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ABSTRACT 
Silicon anodes have been demonstrated to provide 

significant actuation in addition to energy storage in lithium-ion 
batteries (LIBs). This work studies the optimization of 1D 
unimorph and bimorph actuators to achieve a target shape upon 
actuation. A 1D shape matching with design optimization is used 
to estimate the varied charge distribution along the length for a 
LIB actuator and thereby the effect of distance between 
electrodes in charging.  

A genetic algorithm (GA) is used with actuation strain 
distribution as the design variable. The objective of the 
optimization is to shape-match by minimizing the shape error 
between a target shape and actuated shape, both defined by 
several points along the length. 

The approach is experimentally validated by shape 
matching a notched unimorph target shape. A shape error of 
1.5% is obtained. An optimized unimorph converges to an 
objective function of less than 0.029% of the length at full state 
of charge (SOC) for a 5-segment beam.  

A second shape matching case study using a bimorph is 
investigated to showcase the tailorability of LIB actuators. The 
optimal bimorph achieves an objective function of less than 
0.23% of the length for a design variable set of top and bottom 
actuation strain of an 8-segment beam. The actuated shape 
nearly matches the target shape by simultaneously activating top 
and bottom active layers to achieve the same differential 

 
1 Address all correspondence to this author. 
 

actuation strain (the difference between top and bottom active 
layer actuation strain). 

The results show that a bimorph actuator can achieve a 
given shape while also storing significantly more charge than is 
necessary to maintain a given complex shape. This demonstrates 
a strength of energy storage based actuators: excess energy can 
be stored within the actuator and can be expended without 
affecting the work done or the shape maintained by the actuator. 

 
Keywords: Active materials, modeling, multifunctional 

materials, bioinspired smart materials 

1. INTRODUCTION 
 
1.1. Silicon as a superior anode material 
 
Lithium-ion batteries are a ubiquitous technology that are 

essential as intermittent renewable energy sources become more 
prevalent and larger capacity energy storage is needed [1]. 
Lithium-ion batteries (LIBs) are comprised of positive electrode 
(cathode) and negative electrode (anode) separated by a lithium-
ion porous separator and connected by an electrolyte (in this case 
liquid electrolyte formed by the dissolution of lithium salts in a 
solvent) [2]. Silicon has potential as a superior anode to fulfill 
this need for larger capacity batteries because of its high 
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theoretical specific capacity (4200 mAhg-1, 10 times that of 
commercial graphite anodes) [3].  

Lithiated silicon expands volumetrically over 300% due to 
alloying with lithium whereas graphite only achieves 13.1% 
volumetric expansion due to its lithium intercalation method 
[4,5]. However, by reducing the diameter of silicon nanoparticles 
below a critical diameter  as specified by Liu et al., silicon ceases 
to pulverize (crack and fracture until electrical contact is lost) 
[6]. Whereas Chin et al. show that a LiCoO2-graphite battery can 
be successfully used as an actuator with greater strain than 
piezoelectrics, silicon can be used to achieve even greater 
actuation strain [4]. Electrochemically based actuation 
associated with charging in silicon-anode composite based LIBs, 
has demonstrated on the order of tens of percent actuation strain 
[7]. Large actuation strain is useful in actuators because it 
increases actuator metrics such as free deflection, blocked force, 
and actuator energy.  

 
1.2. Lithium ion batteries as multifunctional 

actuators 
 
Silicon is also a multifunctional material (functions: energy 

storage, actuation, sense). Cannarella et al. investigated the 
stress-potential coupling mechanisms that are responsible for 
silicon’s ability to self-sense [8]. Ma et al. showed the 
experimental actuation of a silicon anode based LIB and the 
resultant stress-potential coupling [9]. 

The free deflection of silicon anode based unimorph 
actuators are first modeled by Ma et al. [10,11]. The model is 
extended to predict the free deflection of segmented unimorph 
actuators by the authors [12] and then predict the blocked force 
(force necessary to achieve zero tip deflection) to extend the case 
studies and predict additional actuator metrics [7,12,13]. 
Bimorph LIB actuation free deflection is also predicted [14]. 
Segmented actuators are defined here as a series of electrically 
isolated, mechanical connected LIB segments that can be 
independently controlled and maintain separate states of charge 
(SOC) [7].  

 
1.3. Shape matching and design optimization 
 
Shape matching for segmented actuators in general is 

motivated by the possibility of intelligently designing a 
segmented actuator to achieve a particular shape or pattern. By 
seeking to optimize for a particular target shape, several design 
variables can be chosen, including segment thickness, state of 
charge (SOC) of a given active layer, and differential state of 
charge (the difference between SOC of the upper and lower 
active layer of a bimorph configuration).  

As applied to a segmented actuator, shape matching allows 
for the achievement of a particular shape with minimal shape 
error, and potentially minimum energy expenditure or minimum 
stiffness. Shape matching may be defined as a form of design 
optimization, where a given design is optimized to minimize the 
shape error between an actuated design shape and a target shape 
while satisfying given constraints.  

Design optimization is particularly useful in a LIB actuator, 
where it can be used to match a target shape for a minimum SOC 
(and resulting actuation strain) per segment, for a given 
geometric thickness or elastic modulus. The design optimization 
of a LIB actuator could allow for achieving a particular shape 
without external loading. This would allow for more useful work 
to be done when an external force is applied. For example, as a 
smart LIB actuator wraps around a limb to apply a uniform 
pressure to improve locomotor rehabilitation, the limb will apply 
some reaction force to compression. 

Oehler et al. [15] focuses on design optimization of shape 
memory alloy (SMA) morphing structures and builds on the 
work of Hartl et al. [16] who focus on design optimization of 
SMA-based aerostructures. Oehler et al. finds that, because 
simple gradient-based algorithms are sensitive to missing data 
and have difficulty converging when this occurs, a Design 
Explorer tool suite algorithm developed by Boeing is useful to 
overcome such challenges [15]. They note that while their model 
is suitable for optimization with genetic algorithms, GAs were 
overlooked due to the high number of runs necessary to achieve 
convergence. 

A shape matching approach was developed initially by 
Murray et al. for rigid link mechanisms [17]. Analytical 
modeling of segmented unimorphs was conducted by Frecker 
and Aguilera [18]. This analytical modeling was used to find the 
deflections of a functionally graded compliant mechanism and 
then optimized by Jovanova et al. [19,20].  

The analytical modeling of a segmented unimorph that 
Frecker and Aguilera [18] develop is extended in previous work 
by the authors [7]. Using this extended analytical modeling, 
shape matching can be conducted using a genetic algorithm. 

 
1.4. Genetic algorithms 
 
Genetic algorithms (GA) are based on Darwin’s 

evolutionary principles, where individual attributes determine 
the fitness of a particular individual or design. This fitness 
function is used as the objective function that is minimized in 
GAs. Thus ‘best fitness’ is defined as the design with the lowest 
fitness function of the population analyzed. The attributes that 
are used to determine the best fitness are defined as genes. 

The most beneficial attributes (genes) or design variables in 
this case, may move on or be combined generation to generation 
and may live on to see the final generation. Thus, with a random 
first generation with a sufficiently large initial population, an 
optimal design may be generated. An introduction to GA can be 
found in work by Mitchell [21]. 

Genetic algorithms are different from gradient-based 
optimization methods in the role random choices play in each 
new generation. The introduction of randomness allows a more 
thorough exploration of the parameter space than gradient-based 
methods such as iterated hill-climbing methods [21]. Mitchell 
notes that for GAs to function well and approach an idealized 
genetic algorithm (IGA), several factors are necessary. Samples 
must be independent (large enough population, slow enough 
selection process, and sufficiently high mutation rate), schemas 
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must be sequestered successfully (desired schemas should be 
preserved), and crossover should be effectively instantaneous 
(the time for two schemas to crossover must be much smaller 
than the time to discover the schemas) [21]. They also note the 
GA should have speedup compared to Random-Mutation Hill 
Climbing (RMHC). RHMC is a form of systematic design 
exploration that loses virtually no designs to mutations, whereas 
GA can be a rapid design exploration that may miss optimal 
designs and as such crossover rates should be carefully 
considered to speed up the GA relative to RHMC, but still 
maintain successfully sequestered desired schema. Speedup is 
just one benefit of GAs.  

The benefits of the native MATLAB genetic algorithm 
toolbox are discussed in depth by Bhargava et al. [22] and 
summarizes as ease of use and experimentation.  

Chand and Dutta [23] perform a shape optimization of 
structures subjected to transient dynamic loading using genetic 
algorithms. They integrate automatic mesh generation and 
adaptive FEA modules with a GA code. They present case 
studies on the response of a cantilever beam suddenly subjected 
to applied loading at the free end and the response of a simply 
supported beam subjected to a transient step loading in the 
middle. 

Rietz and Peterson [24] conduct a simultaneous shape and 
thickness optimization using an optimality criteria method. This 
method is the foundation of a more common optimization 
technique found in topology optimization as covered by Bendsøe 
[25] in their 1995 work. 
 
2. METHODS 

 
The analytical model used is described in detail in previous 

work by the authors [7], but is introduced in brief here. The free 
deflection of a unimorph [7], or bimorph [14] LIB actuator is 
found by solving the quasistatic equations of equilibrium to get 
the free curvature from the introduction of some actuation strain 
that is induced through battery charging. 

The free curvature is used to calculate the local deflections 
of finite elements along the length of the actuator. These local 
deflections are transformed into global coordinates to get the free 
deflection that is used to predict the actuated shapes shown in 
this paper. 

 
2.1. Design optimization problem formulation 
 
A schematic for an N-layer, N-segment bimorph can be seen 

in Figure 1, where the white lines denote the split between 
electrically isolated and mechanically connected segments. 
Assuming electric isolation between segments allows each 
segment to maintain separate SOC, while mechanical connection 
allows continuous deflection along the length of the segmented 
actuator.  

 

  
Figure 1. Schematic for an 𝑁𝐿𝑎𝑦𝑒𝑟, 𝑁𝑆𝑒𝑔𝑚𝑒𝑛𝑡 multilayer 

actuator 
 
1D shape matching allows for the intelligent design of a 

segmented actuator to achieve a particular shape while subject to 
various constraints. The objective function is adapted from work 
by Jovanova et al. where shape matching is used for a 1D 
functionally graded material beam [19].  

For 𝑔𝑝 number of specified points, the shape matching error 
(Δ𝑒1𝐷

) is defined in equation (1) as the summed root mean 
squared error (RMSE) between a set of points that define a target 
shape and a set of points that describes the actuated shape. The 
actuated shape is defined by a pseudo-random set of design 
variables generated by a GA. Figure 2 highlights an example 
target shape schematic where the undeformed shape, actuated 
shape, target shape, and gp specified reference points are shown. 
For gp number of specified points, the shape error (Δ𝑒1𝐷

) is 
calculated as:  

 

Δ𝑒1𝐷
= ∑ Δ𝑒𝑛

𝑔𝑝

𝑛=1

 
(1) 

 
where Δ𝑒𝑛 is the root mean squared error (RMSE) as shown in 
equation (2). 
 

Δ𝑒𝑛
= √[(𝑋𝑎𝑐𝑡 − 𝑋𝑡𝑎𝑟𝑔𝑒𝑡)

2
+ (𝑌𝑎𝑐𝑡 − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 )

2
] 

(2) 
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Figure 2. Target shape schematic 

 
A shape matching design optimization problem, where the 

objective is to minimize shape error between the actuated shape 
and target shape is defined in equation (3). 

 
Minimize (𝑓1) 

 
where, 

 
𝑓1 = ∑ Δ𝑒𝑛

𝑔𝑝
𝑛=1  [19] (3) 

 
𝑥𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ≤ 𝑥 ≤ 𝑥𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑.  

 
𝑋𝑎𝑐𝑡 and 𝑌𝑎𝑐𝑡  refer to the longitudinal and transverse deflection 
points of the actuated shape and 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑌𝑡𝑎𝑟𝑔𝑒𝑡  refer to the 
longitudinal and transverse deflection of the target shape for 𝑔𝑝 
points. The shape matching error (Δ𝑒1𝐷

) is minimized. The 
design variables (𝑥) are bounded above and below by 
𝑥𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑  and 𝑥𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑. 

Notably, to improve the accuracy of the problem, the ‘best’ 
𝑋𝑎𝑐𝑡 is chosen against the available 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  points. Because the 
target data points may be limited and the potential points 
generated for the model is infinite, many deflection points are 
generated for the model to compare the target data points against. 
The 𝑋𝑎𝑐𝑡 point that is closest to each 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  point is chosen, such 
that the respective 𝑌𝑎𝑐𝑡  and 𝑌𝑡𝑎𝑟𝑔𝑒𝑡  data points can be compared. 
As such, the (𝑋𝑎𝑐𝑡 − 𝑋𝑡𝑎𝑟𝑔𝑒𝑡)

2
 term is much smaller than the 

(𝑌𝑎𝑐𝑡 − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡)
2
 term. The analytical model used to generate the 

deflections can be found in previously published work [7]. 
 
2.2. Assumptions 
 
Due to the relatively quick propagation of lithium through 

silicon (~0.4hr for silicon particles on the order of tens to 
hundreds of nanometers in diameter) relative to the charging 

rates of LIBS (20hr for C/20 charge rate), lithiation (and 
actuation) is assumed to be quasistatic [7]. While actuation strain 
may vary nonlinearly with SOC, the relationship between 
actuation strain and SOC is assumed to be linear for simplicity. 
All segments are electrically isolated and mechanically 
connected to allow for different SOC between segments and 
continuous bending. All materials are considered linearly elastic 
and isotropic due to the high aspect ratio. The actuator length is 
several orders of magnitude larger than the thickness and nearly 
one order of magnitude greater than the actuator width. Self-
weight is considered negligible due to the relatively small effect 
weight would contribute to the bending moment compared to the 
moment due to induced actuation strain. 

 
2.3. Solution methods 
 
A native genetic algorithm solver in MATLAB (GA) is used 

to minimize the shape error. All options (e.g., population size, 
crossover rate, etc.) are default unless specified otherwise in the 
corresponding case study. 

 
3. RESULTS AND DISCUSSION 

 
3.1. Case study 1: Notched unimorph 
 
The first case study investigated is an experimentally 

validated notched unimorph configuration shown in Figure 3. 
The experimental data serves as the target shape. The shape 
matching of the experimental data target shape allows for 
validation of this approach. Actuation strain 𝑆1

∗ is defined in 
equation (4) as proportional to the state of charge or SOC with 
the proportional constant being defined as an effective linear 
strain constant 𝛽𝑒𝑓𝑓 . SOC ranges from zero to one, or uncharged 
to fully charged. The actuation strain of each segment is the set 
of design variables (𝑥).  

 
 𝑆1

∗ = 𝛽𝑒𝑓𝑓𝑆𝑂𝐶 (4) 

   
 0 ≤ 𝑆𝑂𝐶 ≤ 1 (5) 

 
Shan et al. conduct an experiment with the notched 

unimorph configuration and predict a uniform 𝑆𝑂𝐶=23% 
throughout the length of the unimorph [26]. Shan et al. capture 
the free deflection of the notched unimorph every 3 minutes with 
a macro-lens digital camera. A previous study has shown a 
𝛽𝑒𝑓𝑓=17%  [13], but for the sake of simplicity we assume that 
𝛽𝑒𝑓𝑓 = 100% and optimize for actuation strain such that 𝑆1

∗ =

𝑆𝑂𝐶.  
However, an assumed effective linear strain constant can 

guide the upper bound of actuation strain for the design 
optimization. For 𝛽𝑒𝑓𝑓=17%,  𝑆𝑖=1

∗ = 3.91% and therefore an 
upper bound of actuation strain of 𝑆𝑖=1

∗ = 10% should be 
reasonable and will allow for a narrower population range. A 
narrower range of population will allow for a more thorough 
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exploration of the design space and potentially better shape 
matching. 

The experiment consists of a transparent battery system 
originally developed by Ma et al. [9] whereby a macro-lens 
digital camera is used to capture deflection data along the length 
of the unimorph. The images captured undergo image processing 
to procure the experimental deflection points for multiple SOC. 
However, the target shape used is for a single 𝑆𝑂𝐶=23%. It is 
important to note the geometry of the notched unimorph. 

From the top (fixed) to the bottom (free) the notched 
unimorph consists of three geometric segments. This is 
summarized in Table 1. 

 
Table 1. Geometric parameters and material properties 

for notched unimorph configuration. 
Segment thicknesses 

(𝑡𝑖,𝑗) (𝜇𝑚) 
𝑖 = 1 

Coating 
layer 

𝑖 = 2 
Copper 
foil 

𝑖 = 3 
Tape 

𝑗 = 1 36 9 30 
𝑗 = 2 36 9 0 
𝑗 = 3 36 9 30 

Segment elastic moduli 
(𝐸𝑖,𝑗) (GPa) 

𝑖 = 1 
Coating 
layer 

𝑖 = 2 
Copper 
foil 

𝑖 = 3 
Tape 

𝑗 = 1 1[9] 120 1.5 
𝑗 = 2 1[9] 120 1.5 
𝑗 = 3 1[9] 120 1.5 

Length (𝐿𝑖,𝑗) (cm) All layers (𝑖 = 1: 3) 
𝑗 = 1 1.5 
𝑗 = 2 0.5 
𝑗 = 3 1.5 

Width (𝑤𝑖,𝑗) (mm) All layers (𝑖 = 1: 3) 
𝑗 = 1 5 
𝑗 = 2 5 
𝑗 = 3 5 

 
The population is set to 100, and the convergence tolerance 

is set to 1e-6 to ensure good starting diversity and good shape 
matching results when converged. 

 

 
Figure 3. Schematic for the distribution of design 
variables (x) throughout a three segment notched 

unimorph configuration. 
 
It is important to note that segment one and segment three 

have three design variables each to ensure that the length (0.5cm) 
over which each actuation strain is applied is uniform.  

A 3-segment model (with seven total design variables) is 
used to match the target shape set out by the experiment. The 
unimorph is split into seven subsegments (each with their own 
design variable) of uniform length 𝐿𝑗=1:7 = 0.5𝑐𝑚. Subsegments 
here are used to describe the smaller portions of each segment 
over which the design variables (actuation strain) are varied. 
Recall, the length of the notch (and the smallest geometric 
variation) is 0.5cm. As seen in Figure 4, good shape matching is 
achieved. Here, the only design variable varied is the 𝑆𝑖

∗ 
(actuation strain).  

The convergence plot is shown in Figure 5. The shape 
matching error that results from this is Δ𝑒1𝐷

= 512μm. An 
optimal actuation strain distribution throughout the seven-
segment notched unimorph is shown in Table 2. The expected 
result for a notched unimorph that is uniformly actuated is that 
there should be significantly more curvature in the more 
compliant notch (segment 2). This is only somewhat true for the 
optimal actuation strain distribution shown.  

Subsegments 2 and 6 are effectively unactuated. The largest 
actuation strains seen are in subsegments 1, 3, 4, 5, and 7. The 
largest of these is found in subsegment 7 with only 0.15% strain. 
The second largest actuation strain is throughout the notch and 
the adjoining subsegments for 𝑆𝑖=1,𝑗=3:5

∗ . These actuation strains 
vary from 0.08% to 0.10% strain, where the compliance is 
highest. 

It is worth noting that the best fitness is defined here as the 
lowest value among the population at a given generation and the 
mean fitness is the average fitness of the population at the same 
generation.  

The design optimization minimizes the shape error between 
the actuated shape predicted by the model and the target shape, 
however the battery in the experiment appears to be relatively 
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uncharged and therefore has a very small actuation strain. This 
is thought to be due to a lack of charging along the length of the 
beam and a concentration of lithium at the base of the beam. The 
closer the cathode and anode are, as occurs at the base, the more 
preferentially it is thought that lithiation occurs, such that as the 
tip of the anode deflects further from the cathode, it becomes less 
lithiated. 

The relatively larger actuation strain at the tip is thought to 
be due to widely spread experimental data points. The reason for 
the lack of perfect overlay is due to twisting in the unimorph that 
occurs in the experiment. To account for the twisting, the average 
deflection of both sides of the unimorph is used as the target 
shape. However, the twisting is thought to be responsible for the 
poor matching in places. 

 
Table 2. Optimal design variables for notched unimorph 

configuration 
Segment 
for layer  

𝑖 = 1 

Actuated 
actuation 
strain (%) 

Target 
actuation 
strain (%) 

Total Shape 
Error (𝜇m) 

𝑗 = 1 0.1 3.91 51.2 
𝑗 = 2 0.00 3.91 
𝑗 = 3 0.10 3.91 
𝑗 = 4 0.08 3.91 
𝑗 = 5 0.10 3.91 
𝑗 = 6 0.00 3.91 
𝑗 = 7 0.15 3.91 

 

 
Figure 4. Optimal shape matching of a 3-layer, 7-

subsegment notched unimorph model   

 
Figure 5. Convergence plot for optimal shape matching of 

a 3-layer, 7-subsegment notched unimorph model 
 
3.2. Case Study 2: Tapered five-segment 

unimorph 
 
In Case Study 2 the design variables are the copper foil 

passive layer segment thicknesses while the actuation strain is 
held constant. The constraints on the design variables are shown 
in equation (6). This allows for the variation of passive layer 
thickness for each of five segments. Shown in Figure 1, a 13-
layer, five-segment beam is optimized against a target shape 
shown in Figure 6. Notably, there are two copper foil passive 
layers, and both are set equal to the thicknesses randomly 
generated by the GA.  

 
Minimize (𝑓1) 

 
where, 

 
𝑓1 = ∑ Δ𝑒𝑛

𝑔𝑝
𝑛=1  [19] (6) 

 
10𝜇𝑚 ≤ 𝑡𝑖=6,8,𝑗 ≤ 34𝜇𝑚.  
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Figure 6. 13-layer, 5-segment unimorph target shape 

 
The target shape is derived from the free deflection a 

tapered, thirteen-layer, five-segment lithium ion battery 
unimorph undergoes at full charge. The equations necessary to 
predict the free deflection are found in previous work [7]. The 
geometric parameters and material properties of the multilayer 
are shown in Table 3. 

 
Table 3. Geometric parameters and material properties 

for a tapered 13-layer, 5-segment unimorph. 
 

All 
segments  

𝑗 = 1: 5 

Separator 
1,4,7,10,13 

Al 
2,12 

NCM  
3,11 

Si  
5,9 

Cu 
6,8 

Thicknesses 
(𝑡𝑖,𝑗) (𝜇𝑚) 

20 15 44 19 N/A 

Elastic 
moduli 

(𝐸𝑖,𝑗) (GPa) 

0.1247 70 1.5 1 [9] 120 

Width 
(𝑤𝑖,𝑗) (mm) 

8 6 6 4 4 

Length 
(𝐿𝑖,𝑗) (cm) 

0.7 

 
The best shape error is found to be Δ𝑒1𝐷

= 3𝜇𝑚. An optimal 
shape is shown overlaid over the target shape in Figure 7 with 
the convergence plot shown in Figure 8. Partial convergence 
occurs in less than 20 generations, but the algorithm takes until 
just over 50 generations to fully converge due to the relatively 
small convergence tolerance. Based on the values shown in Table 
4, the actuated shape approaches the set design variables of the 
target shape. There is no more than 1𝜇𝑚 of divergence from the 
target shape in any segment. 

 
 
 
 

Table 4. Optimal design variables for a tapered, 13-layer, 
5-segment unimorph 

Segment 
for layer 
𝑖 = 6,8 

Actuated shape 
passive layer 
thickness (𝜇𝑚) 

Target shape 
passive layer 
thickness (𝜇𝑚) 

Total 
shape 
error (𝜇m) 

𝑗 = 1 33.54 34 2.9 
𝑗 = 2 27.37 28 
𝑗 = 3 22.29 22 
𝑗 = 4 15.21 16 
𝑗 = 5 10.87 10 

 

 
Figure 7. Optimal shape matching for a 13-layer, 5-
segment unimorph against a tapered actuator target 

shape 
  

 
Figure 8. Convergence plot for shape matching of a 

tapered 13-layer, 5-segment unimorph 
 
3.3. Case Study 3: Alternating SOC bimorph 
 
A third case study uses the same 13-layer schematic shown 

in Figure 1, but extended into an 8-segment long configuration. 
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Whereas in case study 2, only the top active silicon coating layer 
is actuated, both the top and bottom layer are activated in this 
bimorph case study. The target shape alternates top layer and 
bottom active layer activation as described in Table 5. The design 
variables are the actuation strains of the top and bottom active 
layer of each segment. The problem formulation is shown in 
equation (7). 

 
Minimize (𝑓1) 

 
where, 

 
𝑓1 = ∑ Δ𝑒𝑛

𝑔𝑝
𝑛=1  [19] (7) 

 
0 ≤ 𝑆𝑖=5,𝑗=1

∗ ≤ 64% 
0 ≤ 𝑆𝑖=9,𝑗=1

∗ ≤ 64%. 
 

 

A shape error of Δ𝑒1𝐷
= 48.8𝜇𝑚 is found after convergence 

in nearly 70 generations as shown in Figure 10. The design 
variables are shown in Table 5 for both the actuated shape and 
the target shape. Notably, the difference between the actuation 
strain of the top active layer and bottom active layer approaches 
the actuation strain of the activated active layer in the target 
shape. 

For example, the differential actuation strain (difference in 
actuation strain between the top and bottom active layers) of 
segment 1 is: 𝑆𝑖=5,𝑗=1

∗ − 𝑆𝑖=9,𝑗=1
∗ = 127.9 − 65.8 = 62.1%. The 

target actuation strain of the top active layer of segment 1 is 64%. 
The same pattern is true along the length of the beam. 

 

 
Figure 9. Optimal shape matching for an 8-segment 

alternating SOC bimorph 

 
Figure 10. Convergence plot for shape matching of an 8-

segment alternating SOC bimorph 
 

Table 5. Optimal design variables for an 8-segment 
alternating SOC bimorph 

Segment  
 

Top active layer 
actuation strain for 

layer 𝑖 = 5 (%) 

Top bottom layer 
actuation strain for 

layer 𝑖 = 9 (%) 

Total 
Shape 
Error 
(μm) Actuated 

Shape 
Target 
shape 

Actuated 
Shape 

Target 
shape 

𝑗 = 1 127.9 64 65.8 0 48.8 
𝑗 = 2 10.5 0 72.1 64 
𝑗 = 3 50.8 0 109.4 64 
𝑗 = 4 127.1 64 77.4 0 
𝑗 = 5 124.0 64 43.0 0 
𝑗 = 6 30.9 0 109.3 64 
𝑗 = 7 27.4 0 82.6 64 
𝑗 = 8 91.7 64 35.1 0 

 
4. CONCLUSION 

 
Good target shape matching is achieved through the 

implementation of a GA solver. Shape matching error is found to 
range from 0.029% of the length (Δ𝑒1𝐷

= 3𝜇𝑚) to 1.5% 
(Δ𝑒1𝐷

= 512𝜇𝑚). Three case studies are examined. 
The first case study involves the shape matching of an 

experimental notched unimorph with the actuation strain of 
seven subsegments as the design variables. An objective function 
value of Δ𝑒1𝐷

= 512𝜇𝑚 is found for the notched unimorph. The 
shape error found is 1.5% of the length.  

Case study 1 is used to inform improved experimental 
design. Notably, the current design appears have a concentration 
of lithiation at the base and appears to be more than an order of 
magnitude off from the anticipated actuation strain expected 
from the experimental design. It is concluded that the LIB 
actuator is either receiving less charge than expected or is 
substantially stiffer than estimated by the given parameters. 
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A second tapered unimorph case study is investigated with 
segmented passive layer thickness as the design variables. The 
target shape matched against is a tapered unimorph actuator at 
full charge taken from previous modeling work [7]. Good shape 
matching is achieved (Δ𝑒1𝐷

= 3𝜇𝑚) and not only is the taper of 
the beam maintained, but the resulting passive layer thickness 
matches the target shape within 1𝜇𝑚 for every segment. A shape 
error is found to be 0.029% of the length. The conclusion reached 
here is that unimorph actuation is simpler to optimize due to the 
reduced number of design variables, but is restricted to either 
convex or concave actuation. 

The third case study involves the optimization of an 8-
segment bimorph where design variables of both the top and 
bottom active layer actuation strain are simultaneously varied. 
Good shape matching is achieved (Δ𝑒1𝐷

= 48.8𝜇𝑚, 0.23% of the 
length) and it is found that simultaneously varying the actuation 
strain allows for infinitely many solutions, but that the 
differential actuation strain between top and bottom active layer 
is effectively the actuation strain of the activated layer set in the 
target shape. 

The overall conclusion reached by this paper is that a LIB 
actuator can be optimized to achieve tailorable, complex shapes 
with both concave and convex curvature. Additional stored 
energy can be drained by an external circuit or redistributed 
internally without affecting the free deflection. The possibilities 
for this technology include remote, off-the-grid applications as 
the soft robotic actuators can be initially charged on-site and 
transported off-site to a location where work must be done. 

Future work could consist of more complex shape case 
studies for bimorph and multimorph models. Focusing on 
investigating a multi-objective function that minimizes active 
material volume or maximizes blocked force while 
simultaneously minimizing shape error would also improve upon 
the work performed here. 
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