? + 8n|log(n)| + O(n) CNOT
gates while using 4n + |log(n) | + 8 ancillary qubits plus 3n qubits for the input and output
qubits.

8) — P » 18)
sign) [sign)
f) —2 1f)
lg) —*+ S—<F—lg)
golf] = 10) & |90[4])
a = [0) & & 10)
|7a> //n+1 C) |7“>
|v) —pactl B |v)

Circuit 5: Step ¢ of Algorithm 1. |§| = [log(n)] + 1.

6.2 Inversion using FLT

Fermat’s little theorem (FLT') states P = & mod p. This can be extended for binary finite
fields to 2" =2 = f=' mod m(z) where n is the degree of m(z). By using squarings we
can compute this in n multiplications and n — 1 squarings: f2" =2 = f2. f2°. 2°. . 2"
However, improvements to this straightforward method exist. Itoh and Tsujii® [IT88] give

3They cite an unpublished manuscript by Scott A. Vanstone as having found a similar algorithm for
the second theorem independently a year earlier, 1987.



462 Concrete quantum cryptanalysis of binary elliptic curves

Algorithm 2: FLT DIV. Reversible algorithm for division using inversion with
Fermat’s little theorem.
Fixed input : A constant field polynomial m(z) of degree n > 0.
k1 > ky > ... > k; > 0 such that S0 2% =n — 1.
k= max(k:l +t—1,k + 1).
Quantum input :
e A non-zero binary polynomials R;(z) of degree up to n — 1 stored in array fy of size
n to invert.
o A binary polynomial Raz(z) of degree n — 1 to multiply with the inverse stored in
array B.
e A binary polynomial R3(z) of degree n — 1 for the result stored in array C.
e k zero arrays of size n initialized to an all-|0) state: fi,..., fx.

Result: Everything except C as input, C' as Rs + Ra/R;

1 fori=1,...,k do

2 | f10,...,n — 1] < CNOT(f&[0,....,n — 1], fi_1[0,...,n — 1]) // Step 1
3 for j=1,..,2"1 do

4 | /x[0,...,;n — 1] <= SQUARE( /[0, ...,n — 1])

5 | fil0,....,n — 1] & MODMULT(f;_1[0, ..., n — 1], f%[0, ...,n — 1], £;[0, ..., n — 1])

6 for j=1,..,2""1 do

7 | f&l0,...;n — 1] <= SQUARE™"(f[0, ...,n — 1])

8 | fil0,....n — 1] <= CNOT(f3[0,...,n — 1], f;_1[0, ...,n — 1])

9 fors=1,...t—1 // Step 2
10 do
11 for i =1,...,2%+ do

12 L Ser+s—1[0, ...;n — 1] + SQUARE( f, +s-1[0, ...,n — 1])

13 frir4s[0,ccc,n — 1] =

| MODMULT(flirS,l[O, ey — 1], kaJrl[O7 ey U — 1], flirS[O, ey T — 1})

14 if ¢t =1 then

15 L SWAP(fkl,fk)

16 [f;[0,...,n — 1] < SQUARE(f%[0,...,n — 1]) // Step 3
17 C[0,...,n — 1] + MODMULT(fx, B[O, ...,n — 1], C[0, ...,n — 1])

18 UNCOMPUTE lines 1-16

three improved variants. We use the second variant (Theorem 2 in [IT88]) since the third
variant, despite giving better results, requires n to be a product of two integers, meaning
it cannot be used for n prime like the NIST curves [KG13] use.

This algorithm uses two observations:

. f2"72:(f2"—171)2
A N (e

to reduce the cost to below 2log(n) multiplications and to n — 1 squarings. This algorithm
works as follows:

t—1
22

0. Write n—1 as [ky, ..., k] with Zi:l 2ks = n—1and ky; > ke > ... > k; > 0. Note t is
the Hamming weight of n — 1 in binary and ¢ < [log(n—1)] 41 and k; = [log(n—1)].

k
1. Calculate f22 "1 with k1 multiplications using the second observation, save the

: : 92Mt 1 921y 22" 4
intermediate results f< ' f T
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ne1 k k ok ok Sk Skt
2. Caleulate 2" =1 = {.{(f2 —1H)27 (271127 2 (2 1) using t— 1 mul-
tiplications.

3. Square the result to get f~!.

If)y A~ F-L B

KAmmantd 1 7

0) 72 (0] . )
’_L‘ f255

0) /2 L Tei -

0 S E--ETS ST o d{E )

Circuit 6: Step 1-3 of Algorithm 2 for n = 10. K is the slquaring circgit using a
LUP-decomposition and M is MODMULT. [k, ko] = [3,0], 22 — 1 =3, 2% — 1 = 15,
22° _ 1 = 255.

In total we have k; + t — 1 multiplications, which in the quantum case translates to
2n'°83) (ky 4+t — 1) TOF gates and n - max(ky +t — 1,k + 1) ancillary qubits. The classic
algorithm uses n — 1 squarings, while we have to use up to 4n — 4. We use O(n?) CNOT
gates per squaring as explained in Section 5.3, but we cannot be more accurate about the
number of CNOT gates for general n due to the variance in the squaring algorithm. We
can get the exact number of CNOT gates using an LUP- decomposition. A full division
algorithm is given in Algorithm 2. We can save up to n(ky — t) qubits by doing additional
multiplications to uncompute intermediate results, at the cost of a significant number of
Toffoli gates. We leave to future work how many qubits we can save for specific fields.

6.3 Comparison of the two division algorithms

We implement both division algorithms for the purpose of comparison. As can be seen
in Table 2 the algorithms have different strengths. For small n (n < 12 or n = 13) the
FLT-based algorithm performs better in both number of qubits and Toffoli gate count, for
larger n the GCD-based algorithm performs better in number of qubits. For any n the
GCD-based algorithm performs better in CNOT gate count, with roughly half the gate
count of the FLT-based algorithm. The FLT-based algorithm uses roughly a fifth of the
Toffoli gates used by the GCD-based algorithm while using roughly twice the number of
qubits. Due to the lower space requirement of the GCD-based algorithm we use it in the
remainder of the work despite the larger Toffoli gate cost.

Table 2: Comparison of various instances of division Algorithms 1 and 2. Field polynomials
from Table 1. Depths and gate count are upper bounds since a generic algorithm is used
rather than optimizing for specific fields.

n GCD FLT

TOF CNOT qubits depth TOF CNOT qubits depth
8 3,641 1,516 67 4113 243 2,212 56 1314
16 10,403 5,072 124 12,145 1,053 10,814 144 5968

127 | 277,195 227,902 903 378,843 50,255 502,870 1,778 203,500
163 | 442,161 375,738 1,156 612,331 83,353 906,170 1,956 451,408
233 | 827,977 743,136 1,646 1,172,733 | 132,783 1,486,464 3,029 640,266
283 | 1,202,987 1,088,400 1,997 1,708,863 | 236,279 2,708,404 3,962 1,434,686
571 | 4,461,673 4,266,438 4,014 6,494,306 | 814,617 10,941,536 9,136 6,151,999
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7 Point addition

With every type of field operation covered we now describe how to do point addition on
binary elliptic curves.

7.1 Reversible point addition

Consider the following case from Section 2.1: we have two non-zero points on our elliptic
curve, P, = (z1,y1), P2 = (22,y2) with 21 # x5. We want to find Py + P, = Py = (23, y3).
Point addition uses \ = % to get w3 = A2+ A +m1 +22+a and y3 = (v2+23) A+ 13+ Ys.

Looking at these formulas, we seem to need at least 6n qubits: n for every x and every
y. However, in the case of Shor’s algorithm we want something different: we have a size
2n register containing a superposition of points P;. Given this P, a control qubit ¢ and a
fixed P», change P; into P3 = P; + P if ¢ = 1 and let it remain P; otherwise. Considering
division needs at least 3n input and output qubits, a minimal implementation of one step
would need 2n + 1 qubits for the input, output and control qubits as well as the ancillary
qubits from the division algorithm, and n qubits for the division result. Indeed, modifying
Algorithm 1 from Roetteler, Naehrig, Svore and Lauter [RNSL17] for the binary case gives
us exactly this number of qubits. The modified algorithm for a single step is Algorithm 3
with Table 3 providing a step-by-step breakdown and it is drawn in Circuit 7.

Algorithm 3: Point addition for binary elliptic curves.

Fixed input : A constant field polynomial m of degree n > 0. A fixed
constant a from the elliptic curve formula. A fixed point
PQ = (.%27 yg)

Quantum input : A control qubit ¢g. An elliptic curve point P; represented as two
binary polynomials x1,y; stored in x,y of size n. A size-n array
A initialized to an all-|0) state. Ancillary qubits for division.

Result: (z,y) as P, + P, = Py = (z3,y3) if ¢ =1, Py if ¢ = 0, A and ancillary

qubits same as input A = 0.

1 x + const_ ADD(z, x2) // =z + T2
2 y < ctrl_const_ADD,(y, y2) //y=vy1+4q-y2
3 A< DIV(z,y,\) /A=yl
4 y « MODMULT(z, \, y) /y=y+a-(y/r)=0
5 y < SQUARE(\, y) /]y =M\
6 = < ctrl_const_ADD,(z,a + 2) // x=2x1+x2+ qla+ x2)
7 x  ctrl_ADD,(z,\) /] x=x1+x2+q\+a+ x2)
8 x < ctrl_ADD,(z,y) /] x=21+22+qA+ AN+ a+x9)
9 y < SQUARE(\,y) /1l y=X+X=0
10 y «+ MODMULT(z, \, y) // y=xz-\
11 A < DIV(z,y,\) /I A=A+ (x-N)/x=0
12 x < const_ ADD(x, x5) [/l x=x1+qA+ N2 +a+x9)
13 y < ctrl_ADD,(y, z) /] y=y+q-x3
14 y < ctrl_const_ADD,(y, y2) /M y=y+q-y2

e const_ ADD adds x3 to z. Since this is a constant addition, we use up to n NOT
gates with an average of n/2, assuming a uniformly random zs.

e Similarly ctrl_const_ ADD applies a CNOT gate from ¢ onto another qubit in x or
y at each monomial where the constant polynomial has coefficient 1. Again up to n
CNOT gates with an average of n/2.

o For DIV we use GCD_DIV (Algorithm 1) as it uses fewer ancillary qubits.
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e SQUARE is squaring with separate output, SQUARE(), y) computes y + A2. This
takes O(n) CNOT gates for good choices of m(z). A design where we replace the
input also works, using O(n?) CNOT gates for LUP-decomposition.

e ctrl _ADD applies n TOF gates controlled by g¢.

Algorithm 3 uses 3n TOF gates, up to 3n CNOT gates (1.5n on average) and 2 calls to
SQUARE, GCD_ DIV and MODMULT each. The depth of the algorithm can be reduced
by making up to n copies of ¢ and doing the controlled actions simultaneously, but in this
design the majority of the depth is due to the division algorithm.

Table 3: Steps of Algorithm 3.

step qg=1 q=0

1 T =11+ T2 T =T+ T
2 y=vy1+y2 Y=y
4 y=20 y=20

5 y=\2 y=A2
6-8 T =19+ T3 T =T+ T
9 y=20 y=0
10 | y= (22 +x3)A y=u
11 A=0 A=0
12 T =13 T =x
13, 14 Y=1ys3 y=1u

1) =]+ +a+ o2 PP s e |zs) or |z1)
lq) * . * l9)
Y1) M] rsl SHM +y2 —D— |y3) or [y1)
10) D |0)

Circuit 7: Algorithm 3. M is MODMULT, S is squaring with separate output, D is
division.

7.2 Addition of points in special cases

When adding points, the constraints that both points are not the points at infinity or
x1 # o cannot always be met. Proos and Zalka [PZ03] proposed ignoring these special
cases by taking a random p, taken uniformly random as an integer above 0 and below
the order of P, and starting with [p]P instead of O. This does not affect the classical
computations or quantum Fourier transform. As stated by Proos and Zalka and proven by
Roetteler, Naehrig, Svore and Lauter [RNSL17], this only affects n/2™ of the state. The
analysis is independent of the field structure.

8 Point addition using windowing

Instead of adding a superposition of a specific point P, in other words adding [¢] P> with ¢
in superposition over |0) and |1}, we could add a superposition over many points. If we have
¢ qubits i in superposition over |0), ...,|2¢ — 1), we could add [i] P, instead by (classically)
precomputing P, ..., [2¢ — 1]P» and adding [i]P by a table look-up in superposition. Such
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speedups are standard in cryptography and have been used in recent variants of Shor’s
algorithm [Gid19, HIN*20].

8.1 Quantum random access memory

Such a lookup naturally uses quantum random access memory (qRAM). We define
LOOKUP(%,a,b) as returning (i,a + ([i]P2)s, b+ ([t]P)y), and we define LOOKUP, (4, a)
as returning (i, a + ([i]P2)s).

The maximum possible cost of these operations comes from implementing qRAM
using Toffoli gates. Below we report Toffoli-gate counts using the gqRAM implementation
from [BGB*18]. One can also consider a magical implementation of qRAM that reduces
the cost of each operation to just 1, or one can consider intermediate possibilities.

8.2 New special cases

Each addition of [i]P, has a significant chance 1/2¢ of being an addition of [0]P,, the
point at infinity. Recall that the point at infinity is a failure case in the generic addition
formulas: the point at infinity is not even expressible as (z,y). Other failure cases have
negligible chance of occurring (see Section 7.2), but 1/2¢ is not negligible.

Algorithm 3 eliminated [0]P; by using controlled additions instead of additions. One
could similarly design an algorithm using precomputed points to perform controlled
additions, where the control bit is computed as [i # 0]. However, it is simple to avoid
this failure by changing the table of 2¢ — 1 precomputed multiples [1]P, ..., [2¢ — 1]P; to
a table of 2¢ precomputed points 7,7 + [1] P, ..., T + [2° — 1] P, avoiding infinity. This
also adds T to the output of each P step, but one can cancel out this contribution by
adding the opposite offset —T to the tables for the @ steps. Shor’s algorithm uses the
same number of additions of multiples of P as of ). One can also use a separate offset for
each step.

8.3 Point addition algorithm with precomputed points

Using these lookup actions instead of the regular x5 and ys additions, we get Algorithm 4.
Note that aside from the addition by a, all additions have become regular CNOT additions.
Otherwise, nothing has changed besides the 6 lookups.

8.4 Window size

In order to know the ideal window size, we need to know the cost of a qRAM lookup
compared to the cost of a Toffoli gate. This information is currently not available. In the
unlikely case that this turns out to be very inexpensive also the cost of pre-computation
compared to the cost of quantum computation matters.

We summarize the cost of different window sizes in Table 4. Note that the qubit cost
for the semi-classical Fourier transform increases linearly with the window size, for example
¢ =T requires 6 more qubits than ¢ = 1.

Using the estimate of 2(2¢ — 1) TOF gates per lookup from [BGBT18], after optimizing
for ¢, at £ = 14 Algorithm 4 uses 58,401,000 TOF gates, which is approximately 10 times
less than the case without windowing.

9 Results

The only step requiring ancillary qubits is division, which needs 4n + |log(n) | + 8 ancillary
qubits. Point addition needs 3n qubits for input and output and 1 control qubit on which
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Algorithm 4: Windowed point addition for binary elliptic curves.

Fixed input

: A constant field polynomial m of degree n > 0. A fixed

constant a from the elliptic curve formula. Fixed points T" and
P, with precomputed points T, T + [1] Py, ..., T + [2¢ — 1] P all

£0.

Quantum input : ¢ control qubits . An elliptic curve point P; represented as two
binary polynomials x1,y; stored in x,y of size n. A size-n
array A initialized to an all-|0) state. Ancillary qubits for
division, including 2 arrays of size n which we also refer to as
z" and ¥/, initialized to an all-|0) state.

Result: (z,y) as P, + T + [i| P> = (x3,y3), A and ancillary qubits in all-|0) state.

1 o',y + LOOKUP(i, 2, y’) /] 2y =T+ [i]|Pe = x4,y
2 ¢ + ADD(z,2’) /] x=x1+ 24
3 y < ADD(y,y) /1y =y1+y
a 2’y < LOOKUP(4,2',y") /] 2=y =0
5 A DIV(z,y,\) /l A=y/x
6 y < MODMULT(z, A, y) //y=y+z-(y/x)=0
7 y + SQUARE(\, y) /]y =\
8 = + const_ADD(z,a) // r=x1+xi+a
9 ' + LOOKUP, (i, ") /=y
10 x + ADD(z, \) // z=x21+x;+A+a
11 x < ADD(z,y) /[l x=x1+x; + A+ N +a=ux3
12 z + ADD(z,2’) /] r=uz;+x3
13 2’ + LOOKUP, (i, 2") // =0
14 y < SQUARE(}), y) /1l y=X+X=0
15 y < MODMULT (z, A, y) /] y=(z;+x3)\
16 A< DIV(z,y,\) /I A=A+ (x-N)/x=0
17 o',y + LOOKUP(4,2',y') /] 2y =3,y
18 = + ADD(x,2’) // x=ux3
19 y + ADD(y, z) !/l y=(z;+x3)\+ 23
20 y < ADD(y,y') /] y=ys
21 2/, y’ + LOOKUP(i,2',y") /] =y =0

Table 4: Comparison of window sizes for n = 233.

¢ | Pre-computed points | Number of steps Approximate Toffoli gate count LOOKUPs
1 468 468 781,231,932 0
6 4,992 78 130,150,800 468
7 8,704 68 113,464,800 408
8 15,360 60 100,116,000 360
9 26,624 52 86,767,200 312
10 49,152 48 80,092,800 288
14 557,056 34 58,401,000 204
16 1,966,080 30 51,726,600 180
32 68,719,476,736 16 26,697,600 96

we perform the semi-classical Fourier transform. The number of qubits we need is

n + |log(n)] +9

to perform Shor’s algorithm on binary elliptic curves. Since we need to do 2n + 2 point
additions, each step consisting of 2 divisions, 4 multiplications (including the 2 in division)

467
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Table 5: Qubit and gate count for Shor’s algorithm for binary elliptic curves. Field
polynomials from Table 1. CNOT count given is an upper bound.

Single step Total

n | qubits | TOF gates CNOT gates depth upper bound TOF gates
8 68 7,360 3,522 8,562 132,480

16 125 21,016 11,686 25,205 714,544
127 | 904 559,141 497,957 776,234 143,140,096
163 | 1,157 893,585 827,623 1,262,280 293,095,880
233 | 1,647 | 1,669,299 1,615,287 2,406,230 781,231,932
283 | 1,998 | 2,427,369 2,359,187 3,503,964 1,378,745,592
571 | 4,015 | 8,987,401 9,081,061 13,238,554 10,281,586,744

Table 6: TOF estimates for various Field sizes using 2(2¢ — 1) TOF gates per lookup. £ is
optimized for this. Field polynomials from Table 1.

n ¢ | TOF gates Lookups | Total TOF gates pre-computed points
8 7 29,344 24 35,440 512
16 8 125,808 36 144,168 1,536
127 13 | 11,733,960 120 13,699,800 163,840
163 13 | 24,113,592 156 26,669,184 212,992
233 14 | 58,401,000 204 65,085,264 557,056
283 14 | 101,913,840 252 110,170,872 688,128
571 16 | 655,955,224 432 712,577,464 4,718,592

and 3 controlled additions, we get the following number of Toffoli gates:
48n° + 8n'oe3)+1 4 35912 log(n) + 512n2 + O(n'8®)).

We do not give an exact number of CNOT gates due to our upper bound of the cost
of multiplication, leaving the total count of CNOT gates at O(n3). In Table 5 several
numerical examples are given. We used java to calculate an LUP-decomposition and then
calculate the number of gates. The total number of TOF gates is simply the number of
TOF gates for a single step multiplied by 2n + 2. The depth upper bound is calculated by
keeping track of whether 2 or more gates can be executed at the same time, increasing the
counter if they cannot. These algorithms are not optimized for depth, as such the depth is
of the same order as the number of TOF gates.

We can see that the number of Toffoli gates is strongly dependent on the number
of Toffoli gates in the division: 48n3 + 352n%log(n) + 512n? is purely from the division,
with the log(n) term coming specifically from the incrementer circuit. If we apply the
windowing variant, we get Table 6.

The rest of this section compares our results to previous results and to the independent
paper [HINT20]. Some of these comparisons are to algorithms for the prime-field case.
One would expect carries in the prime-field case to use extra Toffoli gates, but it is not
obvious what overall impact to expect, and it is not obvious that the prime-field case
should require any extra qubits. As noted in Section 1, we use 7n + [logn| + 9 qubits for
binary-field ECDLP, while the independent paper [HJNT20] uses 8n+10.2|logn | —1 qubits
for prime-field ECDLP, and [RNSL17] used 9n + 2[log,(n)] + 10 qubits for prime-field
ECDLP.

9.1 Comparison to other gcd-based inversion algorithms

The algorithm we used for inversion and division is an improvement over the inversion
algorithm based on Kaliski’s [RNSL17]. That algorithm uses a large number of controlled
Toffoli and controlled CNOT gates, which are translated into 3 Toffoli gates and 1 Toffoli
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gate respectively. This causes a large increase in Toffoli gate count, with the prime field
cases using 32n? log(n) Toffoli gates. An adaptation of Kaliski’s algorithm to the binary
case would replace some integer additions with binary polynomial additions but would
still involve some integer comparisons.

As for space, we save n + [log(n)]| + 2 ancillary qubits compared to [RNSL17]. We get
this benefit by using part of the input to store decision qubits, saving n qubits; using an
incrementer circuit that uses dirty qubits rather than clean ones, saving |log(n)] qubits;
and using just one extra control qubit, compared to the three required by [RNSL17].

We commented in a preliminary version of this paper that starting from the integer
algorithms in [BY19] and building a prime-field variant of our binary-field division algorithm
is likely to reduce cost in the prime-field case. The independent paper [HJNT20, Appendix
A 3] says that its approach to prime-field inversions is “nearly identical” to one of the
algorithms in [BY19].

9.2 Comparison to prime-field point-addition algorithms

Our approach to addition on the curve y? + zy = 23 4+ ax? + b is conceptually the same as
the approach in [RNSL17] to addition on the curve y? = 2® + ax + b. However, [RNSL17]
uses extra space for inversion output, as its division algorithm requires separate steps for
inversion and multiplication.

For field multiplications, we benefit from the recent space-efficient reversible Karatsuba
algorithm from Van Hoof [Hoo020] for multiplying polynomials. There is also a recent
space-efficient reversible Karatsuba algorithm from Gidney [Gid19] for multiplying integers,
but the algorithm from [Ho020] includes reduction modulo a polynomial, and it is not
clear whether this is possible for the algorithm from [Gid19] without extra space.

9.3 Comparison to previous binary-field point-addition algorithms

Amento, Rotteler and Steinwandt [ARS13] use projective coordinates to avoid divisions.
They need only 13 multiplications every step, which would result in 26n'°8(3)*1 as the lead-
ing term in their Toffoli gate count if the multiplications were implemented using [H0020].

However, this use of projective coordinates has two disadvantages. First, the formulas
in [ARS13] use many ancillary qubits and separate input and output qubits, leading to
10n qubits in one point-addition step even with space-efficient multiplications. This is
already worse space requirements than the 7n + |log(n)] + 9 we use.

Second, projective coordinates have a much larger space disadvantage not pointed out
in [ARS13]. What is easy to calculate in projective coordinates, and what is calculated
in [ARSlS], is a point addition ‘Xl,Yl, Z1,X3,Y3, Z3> — |)(1,)/17 Z1,0,0, O> that keeps a
copy of its input. Composing a series of these additions consumes more and more qubits for
intermediate results, increasing the number of qubits to the scale of n?/logn if the window
size is on the scale of logn. In reversible computations there is a generic checkpointing
technique by Bennett and Tompa [Ben89] that somewhat reduces space for a long series
of operations, but this requires computing each operation many times and still needs
superlinear space.

In non-quantum computations, there is no requirement of reversibility, and one can
simply throw the intermediate results away. However, Shor’s algorithm requires a quantum
computation that produces simply the final result [k]P + [(]Q. Uncomputing intermediate
results is easy in affine coordinates—after adding P, to Py, simply add —Ps to the output
P + P, to uncompute P;—but not in projective coordinates, because naively adding
— Py = (29,y2 + 22) to the point (X3, Y3, Z3) results in a representation of P; that is not
always equal to (X1,Y1, Z1).

Let (X4, Yy, Z4) be the result of adding —Ps to (X3, Y3, Z3) with the formulas in [ARS13,
Section 3.1.2]. Then X4/ X1 = Z4/Z1 = Yy /Y1 = X{(24+y3) 21+ X33 Y2 22+ X3 a3y3 79+
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2578 + 23Y2Z¢. We could calculate | X1, Y1, Z1, X3, Y3, Z3), multiply X1,Y;, Z; each by
X4/ X1 to get |X4,Yy, Z4, X3,Y3,Z3), calculate the intermediate steps A,...,G of the
addition of —P5 to (X3,Y3,Z3) and finally run the addition of —P to (X3,Y3,Z3) in
reverse to uncompute Xy, Yy, Z4 and get [0,0,0, X3,Y3, Z35). However, this requires a
division to compute X4/X, eliminating the benefit of projective coordinates.

For the same reasons, the projective Montgomery ladder, commonly used to improve the
efficiency of arithmetic in non-quantum variable-base-point scalar multiplication, requires
much more space in a quantum setting. The Montgomery ladder is also not as efficient as
windowing for fixed base points.

9.4 Comparison of Toffoli gates, T-gates, and depth for ECDLP

Detailed proposals for quantum computers usually implement a Toffoli gate as a series of 7
“T-gates” and 9 “Clifford gates”. The Clifford gates are expected to be much less expensive
than the T-gates. Various algorithms have been optimized at the Clifford+T level, often
reducing a Toffoli gate to fewer than 7 T-gates. One can also consider parallel gates: a
Toffoli gate can be reduced to T-depth 4, or T-depth 3 with an extra Clifford gate, or
T-depth 1 with several extra Clifford gates and a few ancillary qubits.

However, developing algorithms at the Toffoli level has advantages for testability on
today’s computers, as explained in [RNSL17]. The algorithms in [RNSL17] for prime-
field ECDLP are thus developed at the Toffoli level, and are reported to use at most
9n+2[logy(n)] +10 qubits and at most 448n3 log, (n) +4090n3 Toffoli gates, with a slightly
smaller Toffoli depth. For example, [RNSL17] reports 4719 qubits, 2401 Toffoli gates, and
Toffoli depth 2399 for a 521-bit prime field.

We also work at the Toffoli level, using 7n + |logy(n)| + 9 qubits and just 48n% +
8nlog:(3)+1 1 35212 log, (n) + 512n2 4+ O(n!°22(3)) Toffoli gates: for example, 4015 qubits
and 233-3 Toffoli gates for a 571-bit binary field. Our upper bounds on depth in Table 5
are somewhat above our gate counts because we consider the depth of all gates, not just
Toffoli gates. Note that we have not optimized depth.

Windowing then saves a logarithmic factor, reducing 2333 Toffoli gates to 2274 Toffoli
gates in Table 6 for a 571-bit binary field. This implies an upper bound of 2322 T-gates,
and an upper bound on T-depth of 231:% while still using only slightly over 4000 qubits.

The independent paper [HJNT20] instead works at the Clifford+7 level, and reports
about 8n + 10.2|logy(n)] — 1 qubits using roughly 436n3 — 1.05 - 226 T-gates and T-depth
roughly 120n3 — 1.67 - 222. For example, for a 521-bit prime field, [HJNT20] reports 4258
qubits using 23°° T-gates and T-depth 2340,

10 Conclusion

The results in Table 5 show concrete numbers of logical qubits required to perform Shor’s
algorithm to solve the discrete logarithm problem on binary elliptic curves. We obtained
these results by optimizing the multiplication and division circuits. The number of Toffoli
gates is high due to choosing algorithms optimized for space. Using the alternative division
Algorithm 2 with cryptographic field sizes, the number of Toffoli gates for division could be
cut by about 80% at the cost of doubling the number of qubits. Furthermore, optimizing
for depth might result in a better depth count than the upper bounds given without
changing the number of gates. Additionally, Table 6 shows a reduction in the number of
Toffoli gates when the windowing method is applied.

Depth so far has been an upper bound: both the multiplication and division algorithm
could benefit from a further look at how to optimize it. The division algorithm specifically
can also benefit from a better incrementer circuit. Finally, we suspect that a better
algorithm exists for multiplication by z[%1 4 1 modulo m(z2).
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