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Network-Constrained Stackelberg Game for Pricing
Demand Flexibility in Power Distribution Systems
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Abstract—We propose a network-constrained Stackelberg
game framework to set energy prices for flexible consumers in
a distribution grid. In this set-up, an aggregator acts as the
leader, setting energy prices for each node, and price-responsive
consumers are the followers, adjusting their demand accord-
ing to the price charged. We show that this problem has an
equilibrium in which the optimal demands can be written as a
function of the Lagrange multipliers of the problem. For each
node, voltage and current shadow costs have a cumulative effect
that depends both on the upstream path to the substation and
on the downstream demand level. We compare the Stackelberg
solution to a centralized approach which maximizes social wel-
fare. Our analysis reveals that, although the system-level optimal
demand is higher in the centralized case, some individual nodes
have higher consumption in the Stackelberg game. This counter-
intuitive result cannot be observed in network-free formulations
commonly adopted in game-theoretic works on demand-side
management, where a centralized approach benefits every indi-
vidual consumer. Numerical studies on an IEEE 123-bus feeder
provide a system-level and a node-level analysis of this problem,
highlighting the effect of network constraints on the optimal
demands, and comparing the Stackelberg and the centralized
solutions.

Index Terms—Demand response, Stackelberg game, power
distribution system optimization, distribution LMP.

I. INTRODUCTION

HE DISTRIBUTION grid has been traditionally com-

posed of passive, inelastic electricity consumers who are
charged a flat energy price by retailers. However, this sce-
nario has been rapidly changing with the increasing adoption
of distributed energy resources (DERs) and the possibility
to enhance grid flexibility by leveraging consumer price-
responsiveness through demand response programs [1]. These
programs have been shown to decrease the effective cost
of serving customers, thus improving economic efficiency in
electricity markets [2]. Further, demand-side flexibility can
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help integrate variable renewable generation [3], and serves
as an alternative to grid expansion [4]. This new paradigm
led to studies which propose the use of distribution locational
marginal prices (DLMPs) for the provision of economic sig-
nals that effectively quantify the marginal cost of supplying
electricity to each node across the distribution grid.

In this paper, we formulate and analyze a demand man-
agement problem which considers an aggregator who is
responsible for purchasing energy in the wholesale market and
supplying it to consumers in a radial distribution grid. The con-
sumers are price-sensitive, and adjust their demand according
to the energy price charged. Branch flow equations charac-
terize the underlying network and the DLMPs are calculated
while considering network constraints and how consumers
respond to prices. The interactions between consumers and
the aggregator are modeled as a Stackelberg game in which
the aggregator sets the nodal prices, and consumers decide on
their demand based on this signal. Further, we compare the
results of this Stackelberg game to the ones achieved when
social welfare is maximized instead. We show that, from a
system-level perspective, the aggregated demand of consumers
is larger with a centralized approach; however, if consumers
are evaluated individually, we see that they can be better off
in the Stackelberg game. This counter-intuitive result only
arises when the network constraints are considered, and thus
network-free formulations may fail to capture such cases.

Most contributions in the literature on DLMPs have lever-
aged a centralized formulation to calculate these prices. In [5],
an iterative method to solve a three-phase dc optimal power
flow (DCOPF) problem is proposed considering price-sensitive
demand. Electrical vehicle optimal charging is studied in [6],
where the DCOPF is also used. However, this power flow
approximation assumes voltage variations are negligible, and
thus do not capture the importance of voltage regulation in
the distribution grid. Voltage constraints are considered in [7],
where an ac optimal power flow problem is formulated and
analyzed for an unbalanced distribution grid, but demand elas-
ticity is not modeled. Other works have explored the use
of DLMPs for congestion management, loss reduction, and
voltage improvement [8], [9].

Previous works on demand-side management have proposed
game-theoretic approaches to provide consumers with price
signals that incentivize them to adjust their consumption
levels. The interactions between consumers and the agent
responsible for supplying energy to the distribution grid
are modeled as a Stackelberg game in numerous works,
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such as [10], [11], [12]. By modeling multiple retailers, [10]
incorporates company-side competition for the supply of
energy. The Pareto front that characterizes the trade-off
between retailer profit and consumer surplus is characterized
in [11], and the analysis in [12] indicates that consumers can
be incentivized to reshape their demand to contribute towards
shaving peak demand. However, this related stream of work
has largely focused on the game theory aspect of the problem,
and ignored power flow constraints and their effect on the task
of pricing consumers in the distribution grid.

Recent efforts towards incorporating network constraints in
this demand management problem include [13], in which the
feasibility of a community storage energy in the distribution
grid is studied, and [14], where the use of customer-owned
storage is coordinated so that the per-user economic bene-
fit is maximized. Both works use the linearized branch flow
equations to impose voltage limits. Our formulation uses the
convex relaxation for the branch flow equations proposed
in [15] instead, and thus we are also able to incorporate the
effects of thermal limits. Further, unlike these works, we lever-
age the concept of DLMPs to solve for nodal prices that
reflect the shadow costs of the network constraints, which have
been shown to provide proper economic signals to incentivize
investments in distributed resources [16], [17]. We also provide
analytical results which highlight how the optimal demand in
each node depends on these shadow prices, providing an intu-
itive understanding of these effects that cannot be attained
through numerical analysis only.

The major contributions of this work are two-fold. First, we
formulate a demand-side management problem as a network-
constrained Stackelberg game. An aggregator acts as the
leader, moving first to set the prices to be charged for each
consumer. Price-responsive consumers then follow and adjust
their consumption level according to the price signal. We show
that this game has an equilibrium and characterize the optimal
demands as a function of the shadow costs of the voltage and
thermal constraints, represented by the Lagrange multipliers
of the problem. Our analysis reveals that, for each node, these
costs propagate through the upstream path to the substation
and are also closely related to the power flow going down-
stream to this node. Second, we compare the solution to this
problem to two commonly used approaches: a network-free
formulation, which may lead to consumption levels that vio-
late network constraints, and a centralized problem, whose
optimal solution yields a higher system-level demand, but that
is in detriment of the utility of some individual consumers.

The remainder of this paper is organized as follows.
Section II presents the network model, and formulates the
optimization problems. Some considerations on a network-
free formulation are discussed in Section III. The constrained
problem is analyzed in Section IV, and Section V presents
our numerical case studies. Lastly, Section VI summarizes our
findings and identifies directions for future work.

II. PROBLEM FORMULATION

We model a radial distribution network in which flexible
consumers choose their demand level based on the price set by
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an aggregator. In turn, this aggregator is tasked with purchas-
ing and distributing the energy demanded from these flexible
consumers. We begin by defining the power flow equations
in the distribution grid, which are taken into account by the
aggregator when setting the prices. Then, the optimization
problems of the aggregator and consumers are formulated
using both a Stackelberg game and a centralized approach.

A. Single-Phase Branch Flow Equations

The distribution grid is modeled as a radial network repre-
sented by a graph G(N, £) with A/ buses and £ edges. For
each edge (i, j) € £ connecting buses i and j, let z;; = ry; +jx;j
denote the complex impedance of the line, S;; = Pj; +jQ;; be
the apparent power flow from i to j, and /;; denote the com-
plex line current. For each node i € NV, let V; be the complex
voltage and s; = p; + jg; be the net apparent power demand.
Further, let v; == |V;|? and ljj = |Il-j|2. The single-phase branch
flow equations for a radial distribution network represented by

GW, &) are:

Pj= > Pu+rylij+p; VieN (1)
kij—k

Qj= Y Qu+xjlj+q YieN )
kij—k

Vj =0 — 2(V,:,‘Pl:,' —i—x,:,'Q,j) + (}”5 —i—xl-zj)l,;/ VieN 3)

vilj =P+ QF Vije€. (4)

B. Stackelberg Game

We formulate the problem as a Stackelberg game in which
the aggregator is the leader and sets energy prices for the
consumers, while the consumers are followers and respond
to the price signal received to decide on how much energy
to demand. The demand profile in the network must sat-
isfy physical laws, and thus the branch flow equations are
included as constraints of the aggregator’s problem. However,
the quadratic equality constraint (4) makes the problem non-
convex. Therefore, we instead utilize the relaxed constraint

il = P+ Qp Vij€&. (5)

Because our problem formulation focuses on the demand
response management for consumers which do not inject
power in the distribution grid, there are no reverse power flows
and the nodal voltages will only drop (and not rise) across the
network. Thus, upper voltage bounds will never be binding,
and our problem satisfies the sufficient conditions established
in [15] for exactness of the convex relaxation presented. We
highlight that the conditions for exactness can still hold in the
presence of voltage raises. Thus, as long as the upper voltage
limit is not binding, reactive power injections from capacitor
banks can be incorporated in the model without loss of gener-
ality. We refer the reader to [15], [18], [19] for a more detailed
discussion about this relaxation.

The aggregator’s utility function is given by his own profit

ug =y wipi—roa| Y pit Y rily]. (6)

ieN ieN (i.))e€E
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The first term in (6) corresponds to payments received from
consumers for the energy supplied, where 7 is the inverse
demand function of the consumer at node i.! The second term
is the cost of purchasing energy in the wholesale market at a
price Aps. Note that not only the demand from consumers, but
also the power losses are considered in this cost. We consider
the aggregator to be a price-taker in the day-ahead market,
and thus Ap, is assumed to be fixed and known. This assump-
tion follows other works which consider the participation of
demand response [20], wind [21], and storage resources [22]
in the market.

The aggregator’s problem is to maximize his own profit sub-
ject to network constraints and operational voltage and thermal
limits, as well as considering the consumers’ demand bounds
and response to the prices set:

max Uy @)
Pij, Qij, Vi, lij,pi

st. (D —(@3), 5

0.95% <v; <1.05% VieN (7a)
lj <1 rea Vi €E (7b)
0<pi<P; VieN (7¢)
' =mi(pf) VieN. (7d)

The inverse demand function (7d) maximizes the utility of
consumer i, who solves the following problem:

max ul. = yiln(e; + pi) — mip; ®)

st. 0<p; < 131' (8a)
The utility function u!. of each consumer i incorporates their
utility from consuming p;, given by the first term in (8), and
their payment corresponding to this demand. The logarithmic
function has been shown to lead to proportional fairness [23],
and has been previously used to model consumer-side utility
in demand response problems [10], [24], [25]. The parame-
ters y; and «; are particular of each consumer, and thus these
agents need not have a homogeneous behavior. These param-
eters reflect the consumer’s valuation of his demand, and can
also be interpreted as the consumer’s willingness to forgo con-
sumption. We later show that these parameters can be seen as
a measure of consumer flexibility. We let y; > 0 and o; > 1,
so that the utility from consuming is always non-negative.

C. Centralized Problem

Consider a scenario in which a central planner is tasked
with deciding the demand levels for the distribution grid (and,
consequently, the nodal prices). This decision is made so that
the social welfare, given by the sum of utilities of each agent,
is maximized. Similarly to the Stackelberg game, the network

IWe remark that the use of index i to refer to consumers does not preclude
the presence of multiple consumers at the same node. In that scenario, sub-
indices can be created to refer to each customer at the same node, at the
expense of more notation. Alternatively, these customers can be included in the
formulation by incorporating “phantom” branches of zero impedance where
necessary, so that each customer has their own “node”.
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constraints and operational limits also need to be satisfied, and
we used the relaxed constraint (5). Let the social welfare be

U=ua+Zui

ieN
= Zyiln(ai-l-pi) — ApA ZPH— Z rili |- (9)
ieN ieN (i,j)e€

Then, the centralized problem is defined as:

max U (10)
Pij, Qi Vi lij, pi
s.t. (1) =(3), 5
(72) — (7¢)

We note that, when summing the utilities of the consumers
and the aggregator to form the social welfare function (9), the
payments made from consumers to the aggregator constitute an
internal transfer, and thus cancel out. Then, this objective only
retains the terms which quantify the customers’ benefit from
consuming and the cost of purchasing energy in the wholesale
market.

III. ANALYSIS ON A NETWORK-FREE CASE

Game-theoretic studies involving the demand manage-
ment of price-responsive consumers have typically used
network-free formulations. Following that, we first con-
sider an unconstrained scenario in which the operational
constraints (7a)—(7b), and the branch flow equations (1)-
(3), (5) are ignored. This is equivalent to a network-free or
single-node case.

Theorem 1: In the Stackelberg game, the aggregator
charges each consumer i with the energy price

. —\2
2* — | MApayi/ei if Apa > yiai/ (e + Pi)

o 11
l vi/(ai + P;) otherwise. an

Each consumer responds with a non-zero consumption level
if 7} < yi/a;, ie., whenever Apy < y;/;. Further, when
Apa < Yiai/(o + I_’i)z, consumer i’s demand will be binding
at the maximum value.

Proof: This problem is solved using backwards induction.
First, the consumer-side problem (8) is solved. For each con-
sumer i, the utility function ué is concave in the decision
variable p;. The Lagrangian function for this problem is

LE = yiin(e; + pi) — mipi + Api +%i(Pi —pi), (12

leading to the KKT conditions
ALl ; _

e M iva—h=0  (13)
i a+pi

Api =0 (14)

ri(Pi—pi) =0 (15)

Aishi =0 (16)

If the consumer’s demand p; is non-binding, we must have
A; = A; = 0. It follows from (13) that p} = y;/m; — o;, which
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must satisfy the bounds (7c). By checking the cases in which
demand is binding, we can find that

P; if 7 < yi/ (i + Pi)
pim) = § vi/mi — o if yi/(ei + Pi) < 7 < yifa; (17)
0 otherwise

is the demand function of consumer i. For 0 < pl*f < P;, the
corresponding inverse demand function can be written as

mi(p}) = vi/ (@i + pf)-

The power loss cost in the aggregator’s utility (6) is zero due
to the network-free formulation. This function can be shown
to be concave in p; upon substitution of the inverse demand
function (18). Considering only constraints (7c) and (7d),

(18)

Vibi o
La= Z[ai o, oapi+ i+ TPy —p»} (19)

ieN
is the Lagrangian function, and the KKT conditions are
0L, Vili _ .
— =——— —Apa+tu;,—@w; =0Vi (20)
opi (@i +p)? L
wpi =0 Vi @1
(P —pi) =0Vi (22)
Wi T = 0 Vi. (23)

Suppose the aggregator chooses non-binding demands. Then,
the multipliers u; = @; = 0 Vi and, from (20),

PP =+/vivti/Apa — i

is the optimal demand level for each consumer i. This demand
is only positive if Aps < y;/@;, and becomes binding at p} =
P; for Aps < yioi/(a; + Pp)?. Using (18), we find that this
demand can be enforced through the price (11). |

This result shows that consumers with lower y;/«; require
lower prices to start consuming, and thus can be seen as less
flexible. Further, if consumers are homogeneous (i.e., have the
same y;/a; and P;), then they are charged the same price, as
expected for a network-free model.

Theorem 2: In the centralized case, consumers are charged

* — ADA _ if Apa > Vi/(ai + ]_)l)
l vi/ (e + P;) otherwise,

(24)

(25)

and respond with a positive demand if Aps < y;/o;. When
demands are not binding, consumers are charged the day-ahead
energy price, and thus no rent is extracted by the central plan-
ner. In this case, the centralized price is always lower than
that charged in the Stackelberg case.

Proof: Consider the optimization problem (10) without the
network constraints. The Lagrangian function is

L= Z[Viln(ai +pi) — Apapi + wipi + 1 (Pi — pi)

ieN
(26)
and therefore we have the KKT conditions
3£C Vi . .
= —dpa+ul—ms=0Vi (27
g atp AT (
wpi =0Vi (28)
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m(Pi—p) =0 Vi
LT > 0 Vi

(29)
(30)

For non-binding demands, u{ = ¢ = 0 Vi. Then, we use (27)
to find p¥ = y;/Apa — «;. Similarly to the Stackelberg game,
this demand is only positive if Aps < y;/a;. The demands
will be binding at the maximum value when prices drop to
Apa < Yi/(ai + P;). From the consumer’s inverse demand
function (18), we find that the optimal non-binding demand for
the centralized case can be accomplished by charging IT} =
Apa Vi. Comparing to the Stackelberg case, we find that

7-[1?!< = V H;'kyl'/ai’

from which we have the following possibilities:

1) Case n = IIf: Equality holds if Aps = yi/o;. In
this case, demand is zero for consumer i both in the
Stackelberg game and in the centralized case.

2) Case ;" < IT}: Condition holds if Apsy > y;/a;, which is
not low enough to incentivize consumption, also leading
to zero demand for consumer i.

3) Case m > II}: Condition holds if Aps < y;/a;. In this
case, consumer i will respond with positive demand both
in the Stackelberg game and in the centralized case.

Thus, for positive non-binding demand levels, 7;* > IT. W

Since consumers are charged a lower price in the centralized
case, it follows that, in a network-free problem, the demand
of each individual consumer is higher in a centralized set-up.
We later show that this is not necessarily what occurs when
network constraints are considered, and some consumers may
have a higher demand in the Stackelberg game. Our results also
imply that the centralized problem leads to a higher incentive
to consume, increasing the aggregated demand level in the
grid. This will be shown to also hold in the networked case.
‘We remark that, when network constraints are not considered,
the price signals calculated may prompt consumers to exer-
cise demand levels that cannot be supported by the network,
causing undesired congestion or voltage violations. Hence the
importance of a network-constrained formulation.

€19

IV. CONSTRAINED DISTRIBUTION NETWORK ANALYSIS

In this section, all the power flow and operational constraints
for the radial distribution system are considered.

A. System-Level Analysis

We begin by evaluating our problem from a system-wide
perspective. The following result compares the solutions to the
Stackelberg game and the centralized set-up while considering
the aggregated optimal demand of the consumers.

Proposition 1: The aggregated utility of consumers
doieN ui at the Stackelberg game solution is upper bounded
by their optimal aggregated utility in the centralized case.

Proof: Letp := [Py, ..., p|n] be the optimal demand levels
at the solution for the centralized problem (10). Proof follows
from the chain of inferences below:

1) Aggregator’s Optimal Utility: Since

o the constraints in the centralized problem (10) are

the same as those in the aggregator’s problem in the
Stackelberg game (7), and
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Fig. 1. Three-node network used in Example 1.

« the decision variables for both problems are the same,
these problems have the same feasible set. With that, because p
is feasible in the centralized case, then it must also be feasible
in the Stackelberg game. Thus, since the aggregator maximizes
his own utility, he will not choose any demand level p #
p which yields a lower utility for him than the one he can
achieve with p. It follows that the aggregator’s optimal utility
in the Stackelberg game is lower bounded by his utility in the
centralized case.

2) Optimal Social Welfare: By definition, the social welfare
achieves its highest level at the solution of the centralized
problem (10). Thus, the social welfare in the Stackelberg game
can be at most the optimal centralized social welfare.

3) Aggregated Consumers’ Optimal Utility: Combining the
previous two points, it follows that the aggregated utility of
the consumers in the Stackelberg game is upper bounded by
their optimal aggregated utility in the centralized case. |

Proposition 1 implies that the overall demand in the cen-
tralized case sets an upper bound on this aggregated demand
in the Stackelberg game. However, we show next that this
system-level observation may not hold for each individual
consumer.

B. Node-Level Analysis

In the previous sections, we showed that (i) in a network-
free model, all consumers are charged less, and thus have
higher demand in the centralized case, and (ii) in a network-
constrained model, the aggregated demand level in the
Stackelberg game is upper bounded by that in the central-
ized case. We now analyze the optimal demand of each node
individually and how the network constraints affect consumer
consumption. We begin by presenting an example which illus-
trates that, in the presence of a network, some nodes may have
higher demand in the centralized case, while others consume
more in the Stackelberg game.

Example 1: For the network in Fig. 1, let L be the distance
between nodes 1 (substation) and 2, and the total line length be
1. Assume v1 = lp.u. and that the grid is loaded enough that
node 3 has a binding lower voltage limit, i.e., vz = 0.95%p.u.
Let the consumers at nodes 2 and 3 have y = 35 and o = 2.
Assume r = 0.0174p.u. per unit length to be the line resis-
tance. For simplicity, set the reactive power consumption to
zero and consider the linearized branch flow equations:

Pij: Z ij—l—pj Vie{l,2,3} (32)
kij—k

Qij= Z ij+qj Vie{l,2,3} (33)
kij—k

vj = v; — 2(rPj + x;Qy) Vi € {1,2,3} (34)
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Fig. 2. Optimal demands for the three-node example.

Recognizing that rip, = Lr and 3 = (1 — L)r,
equations (31)—(33) can be used to find the demand at nodes 2
and 3 as a function of the voltage at node 2 and the distance L:

(1 —v3) — (1 —0.95%)L vy — 0.952
B 2L(1 — L)r 2(1 = Lyr’
For non-negative demands (35), we must have 0.95% < vy <
1—(1-0.95%)L = Vy. Given L, we can find v, that maximizes
the objective for the centralized case and the Stackelberg game,
which in turn determines the optimal demands p3 and p3. For

that, we substitute the expressions (35) in the social welfare (9)
and in the aggregator’s utility (6)> to solve

U(va),

)2 , D3 = (35)

(36)

max
0.952<v,<Vy

max
0.952<v,<Vy

ug(v2).

Both functions are concave within the interval 0.952 < vy <
Vi. The results in Fig. 2 show that (i) node 2 (top) benefits
more in the centralized case, especially when closer to the sub-
station, (ii) node 3 (center) consumes more in the Stackelberg
game, and (iii) the centralized aggregated demand is lower
bounded by that of the Stackelberg game (bottom). Further, as
L — 1, both nodes become equally distant from the substation
and the solutions for both cases tend to approximate.

Remark 1: The linearized model used in Example 1 has
been shown to provide good approximation of the branch flow
equations (e.g., in [26]). However, it does not factor in the
current constraints. Since our goal is to understand the role of
both voltage and current constraints on optimal demands, we
use the nonlinear model in our main analysis.

Motivated by Example 1, Theorem 3 formulates the optimal
demands of individual nodes when the nonlinear branch flow
equations (1)-(3), (5) are considered.

Theorem 3: Let P; denote the set of all edges on the
upstream path from node i to the substation. The optimal
demand of consumer i in the Stackelberg game is

Yidti
= —a;,

Apa +2 Z(i,j)eP,- (r,'jl/js» + P,ﬁ‘;) — ,li; + ﬁf

(37

2The Stackelberg game first substitutes the inverse demand function (18).
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and the solution in the centralized case is given by

* Vi
pl = — o,

Aoa +2 X pep, (ravs + Pkl ) — 1 + 75

(38)

where y() 5() MJ( >, ﬁ](.‘) are the Lagrange multipliers of the
voltage equahty constraint (3), the relaxed inequality con-
straint (5), and the demand lower and upper bounds (7c)
for node j, respectively, and the superscripts indicate if the
centralized (c) or Stackelberg (s) set-up are considered.

Proof: The Lagrangian for the centralized problem is
given by

L= yin(ai+p)—roa| D pi+

Z r,-jl,-j

ieN ieN (i.j)e€

— Pl] Z P]k rl] ij —Pj
IEN kj—k

— Z Ki Q,j Z ij x,] ij —4qj
ieN kj—k

— I/l <U/ Vi + 2 rlJPlj + xlelj) (’% + x3>llj)
ieN

+ Y (vl = P = 03) + €i(12 rea — 1)

ieN
+ Z,Qi(v,- - 0.952) n ﬁ,-(l.OSz - ui)
ieN
+ 3 wpi + (P - pi). (39)
ieN
Thus, the KKT conditions for stationarity are
oL .
—_— = H,‘ — H] — 2r,'jVj — 2P,‘j%’j =0Vi (40)
oP;;
oL .
—— = Ki—Kj — 2x,-jVj — 2Q,‘j§'j =0Vi (41)
8Qij
W = —Aparij + Iiryj + Kkixjj + I/,'(rl-j +xij)
ij
+ vi&—€=0Vi 42)
oL _ .
So= Vit ) ) e -mi=0Yi @3
! (i.)e€
oL _ .
Fr vil(ei+pi) —Apa+ i+ p; — ;=0 V. (44)
1
The complementary slackness conditions are given by
3 (v lj — P2 — O ) —0Vi (45)
2 _ .
ei(lij,m,ed —lj) =0 Vi (46)
p;(wi —0.95%) =0 Vi 47)
7;(1.05% —v;) =0 Vi (48)
wipi =0 Vi (49)
(P — pi) = 0 Vi. (50)
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Further, the problem needs to satisfy the equality and inequal-
ity constraints of the original problem, and the multipliers for
the inequality constraints must be positive. From (44), we have

Vi

— — o, (5D
Apa — IT; — w; + 1

pPi =

which can be rewritten as in (38) by isolating IT; from (40)
and recognizing that its expression can be written recursively
to become independent of any other IT;. For that, we move
from node i to the substation to find that

Mi=-2 ) (rw+ Pig).
()P

(52)

where P; is the set of all edges on this upstream path. The
solution to the Stackelberg game can be found in a similar
manner, but using (6) as the objective function and letting the
inverse demand function be given by (18). |

The results in Theorem 3 reveal the effect of the network
constraints on the optimal demand of consumers. The term
2> 6h ePi(rijV;‘) + P,-jéj(‘) ) back-propagates the effect of volt-
age and current constraints from each node to the substation,
indicating that consumers with the same willingness to change
their consumption may receive different price signals depend-
ing on their location in the network. We highlight that these
location-dependent results are not only related to the upstream
path from each node to the substation, but it also implicitly
depends on the nodes downstream from the consumer consid-
ered, as their demand level influences the shadow costs of the
constraints and the power flow injection in the node where the
consumer is located.

V. CASE STUDY

We consider a single-phase IEEE 123-bus system operating
at 2.4kV with a total of 85 load nodes with flexible consumers.
To efficiently solve the relaxed convex problems presented in
Section II for the centralized and the Stackelberg cases, we let
the initial condition be the solution of an equivalent linearized
optimal power flow model. Without loss of generality, we let
Apa = 1 for ease of comparison with the prices that emerge
in the distribution network, and we neglect the upper bound
in consumer demand. Further, we assume the voltage at the
substation to be 1 p.u., and henceforth we utilize the per unit
system with 1000 as the base kVA.

A. Network-Free Case

We first simulate a case in which the branch flow equations
and the corresponding operational constraints are not consid-
ered. For this case, the flexibility ratio y;/«; of each consumer i
was randomly selected between 15 and 20. The results in Fig. 3
show that the price charged for each consumer i depends on
the flexibility ratio y;/c; of each consumer in the Stackelberg
case. On the other hand, the solution to the centralized case is
such that the consumers are charged the same price, which is
equal to the day-ahead energy price. We further note that the
pricing scheme in the centralized case leads to higher variance
in the optimal demand levels, as compared to the Stackelberg
case. Lastly, the utility of each individual consumer is higher

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 30,2021 at 13:51:49 UTC from IEEE Xplore. Restrictions apply.



AGUIAR et al.: NETWORK-CONSTRAINED STACKELBERG GAME FOR PRICING DEMAND FLEXIBILITY

20 5
19 s————
= - -- Centralized
3 18 I~ 3 Stackelberg
= -
& @
17 2
&
16 1=
15 0
0 20 40 60 80 15 16 17 18 19 20
Consumer v/
20 = 40 =
15— e
3 - Centralized 30 /,/"’/ -- Centralized
£10 Stackelberg el Stackelberg
= 20
5
[
0 10
15 16 17 18 19 20 15 16 17 18 19 20
v/ v/

Fig. 3. Network-free case. Flexibility level of consumers (top left), energy
price charged (top right), optimal demand for each consumer (bottom left),
and consumers’ individual utilities at the optimal solution (bottom right).

in the centralized case. We also note that consumers with lower
yi/a; are charged less; however, they consume less than other
consumers that are more flexible, leading to a utility that is
lower than what can be achieved with higher flexibility levels.

B. Constrained Case: System-Level Analysis

We consider a case with Ii?,rated = lpu. Vij € &, and
homogeneous consumers with flexibility ratio y;/«; = 20 Vi.
Thus, any differences in the optimal demand for each flex-
ible consumer and the price charged at each node are due
to the network constraints. Fig. 4 presents the results for
this network-constrained case as a function of the impedance
distance from each node with a flexible consumer to the sub-
station. We note that not all the findings from the network-free
case are transferable to this problem. For example, prices are
not always lower in the centralized case, and thus some con-
sumers may be better off in the Stackelberg game. These
counter-intuitive results indicate that, although more tractable,
network-free formulations to price consumer flexibility may
fail to capture some important features of the underlying
distribution network, and economic losses may ensue.
Overall, it can be observed that the centralized formula-
tion favors consumers that are closer to the substation, while
the Stackelberg game seeks flexibility from nodes that are
further away due to the rent-seeking behavior of the aggre-
gator. However, because of the costs associated with power
losses and voltage drops, the flexibility demanded from a cer-
tain node depends on how much supply is being delivered
to the nodes located downstream to it. As a consequence, we
observe the variations of the curves in Fig. 4 as the impedance
distance is increased, although the decreasing trend in the
optimal demand is maintained. For example, node 4 has a
higher optimal demand than node 9, although it is at a larger
impedance distance from the substation. A closer look at the
network topology shows that node 4 is a leaf node, whereas
node 9 is in the main feeder and almost the entire grid lies
downstream to it. Fig. 5 shows the optimal demands for the
same case, but plotted as a function of the accumulated volt-
age drop from the substation to each node. The smoother curve
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Fig. 4. Centralized and Stackelberg solutions as a function of the impedance
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Fig. 5. Optimal demands as a function of the accumulated voltage drop due
to power flows from the substation to each node, Z(r,-jP,-j + x;Qij)-

observed indicates that the results are indeed dependent on the
overall power flows that reach each node to be delivered to
consumers downstream to them.

To further investigate this case from a system-level per-
spective, we analyze how the utility of the aggregator and
the aggregated utility of the consumers change as the ther-
mal limit becomes less strict. Fig. 6 presents these results for
the aggregator in the top figure, and for the aggregated con-
sumers in the bottom one. The bar plots show the difference in
utility between the Stackelberg and the centralized case. The
aggregator’s utility in the Stackelberg game is never below
what he earns in the centralized case, whereas the opposite
occurs for the sum of consumers’ utilities. These observations
corroborate the discussions in Section IV.

When the thermal limit surpasses Ifmd = 10p.u., the
Stackelberg game achieves an equilibrium in which thermal
limits are not binding. This means the aggregator cannot fur-
ther increase his utility by allowing consumers to increase
consumption. Thus, from this point forward, the Stackelberg
game solution remains unchanged even if the thermal limit
is further increased. However, social welfare can still be
increased by seeking flexibility from consumers in detriment
of the aggregator’s utility. With that, the demand level in
the centralized case keeps increasing as the thermal limit
is relaxed, leading to a decrease in the aggregator’s util-
ity and increase in the aggregated consumer utility until

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 30,2021 at 13:51:49 UTC from IEEE Xplore. Restrictions apply.



4056

T
|
401 —
1 e —— 15
I I
30t | Qe
< I =
s o F . .n“lllllllllllll 0 ]
== Centralized ! ! E)
10k Stackelberg | :
[ Difference | | -5
0 I I I I 1 I | I I I I
2 4 6 8 10 12 14 16 18 20

Centralized
Stackelberg
[ Difference

PR

)

T

I

)
Surs = 3w

2
Lea(p-u-)
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bars show the difference between these utilities in the Stackelberg and the
centralized case. The left-most (right-most) vertical dashed line indicates the
thermal limit at which the Stackelberg (centralized) solution ceases to have a
binding thermal limit.
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Fig. 7.  Sub-optimal social welfare ratio as thermal limit is relaxed. The
left-most (right-most) vertical dashed line indicates the thermal limit at which
the Stackelberg (centralized) solution ceases to have a binding thermal limit.

Ifme 4 = 13p.u., from which social welfare can no longer be
improved.

The sub-optimality of the social welfare at the Stackelberg
equilibrium for this case study is presented in Fig. 7, which
shows the ratio of this value and the optimal social wel-
fare from the centralized problem. As previously observed in
Fig. 6, the solutions of both problems are very close while
there exists binding thermal limits. However, as discussed in
Section IV, the social welfare in the Stackelberg equilibrium
cannot be higher than that achieved in the centralized case.
When thermal limits cease to be binding in the Stackelberg
problem, the sub-optimality ratio starts dropping due to the
continued increase of the social welfare in the centralized case,
until this case also achieves a solution without binding thermal
limits, stabilizing the sub-optimality ratio.

C. Constrained Case: Node-Level Analysis

When individual consumers are evaluated, we note that their
optimal demands are closely related to their location in the
network. To illustrate this effect, we compare the results for
two nodes which are at a similar impedance distance from the
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Fig. 8. Optimal demands for nodes 4 (top) and 9 (bottom) as thermal limit is
relaxed. The left-most (right-most) vertical dashed line indicates the thermal
limit at which the Stackelberg (centralized) solution ceases to have a binding
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Fig. 9. Comparison of terms that influence optimal demand for central-

ized (C) and Stackelberg (S) cases for nodes 4 (top) and 9 (bottom). The
left-most (right-most) vertical dashed line indicates the thermal limit at which
the Stackelberg (centralized) solution ceases to have a binding thermal limit.

substation, nodes 4 and 9, but whose positions in the network
relative to other nodes are distinct.

Fig. 8 shows the optimal demands for these nodes as the
thermal limit is relaxed. The system-level results showed
that the centralized formulation keeps increasing the overall
demand in the grid after Irzm + > 10p.u., while the Stackelberg
game ceases to supply at this moment. From the individual
optimal demands in Fig. 8, we note that node 4 benefits from
the increase in overall demand provided in the centralized case,
while node 9 observes a decrease in their optimal demand.

O
Lastly, we evaluate the voltage term 2Z(i,j)e73‘,- rijV; and

the current term 2 Z(i,j)e?’i Pijéj(‘) presented in Theorem 3 as
modifiers of the optimal demands in the network-constrained
case. Fig. 9 shows these terms individually for nodes 4 and
9, with the solid (dashed) lines corresponding to the volt-
age (current) term, and red (blue) referring to the centralized
(Stackelberg) case. We first observe that the term that relates
to the current constraint has a similar effect on the optimal
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demand at both nodes, being higher in the centralized case
due to the push for higher system-level demand, and decreas-
ing as the thermal limit is relaxed. This may be due to the fact
that the only line whose thermal limit becomes binding in this
network is the one connecting the substation to the first node
in the grid, and this congestion affects all nodes in a similar
way. On the other hand, the voltage-related term rises more
significantly for node 9, leading to lower optimal demand for
this node as compared to node 4. This can be explained by the
position of these nodes in the network. Since 4 is a leaf node,
its voltage has less influence in the overall supply distribution
in the network than node 9’s voltage, which is located on the
main feeder and has several nodes downstream.

VI. CONCLUSION

We proposed a network-constrained Stackelberg game
for a demand-side management problem. We showed how
the optimal demands of price-responsive consumers change
depending on their flexibility level and on their location
on the grid. Our analysis compared this framework with a
centralized approach, revealing that, although the aggregated
demand in the centralized case will never be below that of
the Stackelberg game, some individual consumers may benefit
from the game-theoretic set-up.

The current formulation focused on a scenario with one
aggregator only, and thus no market competition was present
in the distribution grid. Extending this formulation to consider
the presence of multiple aggregators who compete to supply to
consumers constitutes an interesting direction for future work.
Further, since demand uncertainty was not in the scope of this
paper, possible mismatches between the supply purchased in
the day-ahead market and the actual consumer demand were
not considered in the formulation. Thus, avenues for future
work also include modeling demand as a stochastic variable,
so that the aggregator must also participate in the real-time
market to settle supply-demand mismatches.

REFERENCES

[1] K. Spees and L. B. Lave, “Demand response and electricity market
efficiency,” Electricity J., vol. 20, no. 3, pp. 69-85, 2007.

[2] C.-L. Su and D. Kirschen, “Quantifying the effect of demand response
on electricity markets,” IEEE Trans. Power Syst., vol. 24, no. 3,
pp. 1199-1207, Aug. 2009.

[3] S. Gottwalt, J. Gérttner, H. Schmeck, and C. Weinhardt, “Modeling
and valuation of residential demand flexibility for renewable energy
integration,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2565-2574,
Nov. 2017.

[4] R. Poudineh and T. Jamasb, “Distributed generation, storage, demand
response and energy efficiency as alternatives to grid capacity enhance-
ment,” Energy Policy, vol. 67, pp. 222-231, Apr. 2014.

[5] W. Wang and N. Yu, “LMP decomposition with three-phase DCOPF for
distribution system,” in Proc. IEEE Innovat. Smart Grid Technol. Asia
(ISGT-Asia), Melbourne, VIC, Australia, 2016, pp. 1-8.

[6] R.Li, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing
for optimal electric vehicle charging management,” IEEE Trans. Power
Syst., vol. 29, no. 1, pp. 203-211, Jan. 2014.

[7]1 Y. Liu, J. Li, and L. Wu, “Distribution system restructuring: Distribution
LMP via unbalanced ACOPF,” IEEE Trans. Smart Grid, vol. 9, no. 5,
pp. 4038-4048, Sep. 2018.

[8] S. Hanif, T. Massier, H. B. Gooi, T. Hamacher, and T. Reindl, “Cost
optimal integration of flexible buildings in congested distribution grids,”
IEEE Trans. Power Syst., vol. 32, no. 3, pp. 2254-2266, May 2017.

4057

[9]1 R. K. Singh and S. K. Goswami, “Optimum allocation of distributed
generations based on nodal pricing for profit, loss reduction, and voltage
improvement including voltage rise issue,” Int. J. Elect. Power Energy
Syst., vol. 32, no. 6, pp. 637-644, 2010.

K. Alshehri, J. Liu, X. Chen, and T. Bagar, “A game-theoretic frame-
work for multiperiod-multicompany demand response management in
the smart grid,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3,
pp. 1019-1034, May 2021.

L. Jia and L. Tong, “Dynamic pricing and distributed energy manage-
ment for demand response,” IEEE Trans. Smart Grid, vol. 7, no. 2,
pp. 1128-1136, Mar. 2016.

M. Yu and S. H. Hong, “Supply—demand balancing for power man-
agement in smart grid: A Stackelberg game approach,” Appl. Energy,
vol. 164, pp. 702-710, Feb. 2016.

C. P. Mediwaththe and L. Blackhall, “Network-aware demand-side
management framework with a community energy storage system con-
sidering voltage constraints,” IEEE Trans. Power Syst., vol. 36, no. 2,
pp. 1229-1238, Mar. 2021.

S. Gupta, V. Kekatos, and W. Saad, “Optimal real-time coordination of
energy storage units as a voltage-constrained game,” IEEE Trans. Smart
Grid, vol. 10, no. 4, pp. 3883-3894, Jul. 2019.

L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation of
optimal power flow in radial networks,” IEEE Trans. Autom. Control,
vol. 60, no. 1, pp. 72-87, Jan. 2015.

F. Meng and B. H. Chowdhury, “Distribution LMP-based economic
operation for future smart grid,” in Proc. IEEE Power Energy Conf.
Iilinois, Urbana, IL, USA, 2011, pp. 1-5.

P. M. Sotkiewicz and J. M. Vignolo, “Nodal pricing for distribution
networks: Efficient pricing for efficiency enhancing DG,” IEEE Trans.
Power Syst., vol. 21, no. 2, pp. 1013-1014, May 2006.

S. H. Low, “Convex relaxation of optimal power flow—Part I:
Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1,
no. 1, pp. 15-27, Mar. 2014.

S. H. Low, “Convex relaxation of optimal power flow—Part II:
Exactness,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177-189,
Jun. 2014.

K. Khezeli and E. Bitar, “Risk-sensitive learning and pricing for demand
response,” [EEE Trans. Smart Grid, vol. 9, no. 6, pp. 6000-6007,
Nov. 2018.

E. Y. Bitar, R. Rajagopal, P. P. Khargonekar, K. Poolla, and P. Varaiya,
“Bringing wind energy to market,” IEEE Trans. Power Syst., vol. 27,
no. 3, pp. 1225-1235, Aug. 2012.

D. McConnell, T. Forcey, and M. Sandiford, “Estimating the value of
electricity storage in an energy-only wholesale market,” Appl. Energy,
vol. 159, pp. 422432, Dec. 2015.

F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness and stability,”
J. Oper. Res. Soc., vol. 49, no. 3, pp. 237-252, 1998.

N. Ashraf, S. Javaid, and M. Lestas, “Logarithmic utilities for aggregator
based demand response,” in Proc. IEEE Int. Conf. Commun. Control
Comput. Technol. Smart Grids (SmartGridComm), Aalborg, Denmark,
2018, pp. 1-7.

S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar, “Dependable
demand response management in the smart grid: A Stackelberg game
approach,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 120-132,
Mar. 2013.

V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage regu-
lation algorithms for multiphase power distribution grids,” IEEE Trans.
Power Syst., vol. 31, no. 5, pp. 3913-3923, Sep. 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Nayara Aguiar (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical engineering
from the Federal University of Campina Grande,
Brazil, in 2016, and the M.S. degree in elec-
trical engineering from the University of Notre
Dame in 2018, where she is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering. Her current research interests include
design and analysis of electricity markets in the pres-
ence of intermittent renewable energy generation,
and demand response. She was a recipient of the
2019 Patrick and Jana Eilers Graduate Student Fellowship for Energy Related
Research Electrical Engineering from the Center for Sustainable Energy at
Notre Dame.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 30,2021 at 13:51:49 UTC from IEEE Xplore. Restrictions apply.



4058

Anamika Dubey (Member, IEEE) received the
M.S.E and Ph.D. degrees in electrical and computer
engineering from the University of Texas at Austin
in 2012 and 2015, respectively. She is currently an
Assistant Professor with the School of Electrical
Engineering and Computer Science, Washington
State University, Pullman, WA, USA. Her research
is focused on the operation and planning of modern
power distribution systems characterized by dis-
tributed energy resources and responsive loads for
improved efficiency and resilience. She is a recipi-

ent of the National Science Foundation CAREER Award. She is the current a
Secretary of IEEE Distribution Systems Analysis Subcommittee and IEEE
University Education Subcommittee, and serves as a PES Chapter Chair
for the IEEE Palouse Section. She serves as the Associate Editor for
IEEE TRANSACTIONS ON POWER SYSTEMS, IEEE POWER ENGINEERING
LETTERS, and IEEE ACCESS.

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 5, SEPTEMBER 2021

Vijay Gupta (Senior Member, IEEE) received
the B.Tech. degree in electrical engineering from
Indian Institute of Technology Delhi, Delhi, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the California Institute of Technology. He
is a Professor with the Department of Electrical
Engineering, University of Notre Dame, having
joined the Faculty in January 2008. Prior to joining
Notre Dame, he also served as a Research Associate
with the Institute for Systems Research, University
of Maryland, College Park. His research and teach-

ing interests are broadly in distributed decision making. He received the 2018
Antonio Ruberti Award from IEEE Control Systems Society, the 2013 Donald
P. Eckman Award from the American Automatic Control Council, and an 2009
National Science Foundation CAREER Award.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 30,2021 at 13:51:49 UTC from |IEEE Xplore. Restrictions apply.



