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Abstract

Second life and recycling of retired automotive lithium-ion batteries (LIBs) has drawn
growing attention, as large volumes of LIBs will retire in the coming decade and the demand for
LIBs continues to grow. Here we illustrate how battery chemistry, use, and recycling can influence
the energy and environmental sustainability of LIBs. We find that LIBs with higher specific energy
show better life cycle environmental performances, but their environmental benefits from second
life application are less pronounced. Direct cathode recycling is found to be the most effective in
reducing life cycle environmental impacts, while hydrometallurgical recycling provides limited
sustainability benefits for high-performance LIBs. Battery design with less aluminum and
alternative anodes materials, such as silicon-based anode, could enable more sustainable LIB
recycling. Compared to directly recycling LIBs after their EV use, carbon footprint and energy use

of LIBs recycled after their second life can be reduced by 8—17% and 2—-6%, respectively.

Teaser

Environmental benefits of reusing Li-ion batteries are hindered by high nickel content and

are susceptible to use and recycling choices.



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

MAIN TEXT

Introduction

Owing to the rapid growth of the electric vehicle (EV) market since 2010 and the increasing
need for massive electrochemical energy storage, the demand for lithium-ion batteries (LIBs) is
expected to double by 2025 and quadruple by 2030 (/). As a consequence, global demands of
critical materials used in LIBs, such as lithium and cobalt, are expected to grow at similar rates,
leading to increased supply risk (/, 2). To be specific, the global demands for lithium and cobalt
are expected to increase around tenfold from 2018 to 2030, surpassing the current supply (3, 4).
Concerns about lithium depletion have been extensively addressed in previous studies by showing
that lithium does not face major supply risk in the mid-term future (5, 6), but cobalt supply could
be of great risk. Cobalt is produced mainly as the by-product of nickel and copper. Specifically,
cobalt produced from copper mining is mostly geographically concentrated in Congo, and most
cobalt refining facilities are located in China (7, §). Due to this by-product dependence and spatial
distribution information, cobalt supply could be disrupted by the government policies or socio-
political instabilities of these regions. As the market share of nickel-rich cathodes increases, Class
1 nickel, which is required for LIB cathode production, may also face supply chain challenges in
the near future due to limited processing capacity (9). Additionally, the scale of retired LIBs is
expected to proliferate in the coming decade (/0). All of these aspects contribute to the growing
concerns on the resource depletion and environmental impacts resulting from the coming boom in
retired LIBs (2).

The most effective approach to improving the sustainability of LIBs is to avoid the usage
of critical materials, according to the waste management hierarchy that ranks the waste

management approaches from the most to the least environmentally favorable (2, 5). Along this
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line, both research and market interests shift towards low-cobalt LIBs and no-cobalt alternatives
due to the concerns on cobalt supply and potential supply chain disruption, as well as the resulting
price volatility and uncertainty (/, 3, 7, /7). Notably, though the substitution of cobalt with
manganese and nickel can increase the energy density and reduce the cost of LIBs, it sacrifices the
structural stability and electrical conductivity of cathodes (/7). The waste management hierarchy
ranks the reuse of LIBs, such as the reuse as energy storage systems (ESS) after automotive use,
as the second ideal way to improve the sustainability of LIBs. Such a “second-life”” approach for
automotive LIBs may improve both emission reduction benefits and economic performance (72,
13). Nevertheless, according to existing material flow analysis, the second use of LIBs delays the
recirculation of valuable metals, whose supply chains can become more vulnerable to disruption
given their existing supply risks, compared to the case of direct recycling after the automotive use
(14, 15). Therefore, there are tradeoffs among the environmental benefits, economic values, and
resource optimization. Existing literature on cascaded use (first use and second use) of LIBs
focused on their technical and economic feasibility, as well as economic impacts on the global EV
market (14, 16, 17). Previous life cycle assessment (LCA) studies on second-life applications of
LIBs mainly focused on only one type of battery chemistry (lithium iron phosphate (LFP), lithium
manganese oxide (LMO), or LMO/lithium nickel manganese cobalt oxide (NMC)) (12, 18-23).
While multiple battery chemistries were considered by few studies (/2, 24, 25), their
environmental implications have not been explicitly investigated. Another less desirable strategy
for retired LIB management integrates recycling, energy recovery, and disposal. Currently, both
the pyrometallurgical and hydrometallurgical processes have been implemented at lab, pilot, or
commercial scale to recycle materials from waste LIBs (26). Due to the lack of available data,

most existing LCA studies excluded or simplified the end-of-life (EOL) phase from the scope of
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their study (27-31). In particular, the environmental benefits of recycling could be overestimated
because of missing critical steps and essential materials in existing LCA studies. Underestimation
is also possible if the complete recovery of all cathode active materials, metals, and energy, or the
enhancement of the recovery rates based on promising experimental data, is not considered. There
is only limited systematic investigation on the tradeoffs between the second life application and
recycling of different types of automotive LIBs from the energy and environmental sustainability
perspectives (32).

To fill the aforementioned knowledge gap, we aim to investigate the environmental
benefits of second life and recycling approaches of automotive LIBs with different battery
chemistries and to identify the environmental hotspots throughout their complete life cycles,
emphasizing the maximum material and energy recovery. Specifically, a comprehensive list of
environmental indicators (33), including carbon footprint and CED, are examined for seven
representative and promising automotive LIBs. Decisions to be made focus on the battery
chemistry, use scenario, and EOL scenario. The currently commercial LIBs include LFP, three
types of lithium nickel manganese cobalt oxide (NMC333, NMC532, NMC622), LMO/NMC532,
and lithium nickel cobalt aluminum oxide (NCA); the prospective LIBs include the high-nickel
and low-cobalt NMCS811. For a fair comparison, 52-kWh pack energy capacity is set for all types
of LIBs (34). Moreover, to investigate the environmental benefits of second life adoption, two LIB
use scenarios are proposed, as depicted in Fig. 1. The first one recycles the LIBs directly after
automotive use, and the other one considers the second life application using LIBs retired from
automotive use before LIB recycling. The global electricity demand is expected to grow at 2.1%

per year until 2040 (35), and the requirement for power system flexibility becomes more stringent.
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Therefore, stationary ESS, as the fastest growing technology for enhancing power system
flexibility, is considered as the second life application for retired automotive LIBs in this study.
We follow the existing approach to set the functional unit as the delivery of 1 kWh
electricity over the life cycle of LIBs (20, 24, 25). Notably, the unit CED based on this functional
unit is essentially the inverse of the energy return on investment, an important metric to measure
the net energy profitability (36-38). Three popular EOL scenarios are assessed and compared,
including hydrometallurgical, pyrometallurgical, and direct cathode recycling. These EOL
scenarios are designed and optimized to achieve maximum materials and energy recovery based
on state-of-the-art experimental data (39-42). The pyrometallurgical recycling of LFP is
disregarded due to the lack of valuable metals that are easily recyclable, such as nickel and cobalt.
The temporal and spatial variations of the power grid are considered in the sensitivity analyses for
the whole life cycle of LIBs. Specifically, the life cycle carbon footprint and CED for LIBs
produced in each year from 2020 to 2050 are calculated according to the projected energy sources
of electricity production for both the U.S. and China. Besides, environmental hotspots are
identified to gain insights into the potential scale-up of laboratory-scale recycling technologies
based on the state-of-the-art experimental results and the industrial-scale energy use and material
consumption data (43). Key results and insights into benchwork, industry, and policymakers are

summarized in the following section.
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Fig. 1. System boundary of LIB life cycle with second life and three EOL alternatives,
including hydrometallurgical, pyrometallurgical, and direct cathode recycling.

Transportation is abbreviated as T.

Use phase and end-of-life scenarios

The size of the retired automotive LIB stockpile was expected to increase exponentially by
2025 (44), so it is crucial to introduce sustainable solutions, such as LIB reuse and recycling, to
address the waste management challenges. In this study, two use scenarios are assessed: the first
one is an 8-year EV use scenario, and the other one is the cascaded use scenario with a 10-year
second life in stationary ESS after the 8-year EV use. To avoid confusion, the use phase for the
EV use scenario refers to the LIBs use only in EV, and the use phase for the cascaded use scenario
refers to LIB’s first life in EV and second life in the stationary ESS. LIB cells may fail during EV

7



128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

use due to extreme cycling or temperature conditions. In this study, no failure rate of LIB cells
during EV use is considered, following the estimation of an existing work (/9). Given the gap in
long-term empirical data of battery degradation and lifetime distribution coefficients, the static
lifetime of LIBs in EV and ESS are determined following previous literature (45, 46). LIBs have
a lifetime of 8 years in EV according to current calendar life warranty periods provided by most
original equipment manufacturers (OEMs). We consider a lifetime of reused LIBs in ESS as 10
years following the most common assumption (20, 45), but the lifetime of reused LIBs in ESS is
highly uncertain. To address the uncertainty, we conduct a sensitivity analysis on the lifetime of
LIBs with a range of 5-12 years for EV use and a range of 2-20 years for ESS use (/8, 22, 24, 30,
45). Notably, the sensitivity analysis on the lifetime also addresses the uncertainty in the electricity
consumption during EV use and ESS use. The results are presented in the Discussion section. All
LIBs reach 80% of initial energy storage capacity at the end of their first life and 65% at the end
of their second life. 55-km of EV use on a daily basis is considered following the 100,000-mile
warranty provided by most OEMs. Electricity delivery during EV use is determined by the OEMs’
mileage warranty, energy consumption per km, roundtrip efficiency, and the electricity mix (72,
21, 34). For the stationary ESS use, electricity delivery during the ESS use is determined by the
average daily electricity delivery, roundtrip efficiency, and the power grid (/2, 21). Daily
discharge of 150 kWh on average is considered for a repurposed 450-kWh LIB pack, according to
a previous study (27). Roundtrip efficiency of LIBs is considered to be 95% during EV use and
91% during stationary ESS use (/2). New York State (NYS) is considered as the baseline location
for the electricity generation throughout the life cycle of LIBs, since the Northeast Power
Coordinating Council (NPCC) is the least carbon-intensive power grid in the United States (U.S.),

as shown in Fig. 2. Geospatial variation in the power grid may lead to large differences in analysis
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results of life cycle carbon footprint and CED of LIBs, but would not result in diverse conclusions
in the sustainability of second life and various recycling methods for different LIBs. More details
of the use phase parameters can be found in Table S1.

EOL of LIBs involves dismantling, material production, energy generation, incineration,
combustion, waste sludge treatment, and energy and materials recovery. The investigated EOL
methods differ in the way that they recover energy and materials. To be specific,
hydrometallurgical recycling recovers metals using aqueous chemistry and typically involves
leaching, solvent extraction, and precipitation; direct cathode recycling directly recovers the
cathode active materials through electrolyte extraction; pyrometallurgical recycling, as the most
mature recycling method for LIBs, recovers metals in the form of alloy by a three-stage smelting
process. Subsequent treatments, including a series of leaching, precipitation, and washing
processes, are needed to obtain raw materials for producing the ready-to-use battery-grade cathode
active materials. Given the fact that current recycling processes are not efficient enough for high-
value metal recovery (44), all three recycling methods are optimized to recover as much cathode
active materials as possible using the best-available laboratory-scale recycling procedures and
experimental data, as depicted in Figs. S4-S6. The LClIs of the three EOL scenarios are detailed
in Tables S10-S18. The environmental impacts associated with energy and material recovery are
considered as avoided burdens and are reported as reductions in emissions and CED, and the

system boundary is expanded to a “cradle-to-cradle” counterpart.
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Key results and insights to bench work, industry, and policymakers

The maximized material and energy recovery can hardly offset the carbon footprint
and CED from the intensive use of energy and chemicals during recycling processes,
whereas it can largely eliminate by up to 68% of life cycle environmental impacts
from other impact categories;

LIBs with higher specific energy density show better environmental performances,
but their environmental benefits from second life application are less pronounced;
Compared to directly recycling LIBs after their EV use, life cycle carbon footprint
and CED of LIBs recycled after their second life can be reduced by 8—17% and 2—
6%, respectively, varying across the battery chemistries and recycling methods;
Recycling methods and use scenarios are more impactful on the energy and
environmental sustainability of LIBs, compared to the battery technologies;

The effects of battery chemistry and recycling methods on the life cycle carbon
footprint and CED are negligible compared to the penetration of renewables in the
power grid, with a reduction in carbon footprint in China (28.5%) twice as large as
that in the U.S. (20%) — although the absolute life cycle carbon footprint of LIBs in
China is also twice of that in the U.S.;

Direct cathode recycling is the most environmentally favorable technology of LIB
recycling, in concordance with previous findings (31, 47);

Since the N-Methyl-2-Pyrrolidone (NMP) production and recovery is highly
detrimental to the environment, greener aqueous binders should be further
researched and developed for additional environmental benefits of both producing

and recycling LIBs;

11
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e Carbon-intensive graphite and carbon black should be separated and recycled from
the spent LIBs instead of being combusted to alleviate climate change;
e Energy-intensive processes such as re-lithiation should be coupled with other
exothermic processes to reduce energy demand;
e Industrial recycling processes should be optimized to avoid the excessive use of
environmentally expensive chemicals.
e Battery design with less aluminum and alternative anode materials, such as silicon-
based anode, could enable more sustainable pyrometallurgical recycling of LIBs.
e Waste LIB sorting would become critical in improving the environmental
sustainability of LIB recycling.
The importance of LIB design for recycling has been highlighted by previous literature (2,
48). Standardized battery design with a simple disassembly mechanism, such as cell-to-pack
technology, can help tackle the challenges in automation and robotic disassembly and improve
recycling efficiency. With automated disassembly, rather than shredding, LIB recycling can get
rid of many complicated separation processes, which would result in lower yield and product purity
(48). Moreover, substituting polyvinylidene fluoride (PVDF) binder with aqueous binders not only
provides environmental benefits, but also can simplify the material recovery and improve the
economic feasibility of LIB recycling (2, 48). With optimized LIB design for automated
disassembly and recycling, materials with higher purity and yield could be recovered with the aid
of less energy and chemical inputs, hence producing further economic and environmental benefits

(49).

12
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Results

Environmental impact reduction benefits of introducing second life

Fig. 3 presents the normalized life cycle environmental impacts of two use scenarios, EV
use scenario and cascaded use scenario, across four types of LIBs representing the widely used
cathode chemistry technologies (LFP, LMO/NMC532, NMC622, and NCA). For all 18 impact
categories, the LFP LIB is defined as the reference for normalization. Adding second life greatly
reduces environmental impacts, while the reductions in different impact categories vary
substantially. In particular, the freshwater ecotoxicity, freshwater eutrophication, human toxicity,
marine ecotoxicity, metal depletion, particular matter formation, and terrestrial acidification of all
four types of LIBs reduce on average by over 30%. These large reductions can be attributed to the
difference of around three times in life cycle electricity delivery across the two use scenarios,
coupled with the relatively minor contribution of electricity use to these impact categories. From
the perspective of life cycle electricity delivery, the use phase results in the same environmental
impacts for both use scenarios. Thus, the environmental benefits of second life application are
larger when electricity use accounts for a lower proportion of environmental impacts. For other
impact categories, employing second life achieves less reduction benefits because their
environmental impacts are dominated by electricity production. Discussion on the environmental
profile of the NPCC power grid can be found in Supplementary Materials. In general, the
environmental profile of electricity use is determined by the power grid, considering the mix of
different energy sources, electricity losses, and construction of distribution, transmission, and
transformation networks, suggesting that it is possible to substantially reduce the environmental

impacts of other impact categories by upgrading the power grid (50, 5/). The environmental

13
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impacts of natural land transformation for all types of LIBs are negative, as there is more land
transformation to mineral extraction sites for metal production (33).

The results also suggest that LIBs with higher energy density show better environmental
performances in most impact categories, but they benefit less from the second life application. As
the specific energy density increases, the LIB production tends to be more environmentally
friendly due to less material and energy input. Moreover, less material input for LIB production
reduces recycling efforts. The recovery of cathode active materials for LIBs with higher energy
density also avoids more environmental burdens. Thus, there is less potential for mitigating the
environmental impacts of LIBs with higher energy density. Exceptions exist. For example, NCA
LIBs perform the worst in three impact categories, including ozone depletion, particulate matter
formation, and terrestrial acidification, due to the highest nickel content. The environmental
impacts of high-nickel LIBs can be further deteriorated if nickel is produced from the Norilsk
Nickel plant in Russia due to the uncontrolled SO; emissions (52). Additionally, the LMO recovery
discards the leached ionic manganese from the spent cathode active materials and employs Mn203
as the manganese source of LMO, which deteriorates LMO/NMC532 LIB’s performance in metal

depletion.
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Fig. 3. Comparison of environmental impacts between different use scenarios for LFP,
LMO/NMC532, NMC622, and NCA LIBs. The environmental impacts of different recycling
methods are averaged. Red and blue colors indicate life cycle environmental impacts associated

with EV use scenario and cascaded use scenario, respectively. Darker color indicates lower pack
energy density. For all 18 impact categories, the LFP LIB is defined as the reference for

normalization.

Environmental impacts of battery recycling methodsError! Reference source not

found.Fig. 4 and Figs. S13-S18 depict the environmental profiles of LIBs for all impact

categories on a percentage basis. The environmental impacts of each category are divided into
different life cycle stages, with the use phase disaggregated into EV use and stationary ESS use to

better understand their independent environmental impacts. Similarly, the EOL phase is
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disaggregated into two portions: one includes steps associated with environmental damages, the
other is responsible for the environmental burdens avoided from material and energy recovery.
All recycling methods are beneficial in most impact categories, namely, avoids more
environmental burdens from material and energy recovery than causing environmental impacts
from the intensive consumption of energy and chemicals. An exception to all types of LIBs is the
net environmental burdens in ozone depletion of hydrometallurgical and pyrometallurgical
recycling, which can be mostly explained by the direct and indirect methane emission from reagent
production. Due to the recovery of less environmentally expensive cathode active materials and
usages of reagents, such as citric acid and Mn,O; for LMO recovery and H3PO4 for LFP recovery,
hydrometallurgical recycling of LMO/NMC532 and LFP results in net environmental burdens in
several other impact categories. More discussion is provided in the section of Environmental
hotspots. In terms of natural land transformation, the positive environmental impacts of material
and energy recovery are attributable to the land transformation from the mineral extraction site
induced by metal recovery. Among the three recycling methods, direct cathode recycling is the
most environmentally friendly regardless of battery chemistry for three reasons. First, material
recovery of direct cathode recycling and hydrometallurgical recycling avoid comparable
environmental impacts, but energy and materials used in hydrometallurgical recycling result in
much higher environmental impacts than those used in direct cathode recycling. Second, compared
to other recycling methods, pyrometallurgical recycling of LMO/NMC532, NMC, and NCA LIBs
recovers much less valuable metal (96% of Ni and 62% of Co), generates a large quantity of non-
recyclable aluminum and lithium in slag from the smelting process, and utilizes large doses of
environmentally expensive reductants. Moreover, other volatile LIB components, including the

separator, electrolyte, binder, graphite, and carbon black, are combusted and evaporated in the
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295  furnace. Third, the absence of cobalt and nickel in LMO suggests no recovery of valuable metals,
296  and much fewer reductants are needed accordingly. However, the use of citric acid (leachate) and
297  Mn203 (manganese source) causes notably higher environmental impacts in several impact
298  categories than the LMO avoided from material recovery in hydrometallurgical recycling of

299  LMO/NMCS532.
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Fig. 4. Comparison of full-spectrum environmental profiles for LMO/NMC532 LIBs across
different recycling methods. Full-spectrum environmental profiles for LMO/NMC532 LIBs

subjected to second life and recycled by (A) hydrometallurgical recycling (B) direct cathode
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bars indicate different life cycle stages of LMO/NMC532 LIBs.

Potential of mitigating climate change and energy demand

Carbon footprint and CED are two important metrics to evaluate the climate change
mitigation potential and energy performance of introducing second life and recycling into batteries’
life cycle. Adding second life reduces the carbon footprint by 8-17% and the CED by 2-6%,
depending on the specific battery chemistry and recycling method. Keeping the recycling method
and use scenario fixed, increased nickel content and decreased cobalt content of LIBs tend to shift
their life cycle carbon footprint and CED downwards (Fig. 5A and Fig. S7A) due to less material
and energy required for both production and recycling. However, as the nickel content continues
to rise in LIBs, that is, NMC811 and NCA, the environmental impacts of cathode active materials
increase. This counter-intuitive result is presumably due to (1) more electricity consumption for
calcination of materials rich in nickel; (2) usage of more carbon- and energy-intensive lithium
source of LiOH instead of Li>COs3; (3) the increasing nickel content does not only replace cobalt
content, which is relatively more carbon- and energy-intensive, but also replace the relatively
abundant and environmentally benign manganese content. The carbon footprint and CED of
NMCS811 with pyrometallurgical and direct cathode recycling are slightly higher than that of
NMC622, mainly due to the employment of around twice the amount of PVDF used in other LIBs.
NCA has the highest nickel content, but the usage of carbon- and energy-intensive HCI in
hydrometallurgical and pyrometallurgical recycling of NCA, instead of H2SO4 for other types of
LIBs, leads to increases in both carbon footprint and CED. This result suggests that the most

environmentally friendly recycling option for the cathode active materials is not only to pursue the
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least cobalt content, and careful life cycle environmental evaluation in production and recycling
processes is needed before any generous incentive or subsidies are given.

Recycling methods and use scenarios are more impactful on the carbon footprint and CED
of LIBs, compared to the battery technologies. Among the three EOL scenarios, direct cathode
recycling remains the least carbon- and energy-intensive for all LIBs, while the maximized
material recovery of hydrometallurgical and pyrometallurgical recycling can hardly offset the
carbon footprint and CED from the intensive use of energy and chemicals during the recycling
processes. Pyrometallurgical recycling of LMO/NMC532 LIBs and hydrometallurgical recycling
of LFP LIBs even result in a net positive carbon footprint and CED. Moreover, hydrometallurgical
recycling of LMO/NMCS532 LIBs and pyrometallurgical recycling of NMC622 and NCA LIBs all
result in nonnegligible carbon burdens, though they are energy-saving. As cascaded use accounts
for a larger portion of life cycle environmental impacts and needs more material and energy inputs
for repurposing, the second life application of LIBs could hinder the environmental benefits of
LIB recycling. This result illustrates the environmental tradeoff between second life application
and recycling of LIBs.

Advanced LIB technologies with high specific energy density do not necessarily
demonstrate better potentials for mitigating climate change and energy demand, especially when
the material and energy inputs for the LIB production and recycling are highly carbon- and energy-
intensive. The development of green recycling processes with higher material recovery rates, lower
energy requirement, and utilization of less environmentally expensive materials is critical to
improving the potential of mitigating environmental impacts. Moreover, their potentials for
mitigating climate change and energy demand are confined by the penetration of renewable

electricity. Therefore, it is essential to increase the share of renewable energy in the local power
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349  grid. To promote the decarbonization of the LIB supply chain and renewable energy generation of
350  LIB manufacturing, the European Union (EU) policymakers aim to regulate the LIBs traded on
351  the EU market (53). In the next sections, we will discuss how and to what extent we can further

352 reduce the carbon footprint and CED of all types of LIBs with different recycling methods.

(A) 045
= OHydro (EV use) OHydro (EV+ESS use)
21; ADirect (EV use) Direct (EV+ESS use)
E OPyro (EV use) OPyro (EVHESS use)
£ 0 o
_E 040 | © © © o 0
25 o
E7T H o
(=3 % D D
S
= = A A
1S4 E 0.35 A A A
g . o 9 o o o o
o) 0 O -
)
o
S
0.30
R & & & s » F
S < < < <
R
(B) LFP LMO/NMC532 NMC622 NCA
0.6 T T T T T T T
E) Hydro : Direct Hydro : Direct : Pyro Hydro : Direct : Pyro Hydro : Direct : Pyro
) 1 1 1
E 05 [ 1 1 1 : : : :
< 1 1 1
2 1 1 1 : : : :
= ! ! ! 1 1 1 1 1
S 04 1 1 1 1 1 1 1
- = I 1 1 1 1 1 1
£33 1 : , : 1 : o 1 o1 1
== 1 1 1 11
&g 03 r 1 1 1 1 1 1 1
g > 1 1 1 1 1 1 1
- | 1 ! 1
L 1 1 1 1
£E ™ | it el 1Rt
S ; 1 1 1 1 ] 1 1
| 1 1 1 1 1 1 1
‘\“' 0.1 1 1 1 | 1 1 1
= 1 1 1 1 1 1 1
< 1 1 1 1 1 1 1
S o } da b dat Ja b dat b it b
&) 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1
= 1 1 1 1 1 1 1
0.1 . . . . .
A A A A A A A A R
@ Total (based on 1 kWh life cycle electricity delivery) End of life (avoided environmental burden)
End of life (environmental damage) Cell material production and assembly
Pack accessories production and assembly First use (EV)
Second use (ESS) Repurpose
353 Module accessories production and assembly Transportation

21



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

Fig. 5. Overview of carbon footprint for the LFP, LMO/NMC532, NMC333, NMC532,
NMC622, NMC811, and NCA LIBs with different EOL scenarios. (A) Life cycle carbon
footprint for the seven types of LIBs with different EOL scenarios. (B) Breakdowns of the
carbon footprint for LFP, LMO/NMC532, NMC622, and NCA LIBs with different EOL
scenarios. The stacked bar plot represents the breakdowns of carbon footprint per kWh life-cycle
electricity delivered to the stage level. Different colors indicate different stages throughout LIB’s
life cycle, as stated in the legend. The hydrometallurgical, direct cathode, and pyrometallurgical
recycling are abbreviated as hydro, direct, and pyro.

Environmental hotspots

Impacts of different life cycle stages of reused automotive LIBs on carbon footprint and
CED have been explicated in the previous section. To further decipher environmental hotspots
embedded in each stage, sunburst charts representing hierarchical results of carbon footprint and
CED are depicted in Fig. 6 and Figs. S§—S12. Sunburst charts reveal the contributions of lower-
level processes within upper-level life cycle stages. Absolute values of the negative carbon
footprint and CED resulted from material and energy recovery are used for comparison among
different life cycle stages. In addition, the use phase is identified as an overriding life cycle stage
in terms of carbon footprint and CED, so it is not discussed in this section.

For the cell materials production and assembly stage, cathode active material is the
predominant factor of the carbon footprint for LMO/NMC532 (60%), NMC622 (65%), and NCA
(67%) LIBs. On the contrary, LFP production accounts for only 41% of the carbon footprint
associated with this stage. This contrast can be attributed to the high carbon footprint associated
with NiSO4 and CoSOs production, high heat and energy demand, and heavy use of the precipitant

(NaOH) during the NMC and NCA production.
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The battery management system (BMS) is the main contributor to the carbon footprint of
LIB pack accessories production. Production of BMS and other pack accessories, including
compression plates and straps, module interconnects, and a tri-layer jacket, together are
responsible for nearly all of the carbon footprint associated with this stage. The dominant role of
BMS and other pack accessories can be attributed to the production of printed wiring boards and
aluminum-made outer and inner layers of the battery jackets, respectively.

The roles of EOL steps in carbon footprint depend on the battery chemistry and the
specificities of EOL scenarios. First, material and energy recovery during hydrometallurgical and
direct cathode recycling reduces slightly less carbon footprint than the amount added by the cell
materials production and assembly stage. On the contrary, pyrometallurgical recycling is deficient
in material recovery because it retrieves nickel as Ni(OH), and recovers cobalt in the form of ionic
solutions. Moreover, it only recovers aluminum during the dismantling of the LIB pack, but does
not recover lithium and aluminum from the subsequent smelting step. This may present a challenge
as the EU proposed to mandate the recycling of valuable metals (53). Specifically, in descending
order, recovery of cathode active material, aluminum, and LiPFs constitute the vast majority of
carbon footprint reduced by direct cathode recycling; recovery of cathode active material and
aluminum dominate the carbon footprint reduction for hydrometallurgical recycling; Ni(OH):
recovery of pyrometallurgical recycling is the major source to reduce carbon footprint. Second,
other than direct cathode recycling, hydrometallurgical recycling of NMC622 and NCA generate
less greenhouse gas emissions than avoided from their material and energy recovery. Among these
greenhouse gas emitting steps, waste sludge treatment is the most influential one for both
hydrometallurgical and pyrometallurgical recycling. This is because they both adopt

hydrometallurgical steps, such as leaching, solvent extraction, and precipitation, that eventually
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discharge a large amount of waste solvent sludge. Instead, liquid CO,, which consumes plenty of
electricity, is much more energy-intensive than other energy-consuming EOL steps for direct
cathode recycling. Moreover, graphite combustion remains one of the most influential steps for all
three recycling methods, which suggests a need to suppress graphite combustion to further mitigate
carbon footprint. Soaking and recovery of the binder solvent NMP is also a major carbon footprint
and CED contributor for both hydrometallurgical and direct cathode recycling. This can be mainly
attributed to the need for steam and wastewater treatment for NMP recovery. To further reduce the
carbon footprint and CED of battery recycling, especially for hydrometallurgical and direct
cathode recycling, research and development on replacing or avoiding the step of binder solvent
recovery are highly recommended. Last, according to the battery chemistry, different leaching
agents and precipitants with a variety of reaction conditions are selected to recover the cathode
active materials for hydrometallurgical and pyrometallurgical recycling, resulting in multiple
levels of carbon burden. It is worth mentioning that these EOL steps’ contributions to the carbon

footprint and CED are relatively comparable, and none of them are dominant.
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415 Fig. 6. Carbon footprint hotspots of LFP, LMO/NMC532, NMC622, and NCA LIBs with
416  hydrometallurgical recycling. The surrounding sunburst charts represent the hierarchical results
417  of the carbon footprint from the life-cycle stages to the process level. The inner circle represents
418 the upper-level stages, while the outer circle represents the lower-level processes of each stage.

419 The colors of stages and their corresponding processes are consistent, and the value of each
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process and stage is proportional to the angle of concentric circles. Moreover, starting from the
top, the shares of the carbon footprint for stages become smaller in a clockwise order; within
each stage, the shares of the carbon footprint for lower-level processes become smaller in the

same manner.

To explicitly identify the environmental hotspots across the full spectrum of impact
categories, we aggregate the normalized life cycle inventory (LCI) data to process-level and
visualize them using a heat map, as shown in Fig. 7 and Figs. S19-S20.

For all types of LIBs, recovery of cathode active material, Ni(OH),, and metals are major
contributors to alleviate environmental impacts. Notably, LFP, LMO/NMC532, and Ni(OH)»
recovery are not as environmentally valuable as NMC and NCA recovery in all environmental
impact categories, suggesting the necessity of waste LIB sorting by battery chemistry prior to the
recycling. In addition, disassemble LIBs into constituents of cathode, anode, and casing for the
hydrometallurgical and direct cathode recycling approaches prevents the subsequent anode-
cathode separation and diminishes cathode active material loss and contamination. On the other
hand, manual disassembly is labor-intensive and could potentially cause hazards through thermal
runaways and toxic chemicals (2). On the contrary, the direct comminution of LIB cells is labor-
saving but mixes waste streams in the black mass, complicates the downstream processing of metal
recovery, lowers the product purity, and results in more environmental impacts (47, 48). LiPFs
recovery of direct cathode recycling is another moderate contributor to reduce environmental
impacts from the categories of agricultural land occupation, climate change, fossil depletion,

ionizing radiation, marine eutrophication, ozone depletion, terrestrial ecotoxicity, and water
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depletion. The result also suggests that cathode active material production is the major contributor
to environmental impacts.

Environmental hotspots are specific to recycling methods. For both hydrometallurgical and
pyrometallurgical recycling of LMO/NMC532, NMC, and NCA, the production of leaching agent
and precipitant are more impactful in contributing to ozone depletion, terrestrial ecotoxicity, and
water depletion than to other impact categories. However, for hydrometallurgical recycling of LFP,
the production of H3PO4 as a leaching agent accounts for more than 10% of life cycle metal and
water depletion. Due to the large electricity consumption, liquid CO production of direct cathode
recycling for different second-life LIBs contribute substantially to climate change (23—-35%)), fossil
depletion (38-50%), ionizing radiation (89-92%), ozone depletion (39-55%), and urban land
occupation (59-81%) associated with the EOL steps causing environmental damages.

Notably, environmental hotspots are not always extensively distributed across the impact
categories. For example, copper recovery is not comparable with aluminum recovery in terms of
climate change and fossil depletion. However, copper recovery can largely reduce environmental
impacts through the categories of freshwater ecotoxicity, freshwater eutrophication, human
toxicity, marine ecotoxicity, metal depletion, and terrestrial ecotoxicity; in addition to fossil
depletion, aluminum recovery leads to much environmental burden on freshwater and marine
ecotoxicity; NMP soaking and recovery contributes to a large portion of the marine eutrophication,

although it only makes a minor contribution to most of the impact categories.
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Fig. 7. Full-spectrum environmental hotspots for LFP, LMO/NMC532, NMC622, and NCA
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LIBs with hydrometallurgical recycling. (A) Full-spectrum environmental hotspots for LFP

with hydrometallurgical recycling. (B) Full-spectrum environmental hotspots for LMO/NMC532

with hydrometallurgical recycling. (C) Full-spectrum environmental hotspots for NMC622 with
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hydrometallurgical recycling. (D) Full-spectrum environmental hotspots for NCA with
hydrometallurgical recycling. Use phases are excluded from the system boundary. Colors
represent values corresponding to the environmental impacts of each process under each impact
category. The values are normalized using the min-max normalization method and vary
according to the colors presented on the color bar. In particular, the red color represents positive
values and suggests damage to the environment; the blue color represents negative values and
indicates an avoidance of environmental burden. Moreover, the darker color along each column
implies more environmental impacts on the corresponding impact category.
Temporal and geographical variability
Previous results show that environmental impacts associated with the use phase are
overwhelming and unavoidable. Since electricity consumption is the only process in the use phase
that causes damages to the environment, an effective approach to minimizing the environmental
impacts of the use phase is to make the electricity production less carbon intensive. To test the
sensitivity of second life LIB’s environmental performance to the temporal and spatial variability
of electricity production, we establish a prospective LCA model by integrating the projected
electricity production for 2020-2050 from the U.S. Energy Information Administration (EIA) on
the basis of the reference static LCA (54, 55). In particular, the year-specific environmental
impacts of electricity production are based on the projected proportion of energy sources, as shown
in Fig. S33. Moreover, the U.S. and China are selected for this sensitivity analysis because these
two largest LIB manufacturers and consumers contribute to a combined total of 88% of global LIB
production capacity and 62% of global EV stock (56-58). Notably, only the environmental profile
of electricity production is altered for the manufacturing of cathode active materials and LIBs, use

phase, and recycling processes according to the geographical and temporal variation in the power
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grid. The supply chains of raw materials for the cathode active materials, other LIB components,
and material inputs for the recycling processes are consistent with those in the baseline case.

Fig. 8 demonstrates the life cycle carbon footprint and CED for the LFP, LMO/NMC532,
NMC622, and NCA LIBs produced each year. Compared to the electricity generation in 2020,
greenhouse gas emission in 2050 is reduced by 20% for LIBs produced, consumed, and recycled
in the U.S. and by 28.5% for those in China. This difference in carbon footprint mitigation potential
is attributed to the critical difference in energy sources of electricity generation in 2020 for the
U.S. and China. To be specific, coal, which is relatively carbon-intensive, accounts for 62% of
electricity generation in China in 2020, and its share decreases to 30% in 2050 by projection (54).
On the contrary, coal-fired power generation only accounts for 24% of the total electricity
production in the U.S. in 2020 and will decrease to 12% in 2050 (55). The share of renewable
sources in China will increase substantially from 36% in 2020 to 63% in 2050. Similarly, the share
of renewable sources in the U.S. increases from 40% to 56% during 2020-2050. This suggests that
for regions without a strong penetration of renewables in the power grid, energy systems
decarbonization has a great potential to substantially cut down LIB’s life cycle carbon footprint.
In fact, natural gas, which is a relatively clean energy source, will remain the leading energy source
in the U.S. for the next three decades accounting for 38% to 32% of the electricity production from
2020 to 2050, according to EIA’s projection (55). Although electricity production in China shows
greater climate change mitigation potential in the next three decades, the life cycle carbon footprint
of LIBs in China would remain higher than that in the U.S. from 2020 through 2050. This trend is
consistent with a recent study, although they projected the carbon footprint for only the use phase

in 2030 (59).
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Similarly, the results show that LIBs produced, consumed, and recycled in China lead to
more energy-saving than those in the U.S. for the next three decades, although the CED for average
electricity production in the U.S. is 12% higher than that in China for 2020. This is mainly
attributed to the higher CED required for coal-fired electricity production in the U.S. CED of
generating 1 kWh electricity, and it is directly related to the energy efficiency of the power plants.
Existing studies and government data suggest that the average energy efficiency of China’s coal-
fired power plants surpasses the average energy efficiency of coal-fired power plants in the U.S.
(60, 61). While the average energy efficiency of other energy sources, including natural gas, wind,
geothermal, solar photovoltaics, and hydropower, in the U.S. are higher than those in China, the
resulting decrease in CED cannot offset the increase in CED caused by the relatively lower energy
efficiency of coal-fired electricity. Also, the projected reduction of coal-fired electricity in the U.S.
is less than that in China for 2020-2050. As a consequence, the gap of CED for average electricity
generation between the U.S. and China is further widening, varying from 12% in 2020 to 23% in
2050.

The shaded areas in Fig. 8 represent the variation of recycling methods, suggesting that the
effect of both battery chemistry and recycling method on life cycle carbon footprint and CED are
negligible relative to the impact of renewable penetration in the power grid. Though the best-
available projection for 2020-2050 from the U.S. EIA is integrated into this study, we are aware
that the current results may be conservative, and the potential of mitigating climate change and
energy demand for 2050 can be even greater, given the recent ambitious climate policies of the

U.S. and China.
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Fig. 8. Sensitivity analysis of temporal and spatial variations in electricity generation from
2020 to 2050 in the U.S. and China. The horizontal axis represents the year when the LIBs are
produced. The vertical axis represents the life cycle carbon footprint and CED for LIBs
produced each year. Notably, the carbon footprint and CED of electricity production depend on

the starting year of each life cycle stage.

Discussion

Towards the urgent need of prolonging the driving-range of EV, the nickel-rich low-cobalt
cathode is at the forefront of achieving higher energy density and reducing the supply risk of cobalt
(3, 62). Previous studies showed that the increase of nickel content would trigger severe capacity
fading and thermal safety hazards (63). Nevertheless, a recent study has demonstrated promising
performances of single-crystal NMC532: mild capacity fading and outstanding lifetimes of over 1
million miles (3, 64, 65). There is still room for improvement of the production cost, specific
capacity, and rate capability for these new-generation single-crystal high-nickel LIBs. Moreover,
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due to the requirement of high temperature, above 930 °C for 12 hours, for production (65), more

inferior environmental performance is expected as compared to the results in this study (Fig. 3 and
Fig. 5). Our results show that the strategy of substituting cobalt with nickel tends to improve the
environmental performance of LIBs, but this benefit is very susceptible to the choice of recycling
method and use scenario. Moreover, the environmental impacts of global nickel production are
hindered by the uncontrolled SO, emissions from the Norilsk Nickel plant in Russia (52).
Additionally, substituting cobalt with nickel may pose a 60-times increase in nickel demand by
2030 and up to 190 times by 2050, compared with the 2017 values, and further investigation on
the nickel supply is required (45). Owing to its low specific energy density, the production of LFP
LIBs is found to be the most detrimental to the environment, despite its cobalt- and nickel-free
characteristics. The recent revolution in cell-to-pack technology could narrow the gap between the
battery pack energy density of LFP and its NMC/NCA counterparts and subsequently lower the
demand in material and energy for packing by optimizing the design and assembly of LIB cells
(66, 67). Due to the reduced material and energy input, the environmental impacts of LIB
manufacturing can be mitigated. Nevertheless, the cell-to-pack technology can also facilitate the
automation of disassembly and consequently improve the recycling efficiency (48).

LIBs retain a rather high energy storage capacity after their first life in EV, so the resources
used for battery production are not fully exploited if they are sent to EOL directly after EV use.
However, by reusing automotive LIBs in less demanding second-life applications, the recovery
and recirculation of valuable metals can be delayed for many years, leading to increasing supply
risks (14, 15). With second life, less reduction of carbon footprint and CED can be achieved by
the high-nickel NMC and NCA compared to the widely used LFP. Uncertainty in the lifetime of

EV use and ESS use does not affect this conclusion despite their strong impact on the life cycle
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carbon footprint and CED of LIBs (Figs. S24—-S28). It should be noted that this conclusion is
premised based on the same pack energy capacity for a fair comparison across battery chemistries.
Future LIBs may have higher pack energy capacities (up to 100 kWh per EV) (68). With a higher
pack energy capacity, LIBs show worse environmental performances due to more resources
consumed for LIB production and recycling. The environmental benefits of high-capacity LIBs
from the second life application are more prominent than those of the lower-capacity ones.
However, with the same pack energy capacity, the findings of this study remain the same for high-
capacity LIBs. Moreover, the second life application of LIBs hinders the environmental benefits
of recycling, as it contributes to a larger portion of life cycle environmental impacts and requires
additional resources for repurposing. Sensitivity analysis results on use parameters suggest a great
potential to further reduce carbon footprint and CED of reused LIBs. Even with a rather
conservative transition towards more than 50% penetration of renewable energy sources into the
power grid, the carbon footprint of second life LIBs can be reduced by 20% in the U.S. and by
28.5% in China. As the power grid transitions to all-renewable energy sources, substantial
environmental impacts can be further reduced for LIBs. For the sake of climate change and energy
demand, direct cathode recycling should be the fate of waste LIBs, even though it has less ideal
recovery rates of materials, as shown in Figs. S21-S23.
Implications on LIB recycling

Direct cathode recycling is a strong candidate for enhancing the sustainability of LIBs and
promoting the circular economy, as illustrated by existing studies (31, 47, 69). Through modeling
of maximized material recovery, our results show that direct cathode recycling is even more
environmentally favorable compared to the existing literature (Fig. S2) (37). Considering the

increasing demand for LIBs and a potential shortage of cobalt in 30 years (/, 8), deployment of
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direct cathode recycling with a 95% recovery rate of cathode active materials could largely
mitigate the risk of metal depletion and relieve the pressure of metal supply on the global market.
For this reason, it is crucial to gain more insights into its scalability and potentials for improvement.
First, the electrolyte extraction efficiency for liquid CO> with additives of propylene carbonate and
acetonitrile should be improved. Moreover, the current electrolyte extraction technology can be
replaced by less energy-intensive and more environmentally friendly alternatives. The
combination of acutely toxic, irritating binder solvent NMP and mutagenic binder polyvinylidene
fluoride could be replaced by greener alternatives, which resonates with previous studies. For
example, the combinations of aqueous binders and corresponding binder solvents (i.e., water) have
the properties of fluorine-free, ease of disposal, and availability from renewable resources (70, 71).
Moreover, water is used as the binder solvent that does not need to be recovered, so the
environmental burdens caused by solvent recovery can be avoided. Although the field of aqueous
binders is rather unexplored, previous studies show promising results on the enhanced
electrochemical performance of LIBs (72-74). Furthermore, the combustion of graphite and carbon
black takes a great share of carbon burdens caused by the EOL phase. Recycling graphite from
waste LIBs at the laboratory scale has been assessed and could be further explored and scaled up
(75, 76). Lastly, the energy-intensive hydrothermal and annealing process can be coupled with
other exothermic processes to reduce the energy demand. However, due to the rapid evolutions in
cathode chemistry of LIBs and the delayed recycling processes by decades, the scale-up of direct
cathode recycling could be impeded by its limited flexibility to generate the state-of-the-art
cathode active materials (2, 47). The prerequisite of waste LIB sorting also renders direct cathode

recycling less attractive to the recyclers (2, 44).
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For pyrometallurgical recycling, maximized material and energy recovery of LIBs cannot
offset the carbon footprint caused by the intensive use of energy and chemicals. Thus, battery
design with less aluminum use and alternative anode materials, such as silicon-based anode, could
enable more sustainable pyrometallurgical recycling of LIBs. Additionally, further research is
required to study the substitution of the current environmentally detrimental leaching agents and
precipitants with green alternatives that would not decrease the high recovery rates.
Hydrometallurgical recycling induces environmental burdens for battery chemistry with less
valuable metal utilization (e.g., LFP, LMO/NMC). Thus, waste LIBs should be carefully sorted.
Waste LIB sorting by battery chemistry can also benefit the environmental sustainability of
pyrometallurgical and hydrometallurgical recycling by avoiding excessive use of environmentally

expensive chemicals (77).

Materials and Methods

Goal and scope definition
The “cradle-to-grave” LCA study in this work investigates the carbon footprint, CED, and

full-spectrum environmental impacts associated with the production, consumption, and EOL of
seven automotive LIBs, namely LFP, LMO/NMC532, NMC333, NM(C532, NMC622, NMC811,
and NCA, after second life in stationary ESS. The designed specific energy densities in the BatPac
model are 177, 229, 234, 243, 255, 265, and 262 Wh/kg for LFP, LMO/NMC532, NMC333,
NMC532, NMC622, NMC811, and NCA LIB packs, respectively (34). The life cycle stages within
the scope of this study are listed as below:

e Cell material production and assembly

e Module accessories production and assembly

e Pack accessories production and assembly
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e Use phase (EV use or EV+ESS use)

e Repurpose (accompany with the cascaded use scenario)

e EOL phase (can be divided into EOL steps with environmental damage and EOL
steps with environmental burden)

e Transportation

The functional unit of 1 kWh life cycle electricity delivery is used to quantify the
environmental impact based on the life cycle energy provision of LIBs. Working parameters of
LIBs for both EV and stationary ESS use are provided in Table S1. Other than transportation, the
whole life cycle of the LIBs, including production, EV use, repurpose, stationary ESS use, and
recycling, is assumed to be located in the NYS in 2018 under the baseline case, without considering
the temporal and spatial variations in the power grid. For this reason, the environmental impacts
associated with electricity consumption remain constant in the baseline case, and the
environmental profile of electricity production is determined by the energy sources of the NPCC
in 2018. The carbon footprint and CED of electricity generation in other areas of the U.S. can be
found in Fig. 2. Besides, under the cascaded use scenario, LIBs undergo the repurpose processes,
which dismantle the LIB packs to the module level, change a part of the components (such as
antifreeze agents, LIB pack casing, and module interconnects), test the cells, and reassemble 450-
kWh LIB packs for stationary ESS use.

Because one of the primary objectives of this study is to investigate the environmental
benefits of the second life for different LIBs, two use scenarios are considered, as shown in Fig.
1. The first one is the EV use scenario, of which the system boundary involves stages of cell
materials production and assembly, module accessories production and assembly, pack accessories

production and assembly, EV use, and EOL recycling. The other one is the cascaded use scenario,
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which has a system boundary, including stationary ESS use (second use) and repurpose, in addition
to all the stages of the aforementioned EV use scenario. Transportations are also included in both
system boundaries and are estimated from existing studies, as shown in Table S23 (21, 31).
Another goal of this study is to evaluate the environmental impacts of various recycling methods,
so three EOL scenarios, including hydrometallurgical, pyrometallurgical, and direct cathode
recycling, are systematically analyzed and compared. It is worth mentioning that only
hydrometallurgical and direct cathode recycling are adopted for LFP due to the lack of valuable
metals that are recyclable using pyrometallurgical recycling. Moreover, hydrometallurgical and
direct cathode recycling are closed-loop recycling processes, which recovers the cathode active
materials from the spent LIBs. On the contrary, pyrometallurgical recycling is an open-loop
recycling process as it recovers nickel as Ni(OH), and cobalt as a salt, both for re-entering in the
battery supply chain (78). The environmental impact of the open-loop pyrometallurgical process
is equivalent to its closed-loop counterpart because replacing the cobalt source of the cathode
active material production with the recycled cobalt salt would result in only the avoided
environmental burden from the recycled cobalt salt. More details about use scenarios and EOL
scenarios are provided in the next sections and Supplementary Materials.

For the computation of the full-spectrum environmental impacts, 18 ReCiPe midpoint
indicators from the hierarchist perspective are adopted to examine the severity of the
environmental impact categories (33). These indicators account for agricultural land occupation,
climate change, fossil depletion, freshwater ecotoxicity, freshwater eutrophication, human toxicity,
ionizing radiation, marine ecotoxicity, marine eutrophication, metal depletion, natural land

transformation, ozone depletion, particulate matter formation, photochemical oxidant formation,
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terrestrial acidification, terrestrial ecotoxicity, urban land occupation, and water depletion. This
ReCiPe model is frequently used in LCA studies on LIBs (20, 25, 29, 79).
Life cycle inventory analysis

During the LCI analysis phase of LCA, energy and material flows are quantified and
compiled across all life cycle stages of the LIBs. Within the production stages, LCIs of an EV
battery pack are presented in Tables S2—S6. LCIs of a stationary ESS LIB pack after automotive
use are provided in Table S7. The EOL stage involves three EOL scenarios that correspond to
LCIs summarized in Tables S10—-S11, S12-S13, and S15-S16. Because the LClIs of cathode active
materials production are unavailable in the existing LCI database, their manufacturing routes are
extracted from the literature, as shown in Fig. S3 and LClIs are established and compiled by

modeling the detailed manufacturing processes, as shown in Tables S9 and S14.

Life cycle impact assessment method

In this study, carbon footprint, CED, and ReCiPe impact categories are selected to
demonstrate and compare the life cycle greenhouse gas emissions, energy consumption, and full-
spectrum environmental impacts, respectively. In the life cycle impact assessment stage of LCA,
LCIs are computed based on the functional unit through characterization factors to quantify their
environmental impacts for each impact category. We collect most of the characterization factors
from Ecoinvent, and lists of these characterization factors can be found in Table S25 (80). However,
characterization factors for some processes, such as LFP, NMC, and NCA production, are
inaccessible from the Ecoinvent database. CoSO4 and Ni(OH)2, which are raw materials of cathode
active materials (for cobalt-containing LIBs and nickel-metal hydride batteries), do not have

readily available LCI data either. Then, we need to construct the LCI from the upstream processes
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(i.e., Ni(OH)2, CoSO4, NMC, and NCA production estimated from upstream energy and material
inputs detailed in Supplementary Materials).
Sensitivity analysis

Sensitivity analysis is performed to evaluate the key assumptions of electricity generation
and EOL scenarios. According to the results shown in Fig. 5 and Fig. S7, the use phase is the
leading factor of the life cycle carbon footprint and CED. Moreover, the use phase is the main
contributor for most of the environmental impact categories, as shown in Fig. 4. We also conclude
that the full-spectrum environmental impact profiles of LIBs are largely affected by the energy
sources of electricity generation and the characteristics of those energy sources. To assess the
temporal and spatial variation in electricity production, we integrate the projected power grid of
the U.S. and China from 2020 to 2050 into our model. The U.S. and China are chosen as they are
two countries with the largest production capacities of automotive LIBs and the largest EV markets
in the Eastern and Western Hemisphere (54-56). The environmental impacts associated with 1
kWh electricity generated in each year are computed as a weighted sum of the unit environmental
impacts for electricity production from various energy sources. The weights are the shares of
different energy sources. The unit environmental impact for electricity production from each
energy source in each location is obtained from the Ecoinvent database (80). The electricity
generation by energy source from 2020 to 2050 in the U.S. and China is presented on a percentage
basis in Fig. S33. The manufacturing of cathode active materials and LIBs, use phase, and
recycling processes are considered to be in the U.S. and China, while the supply chains of raw
materials for the cathode active materials, other LIB components, and material inputs for the
recycling processes are consistent with those in the baseline case. LIBs produced in each year from

2020 to 2050 are used by EVs for 8 years, according to the current calendar life warranty periods

40



728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

provided by OEMs. After retiring from EV use, LIBs are repurposed to start their second life. After
the 10-year second life, whose lifetime is considered based on the most common assumption from
existing literature, LIBs are disposed of and recycled. For example, a LIB pack can be produced
in 2020, repurposed in 2028, and recycled in 2037, with the first life in 2020-2027 and the second
life in 2028-2037. It is worth mentioning that all of the other assumptions related to battery
parameters, LIB production, repurpose, and LIB recycling, remain unchanged. Sensitivity analyses
on other battery parameters, including LIB lifetime, roundtrip efficiency, energy consumption rate
in EV, are conducted separately, and the results are presented in Figs. S24—S28 and Figs. S30-S31.
And we do not consider the technology development of batteries and power grid across time, such
as the increase in charge-discharge efficiency and transmission efficiency, the transition towards
novel materials, and the improvement of power generation technologies and energy consumption
during EV use (30). Based on the functional unit of 1 kWh life cycle electricity delivery, life cycle
carbon footprint and CED are calculated for LFP, LMO/NMC532, NMC622, and NCA LIBs over
the period of 2020-2050. Note that the energy sources of electricity generation vary in the 18-year
life cycle of LIBs, and we assume the power grid will remain invariant after 2050 due to the lack
of projected power grid data for both countries after 2050.

The investigated parameters regarding EOL scenarios are considered according to the
carbon and energy hotspots identified in Fig. 6 and Figs. S8—S12. In particular, the following
parameters are included for all three EOL scenarios: the recovery rate of chromium steel 18/8,
aluminum, copper, and graphite. The recovery rate of cathode active materials and NMP are
evaluated for hydrometallurgical and direct cathode recycling. Specifically, the recovery rate of
LiPFs is assessed for direct cathode recycling; recovery rate of goethite, cobalt, and Ni(OH); are

investigated for pyrometallurgical recycling; recovery rate of Mn20O3 and citric acid are evaluated

41



751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

exclusively for hydrometallurgical recycling of LMO/NMCS532. Ranges of parameters are
presented in Tables S19—S22, and impacts of these parameters are shown in Figs. S21-S23. The
results of sensitivity analyses are discussed in Supplementary Materials.
Min-max normalization

To intuitively present the life cycle environmental impacts across each impact category,
we adopt the min-max normalization method to process data. For a set of data points Xi, Xo, ...,
Xa (i.e., environmental impacts of all processes for each category), this normalization method
linearly maps each data point to the range of 0 to 1 according to Equation (1), where X’, Xa, Xmax,
Xmin represent each data point after normalization, each data point before normalization, the
minimum of the data set, and the maximum of the data set, separately.

Xa_Xmin
X -X

max min

X'= (M

Nevertheless, the environmental impacts associated with the avoided environmental
burden in the EOL phase are negatively signed. Hence, the magnitude of both negative and positive
values should be shown on the same basis, while the orientation of environmental favorability (i.e.,
the negative signs) for each process is preserved. However, the Equation (1) is not able to preserve
negative signs. To address this issue, we first take absolute values of the negative numbers, and
then apply min-max normalization according to the Equation (1), and finally change the sign of

those who were negative to negative.
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