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Abstract. This paper introduces a new key space for CSIDH and a new algorithm
for constant-time evaluation of the CSIDH group action. The key space is not useful
with previous algorithms, and the algorithm is not useful with previous key spaces,
but combining the new key space with the new algorithm produces speed records for
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Skylake cycles; this paper uses 438006 multiplications and 125.53 million cycles.
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1 Introduction

Isogeny-based cryptography, a relatively new area of post-quantum cryptography, has
gained substantial attention in the past few years. Schemes like SIDH (Supersingular
Isogeny Diffie–Hellman) [14] and CSIDH (Commutative Supersingular Isogeny Diffie–
Hellman) [10] offer key-exchange protocols with the smallest key sizes among post-quantum
systems. CSIDH is even a non-interactive key exchange, matching the data flow of
traditional Diffie–Hellman key exchange, and it has received a considerable amount of
attention related to constant-time algorithms [18, 22, 11, 15, 13, 1, 12].

Briefly, one can explain CSIDH as follows. Pick small odd primes ℓ1 < ℓ2 < · · · < ℓn

such that p = 4 · ℓ1 · · · ℓn − 1 is also prime. A public key is a supersingular elliptic curve
EA/Fp : y2 = x3 + Ax2 + x, specified by a single element A ∈ Fp. Given this curve one can
efficiently compute two curves ℓi-isogenous to EA, denoted li ⋆ EA and l

−1

i ⋆ EA, for any
of the ℓi in the definition of p. Alice’s private key is a list of exponents (e1, . . . , en) ∈ Z

n

where ei shows how often each li is used: Alice’s public key is l
e1

1 · · · len
n ⋆ E0 = EA, and if

Bob’s public key is EB then the secret shared with Bob is le1

1 · · · len
n ⋆EB . The key-exchange

protocol works because ⋆ is a commutative group action: the ordering of the isogenies is
not important.

The first constant-time CSIDH paper [18] specified each exponent ei as being between
0 and a public constant mi, and always computed mi iterations of li, secretly discarding
the dummy operations beyond ei iterations. The original CSIDH paper [10] had allowed
ei ∈ [−mi, mi]; in the constant-time context this might seem to require mi iterations of li
plus mi iterations of l−1

i , but [22] introduced a “2-point” algorithm with just mi iterations,
each iteration being only about 1/3 more expensive than before. All mi were taken equal
in [10], for example taking ei ∈ [−5, 5] for CSIDH-512; subsequent papers did better by
allowing mi to depend on i (as suggested in [10, Remark 14]) and accounting for the costs
of li. Further speedups in the literature come from various techniques to speed up each li

computation and to merge work across sequences of li computations.

1.1 Contributions of this paper

This paper introduces a new key space for CSIDH, and a new constant-time algorithm
to evaluate the CSIDH group action. The new key space is not useful by itself—it slows
down previous constant-time algorithms—and similarly the new constant-time algorithm
is not useful for previous key spaces; but there is a synergy between the key space and
the algorithm, and using both of them together produces a large improvement in the
performance of constant-time CSIDH.

As a very small example of the new key space, assume that one is using just 6 primes
and allows at most 6 isogeny computations, with each li exponent being nonnegative. The
standard key space chooses (e1, e2, . . . , e6) ∈ {0, 1}6, giving 26 = 64 keys. The new key
space, with 2 batches of 3 primes each, chooses (e1, e2, . . . , e6) ∈ [0, 3]6 with the condition
that e1 + e2 + e3 ≤ 3 and e4 + e5 + e6 ≤ 3, giving 202 = 400 keys. Similar comments apply
when negative exponents are allowed.

The extreme case of putting each prime into a size-1 batch is not new: it is the standard
key space. The opposite extreme, putting all primes into 1 giant batch, is also not new:
putting a bound on the 1-norm of the key vector was highlighted in [20] as allowing the
best tradeoffs between the number of isogenies and the size of the key space. In the above
example, 1 giant batch of 6 primes gives 924 keys for 6 isogenies, i.e., 0.61 isogenies per
key bit, compared to 1 isogeny per key bit for the standard key space.

However, plugging 1 giant batch into constant-time algorithms takes 36 isogenies for
924 keys, since each of the 6 primes uses 6 computations. Our intermediate example, 2
batches of 3 primes each, uses 18 isogenies for 400 keys, which is still many more isogenies
per key bit than 6 isogenies for 64 keys.



Banegas, Bernstein, Campos, Chou, Lange, Meyer, Smith, Sotáková 353

We do better by evaluating isogenies differently. The central challenge tackled in this
paper is to develop an efficient constant-time algorithm for the new key space, computing
any isogeny in a batch using the same sequence of operations. This raises several questions:

1. How does one optimally compute a sequence of isogenies, and handle probabilistic
failures in standard algorithms to compute li, while at the same time hiding which
isogeny is computed? See Section 4 for the introduction of atomic blocks for these
computations, and Section 5 for how to compute them in constant time.

2. How does one optimally set batches, compute private keys, and determine the number
of isogenies per batch to match a required size of the key space? See Section 3 for
analysis of the key space, and Section 6 for how to minimize the multiplication count.

3. How does one minimize the cycle count for constant-time software? Section 7
describes our software and low-level ideas; Section 8 presents the speeds.

Our constant-time algorithm combines several old and new techniques. For example, as
observed in [5], Vélu’s formulas have a Matryoshka-doll structure; we constrain the more
recent

√
élu formulas [3] in a way that creates a Matryoshka-doll structure. The cost of an

isogeny computation exploiting this structure depends on the largest prime in the batch for
the traditional formulas, but also on the smallest prime in the batch for

√
élu. Standard

algorithms to compute li fail with probability 1/ℓi; to hide which ℓi in a batch is used we
arrange for failures to occur with probability matching the smallest prime in the batch.
Our batches consist of primes of similar sizes, to obtain the optimal tradeoffs between
the cost per batch and the size of the key space. Further constant-time optimizations are
described throughout the paper.

For comparability we report CSIDH-512 speeds, setting records in multiplications
and in cycles for complete constant-time software. Partial analyses [5, 23, 7, 12] suggest
that the post-quantum security level of CSIDH-512 is around 260 qubit operations; for
applications that want higher security levels, our software also supports larger sizes.

2 Background

Sections 2.1, 2.2, 2.3, and 2.4 review the CSIDH group action, computations of individual
ℓ-isogenies, strategies for computing sequences of isogenies, and previous constant-time
algorithms.

2.1 The CSIDH group action

CSIDH [10] is a Diffie–Hellman-like key-exchange protocol based on isogenies of super-
singular elliptic curves over a finite field Fp. For a prime p > 3 an elliptic curve E/Fp

is supersingular if and only if #E(Fp) = p + 1, where E(Fp) is its group of points over
Fp. CSIDH uses p ≡ 3 (mod 8), and uses supersingular elliptic curves over Fp that can
be written in Montgomery form EA : y2 = x3 + Ax2 + x for A ∈ Fp\{−2, 2}. We call
A the Montgomery coefficient of EA. We write E = {EA : #EA(Fp) = p + 1} for the
set of CSIDH curves and M = {A : EA ∈ E} for the set of corresponding Montgomery
coefficients. Curves EA for distinct A ∈M are non-isomorphic by [10, Proposition 8], and
each EA(Fp) is cyclic.

An isogeny is a nonzero map ϕ : E → E′ which is given by rational functions and
is compatible with elliptic-curve addition. An ℓ-isogeny is an isogeny of degree ℓ (as a
rational map). Isogenies are typically defined by their kernels, i.e., by the points they map
to ∞. Computing an ℓ-isogeny with Vélu’s formulas requires a point P of order ℓ; the
isogeny has kernel 〈P 〉, and any point in 〈P 〉 of order ℓ leads to the same isogeny.

The CSIDH prime p is chosen as 4 · ℓ1 · · · ℓn−1 for small odd primes ℓ1 < ℓ2 < · · · < ℓn.
If EA is a curve in E then there are ℓj − 1 points of order ℓj in EA(Fp). Each of these
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points of order ℓj generates the kernel of an ℓj-isogeny EA → EA′ , which is the same
isogeny for all of these points. The codomain EA′ of this ℓj-isogeny is written lj ⋆ EA.

Fix i ∈ Fp2 with i2 = −1. Define ẼA(Fp) as the set of points (x, iy) ∈ EA(Fp2) where
x, y ∈ Fp, along with the neutral element; equivalently, ẼA(Fp) is the image of E−A(Fp)
under the isomorphism (x, y) 7→ (−x, iy). For each ℓj , there are ℓj − 1 points of order ℓj

in ẼA(Fp). Each of these points generates the kernel of an ℓj-isogeny EA → EA′′ , the same
isogeny for all of these points. The codomain EA′′ of this ℓj-isogeny is written l

−1

j ⋆ EA.

The isogeny from EA to l
−1

j ⋆ EA maps the points of order ℓj in EA(Fp) to points of

order ℓj , while mapping the points of order ℓj in ẼA(Fp) to ∞ on l
−1

j ⋆ EA. The isogeny

from EA to lj ⋆ EA maps the points of order ℓj in ẼA(Fp) to points of order ℓj , while
mapping the points of order ℓj in EA(Fp) to ∞ on lj ⋆ EA.

Applying ℓi-isogenies induces a group action [5] of the commutative group Z
n on

E . An exponent vector (e1, . . . , en) ∈ Z
n acts on the curve EA to produce the curve

(le1

1 . . . len
n ) ⋆ EA, computed as a sequence having |ej | many ℓj-isogenies for each j, each

isogeny using lj if ej > 0 or l
−1

j if ej < 0.

The private key of each party is a (secret) vector (e1, . . . , en) sampled from a finite
key space K ⊂ Z

n. To protect against meet-in-the-middle attacks, it is conventional to
take #K ≥ 22λ for security 2λ, but see [12] for arguments that smaller key spaces suffice.
Beyond the size of K, the specific choice of K has an important impact on efficiency.

Most previous CSIDH implementations have used one of two types of key space. Given
an exponent bound vector m = (m1, . . . , mn) ∈ Z

n
≥0, let Km :=

∏n

i=1
{−mi, . . . , mi} and

K+
m :=

∏n

i=1
{0, . . . , mi}. Clearly, #Km =

∏n

i=1
(2mi + 1) and #K+

m =
∏n

i=1
(mi + 1). The

original CSIDH paper [10] and [22] use Km with m = (5, . . . , 5) for CSIDH-512. It was
suggested in [10, Remark 14] and shown in [13] that allowing the mi to vary improves
speed. The space K+

m with m = (10, . . . , 10) was used in [18] for CSIDH-512.

2.2 Computing isogenies

Let P ∈ EA be a point of order ℓ with x-coordinate in Fp and ϕ : EA → EA′ = EA/〈P 〉
the ℓ-isogeny induced by P . The main computational task, called xISOG, is to compute
(1) the Montgomery coefficient A′ of the target curve EA′ and (2) the images under ϕ of
some specified points (normally zero, one, or two points) Q ∈ EA with x-coordinate in Fp.

Vélu and
√

élu. The main algorithms for xISOG are Vélu’s formulas [24] and
√

élu
1 [3].

The main computational task in both of these algorithms is to evaluate a polynomial

hS(X) =
∏

s∈S

(X − x([s]P )) (1)

for some index set S. All the arithmetic is done using only x-coordinates.

Vélu’s formulas evaluate hS(X) with S = {1, 2, 3, . . . , (ℓ − 1)/2} by first computing
x(P ), x([2]P ), . . . x([(ℓ − 1)/2]P ) and then evaluating the product (1). This costs O(ℓ)
field multiplications. Specifically, computing A′ costs about 4ℓ field multiplications and
computing the image of a point costs about 2ℓ extra field multiplications.

For
√

élu, in contrast to the linear algorithm of Vélu, the main part of the product
is evaluated using a baby-step-giant-step strategy. It is simplest to evaluate hS(X) with
S = {1, 3, 5, . . . , ℓ− 2}; this set S is split into a “box” U × V and leftover set W such that
S ↔ (U × V ) ∪W . Then hS(X) is computed as the product of hW (X) with the resultant
of hU (X) and a polynomial related to hV (X); see [3] for details. For each ℓ, one chooses
U and V to minimize cost. Asymptotically,

√
élu uses Õ(

√
ℓ) field multiplications.

1Pronounced “square-root Vélu”.
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One can view Vélu’s formulas as a special case of
√

élu in which U and V are empty.
This special case is optimal for small primes. The exact cutoff depends on lower-level
algorithmic details but is around ℓ = 89.

Sampling points of order ℓ. No efficient way is known to deterministically generate
points of order ℓ in E(Fp). However, E(Fp) is cyclic of order p + 1, so if T is a uniform
random point then P = [(p + 1)/ℓ]T will have order ℓ with probability 1 − 1/ℓ. This
can—and often will—fail, and needs to be repeated until it succeeds. Once P has order ℓ,
one can use P with Vélu or

√
élu.

Typically, one uses the Elligator 2 map [4] to sample points in E(Fp) or Ẽ(Fp). We
discuss this approach in Appendix B.

2.3 Strategies

Computing the multiple [(p + 1)/ℓ]T is very costly. If p has 512 bits then (p + 1)/ℓ has
almost 512 bits and this scalar multiplication costs thousands of field multiplications. The
cost of scalar multiplication is typically amortized by pushing points through isogenies.
This approach aims to compute a series of isogenies after only sampling one point on the
initial curve.

Following [14], we call a method that computes a given series of isogenies a strategy.
Informally, a strategy determines the order of isogeny evaluations, and how to obtain
suitable kernel generators through either scalar multiplications or point evaluations. In
the context of SIDH, optimal strategies (with the minimum computational cost) can be
found [14]. When adapting this to CSIDH, there are three main complications: the choice
of isogenies to be combined into a sequence, the possibility of point rejections due to wrong
orders, and the pairwise different degrees of the involved isogenies. Indeed, [13] showed
that a direct adaption of the method of [14] to CSIDH becomes infeasible when considering
all possible permutations. Instead, several avenues for optimizing CSIDH strategies have
been proposed, though none claims actual optimality.

Multiplicative strategy. A simple multiplicative strategy was used in the algorithm of [10].
Let D, a divisor of p + 1, be the product of the degrees of the isogenies to be combined in
one sequence. Sample a point T on the initial curve, and set T ← [(p + 1)/D]T ; now the
order of T divides D. Compute P ← [D/ℓ]T , where ℓ is the degree of the first isogeny. If
P =∞, skip this isogeny and continue with the next isogeny. If P 6=∞, then P has order
ℓ, so we can compute the required ℓ-isogeny ϕ, and push T through to get T ← ϕ(T ).
Either way, the order of T now divides D/ℓ. For the next isogeny, say of degree ℓ′, compute
P ← [D/(ℓℓ′)]T as a potential kernel generator. Continue in the same fashion, pushing
one point through each isogeny, until T =∞. Note that the scalar multiplications reduce
in length at each step: as observed in [19], processing the isogenies in decreasing degree
order reduces the total cost.

SIMBA. In [10], the product D was taken as large as possible at each step. The SIMBA
(Splitting Isogenies into Multiple Batches) strategy proposed in [18] limits D for better
performance. SIMBA-M partitions the set of isogeny degrees {ℓ1, . . . , ℓn} into M prides,2

where the i-th pride contains all isogeny degrees ℓj for which j ≡ i mod M . Each
step, SIMBA picks as many isogenies as possible for a single pride, processing them as
described above. This typically results in a smaller total degree D, making the initial scalar
multiplication T ← [(p + 1)/D]T more expensive, while the later scalar multiplications

2This refers to the term pride of lions. The term batch was used in [18]; we use pride here in order to
distinguish between SIMBA batches and the batches of primes considered in CTIDH.
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of the form P ← [D/
∏

ℓj ]T become significantly cheaper. Overall, [18] reports that a
significant speedup can be achieved for well-chosen values of M .

Point-pushing strategies. One can also push additional points through isogenies. For
instance, when computing the first kernel generator as described above via P ← [D/ℓ]T ,
one can save an intermediate point T ′ of small order divisible by ℓ′, push both T and T ′

through the first isogeny, and then use T ′ to compute the next kernel generator via a
smaller scalar multiplication. This may be more efficient than the multiplicative strategy,
depending on the cost of evaluating ϕ at additional points compared to the savings due
to cheaper scalar multiplications. However, except for very small isogeny degrees, the
cost of evaluating additional points can be significantly higher than computing scalar
multiplications. Thus, an optimal strategy is expected to be closer to the multiplicative
strategy, only rarely pushing additional points through isogenies. In [13] optimal strategies
are computed under the assumption of always choosing as many isogeny degrees as possible
per sequence, and an increasing ordering of the involved degrees. It remains open whether
other choices of primes per sequence, as in SIMBA, or different orderings of the degrees
could yield a more optimized point-pushing strategy.

Remark 1. The SIMBA approach is generalized in [15] with point-pushing strategies
within prides, more efficient partitions of SIMBA prides, and their permutations. However,
all optimization attempts have required imposing certain assumptions in order for the
optimization problem to be solvable, and thus only produce conditionally optimal strategies.
The comparison in [13] shows that all of these approaches give roughly the same performance
results for constant-time CSIDH-512 algorithms: that is, within a margin of 4%.

2.4 Previous constant-time algorithms

A private key (e1, . . . , en) requires us to compute |ei| isogenies of degree ℓi (regardless of
the strategy), so the running time of a naïve CSIDH algorithm depends directly on the
key. Various constant-time approaches have been proposed to avoid this dependency.

What constant time means. A deterministic algorithm computes a function from inputs
to outputs. A randomized algorithm is more complicated: it computes a function from
inputs to distributions over outputs, since each run will, in general, depend on random bits
generated inside the algorithm. Similarly, the time taken by an algorithm is a function
from inputs to distributions of times. “Constant time” means that this function is constant:
the distribution of algorithm time for input i matches the distribution of algorithm time
for input i′. In other words, the algorithm time provides no information about the input.

In particular, if the input is a CSIDH curve and a private key, and the output is the
result of the CSIDH action, then the algorithm time provides no information about the
private key, and provides no information about the output.

Avoiding data flow from inputs to branches and array indices is sufficient to ensure the
constant-time property for many definitions of algorithm time, and is the main focus of
work on constant-time algorithms for CSIDH, including the work in this paper. Beware,
however, that this is not sufficient if the definition changes to allow, e.g., a variable-time
division instruction, like the division instructions on most computers.

The constant-time property also does not mean that time is deterministic. The paper [5]
aims for time to be constant and deterministic, so as to be able to run in superposition
on a quantum computer, but this costs extra and is not necessary for the objective of
stopping timing attacks.

Structurally, every claim of constant-time software in the literature relies on various
CPU instructions taking constant time, and could be undermined by CPU manufacturers
adding timing variations to those instructions. The literature on constant-time software
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generally assumes, for example, that multiplication instructions take constant time, and
declares that CPUs with variable-time multiplication instructions are out of scope. Formally,
the constant-time claims are in a model of “time” where various instructions, including
multiplications, take constant time.

Dummy isogenies. [18] used dummy isogenies to obtain a fixed number of isogenies per
group action evaluation. Essentially, if ei is sampled such that |ei| ≤ mi, this amounts to
computing mi isogenies of degree ℓi, where mi − |ei| of these are dummy computations
whose results are simply discarded.3 As noted in Section 2.2, this might require more
than mi attempts to sample a point of order ℓi, due to the point rejection probability of
1/ℓi. However, the number of attempts only depends on randomness and mi, and is thus
independent of the choice of ei.

1-point and 2-point approaches. It is observed in [18] that if we compute multiple
isogenies from a single sampled point, then the running time of the algorithm depends
on the sign distribution of the private keys. Indeed, when a single point is sampled,
only ℓi-isogenies with equal signs of the corresponding ei can be combined in a strategy.
Since this approach of combining isogenies is desirable for efficiency (see Section 2.3), [18]
proposed eliminating this dependency by sampling ei from [0, 2mi] instead of [−mi, mi],
although this requires computing twice as many isogenies per degree.

In order to mitigate this slowdown, [22] proposed sampling two points, T0 ∈ EA(Fp) and
T1 ∈ ẼA(Fp). For each isogeny in the sequence, one picks the kernel generator according to
the sign of the corresponding ei. This approach combines isogeny computations independent
of key signs, and thus goes back to sampling ei from [−mi, mi] at the cost of pushing two
points through each isogeny instead of one.

A dummy-free variant of the 2-point approach was proposed in [11]. This requires
roughly twice as many isogenies, but may be useful in situations where fault-injection
attacks play an important role. We return to this approach in Appendix A.

3 Batching and key spaces

The main conceptual novelty in CTIDH is the organization of primes and isogenies
in batches. For this we define a new batch-oriented key space, which is slightly more
complicated than the key spaces Km and K+

m mentioned in Section 2.

Batching primes. In CTIDH, the sequence of primes (ℓ1, . . . , ℓn) is partitioned into a
series of batches: subsequences of consecutive primes. Let 0 < B ≤ n be the number of
batches; we represent the sequence of the batch sizes by a vector N = (N1, . . . , NB) ∈ Z

B
>0

with
∑B

i=1
Ni = n. We relabel the primes in batches as: (ℓ1,1, . . . , ℓ1,N1

) := (ℓ1, . . . , ℓN1
),

(ℓ2,1, . . . , ℓ2,N2
) := (ℓN1+1, . . . , ℓN1+N2

), . . . , (ℓB,1, . . . , ℓB,NB
) := (ℓn−NB+1, . . . , ℓn). If ℓi,j

corresponds to ℓk, then we also write li,j for lk and ei,j for ek.

Example 1. Say we have n = 6 primes, (ℓ1, . . . , ℓ6). If we take B = 3 and N = (3, 2, 1),
then (ℓ1,1, ℓ1,2, ℓ1,3) = (ℓ1, ℓ2, ℓ3), (ℓ2,1, ℓ2,2) = (ℓ4, ℓ5), and (ℓ3,1) = (ℓ6).

Batching isogenies. Consider the i-th batch of primes (ℓi,1, . . . , ℓi,Ni
). Rather than

setting a bound mi,j ≥ |ei,j | for the number of ℓi,j-isogenies for each 1 ≤ j ≤ Ni, we set a

bound mi ≥
∑Ni

j=1
|ei,j | and compute mi isogenies from the batch (ℓi,1, . . . , ℓi,Ni

). This
looks analogous to the use of dummy operations in the previous constant-time algorithms,

3In [18] some other computations are performed inside dummy isogenies, which facilitate later steps in
the algorithm. We omit the details here, since we only use simple dummy isogenies as described above.
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but it gives a larger keyspace per isogeny computed because of the ambiguity between the
degrees in a batch. Moreover, we will show in Section 5.2.2 that it is possible to evaluate
any isogeny within one batch in the same constant time.

Extreme batching choices correspond to well-known approaches to the group action
evaluation: one prime per batch (B = n and N = (1, . . . , 1)) was considered in [10]; one
n-prime batch (B = 1 and N = (n)) is considered in [5] for the quantum oracle evaluation
and in [20] as a speedup for CSIDH. The intermediate cases are new, and, as we will show,
faster.

The new key space. For N ∈ Z
B
>0 and m ∈ Z

B
≥0, we define

KN,m :=
{

(e1, . . . , en) ∈ Z
n |∑Ni

j=1
|ei,j | ≤ mi for 1 ≤ i ≤ B

}

.

We may see KN,m as a generalization of Km.

Lemma 1. We have

#KN,m =

B
∏

i=1

Φ(Ni, mi) , where Φ(x, y) =

min{x,y}
∑

k=0

(

x

k

)

2k

(

y

k

)

counts the vectors in Z
x with 1-norm at most y.

Proof. The size of the key space is the product of the sizes for each batch. In Φ(x, y) the
number of nonzero entries in the x positions is k and there are

(

x
k

)

ways to determine
which entries are nonzero. For each of the nonzero entries there are 2 ways to choose the
sign. The vector of partial sums over these k nonzero entries has k different integers in
[1, y] and each vector uniquely matches one assignment of partial sums. There are

(

y
k

)

ways to pick k different integers in [1, y].

4 Isogeny atomic blocks

In this section we formalize the concept of isogeny atomic blocks (ABs), subroutines that
have been widely used in constant-time CSIDH algorithms but never formalized before.
The first step of an algorithm chooses a series of degrees for which isogenies still need to be
computed, and then uses, for example, the multiplicative strategy (Section 2.3) to compute
a sequence of isogenies of those degrees. The next step chooses a possibly different series
of degrees, and computes another sequence of isogenies. Each step of the computation is
the evaluation of not one isogeny, but a sequence of isogenies. Atomic blocks formalize
these steps.

Square-free ABs generalize the approach we take when evaluating the CSIDH group
action with the traditional key spaces Km and K+

m as in Algorithm 1. Restricted square-free

ABs are used to evaluate the group action using the batching idea with keys in KN,m; with
details in Algorithm 2. We postpone the explicit construction of ABs to Section 5.

4.1 Square-free atomic blocks

Definition 1 (Square-free ABs). Let R ⊆ {−1, 0, 1} and I = (I1, . . . , Ik) ∈ Z
k such that

1 ≤ I1 < I2 < · · · < Ik ≤ n. A square-free atomic block of length k is a probabilistic
algorithm αR,I taking inputs A ∈M and ǫ ∈ Rk and returning A′ ∈M and f ∈ {0, 1}k

such that EA′ = (
∏

i l
fi·ǫi

Ii
) ⋆ EA, satisfying the following two properties:

1. there is a function σ such that, for each (A, ǫ), the distribution of f , given that
(A′, f) is returned by αR,I on input (A, ǫ), is σ(R, I), and
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Algorithm 1: Generalization of [22, Algorithm 3], replacing the inner loop with any
square-free AB with R = {−1, 0, 1}. Keys are in Km.

Parameters: m = (m1, . . . , mn)
Input: A ∈M, e = (e1, . . . , en) ∈ Km

Output: A′ with EA′ = (
∏

i l
ei

i ) ⋆ EA

1 (µ1, . . . , µn)← (m1, . . . , mn)
2 while (µ1, . . . , µn) 6= (0, . . . , 0) do

3 Let I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {1 ≤ i ≤ n | µi > 0}
4 for 1 ≤ i ≤ k do

5 ǫi ← Sign(eIi
) // 1 if eIi

> 0; 0 if eIi
= 0; -1 if eIi

< 0

6 (A, f)← αR,I(A, (ǫ1, . . . , ǫk)) // Square-free AB

7 for 1 ≤ i ≤ k do

8 (µIi
, eIi

)← (µIi
− fi, eIi

− ǫi · fi)

9 return A

2. there is a function τ such that, for each (A, ǫ) and each f , the distribution of the time
taken by αR,I , given that (A′, f) is returned by αR,I on input (A, ǫ), is τ(R, I, f).

Suppose an algorithm evaluates the group action on input e ∈ K and A ∈M using a
sequence of square-free AB calls (A′, f)← αR,I(A, ǫ). If in each step the choice of R and
I are independent of e, the algorithm does not leak information about e through timing.

This is illustrated by Algorithm 1, which expresses the constant-time group action
from [22] using a sequence of square-free ABs with R = {−1, 0, 1} to evaluate the action
for keys in Km. The choices of R and I are independent of e for each AB αR,I , and all
other steps can be easily made constant-time. The choice of I in Step 3 may vary between
different executions, due to the varying failure vectors f of previously evaluated ABs.
However this only depends on the initial choice of mi, and is independent of e.

Remark 2. The constant-time group action from [18] can also be expressed simply in terms
of ABs. The algorithm is extremely similar to Algorithm 1, using K+

m in place of Km (the
algorithm of [18] uses m = (10, . . . , 10)) and R = {0, 1} in place of {−1, 0, 1}. Line 5 can
be simplified to ǫi ← 1 if eIi

6= 0, or 0 if eIi
= 0.

Remark 3. The distribution of f depends on how the ABs are constructed. In [18] and [22],
Pr(fi = 0) = 1/ℓIi

for all i. In [12], f is always (1, 1, . . . , 1).

4.2 Restricted square-free atomic blocks

In the language of Section 3, restricted square-free ABs are generalizations of square-free
ABs that further do not leak information on which of the primes we have chosen from a
batch.

Definition 2 (Restricted square-free ABs). Let R ⊆ {−1, 0, 1}, B ≥ 1, and I =
(I1, . . . , Ik) ∈ Z

k such that 1 ≤ I1 < I2 < · · · < Ik ≤ B. A restricted square-free

atomic block of length k is a probabilistic algorithm βR,I taking inputs A ∈ M, ǫ ∈ Rk,
and J ∈ Z

k with 1 ≤ Ji ≤ NIi
for all 1 ≤ i ≤ k, and returning A′ ∈ M and f ∈ {0, 1}k

such that EA′ = (
∏

i l
fi·ǫi

Ii,Ji
) ⋆ EA, satisfying the following two properties:

1. there is a function σ such that, for each (A, ǫ, J), the distribution of f , given that
(A′, f) is returned by βR,I on input (A, ǫ, J), is σ(R, I); and

2. there is a function τ such that, for each (A, ǫ, J) and each f , the distribution of
the time taken by βR,I , given that (A′, f) is returned by βR,I on input (A, ǫ, J), is
τ(R, I, f).
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Algorithm 2 uses restricted square-free ABs with R = {−1, 0, 1} to compute group
actions for keys in KN,m; it may be considered a generalization of Algorithm 1.

Algorithm 2: A constant-time group action for keys in KN,m based on restricted
square-free ABs with R = {−1, 0, 1}.

Parameters: N , m, B
Input: A ∈M, e = (e1, . . . , en) ∈ KN,m

Output: A′ with EA′ = (
∏

i l
ei

i ) ⋆ EA

1 (µ1, . . . , µB)← (m1, . . . , mB)
2 while (µ1, . . . , µB) 6= (0, . . . , 0) do

3 Let I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {1 ≤ i ≤ B | µi > 0}
4 for 1 ≤ i ≤ k do

5 if there exists j such that eIi,j 6= 0 then

6 Ji ← some such j
7 else

8 Ji ← any element of {1, . . . , NIi
}

9 ǫi ← Sign(eIi,Ji
) // 1 if eIi,Ji

> 0; 0 if eIi,Ji
= 0; -1 if eIi,Ji

< 0

10 (A, f)← βR,I(A, (ǫ1, . . . , ǫk), J) // Restricted square-free AB

11 for 1 ≤ i ≤ k do

12 (µIi
, eIi,Ji

)← (µIi
− fi, eIi,Ji

− ǫi · fi)

13 return A

5 Evaluating atomic blocks in constant time

This section introduces the algorithm used in CTIDH to realize the restricted square-free
atomic block βR,I introduced in Section 4. Throughout this section, R is {−1, 0, 1}.

As a warmup, Section 5.1 recasts the inner loop of [22, Algorithm 3] as a realization of
the square-free atomic block αR,I . We first present the algorithm in a simpler variable-time
form (Algorithm 3) and then explain the small changes needed to eliminate timing leaks,
obtaining αR,I .

Section 5.2 presents our new algorithm to realize βR,I . The extra challenge here is to
hide which prime is being used within each batch. Again we begin by presenting a simpler
variable-time algorithm (Algorithm 4) and then explain how to eliminate timing leaks.

5.1 Square-free atomic blocks for isogeny evaluation

Algorithm 3 translates the inner loop of [22, Algorithm 3] to the AB framework. The
inputs are A ∈ M and ǫ ∈ {−1, 0, 1}k. The goal is to compute k isogenies of degrees
ℓI1

, . . . , ℓIk
, but some of these computations may fail. The outputs are a vector f ∈ {0, 1}k

recording which of the computations succeeded, and A′ such that (
∏

i l
fi·ǫi

Ii
) ⋆ EA = EA′ .

The algorithm uses the 2-point approach with dummy isogenies. It uses two subroutines:

• UniformRandomPoints takes A ∈M, and returns a uniform random pair of points
(T0, T1), with T0 ∈ EA(Fp) and T1 ∈ ẼA(Fp); i.e., T0 is a uniform random element
of EA(Fp), and T1, independent of T0, is a uniform random element of ẼA(Fp).

• Isogeny takes A ∈M, a point P in EA(Fp2) with x-coordinate in Fp generating the
kernel of an ℓIj

-isogeny ϕ : EA → EA′ = EA/〈P 〉, and a tuple of points (Q1, . . . , Qt),
and returns A′ and (ϕ(Q1), . . . , ϕ(Qt)).

See Appendix B for analysis of the Elligator alternative to UniformRandomPoints.
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Algorithm 3: Inner loop of [22, Algorithm 3].

Parameters : k ∈ Z, R = {−1, 0, 1}, I ∈ Z
k
≥0

Input: A ∈M, ǫ ∈ {−1, 0, 1}k

Output: A′ ∈M, f ∈ {0, 1}k

1 (T0, T1)← UniformRandomPoints(A)

2 (T0, T1)← ([r]T0, [r]T1) where r = 4
∏

i 6∈I ℓi

3 r′ ←∏

i∈I ℓi

4 for j = k down to 1 do

5 r′ ← r′/ℓIj

6 s← SignBit(ǫj) // 1 if ǫj < 0, otherwise 0

7 P ← [r′]Ts

8 if P 6=∞ then // branch without secret information

9 fj ← 1
10 (A′, (T ′

0, T ′
1))← Isogeny(A, P , (T0, T1), Ij)

11 if ǫj 6= 0 then // branch with secret information

12 (A, T0, T1)← (A′, T ′
0, T ′

1)

13 else

14 Ts ← [ℓIj
]Ts

15 else

16 fj ← 0

17 T1−s ← [ℓIj
]T1−s

18 return A, f

Remark 4. Algorithm 3 uses a multiplicative strategy, but it can easily be modified to use
a SIMBA or point-pushing strategy, which is much more efficient in general [22, 13]. The
isogeny algorithm can be Vélu or

√
élu, whichever is more efficient for the given degree.

5.1.1 Modifying Algorithm 3 to eliminate timing leaks

The following standard modifications to Algorithm 3 produce an algorithm meeting
Definition 1, the definition of a square-free atomic block.

Observe first that fj = 1 if and only if the prime ℓIj
divides the order of the current

Ts. This is equivalent to ℓIj
dividing the order of the initially sampled point Ts (since

Ts has been modified only by multiplication by scalars that are not divisible by ℓIj
, and

by isogenies of degrees not divisible by ℓIj
). This has probability 1 − 1/ℓIj

, since the
initial Ts is a uniform random point in a cyclic group of size p + 1. These probabilities are
independent across j, since (T0, T1) is a uniform random pair of points.

To summarize, the distribution of the f vector has position j set with probability
1− 1/ℓIj

, independently across j. This distribution is a function purely of I, independent
of (A, ǫ), as required. What follows are algorithm modifications to ensure that the time
distribution is a function purely of (I, f); these modifications do not affect f .

Step 7, taking T0 if s = 0 or T1 if s = 1, is replaced with a constant-time point selection:
e.g., taking the bitwise XOR T0 ⊕ T1, then ANDing each bit with s, and then XORing
the result with T0. Similar comments apply to the subsequent uses of Ts and T1−s. It is
simplest to merge all of these selections into a constant-time swap of T0, T1 when s = 1,
followed by a constant-time swap back at the bottom of the loop. The adjacent swaps at
the bottom of one loop and the top of the next loop can be merged, analogous merging is
standard in constant-time versions of the Montgomery ladder for scalar multiplication.

Step 11 determines whether an actual isogeny or a dummy isogeny has to be computed.
The conditional assignment to (A, T0, T1) in the first case is replaced with unconditional
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constant-time point selection. The conditional operation in the second case is replaced
with an unconditional operation, multiplying Ts by ℓIj

in both cases. This changes the
point Ts in the first case, but does not change the order of Ts (since the isogeny has already
removed ℓIj

from the order of Ts in the first case), and all that matters for the algorithm
is the order. See [18, 22] for a slightly more efficient approach, merging the multiplication
by ℓIj

into a dummy isogeny computation.

The branch in Step 8 is determined by public information fj and does not need to
be modified. The isogeny computation inside Isogeny takes constant time with standard
algorithms; at a lower level, arithmetic in Fp is handled by constant-time subroutines, not
by subroutines that try to save time by suppressing leading zero bits. The computation
of UniformRandomPoints takes variable time with standard algorithms, but the time
distribution is independent of the curve provided as input.

The total time is the sum for initialization (UniformRandomPoints, computation of
r and r′, initial scalar multiplication), fj computation (division, scalar multiplications,
selection), and computations when fj = 1 (Isogeny, scalar multiplication, selection). This
sum is a function purely of (I, f), independent of (A, ǫ), as required.

5.2 Restricted square-free atomic blocks

We now consider the more difficult goal of hiding which isogeny is being computed
within each batch. We present first the high-level algorithm (Algorithm 4), then the
PointAccept (Section 5.2.1) and MatryoshkaIsogeny (Section 5.2.2) subroutines, and
finally the algorithm modifications (Section 5.2.3) to meet Definition 2.

The inputs to Algorithm 4 are A ∈ M, ǫ ∈ {−1, 0, 1}k, and J ∈ Z
k. The goal is to

compute k isogenies of degrees ℓI1,J1
, . . . , ℓIk,Jk

. The outputs are A′ ∈M and f ∈ {0, 1}k

such that (
∏

i l
fi·ǫi

Ii,Ji
) ⋆ EA = EA′ .

Like Algorithm 3, Algorithm 4 uses a 2-point approach and dummy isogenies. It uses
the following subroutines:

• UniformRandomPoints is as before.
• PointAccept replaces the check P 6=∞ to prevent timing leakage. It takes a point

P and Ij , Jj ∈ Z such that P either has order ℓIj ,Jj
or 1, and outputs either 0 or 1,

under the condition that the output is 0 whenever P =∞.
• MatryoshkaIsogeny replaces Isogeny from Algorithm 3. There is an extra input

Jj indicating the secret position within a batch.

Note that the output of PointAccept can be 0 when P 6=∞, so we add a multiplication
by ℓIj ,Jj

in Step 14 to make sure we continue the loop with points of expected order.

5.2.1 PointAccept

Step 8 of Algorithm 4 computes a potential kernel generator, P . The probability that
P =∞ is 1/ℓIj ,Jj

, which depends on Jj . For the batch (ℓIj ,1, . . . , ℓIj ,NIj
), PointAccept

artificially increases this probability to 1/ℓIj ,1, independent of ℓIj ,Jj
, by tossing a coin

with success probability

γ =
ℓIj ,Jj

· (ℓIj ,1 − 1)

ℓIj ,1 · (ℓIj ,Jj
− 1)

and only returning fj = 1 if P 6=∞ and the coin toss is successful. The probability that
the output is 1 is then γ · (1− 1/ℓIj ,Jj

) = 1− 1/ℓIj ,1, which is independent of Jj . Thus
the batch can fail publicly.
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Algorithm 4: The CTIDH inner loop.

Parameters : k ∈ Z, R = {−1, 0, 1}, I ∈ Z
k
≥0

Input: A ∈M, ǫ ∈ {−1, 0, 1}k, J ∈ Z
k
>0

Output: A′ ∈M, f ∈ {0, 1}k

1 (T0, T1)← UniformRandomPoints(A)

2 (T0, T1)← ([r]T0, [r]T1) where r = 4
∏

i 6∈I

∏

1≤j≤Ni
ℓi,j

3 (T0, T1)← ([r̃]T0, [r̃]T1) where r̃ =
∏

i∈I

∏

1≤j≤Ni,j 6=Ji
ℓi,j // hide selection

4 r′ ←∏

i∈I ℓi,Ji
// hide selection

5 for j = k down to 1 do

6 r′ ← r′/ℓIj ,Jj
// hide ℓIj ,Jj

, batch is public

7 s← SignBit(ǫj) // 1 if ǫj < 0, otherwise 0

8 P ← [r′]Ts // hide ℓIj ,Jj
, batch is public

9 fj ← PointAccept(P , Ij, Jj)

10 if fj = 1 then // this branch is on public information

11 (A′, (T ′
0, T ′

1))← MatryoshkaIsogeny(A, P , (T0, T1), Ij , Jj)

12 if ǫj 6= 0 then // branch with secret information

13 (A, T0, T1)← (A′, T ′
0, T ′

1)

14 (T0, T1)← ([ℓIj ,Jj
]T0, [ℓIj ,Jj

]T1) // hide selection

15 return A, f

5.2.2 MatryoshkaIsogeny

MatryoshkaIsogeny replaces the Isogeny computation. It takes the Montgomery coeffi-
cient of a curve EA, a batch (ℓi,1, . . . , ℓi,Ni

), an isogeny index j within the batch, a point
P of order ℓi,j generating the kernel of an isogeny ϕ : EA → EA/〈P 〉 = EA′ , and a tuple
of points (Q1, . . . , Qt), and returns A′ and (ϕ(Q1), . . . , ϕ(Qt)). MatryoshkaIsogeny is
computed with cost independent of j.

For Vélu’s formulas, [5] showed how to compute any ℓi-isogeny for ℓi ≤ ℓ using
the computation of an ℓ-isogeny and masking. The first step of computing (1) is to
compute x(P ), x([2]P ), . . . , x([(ℓ− 1)/2]P ). This includes the computation for smaller ℓi;
[5] described this as a Matryoshka-doll property.

In this paper we specialize the
√

élu formulas so as to obtain a Matryoshka-doll
structure. We define the sets U and V , introduced in Section 2.2, as the optimal choices
for the smallest degree in the batch: i.e., ℓi,1. The leftover set W is chosen to make the
formulas work even for the largest prime ℓi,Ni

in the batch. Then the baby-step giant-step
algorithm stays unchanged; while we iterate through W we save the intermediate results
corresponding to all degrees ℓi,j in the batch. In the final step, we select the result
corresponding to the index j that we wanted to compute.

The sets U and V have size around
√

ℓi,1. If the primes in the batch are sufficiently close
then the rounded values match or are marginally different, meaning that the Matryoshka-
like formulas are at worst marginally slower than the optimal formulas for ℓi,Ni

.

5.2.3 Modifying Algorithm 4 to eliminate timing leaks

We now indicate algorithm modifications to meet Definition 2, the definition of a restricted
square-free atomic block.

As in Section 5.1.1, we begin with the distribution of f . For each input (A, ǫ, J), the
distribution has fj set with probability 1 − 1/ℓIj ,1 (not 1 − 1/ℓIj ,Jj

; see Section 5.2.1),
independently across j. This distribution is a function purely of I, independent of (A, ǫ, J),
as required. What remains is to ensure that the time distribution is a function purely of
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(I, f).
There are secret scalars r̃, r′, and ℓIj ,Jj

used in various scalar multiplications in Steps
3, 8, and 14. Standard integer-arithmetic algorithms that dynamically suppress leading
zero bits are replaced by constant-time algorithms that always use the maximum number
of bits, and variable-time scalar-multiplication algorithms are replaced by a constant-time
Montgomery ladder, as in [5]. It is straightforward to compute an upper bound on each
scalar in Algorithm 4. See Section 7 for faster alternatives.

Section 5.2.2 explains how to compute MatryoshkaIsogeny in time that depends only
on the batch, not on the selection of a prime within the batch. Everything else is as
in Section 5.1.1: the distribution of UniformRandomPoints timings is independent of
the inputs, Step 8 uses constant-time selection, the branch in Step 12 is replaced by
constant-time selection, and the branch in Step 10 does not need to be modified.

6 Strategies and parameters for CTIDH

The optimization process for previous constant-time algorithms for CSIDH has two levels.
The bottom level tries to minimize the cost of each AB, for example by optimizing

√
élu

parameters and searching for a choice of strategy from Section 2.3. The top level searches
for a choice of exponent bounds m = (m1, . . . , mn), trying to minimize the total AB cost
subject to the key space reaching a specified size. A cost function that models the cost of
an AB, taking account of the bottom-level search, is plugged into the top-level search.

Optimizing CTIDH is more complicated. There is a new top level, searching for a
choice of batch sizes N = (N1, . . . , NB). These batch sizes influence the success chance
and cost of an AB at the bottom level: see Sections 5.2.1 and 5.2.2. They also influence
the total cost of any particular choice of 1-norm bounds m = (m1, . . . , mB) at the middle
level. The size of the key space depends on both N and m; see Lemma 1.

This section describes a reasonably efficient method to search for CTIDH parameters.

Strategies for CTIDH. We save time at the lowest level of the search by simply using
multiplicative strategies. As in previous papers, it would be easy to adapt Algorithm 4 to
use SIMBA or optimized point-pushing strategies or both, giving many further parameters
that could be explored with more search time, but this is unlikely to produce large benefits.

Seen from a high level, evaluating ABs multiplicatively in CTIDH has a similar effect
to SIMBA strategies for previous algorithms. For example, SIMBA-N1 for traditional
batch sizes (1, . . . , 1) limits each AB to at most n/N1 isogenies (if n is divisible by N1), in
order to save multiplicative effort. Now consider CTIDH where all B batches have size N1,
i.e., N = (N1, . . . , N1). Each CTIDH AB then computes at most B = n/N1 isogenies,
saving multiplicative effort in the same way.

One could split a CTIDH AB into further SIMBA prides, but [18] already shows
that most of the benefit of SIMBA comes from putting some cap on the number of
isogenies in an AB; the exact choice of cap is relatively unimportant. One could also
try to optimize point-pushing strategies as an alternative to multiplicative strategies, as
an alternative to SIMBA, or within each SIMBA pride, but the searches in [15] and [13]
suggest that optimizing these strategies saves at most a small percentage in the number of
multiplications, while incurring overhead for managing additional points.

Cost functions for CTIDH. The search through various CTIDH batching configuration
vectors N and 1-norm bound vectors m tries to minimize a function C(N, m), a model of
the cost of a group-action evaluation. The numerical search examples later in this section
use the following cost function: the average number of multiplications (counting squarings
as multiplications) used by the CTIDH algorithms, including the speedups described in
Section 7.
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One way to compute this function is to statistically approximate it: run the software
from Section 7 many times, inspect the multiplication counter built into the software,
and take the average over many experiments. A more efficient way to compute the same
function with the same accuracy is with a simulator that skips the multiplications but still
counts how many there are. Our simulator, despite being written in Python, is about 50
times faster than the software from Section 7.

However, using a statistical approximation raises concerns about the impact of statistical
variations. So, instead of using the software or the simulator, we directly compute the
average cost of the first AB, the average cost of the second AB, etc., stopping when the
probability of needing any further AB is below 10−9.

Batch b, with smallest prime ℓb,1, has success probability 1 − 1/ℓb,1 from each AB,
so the chance qb of reaching mb successes within R ABs is the sum of the coefficients of
xmb , xmb+1, . . . in the polynomial (1/ℓb,1 + (1− 1/ℓb,1)x)R. Batches are independent, so
q1q2 · · · qB is the probability of not needing any further AB. Note that multiplying the
polynomial (1/ℓb,1 + (1− 1/ℓb,1)x)R by 1/ℓb,1 + (1− 1/ℓb,1)x for each increase in R is more
efficient than computing binomial coefficients.

Computing the cost of an AB (times the probability that the AB occurs) is more
complicated. Splitting the analysis into 2B cases—e.g., one case, occurring with probability
(1−q1)(1−q2) · · · (1−qB), is that all B batches still remain to be done—might be workable,
since B is not very large and one can skip cases that occur with very low probability. We
instead take the following approach. Fix b. The probability that batch b is in the AB is
1− qb; the probability that batch a is in the AB for exactly j values a < b is the coefficient
of xj in the polynomial

∏

a<b(qa + (1− qa)x); and the probability that batch c is in the AB

for exactly k values c > b is the coefficient of xk in the polynomial
∏

c>b(qc + (1− qc)x).
There are O(B2) possibilities for (j, k); each possibility determines the total number of
batches in the AB and the position of b in the AB, assuming b is in the AB. For the AB
algorithms considered here, this is enough information to determine the contribution of
batch b to the cost of the AB. Our Python implementation of this approach has similar
cost to 100 runs of the simulator, depending on B.

We also explored various simpler possibilities for cost functions. A deterministic model
of ABs is easier to compute and simulates real costs reasonably well, leading to parameters
whose observed costs were consistently within 10% of the best costs we found via the cost
function defined above.

Optimizing the 1-norm bounds. Given a fixed configuration N of B batches, we use a
greedy algorithm as in [13] to search for a 1-norm bound vector m as follows:

1. Choose an initial m = (m1, . . . , mB) such that KN,m is large enough, and set
Cmin ← C(N, m).

2. For each i in {1, . . . , B}, do the following:

(a) Set m̃← (m1, . . . , mi−1, mi − 1, mi+1, . . . , mB).
(b) If KN,m̃ is large enough, set (m, Cmin)← (m̃, C(N, m̃)).
(c) Else, set m̃′ ← m̃, and for each j 6= i in {1, . . . , B} do the following:

i. Set m̃← (m̃′
1, . . . , m̃′

j−1, m̃′
j + 1, m̃′

j+1, . . . , m̃′
B).

ii. If KN,m̃ is too small, recursively go to Step 2(c).
iii. Else, if C(N, m̃) < Cmin, set (m, Cmin)← (m̃, C(N, m̃)).

3. If Cmin was updated in Step 2, then repeat Step 2.
4. Return (m, Cmin).

This algorithm applies small changes to the bound vector m at each step, reducing one
entry while possibly increasing others. Obviously, this finds only a locally optimal m with
respect to these changes and the initial choice of m in Step 1; different choices generally
produce different results.
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One way to choose an initial m is to try (1, 1, . . . , 1), then (2, 2, . . . , 2), etc., stopping
when KN,m is large enough. Another approach, in the context of the N search described
below, is to start from the best m found for the parent N , and merely increase the first
component of m until KN,m is large enough; usually at most one increase is needed.

The algorithm involves at least B(B − 1) evaluations of the cost function for the final
pass through Step 2. It can involve many more evaluations if there are many recursive
calls or if there are many improvements to m, but usually these are small effects.

Optimizing the prime batches. We optimize N via a similar greedy algorithm, using the
algorithm above as a subroutine. For a fixed number of batches B, we proceed as follows:

1. Choose an initial N = (N1, . . . , NB) with
∑

i Ni = n, and let (m, Cmin) be the
output of the algorithm above applied to N .

2. For each i ∈ {1, . . . , B}, do the following:

(a) Set Ñ i ← (N1, . . . , Ni−1, Ni − 1, Ni+1, . . . , NB).
(b) For each j 6= i in {1, . . . , B},

i. Set Ñ i,j ← (Ñ i
1, . . . , Ñ i

j−1, Ñ i
j + 1, Ñ i

j+1, . . . , Ñ i
B).

ii. Let (m̃, C̃) be the output of the algorithm above applied to N i,j .
iii. If C̃ < Cmin, then update (N, m, Cmin)← (Ñ i,j , m̃, C̃).

3. If Cmin was updated in Step 2, then repeat Step 2.
4. Return N , m, and Cmin.

This algorithm also finds only a local optimum with respect to these changes, and with
respect to the initial choice of N in Step 1; again, different choices may lead to different
results. Our experiments took an initial choice for N such that z ≤ N1 ≤ · · · ≤ NB ≤ z + 1
for some z ∈ Z. One can also omit one or more large primes ℓj by taking each Nj = 1 and
mj = 0.

Within the full two-layer greedy algorithm, each N considered at the upper layer
involves B(B − 1) calls to the lower layer, the optimization of 1-norm bounds. Recall that
each call to the lower layer involves at least B(B − 1) evaluations of the cost function.
Overall there are nearly B4 evaluations of the cost function.

Numerical examples. Table 1 shows examples of outputs of the above search. For each
B, the “N”/“m” column shows the final (N, m) found, and the “cost” column shows the
cost function for that (N, m), to two digits after the decimal point.

We used a server with two 64-core AMD EPYC 7742 CPUs, but limited each search
to 32 cores running in parallel. We parallelized only the upper layer of the search; often
fewer than 32 cores were used since some calls to the lower layer were slower than others.
For each B, “wall” shows the seconds of real time used for the search, and “CPU” shows
the total seconds of CPU time (across all cores, user time plus system time) used for the
search.

7 Constant-time software for the action

We have built a self-contained high-performance software package, high-ctidh, that
includes implementations of all of the operations needed by CSIDH users for whichever
parameter set is selected: constant-time key generation, constant-time computation of the
CSIDH action, and validation of (claimed) public keys. The package uses the CTIDH key
space and CTIDH algorithms to set new cycle-count records for constant-time CSIDH.

The high-ctidh source code is in C, with assembly language for field arithmetic.
Beyond the performance benefits, using low-level languages is helpful for ensuring constant-
time behavior, as explained below. Measuring the performance of a full C implementation
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Table 1: Results of searches, for various choices of B, for CTIDH parameters with at least
2256 keys for the CSIDH-512 prime. See text for description.

B wall cost N
CPU m

1 1.27 3462230.00 74
1.25 153

2 1.55 1483388.79 36 38
1.80 64 96

3 2.59 990766.14 23 27 24
4.78 40 62 62

4 5.14 755266.87 14 19 20 21
22.17 29 45 46 46

5 4.65 649002.35 13 15 15 17 14
22.15 23 37 38 38 35

6 13.29 583256.02 10 11 12 12 15 14
150.29 19 31 31 32 32 30

7 24.98 537496.27 7 10 10 12 12 14 9
334.31 17 27 28 28 28 28 22

8 65.90 504984.23 5 9 9 10 10 11 11 9
1141.82 15 24 25 25 25 26 26 16

9 138.65 485052.29 5 7 8 8 8 7 10 12 9
2763.28 14 22 23 23 23 23 24 24 13

10 393.63 471184.70 5 7 8 8 8 7 9 10 11 1
8209.63 13 20 22 22 22 22 22 22 22 1

11 966.91 451105.76 3 5 6 7 7 8 7 9 10 11 1
21740.60 11 18 19 20 20 21 20 21 21 21 1

12 1484.31 448573.04 3 4 6 6 6 6 7 7 8 10 10 1
36763.23 10 16 18 18 19 19 19 19 19 19 19 2

13 2301.94 445054.10 3 4 4 6 6 6 7 7 8 7 7 8 1
55252.51 10 16 17 18 18 18 18 18 18 18 17 14 1

14 6509 437985.55 2 3 4 4 5 5 6 7 7 8 8 6 8 1
161371.00 10 14 16 17 17 17 18 18 18 18 18 13 13 1

15 8341 440201.56 3 4 3 4 4 5 5 5 6 6 6 7 7 8 1
211336.80 9 14 15 15 16 16 16 16 16 16 16 16 15 13 1

16 18060 442718.29 2 3 4 4 5 5 5 5 6 6 7 8 4 1 8 1
491547.34 9 13 15 16 16 17 17 17 17 16 17 17 7 1 16 1

17 29733 450343.88 2 3 4 4 5 5 5 5 5 5 5 5 7 5 3 5 1
808639.64 8 12 14 15 15 15 16 15 16 16 14 13 16 11 6 10 1

18 73925 443412.54 2 2 3 3 4 4 5 5 5 5 5 6 6 6 3 1 8 1
2012125.98 8 11 13 14 14 15 15 15 15 15 15 15 14 14 7 2 15 1

19 103825 447506.32 2 2 3 3 3 4 4 5 5 5 6 4 6 1 8 4 7 1 1
2961123.56 8 12 14 15 15 15 15 16 16 16 16 10 16 2 16 7 14 1 1

20 167114 455328.80 2 2 3 3 4 4 5 5 5 5 5 4 7 7 1 3 6 1 1 1
4794006.52 9 12 14 14 16 16 16 16 16 16 16 11 16 16 2 5 12 1 1 1

21 278646 460901.00 2 2 3 3 4 4 5 5 5 5 5 7 2 1 1 3 1 7 7 1 1
7981372.99 9 13 15 16 16 16 16 17 17 17 16 17 5 2 2 6 1 17 11 1 1
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also resolves the concerns raised by using multiplications as a predictor of performance,
such as concerns that some subroutines could be difficult to handle in constant time and
that improved multiplication counts could be outweighed by overhead.

The software is freely available at http://ctidh.isogeny.org/. This section describes
the software. Section 8 reports the software speeds and compares to previous speeds.

7.1 Processor selection and field arithmetic

The original CSIDH paper reported clock cycles for variable-time CSIDH-512 software on
an Intel Skylake CPU core. Skylake is also the most common CPU choice in followup
papers on CSIDH software speed. We similarly focus on Skylake to maximize comparability.

The original csidh-20180826 software from [10] included a small assembly-language
library for Intel chips (Broadwell and newer) to perform arithmetic modulo the CSIDH-512
prime. The same library has been copied, with minor tweaks and generalizations to other
primes, into various subsequent software packages, including high-ctidh. Code above the
field-arithmetic level, decomposing isogenies into multiplications etc., are written in C, so
porting the software to another CPU is mainly a matter of writing an efficient Montgomery
multiplier for that CPU. Beware that each CPU will have different cycle counts, and
possibly a different ranking of algorithmic choices.

The velusqrt-asm software from [3] includes an adaptation of the same library to
CSIDH-1024. The sqale-csidh-velusqrt software from [12] includes adaptations to
larger sizes, all automatically generated by a code generator that takes p as input. The
high-ctidh package includes a similar code generator, with some small improvements
in the details: for example, we use less arithmetic for conditional subtraction, and we
avoid cmov instructions with memory operands out of concern that they could have
data-dependent timings.

7.2 Computing one isogeny

The middle layer of high-ctidh computes an ℓ-isogeny for one prime ℓ; it also includes
auxiliary functions such as multiplying by the scalar ℓ. We built this layer as follows.

We started with the xISOG function in velusqrt-asm. As in csidh-20180826, this
function takes a curve and a point P of order ℓ, and returns the corresponding ℓ-isogenous
curve. It also takes a point T , and returns the image of that point under the isogeny.

We extended the function interface to take lower and upper bounds on ℓ—the smallest
and largest prime in the batch containing ℓ—and we modified the software to take time
depending only on these bounds, not on the secret ℓ. The Matryoshka-doll structure of the
computation (see Section 5.2.2) meant that very little code had to change. Each loop to ℓ
is replaced by a loop to the upper bound, with constant-time conditional selection of the
results relevant to ℓ; and ℓ is replaced by the lower bound as input to the

√
élu parameter

selection. An upper bound was used the same way in [5]; the use of the lower bound for a
Matryoshka-doll

√
élu is new here.

We reused the automatic
√

élu parameter-tuning mechanisms from velusqrt-asm.
These mechanisms offer the option of tuning for multiplication counts or tuning for cycles.
Since most CSIDH-related papers report multiplication counts while fewer report cycles,
we chose to tune for multiplication counts for comparability, but this makes only a small
difference: cycle counts and multiplication counts are highly correlated.

We made more changes to incorporate known optimizations, including an observation
from [5] regarding the applicability of multiexponentiation, and an observation from [1]
regarding reciprocal polynomials. Computing a 587-isogeny and pushing a point through
takes 2108 multiplications in this software (counting squarings as multiplications); for
comparison, [1] took 3.4% more, and velusqrt-asm took 8.9% more.
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More importantly for the high-level algorithms, we extended the interface to allow
an array of points T to be pushed through the isogeny—e.g., two or zero points rather
than one. We also incorporated shorter differential addition chains, as in [11], for scalar
multiplications, and standard addition chains for the constant-time exponentiation inside
Legendre-symbol computation.

There would be marginal speedups from tuning the
√

élu parameters separately for
each number of points. Taking parameters (6, 3) for 0 points instead of (0, 0) saves 2 out
of 328 multiplications for ℓ = 79; 2 out of 344 multiplications for ℓ = 83; and 8 out of 368
multiplications for ℓ = 89. Parameter adjustments also save 3 multiplications for 0 points
for each ℓ ∈ {557, 587, 613}. However, we did not find such speedups for most primes, and
we did not find such speedups for the much more common case of 2 points.

7.3 Computing the action

The top layer of high-ctidh is new, and includes the core CTIDH algorithms described
earlier in this paper. The key space is KN,m, allowing any vector with 1-norm at most m1

for the first N1 primes, 1-norm at most m2 for the first N2 primes, etc. Constant-time
generation of a length-Ni vector of 1-norm at most mi works as follows:

• Generate Ni + mi uniform random b-bit integers.
• Set the bottom bit of each of the first Ni integers, and clear the bottom bit of each

of the last mi integers.
• Sort the integers. (We reused existing constant-time sorting software from [2].)
• If any adjacent integers are the same outside the bottom bit, start over. (Otherwise

the integers were distinct outside the bottom bit, so sorting them applies a uniform
random permutation.)

• Extract the bottom bit at each position. (This is a uniform random bit string of
length Ni + mi with exactly Ni bits set.)

• Consider the entries as integers. Add the first entry to the second, then add the
resulting second entry to the third, etc. (Now there are maybe some 0s, then at least
one 1, then at least one 2, and so on through at least one Ni.)

• Count, in constant time, the number e0 of 0, the number e1 of 1, and so on through
the number eNi−1 of Ni − 1. (These tallies add up to at most Ni + mi − 1, since
the number of Ni was not included. Each of e1, . . . , eNi−1 is positive, and e0 is
nonnegative.)

• Subtract 1 from each of e1, . . . , eNi−1. (Now e0, . . . , eNi−1 is a uniform random string
of Ni nonnegative integers with sum at most mi.)

• Generate a uniform random Ni-bit string s0, . . . , sNi−1.
• Compute, in constant time, whether any j has sj = 1 and ej = 0. If so, start over.
• Replace each ej with −ej if sj = 1.

As required by the constant-time property, the two rejection steps in this algorithm are
independent of the secrets produced as output. The first rejection step is very unlikely to
occur when b is chosen so that 2b is on a larger scale than (Ni + mi)

2. The second rejection
step occurs more frequently. Sign variations for vectors of Hamming weight k contribute
2k by Lemma 1 and thus the rejection correctly happens more frequently for smaller k.

In the case Ni > mi, high-ctidh saves time by skipping (in constant time) the sj = 1
rejection test for the first Ni −mi values of j having ej = 0. There are always at least
Ni − mi such values of j. This increases each acceptance chance by a factor 2Ni−mi ,
preserving uniformity of the final output.

Once a private key is generated, the action is computed by a series of restricted square-
free ABs. As in Section 4, the first AB handles one prime from each batch, the next AB
handles one prime from each batch that might have something left to do, etc.
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Within each AB, Elligator is used twice to generate two independent points; see
Appendix B. Specifically, Elligator is used to generate a point on the first curve EA: a
point in ẼA(Fp) if the first isogeny has negative sign, otherwise in EA(Fp). This point is
pushed through the first isogeny. Elligator is then used again to generate an independent
point on the second curve EA′ : a point in ẼA′(Fp) if the first isogeny had positive sign,
otherwise in EA′(Fp). Both choices are secret. These two points (T0, T1) are then pushed
through subsequent isogenies as in Algorithm 4, except that no points are pushed through
the last isogeny and only one point is pushed through the isogeny before that. The AB
thus pushes 1, 2, 2, 2, . . . , 2, 2, 2, 1, 0 points through isogenies. The software permutes the
b ≤ B batches in the AB to use primes ℓb−1, ℓb−3, ℓb−4, . . . , ℓ1, ℓb−2, ℓb in that order.

Each AB selects one prime from each batch in the block and tries to compute an
isogeny of total degree D, the product of the selected primes; D = r′ in Algorithm 4. Each
point is multiplied by 4 and then by all primes outside D immediately after the point is
generated by Elligator, so that the order of the point divides D. There are two types of
primes outside D (compare Steps 2 and 3 of Algorithm 4):

• The batches in the AB are public. Primes outside these batches are publicly outside D.
• Primes that are inside the batches in the AB, but that are not the secretly selected

prime per batch, are secretly outside D.

For scalar multiplication by a product of secret primes, [5] uses a Montgomery ladder,
with the number of ladder steps determined by the maximum possible product. For public
primes, [11] does better using a precomputed differential addition chain for each prime.
Our high-ctidh software also uses these chains for secret primes, taking care to handle
the incompleteness of differential-addition formulas and to do everything in constant time.
The primes in a batch usually vary slightly in chain length, so the software always runs to
the maximum length.

Each ℓ-isogeny then clears ℓ from the order of the point that was used to compute the
isogeny. As in line 14 of Algorithm 4, the software multiplies the point by ℓ anyway (again
using a constant-time differential addition chain), just in case this was a dummy isogeny,
i.e., there was secretly nothing left to do in the batch. This extra scalar multiplication
could be merged with the isogeny computation, but the

√
élu structure seems to make this

somewhat more complicated than in [18], and the extra scalar multiplication accounts for
only about 3% of the CSIDH-512 computation. The other point is also multiplied by ℓ.

Recall that an AB successfully handling a batch is a public event, visible in timing: it
means that a (real or dummy) ℓ-isogeny is computed now for some ℓ in the batch, publicly
decreasing the maximum 1-norm of the batch. This event occurs with probability 1−1/ℓi,1,
where ℓi,1 is the smallest prime in the batch containing ℓ = ℓi,j . As in Section 5.2.1,
the software creates this event exactly when there is a conjunction of a natural success
and an artificial success. A natural success, probability 1 − 1/ℓ, means that cofactor
multiplication produces a point of order ℓ rather than order 1. An artificial success,
probability γ = (1− 1/ℓi,1)/(1− 1/ℓ), is determined by a γ-biased coin toss.

One obvious way to generate a γ-biased coin is to (1) generate a uniform random
integer modulo ℓi,1(ℓ− 1) and (2) compute whether the integer is smaller than ℓ(ℓi,1 − 1).
The second step is easy to do in constant time. For the first step, the software generates a
uniform random 256-bit integer and, in constant time, reduces that modulo ℓi,1(ℓ− 1); the
resulting distribution is indistinguishable from uniform. One could instead use rejection
sampling to compute a uniform random integer modulo ℓi,1M , where M is the least
common multiple of ℓ− 1 across primes ℓ in the batch, and then reduce the integer modulo
ℓi,1(ℓ− 1), to obtain an exactly uniform distribution; the reason to use M here rather than
just one ℓ− 1 is to avoid having the secret ℓ influence the rejection probability.
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7.4 Automated constant-time verification

We designed and analyzed every step of the CTIDH algorithm to be constant time, leaking
nothing about the input through timing; this is the basis for our claim that the algorithm is
in fact constant time. We also designed and reviewed every new line of code in high-ctidh

to be constant time, and reviewed every line of reused code for the same property; this
is the basis for our claim that the software is in fact constant time. These analyses are
complete—but, as in most papers on constant-time algorithms, are entirely done by hand,
raising the question of what protections there are against human error.

For extra assurance, we designated an internal auditor to use automated tools to
verify the constant-time claims. This subsection is an audit report to support external
auditing. This report describes what the tools verified, describes various limitations of
this verification, and describes various steps that the auditor took to compensate for those
limitations.

From a risk-management perspective, a timing leak in high-ctidh would have to be at
the intersection of (1) human error in this paper’s manual analysis and (2) limitations of the
automated verification. One might hope for automated verification without any limitations,
eliminating the need for manual analysis (assuming correctness of the verification tools),
but one risk identified below is beyond the current state of the art in automated verification.
The automated verification is nevertheless useful in reducing risks overall.

An automated test using valgrind. There is a standard tool, valgrind [21], that runs
a specified binary, watching each instruction for memory errors—in particular, branches
and array indices derived from undefined data. If secret data in cryptographic software is
marked as undefined then simply running valgrind will automatically check whether there
is any data flow from secrets to branches and array indices; see, e.g., [17]. See also [16] for
a survey of related tools.

Because valgrind works at the binary level, this analysis includes any optimizations
that might have been introduced by the compiler. A compiler change could generate a
different binary with timing leaks, but valgrind is fast enough to be systematically run
on all compiled cryptographic software before the software is deployed.

The auditor wrote a simple checkct program using high-ctidh to perform a full
CSIDH key exchange; this program is included in the high-ctidh package. For example,
running valgrind ./checkct512default takes under 30 seconds on a 3GHz Skylake core,
where checkct512default performs a full CSIDH-512 key exchange. The underlying
randombytes function marks all of its output as undefined, so valgrind is checking for
any possible data flow from randomness to branches or to array indices. For each size,
valgrind completes successfully, indicating that there is no such data flow.

Limitations of the automated test, and steps to address the limitations. The following
paragraphs ask, from the auditor’s perspective, what could have been missed by this

automated test—for example, the auditor asks what would happen if private keys were
actually generated by OpenSSL’s RAND_bytes rather than randombytes. Everything is
covered by the paper’s manual analysis—for example, we had already checked that all
code was generating all randomness via randombytes—but the question addressed here is
the level of extra assurance provided by the automated analysis.

If the code generates randomness such as private keys via RAND_bytes rather than
randombytes, then private keys will not be marked as undefined, so valgrind will not
track data flow from private keys to branches or to array indices. To address this, the
auditor skimmed high-ctidh to check the (very limited) set of C library functions being
used, and double-checked the list of functions output by nm checkct512default.

If private keys are actually deterministic then they will not be marked as undefined. To
address this, the auditor added a step to checkct to mark Alice’s private key as undefined
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before Alice handles Bob’s public key. The auditor also checked examples of private keys
and saw them varying.

The valgrind analysis is dynamic, tracing through one run of code. Perhaps CSIDH-
1024 triggers code paths that are not used by CSIDH-512 and that leak secret data. To
address this, the auditor tried all sizes of interest.

Different runs could still follow different code paths because of the declassification
described below. To address this, the auditor tried many runs of each size, but there is
still a risk that all of the runs missed some code path. In theory it should be possible
to combine valgrind with static code-coverage analysis for binaries that follow standard
calling conventions, but as far as we know no tools are available for this. There are tools
for static constant-time analysis of C code, and those tools could be applied to a modified
version of high-ctidh that replaces the assembly-language portions with reference C code.

The valgrind analysis checks that all array indices and all branch conditions are
defined, but does not check that division inputs are defined. Division instructions take
variable time in most CPUs, and should not be modeled as taking constant time. To
address this, the auditor skimmed the assembly-language code for any use of division
instructions, and skimmed the C code for any operations likely to be compiled into division
instructions. Patching valgrind to limit the set of acceptable instructions would reduce
risks here.

Finally, the high-ctidh package has six crypto_declassify lines explicitly marking
certain pieces of data as defined, meaning that valgrind allows branches and array indices
derived from that data. Perhaps this declassification leaks secrets. This is the most
important risk, the risk that would require advances in automated verification to address.

Five of the six lines are in rejection-sampling loops: one in generating uniform random
integers modulo p (rejecting numbers ≥p), two in Elligator (rejecting random numbers
0, 1,−1), and two in the subroutine described above to generate vectors of bounded 1-norm.
The sixth, and the most worrisome, declassifies the success of a batch in an AB. Analyzing
the safety of this declassification requires analyzing everything that influences the success
probability, including

• the logic concluding that the natural failure probability of generating a curve point
of order ℓi,j is exactly 1/ℓi,j ,

• the coin toss artificially increasing the failure probability to exactly 1/ℓi,1, and
• the use of Elligator as a substitute for uniform random points, assuming (as previously

conjectured; see Appendix B) indistinguishability of the point orders.

We again emphasize that all of this analysis is included in this paper. The challenge for
the future is to automate the analysis.

8 Software speeds

This section reports various measurements of the high-ctidh software from Section 7,
and compares the measurements to previous speeds for constant-time CSIDH.

8.1 Selecting a CSIDH size and collecting performance data

For comparability to previous speed reports, we focus here on CSIDH-512 with a key space
of 2256 vectors. After some searching we took the (N, m) shown for B = 14 in Figure 1.
This (N, m) has approximately 2256.009 keys. Our cost calculator claimed that this (N, m)
would use approximately 437986 multiplications on average.

We chose parameters a and c, and performed a action computations for each of c
different private keys on a 3GHz Intel Xeon E3-1220 v5 (Skylake) CPU with Turbo Boost
disabled. This CPU does not support hyperthreading, and to limit noise we used only one
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core. For each of the ac computations, we recorded a cycle count, a total multiplication
count including squarings, a separate count of squarings, and a total addition count
including subtractions. We also tracked, for each key and each batch of primes, the success
probability of that batch in ABs for the computations for that key.

Choosing c = 65, as in [3], and a = 16383 meant that experiments completed quickly,
half a day on one core. We did not detect any deviations from the null hypothesis that the
software performance is independent of the private key. For example, as discussed below,
the per-key success probability of the batch having smallest prime ℓi,1 was not statistically
distinguishable from 1− 1/ℓi,1.

One can easily justify spending further computer time on experiments. Larger a or c
would make the total statistics more robust. Larger a would make the per-key statistics
more robust. Larger c would be useful if there were a set of, say, 1 in every 1000 keys
that somehow leaked information through timing. On the other hand, predictable CTIDH
implementation errors such as taking a coin with probability 1− γ rather than γ would
have been caught by our experiments.

8.2 Performance results for the selected CSIDH size

We use the standard notation M for multiplications not including squarings, S for squarings,
and a for additions including subtractions. One common metric in the literature is
(M, S, a) = (1, 1, 0), counting the total number of multiplications while ignoring the
costs of addition and ignoring possible squaring speedups. Another common metric is
(M, S, a) = (1, 0.8, 0.05).

Across all 1064895 experiments, the average cycle count was 125.53 million, standard
deviation 3.01 million. The average M was 321207, standard deviation 6621. The average
S was 116798, standard deviation 4336. The average a was 482311, standard deviation
9322. The average cost in the (M, S, a) = (1, 1, 0) metric was 438006. The average cost in
the (M, S, a) = (1, 0.8, 0.05) metric was 438762.

For the first key in particular, the averages were 125.55 million, 321270, 116837, and
482399 respectively. The gaps between these per-key averages and the overall averages
are +0.90%, +0.94%, +0.89%, +0.94%, respectively, of a standard deviation, which is
unsurprising for 16383 experiments per key. The gaps for the next four keys are −0.61%,
−0.58%, −0.56%, −0.59%, −0.06%, −0.02%, −0.02%, −0.02%, −1.44%, −1.39%, −1.37%,
−1.39%, +0.09%, +0.20%, +0.19%, +0.20%, respectively, of a standard deviation. The
per-batch success probability for the first key, divided by the expected 1 − 1/ℓi,1, was
0.999670 for the first batch, 1.000785 for the second batch, 0.999688 for the third batch,
etc.; for the second key, 1.001005, 0.998374, 1.000442, etc.; for the third key, 0.999304,
1.000131, 0.999820, etc.; for the fourth key, 1.000476, 0.998714, 0.999224, etc.; for the fifth
key, 1.001030, 1.001379, 1.000829, etc. The first-batch gaps from the predicted average
(namely 1) for the first 10 keys are −0.05%, +0.14%, −0.10%, +0.07%, +0.15%, −0.35%,
+0.13%, +0.01%, +0.12%, −0.21% of the predicted standard deviation (namely

√

1/2);
note that each of the 16383 experiments involves around 20 first-batch tries.

To understand the performance results in more detail, we plotted the distribution of
all ac multiplication counts as the red curve in Figure 1. We also computed, for each key,
the distribution of the 16383 multiplication counts for that key; there are five blue curves
in Figure 1, showing the minimum, first quartile, median, third quartile, and maximum of
these 65 distributions. The green curves, with a larger spread, are like the blue curves but
are limited to the last 255 multiplication counts for each key.

Each curve has a stair-step shape. Another step upwards reflects another AB in the
computation, with (typically) two Elligator calls and two large scalar multiplications.
Any number of ABs can appear—for example, ℓ = 3 can fail again and again—but with
exponentially low probability. One can extrapolate the budget needed for an application
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Table 2: Comparison of speed reports for constant-time CSIDH actions. The CSIDH size
is specified by “pub” (512 for the CSIDH-512 prime, 1024 for the CSIDH-1024 prime) and
“priv” (k where private keys are chosen from a space of approximately 2k vectors). “DH” is
the Diffie–Hellman stage: “1” for computing a public key (computing the CSIDH action),
“2” for computing a shared secret (validating a public key and then computing the CSIDH
action). “Mcyc” is millions of Skylake cycles (not shown for Python software); “M” is the
number of multiplications not including squarings; “S” is the number of squarings; “a” is
the number of additions including subtractions; “1, 1, 0” and “1, 0.8, 0.05” are combinations
of M, S, and a. See text for measurement details and standard deviations.

pub priv DH Mcyc M S a 1, 1, 0 1, 0.8, 0.05
512 220 1 89.11 228780 82165 346798 310945 311852 new
512 220 1 190.92 447000 128000 626000 575000 580700 [12]
512 220 2 93.23 238538 87154 361964 325692 326359 new
512 256 1 125.53 321207 116798 482311 438006 438762 new
512 256 1 — 624000 165000 893000 789000 800650 [1]
512 256 2 129.64 330966 121787 497476 452752 453269 new
512 256 2 218.42 665876 189377 691231 855253 851939 [13]
512 256 2 238.51 632444 209310 704576 841754 835121 [15]
512 256 2 239.00 657000 210000 691000 867000 859550 [11]
512 256 2 — 732966 243838 680801 976804 962076 [22]
512 256 2 395.00 1054000 410000 1053000 1464000 1434650 [18]

1024 256 1 469.52 287739 87944 486764 375683 382432 new
1024 256 1 — 552000 133000 924000 685000 704600 [1]
1024 256 2 511.19 310154 99371 521400 409525 415721 new

sqale-csidh-velusqrt use a key space of size only 2220, as noted above. Note that for
CSIDH-1024 there is even more variation in the literature in the size of key space; e.g., the
original CSIDH-1024 software from [10] used 5130 > 2300 keys.

The csidh_withstrategies tools, using BITLENGTH_OF_P=512 TYPE=WITHDUMMY_2

APPROACH=STRATEGY, reported averages of 218.42 million clock cycles (standard deviation
3.39 million), 691231a (standard deviation 12554), 189377S (standard deviation 4450),
and 665876M (standard deviation 7888); in other words, 855253 multiplications, or 851939
counting (M, S, a) = (1, 0.8, 0.05).

The sqale-csidh-velusqrt tools, using BITS=512 STYLE=wd2, reported averages of
190.921 million cycles (standard deviation 4.32 million), 626000a (standard deviation
13000), 128000S (standard deviation 5000), and 447000M (standard deviation 9000); i.e.,
575000 multiplications. For comparison, high-ctidh takes 89.11 million cycles (310945
multiplications) as noted above, plus 4.09 million cycles for validation.

Finally, Table 2 summarizes the measurements listed above for high-ctidh, for the
software from [13], and for the software from [12]; the measurements stated in [22, 11, 15, 1]
for the software in those papers; and the measurements stated in [11] for the software
in [18]. For [15] the reported processor is an Intel Core i7-7500k, which is Kaby Lake
rather than Skylake, but Kaby Lake cycle counts generally match Skylake cycle counts.
The table omits cycle counts for [1], which used Python, and [22], which used C but had
measurements affected by an unknown amount of Turbo Boost.
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A Dummy-free algorithms

The main body of this paper focuses on protecting against timing attacks. This appendix
considers the extra challenge of protecting against faults.

Fault-injection attacks on constant-time CSIDH implementations are discussed in [11, 8].
Dummy operations are dangerous in this context: a “safe-error attack” faults an operation
and, if the output is unchanged, concludes that the operation was a dummy operation.
The literature thus aims for “dummy-free” algorithms as a step towards protecting against
faults. A dummy-free constant-time group-action algorithm, based on the 2-point approach
of [22], was proposed in [11]. This algorithm uses the modified key space

K̃m :=
n

∏

i=1

{−mi,−mi + 2, . . . , mi − 2, mi} with #K̃m =
n

∏

i=1

(mi + 1) .

The action evaluation computes ei isogenies of degree ℓi as usual, followed by (mi− |ei|)/2
isogenies in both the positive and negative directions. These isogenies effectively cancel
each other, and we obtain the same resulting curve as when computing |ei| isogenies and
mi − |ei| dummy isogenies. This requires a total of mi isogenies per degree, as in [22], but
mi has to be chosen twice as large for the same size of key space, so overall the dummy
elimination costs a factor 2.

Algorithm 5 presents the dummy-free group action from [11] in terms of dummy-free
ABs—which are just the usual squarefree ABs from Section 5, but with R = {−1, 1} (so
that no dummy isogenies are computed). The similarity to Algorithm 1 is clear.

Algorithm 5: The dummy-free constant-time group action evaluation from [11].

Parameters: m = (m1, . . . , mn)
Input: A ∈M, e = (e1, . . . , en) ∈ K̃m

Output: A′ with EA′ = (
∏

i l
ei

i ) ⋆ EA

1 (µ1, . . . , µn)← (m1, . . . , mn)
2 while (µ1, . . . , µn) 6= (0, . . . , 0) do

3 Let I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {1 ≤ i ≤ n | µi > 0}
4 Choose e+ ∈ Z

n
≥0 and e− ∈ Z

n
≤0 such that e+

i + e−
i = ei and |e+

i |+ |e−
i | = mi for

1 ≤ i ≤ n
5 for 1 ≤ i ≤ k do

6 ǫi ←
{

1 if e+

Ii
6= 0

−1 if e+

I1
= 0

7 (A, f)← αR,I(A, (ǫ1, . . . , ǫk)) // Square-free AB

8 for 1 ≤ i ≤ k do

9 µIi
← µIi

− fi

10 if ǫi = 1 then

11 e+

Ii
← e+

Ii
− ǫi · fi

12 else

13 e−
Ii
← e−

Ii
− ǫi · fi

14 return A
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CTIDH adapts easily to a dummy-free variant. Algorithm 6, a generalization of
Algorithm 5 for K̃m, uses restricted square-free ABs with R = {−1, 1} to handle keys in

K̃N,m :=
{

(e1, . . . , en) ∈ KN,m |
∑Ni

j=1
|ei,j | ≡ mi (mod 2) for all i

}

,

a batching-oriented generalization of K̃m. We have #K̃N,m =
∏B

i=1
Φ̃(Ni, mi), where Φ̃

sums Φ(Ni, j)− Φ(Ni, j − 1) for j = mi, j = mi − 2, etc., analogously to Lemma 1.

Algorithm 6: A constant-time group action for keys in K̃N,m based on restricted
squarefree ABs with R = {−1, 1}.

Parameters: N , m, B
Input: A ∈M, e = (e1, . . . , en) ∈ K̃N,m

Output: A′ with EA′ = (
∏

i l
ei

i ) ⋆ EA

1 (µ1, . . . , µB)← (m1, . . . , mB)

2 Choose e+ ∈ Z
n
≥0 and e− ∈ Z

n
≤0 s.t. e+

i + e−
i = ei and

∑Ni

j=1
(|e+

i,j |+ |e−
i,j |) = mi for

1 ≤ i ≤ n
3 while (µ1, . . . , µB) 6= (0, . . . , 0) do

4 Let I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {1 ≤ i ≤ B | µi > 0}
5 for 1 ≤ i ≤ k do

6 Choose Ji such that e+

Ii,Ji
6= 0 or e−

Ii,Ji
6= 0

7 ǫi ←
{

1 if e+

Ii,Ji
6= 0

−1 if e+

Ii,Ji
= 0

8 (A, f)← βR,I(A, (ǫ1, . . . , ǫk), J) // Restricted square-free AB

9 for 1 ≤ i ≤ k do

10 µIi
← µIi

− fi

11 if ǫi = 1 then

12 e+

Ii,Ji
← e+

Ii,Ji
− ǫi · fi

13 else

14 e−
Ii,Ji
← e−

Ii,Ji
− ǫi · fi

15 return A

Batching improves dummy-free operation counts even more than it improves constant-
time operation counts. However, various subroutines inside ABs need to be redone to
avoid lower-level dummy operations or to double-check, preferably at low cost, that the
operations are being performed correctly. For example, the constant-time differential
addition chains in our software involve dummy differential additions; it should be possible
to avoid these by precomputing chains of the same length for all of the primes in a batch.
As another example, the Matryoshka-doll structure involves dummy operations, and it
would be interesting to explore adaptations of the countermeasures of [8] to this context.

B Elligator safety

The literature on algorithms for the CSIDH action frequently uses Elligator outputs as
cheaper replacements for the uniform random points generated in these algorithms. This
appendix analyzes the question of whether this is secure. The conclusion, in a nutshell, is
that it seems reasonable to conjecture indistinguishability of the orders of Elligator outputs
for large p from the orders of uniform random points.
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The cost of UniformRandomPoints. The obvious way to generate a point in EA(Fp) is
to generate a uniform random x ∈ Fp and compute y = ±

√
x3 + Ax2 + x, trying again if

x3 + Ax2 + x is not a square. The distribution is not exactly uniform, but one can easily
adjust the procedure to correct this (see [5, Section 4.1]), or simply accept the distribution
as being statistically indistinguishable from uniform.

The standard way to try to compute a square root, given that p ≡ 3 (mod 4), is to
compute a (p + 1)/4 power. One more squaring then reveals whether the input was a
square. Generating a point in EA(Fp) in this way takes two exponentiations on average.

Before trying to compute y one can check the Legendre symbol
(

x3
+Ax2

+x
p

)

. The

square-root attempt will succeed if and only if the symbol is not −1. This reduces two
exponentiations to two Legendre-symbol computations and one exponentiation, saving
time if a Legendre-symbol computation is more than twice as fast as an exponentiation.

Similar comments apply to ẼA(Fp), producing an average UniformRandomPoints cost of
four exponentiations, or four Legendre-symbol computations and two exponentiations. One
can easily reduce the cost to three exponentiations, or two Legendre-symbol computations
and two exponentations, by taking the first x as generating a point in EA(Fp) in half of
the cases and generating a point in ẼA(Fp) in the other half of the cases.

Conventional algorithms for Montgomery-curve computations, including the isogeny
computations needed in CSIDH, work only with x and do not need to inspect y. One can
thus reduce the cost of UniformRandomPoints to three Legendre-symbol computations on
average.

Our high-ctidh software follows previous CSIDH work in computing a Legendre
symbol as a (p− 1)/2 power, so the speed is the same as computing a square root, but it
would be interesting to investigate faster algorithms. One can use blinding to guarantee
constant-time Legendre-symbol computation:

• If x3 + Ax2 + x is 0, set a bit indicating this, and replace the 0 with 1.
• Multiply by ±r2 where r is a uniform random nonzero element of Fp.
• Use any Legendre-symbol algorithm.
• Adjust the output according to the 0 bit and the ± bit.

It would also be interesting to investigate whether the techniques of [6] can be adapted to
this context, avoiding the costs of blinding.

Elligators everywhere. The literature generally takes a different approach, using the
Elligator 2 [4] map. This approach has the advantage of using just one Legendre-symbol
computation to generate a point in EA(Fp) and, with no extra cost, a point in ẼA(Fp).
The disadvantage is that each point produced is distinguishable from uniform, covering
only (p − 3)/2 out of the p + 1 possible points. Perhaps the orders of these points are
distinguishable from the orders of uniform random points.

Elligator was first used in the CSIDH context in [5], which analyzed algorithms to
compute CSIDH in superposition as a subroutine inside quantum attacks. That paper
mentioned experiments suggesting that Elligator outputs have “failure chance almost exactly
1/ℓ” and that the higher-level algorithms in [5] performed as predicted. However, the
security question for constructive CSIDH applications, namely the order-indistinguishability
question, did not arise in [5]. A measurable deviation in orders could easily have avoided
detection by the experiments in [5].

Elligator was first used for constructive CSIDH applications in [18] to generate an
element of EA(Fp). It was then used in [22] to generate an element of EA(Fp)× ẼA(Fp).
Subsequent CSIDH software has also used Elligator. It is conceivable, however, that
information about A is leaked via the distribution of orders of the points that are generated
by Elligator.
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Elligator tracking. To directly address the order-distinguishability question, we collected
complete data for various small primes p. Specifically, for each k ∈ {1, 2, 3, 4, 5}, we took
the smallest prime p ≡ 3 (mod 8) for which (p + 1)/4 factors into exactly k distinct primes.

For each p, we enumerated all A ∈ M. For each (p, A), we enumerated all Elligator
outputs T0 ∈ EA(Fp) and computed the exact distribution of the order of [4]T0. We then
compared this to the uniform model: the exact distribution of orders for uniform random
elements of Z/((p + 1)/4)Z. Specifically, we computed the total-variation distance between
these two distributions; recall that the total-variation distance between D and E, the
conventional form of statistical distance, is

∑

o |Do − Eo|/2.

For example, for k = 1 and p = 11 = 4 · 3− 1, the Elligator order distribution for each
A ∈ {0, 5, 6} is 100% order 3: if T0 is output by Elligator then [4]T0 always has order 3.
The uniform model is that orders 3 and 1 appear with probability 2/3 and 1/3 respectively.
The total-variation distance is (|1− 2/3|+ |0− 1/3|)/2 = 1/3.

For k = 2 and p = 59 = 4 · 3 · 5 − 1, the uniform model is that orders 15, 5, 3, and
1 appear with probability 8/15, 4/15, 2/15, 1/15 respectively. Elligator for A = 6 has
probability 6/14, 6/14, 2/14, 0 respectively, with total-variation distance 6/35 ≈ 0.171429.
Elligator for A = 11 has a different distribution from A = 6: probability 8/14, 4/14, 1/14,
1/14 respectively. There are 9 choices of A overall, with total-variation distances ranging
from ≈0.0619048 to ≈0.171429, averaging ≈0.110582.

Seeing two different values of A with different distributions shows that the result of
replacing UniformRandomPoints with Elligator is not exactly an atomic block. This does
not end the security analysis: for security it is enough to have something indistinguishable
from an atomic block. If the total-variation distance drops quickly enough to reach, e.g.,
2−128 for p ≈ 2512, then the Elligator orders are indistinguishable from uniform-point
orders for every A, and are thus indistinguishable from one A to another.

For p = 419 = 4 · 3 · 5 · 7− 1, there are 27 choices of A, with total-variation distances
averaging ≈0.0655745, ranging from ≈0.0357143 to ≈0.119780. For p = 12011 = 4 · 3 · 7 ·
11 · 13− 1, there are 195 choices of A, with total-variation distances averaging ≈0.0135444,
ranging from ≈0.0063736 to ≈0.0232127. For p = 78539 = 4 · 3 · 5 · 7 · 11 · 17− 1, there
are 459 choices of A, with total-variation distances averaging ≈0.00713331, ranging from
≈0.00353921 to ≈0.0115945. For p = 1021019 = 4 · 3 · 5 · 7 · 11 · 13 · 17 − 1, there are
1905 choices of A, with total-variation distances averaging ≈0.00493310, ranging from
≈0.00272376 to ≈0.00790233.

To see more information regarding the distributions, we inspected, for each A with
p = 419, the full distribution of orders of (4 times) Elligator points in EA(Fp). The green
curves in Figure 4 show the minimum, quartiles, and maximum of the per-A distributions;
for comparison, the red curve shows the uniform model. Figure 5 is for p = 12011. The
green curves are closer to the red curve for p = 12011 than for p = 419.

Elligator simulators. Consider the following simulator, resampling from the uniform
model: for each A ∈ M, generate a uniform random sequence of (p − 3)/2 elements of
[4]EA(Fp) ∼= Z/((p + 1)/4)Z, and compute the distribution of orders of these elements.

Obviously this simulator is not exactly Elligator. For example, Elligator produces each
element of [4]EA(Fp) at most 4 times. More fundamentally, Elligator deterministically
produces a particular distribution for each A, while the simulator produces a new random
choice each time. As an extreme case, for p = 11, Elligator produces 100% order 3 as
noted above, whereas for each A ∈ {0, 5, 6} the simulator produces 100% 3 with probability
16/34; 75% 3 and 25% 1 with probability 32/34; 50% 3 and 50% 1 with probability 24/34;
25% 3 and 75% 1 with probability 8/34; and 100% 1 with probability 1/34.

However, within the range of our experiments, this simulator produces similar results
to Elligator. Compare Figure 5 to Figure 6, which gives an example of the simulator
output for p = 12011.
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Table 3: Heuristic analysis of the Elligator simulator (see text) compared to actual
Elligator order distributions. “#E”: number of choices of A. “lg X”: logarithm base 2
of X =

∏

j(
√

1− 1/lj +
√

1/lj). “lg H”: logarithm base 2 of H =
∑

d

√

qd/(p− 3)π =

X/
√

(p− 3)π. “lg H1”: logarithm base 2 of H1 =
∑

d

√

qd(1− qd)/(p− 3)π. “min” and
“avg” and “max”: logarithm base 2 of the minimum and average and maximum, over A, of
the total-variation distance between Elligator and the uniform model. “ratios”: H1 and
minimum and average and maximum, divided by H, without logarithms.

p #E lg X lg H lg H1 min avg max ratios
11 3 0.48 −1.85 −2.41 −1.58 −1.58 −1.58 0.68 1.20 1.20 1.20
59 9 0.90 −2.83 −3.12 −4.01 −3.18 −2.54 0.82 0.44 0.78 1.22

419 27 1.29 −3.89 −4.07 −4.81 −3.93 −3.06 0.89 0.53 0.97 1.78
12011 195 1.50 −6.10 −6.26 −7.29 −6.21 −5.43 0.90 0.44 0.93 1.60
78539 459 1.89 −7.06 −7.16 −8.14 −7.13 −6.43 0.94 0.47 0.95 1.55

1021019 1905 2.20 −8.61 −8.67 −9.52 −8.66 −7.98 0.96 0.53 0.96 1.54

perspective. (Note that if Legendre-symbol computations have low enough cost then it is
easy to argue for incurring the slowdown of using two Legendre-symbol computations on
each curve to generate uniform random points, skipping Elligator and further simplifying
the security analysis.)

On the other hand, a single Elligator call could be best for speed, and is used in several
previous papers. So we also studied the joint distribution of EA(Fp)× ẼA(Fp) orders.

For A = 0, the Elligator extensions mentioned above produce outputs of the form
((x, y), (−x, iy)). The “distortion map” from (x, y) to (−x, iy) is compatible with elliptic-
curve addition, so it preserves the order of points. This reduces the security question for
E0(Fp)× Ẽ0(Fp) to the security question for E0(Fp), which was addressed above.

For nonzero A, our computations did not detect any such correlations. We instead
compared the pair of orders to a uniform-pair model, namely the orders of two independent
uniform random elements T0, T1 of Z/((p + 1)/4)Z. We found total-variation distance
averaging ≈0.312619 (maximum ≈0.358730) for p = 59, ≈0.207722 (maximum ≈0.260199)
for p = 419, ≈0.0512755 (maximum ≈0.0678949) for p = 12011, and ≈0.0361776 (maximum
≈0.0416506) for p = 78539.

It is not surprising that the distance from the joint distribution to the uniform-pair
model is generally larger than the distance from the single-point distribution to the uniform
model. There are many more possibilities for a pair of orders than for a single order.

To quantify this, consider a joint-distribution simulator that resamples from the uniform-
pair model. If d1 and d2 are positive integers dividing (p + 1)/4 then there are ϕ(d1)ϕ(d2)
pairs of elements T1, T2 of orders d1, d2 respectively in Z/((p + 1)/4)Z. A heuristic analysis
proceeds as before, with qd replaced by qd1

qd2
, and X replaced by X2, giving the estimate

X2/
√

(p− 3)π. This estimate is ≈0.263654 for p = 59, ≈0.164434 for p = 419, ≈0.0410512
for p = 12011, and ≈0.0277182 for p = 78539. If the actual joint-Elligator distances remain
close to X2/

√

(p− 3)π for all CSIDH primes p then the distances are acceptably small for
CSIDH-512.
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