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Abstract

We address the problem of unsupervised localization
of task-relevant actions (key-steps) and feature learning
in instructional videos using both visual and language
instructions. Our key observation is that the sequences of
visual and linguistic key-steps are weakly aligned: there
is an ordered one-to-one correspondence between most
visual and language key-steps, while some key-steps in
one modality are absent in the other. To recover the
two sequences, we develop an ordered prototype learning
module, which extracts visual and linguistic prototypes
representing key-steps. To find weak alignment and perform
feature learning, we develop a differentiable weak sequence
alignment (DWSA) method that finds ordered one-to-one
matching between sequences while allowing some items in
a sequence to stay unmatched. We develop an efficient for-
ward and backward algorithm for computing the alignment
and the loss derivative with respect to parameters of visual
and language feature learning modules. By experiments on
two instructional video datasets, we show that our method
significantly improves the state of the art.

1. Introduction

Learning to perform procedural tasks by watching visual
demonstrations or reading manuals is one of the complex
capabilities of humans. Bringing this capability to machines
allows us to design intelligent agents that autonomously
learn to perform tasks or help humans/agents to achieve
complex tasks and enables building massive instructional
knowledge bases for education and autonomy. The explo-
sion of data, on the other hand, has provided invaluable
resources for automatic procedural task learning: there exist
tens or hundreds of thousands of instructional videos on the
web about how to cook different recipes, how to assemble or
repair different devices, etc. [1, 49, 50, 32, 17,45, 41, 25].

Given instructional videos of one or multiple tasks,
the goal of procedure learning is to localize the key-steps
(actions required to accomplish a task) in videos. Over
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Figure 1: Key-steps in visual data and narrations for three videos from
the task ‘change tire’. Each color represents one key-step or background.

the past several years, we have seen great advances on
different aspects of learning from instructions [42, 1, 40,

, 30, 36, 12, 34, 11, 31]. The majority of works address
learning from weakly annotated videos [22, 3, 37, 38, 9,

, 27,7, 28], i.e., videos with ground-truth lists/sequences
of key-steps or ground-truth summaries [47]. On the
other hand, understanding instructional videos at the scale
necessary to build large knowledge bases or assistive agents
that respond to many instructions, requires unsupervised
learning that does not require costly video annotations. This
has motivated several works on unsupervised procedure
learning [42, 40, 17,26, 19, 16,51, 1, 18, 15], which mostly
rely on learning from visual data alone.

Learning from Visual and Language Instructions. In-
structional videos are often accompanied with narrations,
where visual demonstrations of many steps have language
descriptions, see Figure 1. Indeed, these two modalities
contain rich information that can be leveraged to more
effectively discover key-steps. However, there are multiple
challenges that we need to address to leverage this shared
information. First, while the majority of key-steps appear
in both modalities, some may only appear in visual data or
narrations. For example, ‘read manual’ appears in narration
1 but does not occur in the video, and ‘screw wheel’ occurs
in video 1 while being absent in the narration. Second,
the two modalities are not necessarily aligned: for a visual
demonstration of a key-step, the associated narration could
happen before, during or after performing it (e.g., one may
review one or a few steps using language before or after
demonstrating them). Third, visual data and narrations



often contain substantial amount of background not related
to the task, which do not necessarily occur at the same time'
(see grey temporal regions in Figure 1). While few works
have addressed unsupervised learning from both modalities
[1, 42, 18], they rely on narration as the main modality or
assume that visual and language descriptions have close
temporal alignment. This limits their applicability to
general cases where visual data and narrations are unaligned
or when some key-steps are missing in one modality.

Paper Contributions. We address task-relevant action
(key-step) localization and multimodal feature learning
in instructional videos using visual and language data.
Our key observation is that the ‘sequences’ of visual and
linguistic key-steps are weakly aligned. More specifically,
there is a one-to-one correspondence between most visual
and language key-steps, while some key-steps in one
modality are absent in the other. Moreover, the ordering
of the common key-steps in two modalities are similar.
Thus, instead of assuming temporal alignment of key-steps
in language and visual data, we assume weak alignment of
key-step sequences once recovered, which allows for some
steps to appear in only one modality and for the visual and
language demonstration of a key-step to be temporally far.
To recover the sequences, we develop an ordered proto-
type learning module, which extracts visual and linguistic
prototypes representing key-steps. On the other hand,
to find weak alignment and perform feature learning, we
develop a differentiable weak sequence alignment (DWSA)
method that finds ordered one-to-one matching between
sequences while allowing some items in a sequence to stay
unmatched. We derive an efficient dynamic programming-
based algorithm for computing the loss and alignment as
well as an efficient backpropagation method for computing
the gradient with respect to parameters of visual and
language feature learning modules. By experiments on
two instructional video datasets, we show that our method
improves the state of the art by about 4.7% in F1 score.

2. Related Works

Procedure Learning. Existing works on learning from
instructional videos can be divided into three categories.
The first group of works assumes that annotations of key-
steps in videos are given and the goal is to learn how to
segment new videos [49] or anticipate future key-steps [41].
To reduce the costly and unscalable annotation requirement,
the second group of works on weakly-supervised learning
assumes that each video is accompanied with an ordered or
unordered list of its key-steps, and the goals are to localize
and learn models of key-steps in videos [22, 3, 37, 38, 9,
]. However, gathering error-free list of key-
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'One might demonstrate two consecutive key-steps, while expressing
opinions or advertising products in between narrations of the key-steps.

steps requires annotators to watch each video or manual
intervention on noisy video meta data.

Unsupervised learning, which is the subject of our
work, removes the annotation requirement by exploiting
the common structure of videos to discover and localize
key-steps. Many unsupervised methods have focused on
learning from either narrations or visual demonstrations
[40, 17, 26, 16, 12, 19, 14]. Hence, they cannot leverage
the rich complementary information of the two modalities.
On the other hand, [1, 30, 48, 42, 18] have addressed
learning from multi-modal instructional data. However,
they assume that each key-step appears in both modalities,
rely on having (close) temporal alignment of a key-step in
the two modalities, or mainly use narration to discover key-
steps and then localize the discovered steps in visual data.

Sequence Alignment. Dynamic Time Warping (DTW) is
a classic algorithm to measure the distance between two
temporal sequences [39]. Cuturi and Blondel [8] extend
DTW to a differentiable loss (soft-DTW) that enables
training predictive and generative models for time series.
Chang et al. [7] extend soft-DTW to a discriminative
setting for weakly-supervised action segmentation. Cao
et al. [5] propose an ordered temporal alignment module,
using a variant of DTW, for few-shot video classification.
However, all of the above works are based on one-to-
many matchings and assume that each item in one sequence
has a match in the other sequence. While [!] develops
a Frank-Wolfe-based optimization algorithm for ordered
alignment of multiple sequences, it does not allow for
feature learning and is costly and initialization-dependent.
[10] proposes a differentiable neural network for multiple
sequence alignment, but is supervised and requires ground-
truth alignments, which are not available in our setting.
To the best of our knowledge, our DWSA is the first
differentiable method that measures the cost of one-to-one
alignment between sequences, allows some items in each
sequence to be unmatched, and enables feature learning
without access to ground-truth alignments. Our DWSA is
to some extent similar to identifying regions of similarity
among different genes [2].

Self-Supervised Representation Learning. Learning self-
supervised video representations has become increasingly
popular, due to the high cost of large-scale video annota-
tions [33, 43, 6, 13, 35]. Our work is more related to self-
supervised multimodal representation learning [32, 20, 44,
, 31]. Some works assume that video clips and narrations
are aligned [32] or close in time [31], and use such cor-
respondences to train joint video-text embedding models.
This could be limiting as demonstrations and narrations
could be unaligned. Hu et al. [20] proposes a multi-
modal clustering method to learn audio-visual embeddings,
but the learned representations are fine-grained object-level
representations and require aligned audio-image pairs.



3. Learning to Segment Actions from Instruc-
tional Videos with Narrations

In this section, we develop a framework for unsupervised
localization of key-steps and segmentation of instructional
videos using visual and language data. It is worth
mentioning that our framework can also handle using only
visual data or narrations, as we show in the experiments.

3.1. Problem Statement
Assume we have N narrated videos from the same task.
We denote the visual and language features of video n by

XY = (m};717w272,...), Xl = (wﬁlyl,wfw,...), (1)

n

where @, ; is the feature vector of segment ¢ and :cﬁm»
is the feature of verb-phrase ¢ (notice that the number of
segments and verb-phrases in a video could be different).
Given that each segment or verb-phrase occurs during a
time interval, we denote the middle time instant of the i-
th segment and verb-phrase interval in the n-th video by
ty i and tﬁm, respectively. Our goal is to assign each video
frame and verb-phrase to a key-step or background, hence,
recover segmentation of videos and find frames and verb-

phrases across videos that belong to the same key-step.

3.2. Proposed Framework

We model key-steps in visual data using visual pro-
totypes {c‘,;}kK:“1 and model narration key-steps using
linguistic prototypes {ck} . . The number of visual and
linguistic prototypes K, and K are hyperparameters (in
practice, we set K; > K,, since narration often contains
more key-step descriptions). Our goals are to jointly learn
the visual and linguistic prototypes, find their associations
that result in recovering segmentations of videos, and learn
representations that bring matched visual and linguistic
prototypes closer. To do so, we propose a framework
that consists of the following components, as shown in
Figure 2: 1) a narration processing module that discovers
verb-phrases from narrations and removes irrelevant ones;
2) visual-text’ feature extraction and refinement; 3) two
soft ordered prototype learning (SOPL) modules that learn
visual and linguistic prototypes; 4) a differentiable weak
sequence alignment (DWSA) loss that aligns the sequences
of prototypes of two modalities and enables self-supervised
feature learning.

3.2.1 Narration Processing

We use the subtitles automatically generated from YouTube
to extract verb phrases. Following the pipeline in [l 1],
we first adopt T-BRNN [46] to punctuate the subtitles.
Next, we perform coreference resolution to resolve the

2We interchangeably use textual and linguistic in this paper.

Extracted verb phrases
assemble your instrument
remove the reed
put the thin end in your mouth
hold the lower section
grease the cork
twist the bell onto the lower section
hold the upper section in your other hand
twist the two sections
twist the barrel onto the upper joint
rest the bell in your leg
attach the mouthpiece to the barrel
align the open flat side with a register key
put the ligature
slip the reed with the flat side
slide down the ligature
center the reed on the mouthpiece
center the reed with only a hair line
touch the tip
tighten the screws until snug
ask your teacher for help

key-steps in groundtruth
put case facing up
open case
put reed in mouth

grease corks
put on bell

join lower joint and upper joint
line up bridge key

put mouthpiece on barrel
put ligature on mouthpiece

put reed on mouthpiece

tighten ligature screws

Table 1: Extracted verb-phrases from a video of ‘assemble clarinet’.
Verb-phrases and steps in bold have similar semantics.

pronouns via SpaCy’. We then run the dependency parser
to discover verb phrases in the narrations. Unlike [!]
that only keeps verb+dobj pairs, the format of our verb
phrases is verb+(prt)+dobj+(prep+pobj).* We keep more
components because they are important to distinguish one
key-step from another. For instance, the two key-steps
of ‘pass tie in front of knot’ and ‘pass tie through knot’
in the task of ‘tie a tie’ lead to the same verb+dobj pair
‘pass tie’, which is undesired. Finally, we remove some
irrelevant verb-phrases that do not correspond to physical
actions in videos by using their concreteness scores [4, 23].
The concreteness of a phrase is the highest concreteness of
its words. We remove phrases with score lower than 3, e.g.,
‘keep interruptions to a minimum’ and ‘avoid this problem’.
We also remove phrases that only contain stop words. Table
1 shows an example of extracted verb-phrases along with
ground-truth key-steps. Notice that verb-phrases capture
the majority of key-steps while still containing some noisy
information and missing some key-steps.

3.2.2 Visual+Text Feature Extraction and Learning

We extract unsupervised features from visual data and
narrations and refine them using our method. We use the
unsupervised pretrained joint visual-text embedding model’
in [31] to extract embeddings: «; ; is the output of the
13D network and @', ; is the output of two fully-connected
layers after the word2vec model, pretrained on Howto100M
dataset [32]. To learn more discriminative features where
visual and narration features of the same key-step are close,

we use a feature learning module to refine the unsupervised

3https://spacy.io

4 prt: particle; dobj: direct object; prep: preposition; pobj: object of
preposition. The components in the parenthesis are optional.

5This model is pretrained in an unsupervised manner without access
to any ground-truth annotations. We keep this model fixed, i.e., do not
fine-tune it, in our experiments.
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Figure 2: Overview of our framework for unsupervised learning from instructional videos and their narrations. The dashed arrows in the plot of prototypes
denote their learned ordering and black arrows represent the alignment found by DWSA, which minimizes distances of aligned pairs for feature learning.

features of each modality. Let fo,(-) and fg,(:) denote,
respectively, the feature learning functions for visual data
and narrations, with parameters 6, and ©;. We denote the
transformed visual and language features by

yz,i £ f®v (wz,i)v yiz,i £ f@)l (miz,i)' (2)

In the experiments, we discuss the exact architectures used
for feature learning.

3.2.3 Soft Ordered Prototype Learning

To recover visual and linguistic prototypes, we use the
following observations. First, given that videos come from
the same task, the sequences of key-steps in different videos
are similar, e.g., have a small edit distance from each other
(see Figure 1). Moreover, the relative length of each key-
step with respect to the video length is similar across videos
(several works on weakly-supervised learning also rely on
such length consistency [38, 27, 28]). Also, nearby frames
or verb-phrases belong to the same key-step or background.

For simplicity of notation and removing repetitive de-
scriptions, we drop the superscript/subscript v and [. We
associate each feature prototype c, representing a key-step,
with a time-stamp prototype 7 to enforce that nearby time-
stamps in each video and similar time-stamps across videos
(when lengths of all videos are normalized to be the same)
should belong to the same key-step. To do so, we optimize
the modified k-means objective function

min ZZ —Blog (Ze_d’“k/ﬁ),
i k

ter, T} <
3)

tn,i 2

T, ~ ™

i 2 [|y,,, — ex||* + 7 (
where the term inside the second sum corresponds to the
soft-min operation(’ with parameter § > 0, which allows
us to learn features by backpropagating the gradient of
our DWSA loss function. Also, T}, denotes the length of
the video n and v > 0 is a hyperparameter. Algorithm
1 shows the steps of the soft ordered prototype learning

J=-Blogy, e r/B.

0Soft-min is defined as ming{a1,az,..

Algorithm 1: Soft Ordered Prototype Learning (SOPL)

Input : {(yn,i> t7LYi)}7Lvi7 K7 ﬁ 2 0
1 Initialize prototypes, {cx, Tk } 1
2 foriter < 1top =5do
3 Compute {d,;x } via (3) and soft assignments
Smik = ;W(*dmk/ﬁ)
251 exp(—dnij/B)
4 Update prototypes
>on i SnikYUn,i> tn,i/Tn]
2on 2 Snik
Output: Feature and time prototypes {c, 7k } 1

lek, k] =

to solve (3) via gradient descent, by iteratively computing
soft assignments and updating feature/time prototypes. To
remove background segments, we use a background ratio
parameter b € [0, 1], similar to [26]. We keep 1 — b fraction
of the segments within each cluster that are closest to the
prototype and consider other segments as background.

Remark 1 Based on Algorithm I, SOPL can be viewed as
a network which receives initial prototypes as inputs and
whose each layer outputs the updated prototypes.” This
allows integration of SOPL with our proposed DWSA loss.

The output of the algorithm provides ordering of feature
prototypes {cj} based on their learned time prototypes
{rr}. Let OV and O! denote the ordered visual and
linguistic prototypes, respectively,

v A v v v v

0" = (¢ ,ci,,...), where 77 <717 <..., @
1ol l l

O = (cj,,¢5,,---), Where 7, <7 <.,

which correspond to sequences of visual and linguistic key-
steps learned from videos. Given that some key-steps may
appear in only one modality, we develop a differentiable
weak sequence alignment (DWSA) method to find the best
ordered one-to-one matching between OV and O! while
allowing some prototypes in a modality to stay unmatched.

"Note that s is computed from the pairwise distance between inputs and
prototypes and it is not a trainable parameter.
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Figure 3: Tllustration of our dynamic programming-based method for
weak sequence alignment.

Remark 2 The SOPL differs from [26] as we learn the
feature and time prototypes simultaneously in a differen-
tiable way for multi-modal feature learning, while [20]
first applies kmeans on visual embeddings and then sorts
clusters in temporal order based on their time-stamps.

3.2.4 Diff. Weak Sequence Alignment (DWSA)

Each of the ordered visual and linguistic prototype se-
quences (OV and O') represents the common sequence of
key-steps in each modality. However, these sequences are
not necessarily aligned, as some steps in one modality might
be missing in the other modality (see Figure 1). Thus, our
goal is to find an ordered correspondence between OV and
O! while allowing some prototypes in each sequence to
be unmatched. More specifically, if item ¢ in the visual
sequence is aligned with item 7 in the linguistic sequence,
then item ¢ 4+ 1 can be associated with either items after j
or with empty. To do so, we develop a differentiable weak
sequence alignment (DWSA) loss between ordered visual
and linguistic prototypes and propose to solve

min DWSA (0", 0, 4(-,-)), 6))
0,,9
over the parameters of the visual and language feature
learning modules. Here, ¢(-,-) denotes the metric used for
computing distances between items of the two sequences.
In the paper, we use the cosine dissimilarity between visual
and linguistic prototypes as distance, i.e.,

v el
ety = 1— ol ©)
7 el

After solving (5) (see the next section for details), we use
the learned prototypes from SOPL and assign each video
segment to the closest learned visual prototype to obtain
segmentation of videos into key-steps (similarly, we assign
each verb-phrase to the closest linguistic prototype). Given
that our method finds correspondences between visual and
linguistic prototypes, we can also find all segments and
verb-phrases that are clustered together.

4. Sequence Alignment via DWSA

We develop a differentiable weak sequence alignment
method that i) finds a one-to-one ordered matching between
two sequences while allowing some items in a sequence to
be unmatched; ii) enables feature learning. We motivate

Algorithm 2: Forward Propagation for DWSA
input :Cost matrix A; soft-min parameter 8 > 0

1 dij 4 01,5, € {1,2,...,211/—"-1}

2 fori < 2togdo

3 for j + 1to2q¢ +1do

4 if j is odd then

5 ‘ diyj — 52',3' +min5{di,1,1,...,di,1,j}

6 else

7 ‘ di,]‘ (—6i7j +min3{di_171,...,di_17j_1}

8 L« mil’lﬂ{qu, . 7dq,2q’+1}
output: DWSA Loss = £

the algorithm using a toy example of aligning symbolic
sequences and then generalize it to arbitrary sequences.

Assume we have two symbolic sequences
O = (a,¢,d,e,h,f) and O = (a,b,c,d, f,g). Our
goal is to find the best one-to-one alignment between two
sequences that respects their orderings. This ideal ordering
is shown in Figure 3 (right), where a’s in two sequences
are matched, b in sequence 2 is matched with empty &,
c in two sequences are matched, and so on. To achieve
this alignment, first, we take one of the sequences (here,
') and expand it by inserting empty before and after each
symbol, O’ = (&,a,9,b,9,¢,9,d,9, f,&,9,9). We
compute a pairwise matching cost matrix, shown in Figure
3 (left), as A (O, O') = [;,;] whose (4, j)-th entry denoted
by d; ; is the cost of aligning item ¢ in O with item j in
O’. In our toy example, we set d; ; = —1 for matching
the same symbols, d; ; = 0 for matching a symbol with
empty and J; ; = +1 for matching two distinct non-empty
symbols. This means we prefer to align same symbols (cost
of -1) over aligning a symbol with empty (cost of 0) over
aligning two distinct symbols (cost of +1).

Our goal is to find a valid alignment path with minimum
cost according to A that satisfies the ordered one-to-one
alignment: it can start from any entry in the first row
of A and keeps going downward ({) or right-downward
(\0). More specifically, if the current alignment position
is at (4,4) and j is odd (corresponding to empty), the next
alignment position can be (i + 1, j') for any j’ > j (orange
arrows in Fig. 3). This ensures that if a symbol of O
is matched with empty in O’, the next symbol of O can
be paired with empty or the next symbol of @’. On the
other hand, if the current alignment position is at (¢, 7) and
7 is even (corresponding to symbols), the next alignment
position can be (¢ + 1, ') for any j' > j (green arrows in
Fig. 3). This ensures that when two symbols in O and O’
are matched, the next symbol in O can be paired with either
empty or the next symbol in (', hence, preserving one-to-
one correspondence.

Therefore, to find the minimum cost valid alignment, we
use dynamic programming: we calculate a cumulative cost



matrix D = [d; ;|, whose first row is initialized by d; ; =
d1,; and its (4, j)-th entry is computed as

p {5i,j+min5{di_l,l,...,di_l,j},jisodd
ij =

sdi—1,j—1},] is even.

. (N
57;,]' +m1n5 {di_1’1, .
After computing D, the minimum value in the last row of
D corresponds to the minimum alignment cost. We obtain
the optimal alignment path by starting from this minimum
entry location and by backtracking (see the supplementary
materials for more details). Algorithm 2 shows the steps of
the dynamic programming solution.
For the general case where we have two sequences
O = (o1,...,04) and 0" = (04, ..., 0,) of vectors, we
construct the matrix of pairwise matching cost A(O, O') as

o - £(0;,0%) ,j: even
A 0,0l A | 8 8, it ’ 8 A »O5) 5
( ) [6 /]Z, “ ] 78 ,j: odd,

®)
where /(-,-) is the cosine dissimilarity (other distance
metrics could also be used) defined in (6) and J. is a
predefined constant measuring the cost of matching with
empty. In the experiments, we show that given the ability to
learn features, our results are robust to J,.

Remark 3 Notice we use a softmax function on each row of
the distance matrix in (8) to discriminate between good and
bad matchings and, more importantly, to avoid the trivial
solution of collapsing all features to the same vector.

Computing DWSA Gradient. = When sequences are
functions of learnable parameters, not only we can find the
best alignment, but also learn features that lend themselves
to better alignment. Indeed, this is the case in our setting,
where the visual and linguistic sequences (OV and O')
depend on parameters of the feature learning modules (©,,
and ©;). Thus, to update ©,,, we need to compute

00
00,

which requires differentiating the loss w.r.t. O (similarly
for ©;). As we show in the supplementary materials,
differentiation can be efficiently computed by defining
intermediate variables g; ; and recursively updating them
starting from the last row and column of A. Algorithm 3
shows the recursion for computing the gradient w.r.t. O
(once computed, the gradient w.r.t. ©, is given by (9)).

T
VevDWSA(0,0’):( )VODWSA(O,O’), ©)

Computational Complexity. The complexity of each for-
ward and backward pass in our method is O(gq’). This can
be seen from Algorithm 2, where we scan over ¢ rows and
2¢' 4+ 1 columns of the cost matrix. Notice that computing
d; ; has O(1) cost as we can reuse the minimum from
the previous iteration, i.e., ming{d;_11,...,di—1,;} =
ming{ming{di_m, ey di—l,j—1}7 di—l,j}- S1m11arly, in
Algorithm 3, the precomputed sum values can be reused in
Lines 5 and 7.

Algorithm 3: Backward Propagation for DWSA

input : Matching cost A € R?*2¢'+1; Cumulative cost
D; soft-min parameter 3 > 0

—dq,i /B .
s g d € (L2 4 1)
r=1

1 Ggq,5 <

2 fori < q—1to1do

3 for j «+ 2¢' +1to 1do

4 if j is odd then

s | gig < s Ginrpel T Ga b= n)/8
6 else

7 ‘ Gij < 2 Git1,relTdiThitLr=0i1,n)/8
8 SetG = [g,;,j]

output: VoDWSA(O,0’) = (%@v@'))TG

5. Experiments

5.1. Experimental setup

Datasets. We evaluate our proposed method on two
instructional video datasets: ProceL [17] and CrossTask
[50]. ProceL consists of 47.3 hours of videos from 12 tasks,
where each task has about 60 videos. CrossTask has 213
hours of footage from 2,750 videos from 18 primary tasks.®
In both datasets, each video has narrations and annotations
of key-steps. We cannot use COIN [45] as it lacks narrations
or Howto100M [32] as it lacks key-step annotations.

Evaluation metrics. We use the framewise F1 score as
the primary metric and also report the framewise recall
and precision. Similar to prior works [, 26, 17], we
run the Hungarian algorithm to find a global one-to-one
matching between steps in the ground-truth and predictions.
Recall is the ratio between the number of correctly predicted
frames and number of frames with key-steps in ground-
truth. Precision is the ratio between the number of correctly
predicted frames and number of frames predicted as key-
steps. F1 score is the harmonic mean of precision and recall.
To better demonstrate the undesired effect of including
background on the evaluation metric, we also compute the
mean-over-frames (MoF) [26], which is the percentage of
frames for which the predictions, including background, are
correct. Additionally, similar to prior works [1, 50, 18],
we compute the step recall. Here, one assigns a single
frame to each predicted step in a video and measures the
ratio between the number of correct predictions (a predicted
frame is correct when it falls into the correct ground-truth
time interval) and the number of ground-truth key-steps.

Baselines. We compare our method with the following
unsupervised baselines: Uniform, which distributes key-
step assignments uniformly over all segments in each video;
Alayrac et al. [1], which uses narrations and visual data;

8CrossTask also consists of 65 secondary tasks, whose key-steps are
not annotated, hence, we cannot use them in our experiments.



ProceL. CrossTask
F1 (%) Recall (%)  Precision (%) MoF (%) F1 (%) Recall (%)  Precision (%) MoF (%)
Uniform 10.28 9.36 12.41 48.20 9.03 9.75 8.69 55.88
Alayrac et al. [1] 5.54 3.73 12.25 55.77 4.46 3.43 6.80 64.18
Kukleva et al. [26] 16.39 30.19 11.69 12.04 15.27 35.90 9.82 13.95
Elhamifar et al. [16] 14.00 26.70 9.49 5.61 16.30 41.60 10.14 13.72
Fried et al. [18] - - - - - 28.80 - 31.80
Ours 21.07+0.25 31.78+0.37 16.51+£0.09  25.79+0.22 | 21.00+0.09 35.464+0.14  15.21+0.07  40.9940.07

Table 2: Performance comparison on ProceL and CrossTask. We report framewise F1, recall, precision and MoF averaged over tasks.

<

.§ — g <] [ = Z 8 - =S
SE el 5805 SSS20E33%2 3386555588585 S|4
Weakly sup. Spec?ﬁc[ 1 132 176 193 193 9.7 126 304 160 45 190 29.0 9.1 29.1 145 229 29.0 329 73 |18.6
Sharing [50] 13.3 180 234 231 169 165 30.7 21.6 4.6 195 353 100 32.3 138 29.5 37.6 43.0 133 (224
Uniform 4.2 7.1 6.4 73 174 7.1 142 98 3.1 107 221 55 9.5 7.5 9.2 9.2 195 5.1 | 9.7
Alayrac etal. [1] 156 106 75 142 93 11.8 173 131 64 129 272 92 157 8.6 16.3 13.0 232 74 |133
Unsup Kuklevaetal. [26] | 12.3 13.1 139 172 148 119 132 101 7.6 162 241 63 17.0 11.1 16.1 155 181 115|139
) Elhamifar etal. [16]] 7.5 5.1 9.5 5.8 5.1 224 249 53 82 96 68 11.3 98 158 4.6 6.6 11.5 87 [99
Fried et al. [18] - - - - - - - - - - - - - - - - - - |10.6
Ours 185 163 259 224 178 173 16.8 158 143 11.8 325 106 243 103 28.6 274 332 11.7 |19.8

Table 3: Step recall (%) on CrossTask.

Kukleva et al. [26], Elhamifar et al. [16] and Fried et
al. [18], which use visual data (the unsupervised version
of [18] uses only visual data and its weakly-supervised
version uses both modalities). In the presented results in
the main paper, similar to [26, 18], we set the number of
visual clusters K" to be the number of key-steps in the
ground-truth. Given that [1, 16] measure performance as
a function of the number of key-step K € {7,10,12,15}
in predictions, we report their best performance across K’s.
In the supplementary materials, we also report results as a
function of K, which give similar conclusions.

5.2. Implementation details

Data preprocessing. As discussed in Section 3.2.2, we use
the unsupervised pretrained visual-text embedding model in
[31] to extract visual and textual features. To do so, similar
to [31], we segment each video into intervals of 32 frames
sampled at 10 fps (3.2 seconds) with 224 x224 resolution.
For each verb-phrase in narrations, we lowercase, perform
tokenization and remove stop words as preprocessing. The
feature dimension for both modalities is 512.

Feature learning. For visual and textual feature extrac-
tors, discussed in Section 3.2.2, we use a linear layer
followed by normalization into unit length vectors, y;, ;
norm(W*z}, ; +b*), with x € {v, [}, where ©, = {W",b"}
and ©, = {W' b'} are trainable parameters. In our
experiments, more complex models did not improve results.

Hyperparameters. For feature learning, we train the
feature extractors using Adam optimizer [24] with learning
rate of 5e—4, weight decay of 0.02, and batch size of
30 videos for 30 epochs. On both datasets, the softmin
parameter 3 in SOPL and DWSA is set to 0.001 and the
cost of alignment with empty is set to 6, = 1. We set (y =

‘We compare our unsupervised approach with unsupervised baselines and the weakly-supervised methods in [50].

kmeans (visual)
== SOPL (visual)
== SOPL+s0ft-DTW
== SOPL+DWSA (ours)
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Figure 4: Ablation studies (left) and effect of timestamp weights ~y
(right). The bars show standard deviations.

4,b = 0.2) on ProceL and (v = 1,b = 0.4) on CrossTask.
We set the number of textual prototypes to be the number of
visual prototypes plus 10. We repeat every experiment 20
times for different initializations of the visual and textual
prototypes and report the mean and standard deviation. We
show the robustness of our method to the hyperparameters
in the next section and in the supplementary materials.

5.3. Experimental results

Table 2 shows the average scores of different methods on
ProceL and CrossTask datasets. Notice that [1] has lower
framewise precision, recall and F1 than other methods
but much higher MoF. This comes from the fact that it
only predicts a single frame instead of intervals, which
reduces the first three metrics (later, we also show the step
recall, which only considers a single frame prediction).
Having a high MoF is due to the fact that a large portion
of each video is background, hence, predicting almost
all frames as background achieves a high score (this can
also be seen from the results of Uniform). While [26]
does better than [16] on ProceL, the trend is opposite
on CrossTask. This comes from the fact that [16] trains
a deep network in a self-supervised fashion for key-step
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Figure 5: Left: Matched visual and textual prototypes before and after feature learning. For visualization, we use the video frame and phrase closest to
the prototypes. Correct matchings are marked with green boxes. Right: Localization results for a video from the task ‘perform cpr’.

localization, which benefits from the larger number of
videos in CrossTask, obtaining the best recall on the dataset.
Notice that our method performs significantly better than
other algorithms, improving the F1 score by about 4.7%
on both datasets. This verifies the importance of properly
leveraging narrations for more effective key-step discovery.

Step detection performance. Table 3 shows the step recall
of different tasks on CrossTask. We additionally compare
our method with two weakly-supervised approaches in [50],
Specific and Sharing’, which use visual and narration data.
Notice that our method outperforms unsupervised methods,
obtaining 19.8% recall compared to 13.9% by [26]. Also,
the performance of the weakly-supervised method, which
could be considered as an upper bound on unsupervised
methods, is close to ours. Interestingly, on 13 out of 18
tasks, our method achieves a higher step recall than other
unsupervised methods and on 6 out of 18 tasks, performs
better than weakly-supervised methods.

Effect of different components. Figure 4 (left) shows
the effect of different components of our method. Kmeans
and SOPL only use visual data, where the former does not
enforce ordering consistency of prototypes (v = 0), while
the latter does. Notice that enforcing order consistency has
a significant effect, improving performance by 4.3% and
1.2% on ProceLL and CrossTask. SOPL+soft-DTW, which
uses both visual and text data and performs feature learning
performs worse than SOPL. This comes from the fact that
poor matching between prototypes in different modalities
obtained by soft-DTW adversely affects feature learning
and performance. On the other hand, using DWSA boosts
the performance of SOPL by about 1% thanks to obtaining
better prototype matchings. Figure 4 (right) shows the effect
of + in (3). Notice that on both datasets, there is a range for
which our method obtain stable results (for v € [0.2,10]
on both datasets, our method outperforms other baselines).
As expected, for very large ~, the performance drops as
the method ignores the common information in visual and
linguistic features (see the supplementary materials for
analysis based on order consistency of tasks).

Qualitative analysis. Figure 5 (left) shows the visual-

ization of matching between visual and textual prototypes
before and after feature learning for the task ‘perform

9They use transcripts as supervision. Specific learns a classifier for each
step of a task, while Sharing incorporates sharing key-steps across tasks.

Visual prototypes
Visual prototypes
o
=Y

Linguistic prototypes

(b) Soft-DTW

Linguistic prototypes
(a) DWSA

Figure 6: Learned distances between visual and textual prototypes using
DWSA and Soft-DTW. White boxes indicate the alignment path.

CPR’. We show the closest frame and verb-phrase to each
prototype. While matchings are poor before learning (e.g.,
‘give two breaths’, ‘get victim’s chest’ and ‘give breaths’
are associated with incorrect demonstrations), the quality
of matching significantly improves after learning. Figure
5 (right) shows localization results of different methods.
Notice that our method can localize ‘check dangerous’
thanks to using narrations, while successfully localizing
other steps such as ‘check response’, ‘check breathing’,
‘give compression’” and ‘give breath’ (but missing its first
occurrence). Finally, Figure 6 shows the learned distances
via our DWSA and soft-DTW for the task ‘change tire’.
Soft-DTW aligns a single visual prototype with multiple
linguistic prototypes (e.g., ‘take off wheel’, ‘raise vehicle’,
‘put tire’), hence, learning similar embeddings for verb-
phrases of distinct key-steps. On the other hand, DWSA
learns one-to-one matching while allowing noisy/incorrect
linguistic prototypes to stay unmatched. More qualitative
examples are included in the supplementary materials.

6. Conclusions

We proposed an unsupervised action segmentation
method for instructional videos and narrations. We
modeled visual and language key-steps by prototypes,
recovered them by developing a soft ordered prototype
learning module and developed a novel weak sequence
alignment method to find correspondence between visual
and linguistic prototype sequences. By experiments on two
datasets, we showed the effectiveness of our method.
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