

Designing effective and equitable zero-deforestation supply chain policies

Published in *Global Environmental Change* [Volume 70](#), September 2021, 102357

Authors: Grabs, J.^{1*}, Cammelli, F.¹, Levy, S.A.¹ Garrett, R.D.¹

¹Environmental Policy Lab, ETH Zürich, Switzerland

*Corresponding author, Sonneggstrasse 33, 8092 Zürich, Switzerland (janina.grabs@gess.ethz.ch)

Abstract: In response to the clearing of tropical forests for agricultural expansion, agri-food companies have adopted promises to eliminate deforestation from their supply chains in the form of ‘zero-deforestation commitments’ (ZDCs). While there is growing evidence about the environmental effectiveness of these commitments (i.e., whether they meet their conservation goals), there is little information on how they influence producers’ opportunity to access sustainable markets and related livelihood outcomes, or how design and implementation choices influence tradeoffs or potential synergies between effectiveness and equity in access. This paper explores these research gaps and makes three main contributions by: i) defining and justifying the importance of analyzing access equity and its relation to effectiveness when implementing forest-focused supply chain policies such as ZDCs, ii) identifying seven policy design principles that are likely to maximize synergies between effectiveness and access equity, and iii) assessing effectiveness-access equity tensions and synergies across common ZDC implementation mechanisms amongst the five largest firms in each of the leading agricultural forest-risk commodity sectors: palm oil, soybeans, beef cattle, and cocoa. To enhance forest conservation while avoiding harm to the most vulnerable farmers in the tropics, it is necessary to combine stringent rules with widespread capacity building, greater involvement of affected actors in the co-production of implementation mechanisms, and support for alternative rural development paths.

29 **Keywords:** Agriculture; Conservation; Supply chain; Voluntary environmental policies;
30 Effectiveness; Equity

31 **1. Introduction**

32 With the rise of globalized trade patterns and the concentration of resource flows into the
33 hands of a small number of multinational companies (Folke et al., 2020), private
34 environmental governance has become an important leverage point to achieve global
35 conservation goals in international supply chains (Lambin et al., 2018; Thorlakson et al.,
36 2018). In recent years, conservationists' attention has focused on a handful of 'forest-risk
37 commodities' (e.g. palm oil, soybeans, cattle, or cocoa), due to their disproportionate impact
38 on the loss of primary forests, particularly in biodiversity hotspots (Curtis et al., 2018). The
39 production of such goods is estimated to be the direct driver of two-thirds of all deforestation
40 in the tropics and subtropics (Pendrill et al., 2019).

41 In response to public campaigns targeting the world's largest firms in the food and timber
42 sectors for their role in encouraging deforestation, a growing number of these companies
43 have adopted 'zero-deforestation commitments' (ZDCs) (Lister and Dauvergne, 2014). ZDCs
44 are "voluntary sustainability initiatives that signal a company's intention to eliminate
45 deforestation from its supply chain" (Garrett et al., 2019, p. 136). Actors at all levels of
46 forest-risk supply chains from production to retail have now adopted these commitments. For
47 instance, current forest commitments cover an estimated 83% of Southeast Asia's palm oil
48 refining capacity (ten Kate et al., 2020). In Brazil, the world's other principal deforestation
49 hotspot, around 60% of soy and 85% of beef exports are covered by individual company
50 commitments and sectoral agreements (Haupt et al., 2018a). As these commitments mature
51 and reach their target dates, their effectiveness in eliminating deforestation among all direct
52 and indirect suppliers of single supply chains ('individual effectiveness'), among all
53 commodity producers in a region ('regional effectiveness'), or across global commodity
54 sectors ('net global effectiveness') has become a focus of academic inquiry (Alix-Garcia and
55 Gibbs, 2017; Garrett et al., 2019; Gibbs et al., 2016; Gollnow et al., 2018; Heilmayr et al.,
56 2020; Lambin et al., 2018; Lyons-White et al., 2020; Pereira et al., 2020).

57 Simultaneously, concerns have been raised that commodity-centric private governance
58 initiatives may exacerbate inequities in rural land use, livelihoods, and poverty rates by
59 excluding producers with limited financial and educational capacity to meet industry
60 requirements from sustainable market access (INOBU, 2016; Klooster, 2005; Pereira et al.,
61 2016). Deforestation frontiers contain actors and countries with a variety of baseline land use
62 conditions and risks, and different tenure, access, and capital constraints (Cammelli et al.,
63 2020; Galudra et al., 2010; Garrett et al., 2017). Smallholder farmers (i.e., farmers with

64 incomes generated primarily from natural resources whose property size is below the national
65 average (Dou et al., 2020; Zimmerer et al., 2018)); manage an estimated 50% of global oil
66 palm land (Byerlee et al., 2016; Qaim et al., 2020); 70% of global cocoa supply comes from
67 West African smallholders (Wessel and Quist-Wessel, 2015); and small-scale farmers form
68 an integral part of the South American livestock systems (78% of the livestock farms in
69 Brazil are classified as “family farmers” (IBGE, 2017; Pacheco and Poccard-Chapuis, 2012;
70 Pereira et al., 2016). Soy in South America is typically not undertaken by smallholder
71 farmers, but they play a large role in production in India (Romijn, 2014). Most commonly,
72 smallholder land size thresholds are ≤ 2 ha (e.g. for cocoa, coffee, tea, bananas), but
73 thresholds may reach ≤ 50 ha, for instance in palm oil (ISEAL Alliance, 2019). In many
74 cases, the livelihoods of such smallholders are highly vulnerable and depend on their
75 integration into global commodity supply chains (Dou et al., 2020; Lee et al., 2012). In
76 certain contexts, and as a result of wider political economic conditions, agricultural practices
77 used by smallholders have also been identified as potential drivers of deforestation and land
78 degradation (Cammelli et al., 2020; Kalamandeen et al., 2018; Kroeger et al., 2017;
79 Schoneveld et al., 2019a). Yet, in the past, agri-food smallholders have shown limited
80 capacity to comply with sustainable supply chain initiatives such as certification schemes.
81 This is explained *inter alia* by low education levels and financial means, unclear land tenure,
82 and risk adversity in switching to more sustainable land use practices (Ansah et al., 2020;
83 Brandi et al., 2015; Brandi, 2017; DeFries et al., 2017; Grabs, 2020). The goal of eliminating
84 deforestation in such commodity chains via supply chain initiatives thus risks limiting
85 vulnerable producers’ opportunity to access the supply chain and associated resources, and
86 constraining their options for exiting poverty (Schoneveld et al., 2019b).

87 The potential for these perverse outcomes warrants closer evaluation of the potential
88 impacts of zero-deforestation commitments and in particular, tensions between likely
89 conservation outcomes and producers’ equity in access to markets (henceforth ‘access
90 equity’). This paper contributes to this research question in three ways by: i) defining and
91 justifying the importance of analyzing access equity and its relation to effectiveness when
92 implementing forest-focused supply chain policies such as ZDCs, ii) identifying seven policy
93 design principles that are likely to maximize synergies between effectiveness and access
94 equity, and iii) assessing effectiveness-access equity tensions and synergies across common
95 ZDC implementation mechanisms amongst the five largest firms in each of the leading
96 agricultural forest-risk commodity sectors: palm oil, soybeans, beef cattle, and cocoa.

97 **2. Balancing access equity and effectiveness in zero-deforestation supply chain policies**

98 *2.1. The importance of equity in access*

99 Preventing unfair market exclusion as a result of private environmental governance
100 initiatives is important for both normative and instrumental reasons. Normatively, having
101 equal opportunities to participate is an important dimension of the equity of a given
102 conservation intervention (McDermott et al., 2013). This dimension is alternately described
103 as ‘equity in access’, which “relates to the ways in which different actors in society are able
104 to engage with and participate in” specific interventions (Brown and Corbera, 2003, p. S45),
105 or ‘contextual equity’, which “acknowledges the initial distributions of access, capabilities
106 and power from which people and nations engage in – or are swept up by –” particular
107 initiatives (McDermott et al., 2013, p. 420). Two other equity dimensions frequently
108 mentioned are procedural equity, focused on “recognition, inclusion, representation and
109 participation in decision-making”, and distributive equity, which hones in on the “allocation
110 among stakeholders of costs and benefits resulting from, for example, environmental policy
111 or resource management decisions” (McDermott et al., 2013, pp. 418–419). Other authors
112 differentiate between input and output equity; a range of equity metrics that include
113 participation, access, spatial, and financial equity; or types of equity that concern social class,
114 gender, ethnicity, generational, educational, or occupational groups (Klein et al., 2015).

115 We place our analytical focus on producers’ *equity in access to ZDC markets*,
116 representing the equal opportunity of different groups of producers, particularly those with
117 high and low adaptive capacities, to participate in a ZDC supply chain (Pignataro, 2012).
118 Adaptive capacity here refers to any capability or asset that allows producers to rapidly adapt
119 to changing market conditions and expectations (such capabilities may include, for instance,
120 education, knowledge, technological capacity, legal standing, financial assets or social
121 capital; see Section 4.1). We use the distinction between producers with low and high
122 adaptive capacities to indicate which producers are more or less likely to be excluded from
123 ZDC markets, preferring it to distinctions made on the basis of producer size or farm system
124 alone. While poor and smallholder farmers tend to have low adaptive capacities, not all face
125 the same barriers to access. Medium-scale producers and those with larger family farms, in
126 turn, might be frontrunners or laggards regarding their adaptive capacities. In contrast, our
127 analysis does not consider equity implications for non-commodity-producing forest landscape
128 dwellers. We leave such considerations, alongside how those issues are addressed via social

129 requirements of corporate supply chain policies, for future analysis (see also Cheyns et al.,
130 2020; Newton and Benzeev, 2018).

131 We focus on equity in access rather than distributional equity, given that ZDC supply
132 chain participation may provide producers with a variety of distributional gains or benefits
133 depending on their local context. Producer-level benefits from inclusion in ZDC supply
134 chains might include higher prices, advantageous contract terms (e.g. in volume or length),
135 the provision of technical and financial support, or – in the case of complete ZDC
136 implementation among all market actors – the ability to sell their product at all (Haupt et al.,
137 2018b). In many cases, producers cannot expect any financial or economic benefits from
138 participating in ZDC supply chains (Larsen et al., 2018). This variability in the likely costs or
139 benefits of ZDC participation makes assessing the distributional equity of ZDC policies
140 complex and highly context-dependent, justifying our analytical focus on protecting
141 producers' ability to choose whether to access such markets or not.

142 Finally, it should be noted that the various dimensions of equity are inextricably linked
143 (Brown and Corbera, 2003). Indicative evidence exists, for instance, that procedural equity in
144 designing particular interventions improves access to those same interventions by
145 marginalized groups; procedural exclusion in turn often precedes project exclusion (Gill et
146 al., 2019). Equity in access to particular interventions (as well as to relevant decision-
147 making) is further a necessary antecedent for distributional equity (Corbera et al., 2007;
148 Gebara, 2013; Haas et al., 2019). We will thus refer to other equity dimensions as applicable.

149 *2.2. Synergies and tradeoffs between equity in access and effectiveness*

150 From an instrumental perspective, the more inclusive a voluntary environmental initiative
151 is, the more likely it is that it will achieve its goals of preventing environmental harm, as it
152 will influence more actors in the production landscape (Garrett et al., 2019; Lambin et al.,
153 2018). Conversely, policies that focus on quick wins by targeting only the largest, most
154 influential actors may exclude a large number of small-scale producers with cumulative high
155 impact, lack local buy-in and legitimacy, or cause political pushback (Bush et al., 2015; Klein
156 et al., 2015; Klooster, 2005; Pascual et al., 2014). Producers excluded from ZDC markets are
157 likely to still establish or expand farms on forest land, even if they need to sell their product
158 into lower-value markets or travel further to find a buyer (Atmadja and Verchot, 2012),
159 lowering regional and global ZDC effectiveness. Hence, ZDC equity in access may engender
160 higher policy effectiveness.

161 On the other hand, certain private governance design choices that favor inclusion may
162 represent conservation effectiveness tradeoffs, for instance if rules are set too leniently, or
163 their implementation not assured (Chan et al., 2017; Dietz and Grabs, 2021; Giuliani et al.,
164 2017). We may also encounter tradeoffs when assessing policy coverage. At present, non-
165 ZDC markets continue to exist in all sectors we analyze, particularly for domestic
166 consumption or exports into the Global South (Alix-Garcia and Gibbs, 2017; Christopoulou
167 et al., 2018; Schleifer and Sun, 2018). Yet, on a more local level, supply chains may be
168 highly integrated and commodity buyers can have monopsony power over their supply shed,
169 especially in frontier areas (Agergaard et al., 2009; Brandi, 2017; German et al., 2011; le
170 Polain de Waroux et al., 2018). Strong buyer power might increase the effectiveness of
171 sustainable supply chain initiatives in changing producer behavior by pushing more
172 producers toward engagement, but may also exacerbate the consequences of ZDC market
173 exclusion on local livelihoods and poverty. This underlines the importance of closely
174 analyzing conflicting and potentially synergistic policy design for both access equity and
175 effectiveness.

176 **3. Materials and methods**

177 We first conducted a scoping literature review (Grant and Booth, 2009) to develop a
178 theoretical understanding of likely interactions between ZDC effectiveness and access equity.
179 Given that access equity has not yet been the subject of in-depth academic study in the
180 context of ZDCs – notwithstanding first contributions on ZDCs and rural livelihoods
181 (Newton and Benzeev, 2018) and ZDCs and broader equity implications (Lyons-White et al.,
182 2020) –, we drew mainly on insights from alternative private environmental governance
183 interventions such as certification schemes and payments for ecosystem services, but
184 reference ZDC-specific literature where possible. On the basis of these insights, in Section
185 4.3 we propose seven design principles (P1-P7) on how ZDC implementation at various
186 stages (during ZDC adoption, operationalization, and monitoring and enforcement) may lead
187 to synergies between the desired effectiveness and access equity outcomes.

188 In a next step, we operationalized our design principles by identifying 13 criteria that
189 measure the extent to which various current ZDC implementation mechanisms align with our
190 design principles. We followed Auld et al. (2008) in classifying mechanisms, which range
191 from individual firm endeavors to public-private partnerships (see Section 5.1).

192 To evaluate the likely impacts of current ZDC policy design on effectiveness and access
193 equity, we drew on empirical evidence in the four largest agricultural forest-risk
194 commodities: palm oil, soybeans, beef cattle, and cocoa (Goldman et al., 2020). For each
195 commodity, we identified the top five companies in terms of their global market dominance
196 (by volume and/or value) – all of which have zero-deforestation commitments. Given that
197 these commodity supply chains tend to be hourglass-shaped, with the highest concentration
198 of actors in the mid-stream (taking on the steps of processing, trading, and occasionally
199 manufacturing), we focused on companies at that stage of the supply chain. These actors are
200 furthermore essential in implementing downstream actors' commitments, making their
201 implementation choices particularly relevant (Grabs and Carodenuto, 2021). Table 1 shows
202 the list of companies for each commodity and their estimated market share at their point of
203 the supply chain.

204 [Table 1 about here]

205 We then analyzed what mechanisms the top five firms used to implement their
206 commitments, and coded both individual and collective implementation mechanisms using
207 our design principles and associated evaluation criteria. Each criterion was coded as either
208 showcasing synergies between effectiveness and access equity (S); favoring effectiveness
209 over equity (E); favoring access equity over effectiveness (Q); or unlikely to support
210 effectiveness and unlikely to affect access equity (N). The codebook in Appendix 1 presents
211 the coding options, examples, as well as aggregation codes for cases where design principles
212 are represented by more than one evaluation criterion. The results are presented by design
213 principle.

214 We drew on secondary literature to characterize the ZDC context for each commodity,
215 while using both primary document analysis of ZDC policies, progress reports, and other
216 corporate sustainability communications as the basis for our coding of commitments and their
217 implementation choices for the 20 analyzed companies. It should be noted that such an
218 analysis of self-reported data and aspirational goals is likely to represent a best-case scenario
219 for actual policy implementation and should in the future be further tested through interviews
220 and fieldwork. Nonetheless, it provides a first approximation of the extent to which corporate
221 actors have – at least on paper – taken access equity into account, and already allows us to
222 identify clear performance gaps.

223 In Section 5, we first report aggregated results of the complete coding matrix alongside
224 comparative insights, and then summarize sector-by-sector analyses in our case study section,
225 structuring insights by implementation mechanism. The extended coded table can be found in
226 Appendix 1.

227 **4. ZDC implementation to maximize both effectiveness *and* access equity**

228 *4.1. Policy design for equity in access*

229 A review of the literature shows that contextual barriers to participation in sustainable
230 supply chain and conservation initiatives can be classified into six main groups (see Table 3).
231 Farmers may be constrained by a lack of education and access to information; a lack of
232 technological capacity (regarding knowledge and ability to implement sustainable practices);
233 or a lack of assets and financial resources to implement sustainability demands. Further
234 barriers may be related to the legal standing of farmers and their land; the size of individual
235 farms or inability to access farmer groups; and to farmers' values and cultural norms, which
236 may not align with a program's conservation objectives. Table 3 also shows that the various
237 barriers can be removed or counteracted through context-sensitive policy design of the
238 sustainability interventions. Key policy design priorities include: 1) increase awareness about
239 sustainable supply chain initiatives via broad outreach and engagement; 2) simplify criteria
240 and provide capacity building opportunities for participating farmers; 3) provide financial
241 support that covers producers' opportunity costs of compliance; 4) design criteria to avoid
242 legal exclusion by marginalized farmers or assist them in attaining the necessary
243 documentation; 5) design criteria to avoid size-based discrimination or support the
244 establishment of farmer groups; and 6) respect and acknowledge local values and norms, for
245 instance through participatory policy design.

246 [Table 2 about here]

247

248 *4.2. The implementation of ZDCs*

249 We now turn to how such design criteria may be respected when implementing zero-
250 deforestation commitments. Figure 1 shows the stages of ZDC implementation across a
251 stylized supply chain, highlighting four steps: ZDC adoption, operationalization, monitoring,
252 and enforcement. Supply chain policy *adoption* sets the stage for defining what behavioral
253 changes are required of actors along the supply chain (e.g. regarding the deforestation
254 reduction target, forest definition, commitment scope, and target date) (Garrett et al., 2019).

255 During the *operationalization* phase, companies determine how they plan to reach their
256 targets. Decisions include the corporate involvement in collective or public-private
257 approaches; the clarity of policies and consequences; the choice of incentives for supplier
258 compliance (positive, e.g. certification schemes or negative, e.g. market exclusion
259 mechanisms); the attribution of responsibility; the definition of a cut-off date; and plans on
260 how to disseminate the policy (Garrett et al., 2019; Lambin et al., 2018). When surveying
261 approaches to *monitoring and identification of non-compliance*, we can broadly distinguish
262 between police-patrol monitoring (with active and direct oversight by the company adopting
263 the commitment) and fire-alarm monitoring approaches (where oversight activity is delegated
264 to civil society) (cf. McCubbins and Schwartz, 1984). An example of police-patrol
265 monitoring is the sophisticated satellite-based monitoring of suppliers, such as the use of
266 PRODES deforestation maps by the participants in the G4 Cattle Agreement, a market-
267 exclusion mechanism in Brazil (Gibbs et al., 2016). In contrast, grievance management
268 systems of palm oil companies, which allow individuals, governmental and non-
269 governmental organizations to raise concerns over non-compliance with ZDC policies, are
270 examples of fire-alarm monitoring systems (see for example Wilmar International, 2015).
271 Then, the policy needs to be *enforced*, and companies need to decide what action to take with
272 non-compliant suppliers (Merino, 2019). Finally, producers are expected to change their
273 behaviors in response to the private policy implementation or incentives, in which case the
274 ZDC is successful.

275 [Figure 1 about here]

276 Policy failure occurs when producers decide to leave the ZDC market and change to less
277 stringent buyers (the ‘leakage market’), or when they are able to sell (or ‘launder’) non-
278 compliant goods into ZDC markets (Alix-Garcia and Gibbs, 2017; Gibbs et al., 2016;
279 Meyfroidt et al., 2020). This process becomes more complex when the committed company
280 does not buy directly from the producer whose behavior the policy seeks to change, a very
281 common situation in globalized tropical commodity supply chains (e.g., the case of calf
282 producers in beef supply chains, or refiners purchasing palm oil from mills who source from
283 independent plantations). In these instances, the committed company must delegate on-the-
284 ground enforcement to upstream actors (‘intermediaries’ in Figure 1), and/or rely on third-
285 party tools such as audits and certification to achieve compliance.

286 4.3. *Seven design principles for synergies between ZDC effectiveness and access equity*

287 At each stage of this process, ZDC policy design can improve or exacerbate equity in
288 access vis-a-vis the potential barriers to participation outlined in Section 4.1. Connecting the
289 identified general key policy design priorities to the more specific case of ZDC
290 implementation outlined above, we here propose a set of key design principles (P) likely to
291 affect equity in access and synergies with ZDC effectiveness.

292 *4.3.1. Policy adoption stage*

293 To prevent unfair market exclusion, ZDC companies should set forest protection goals in
294 a way that takes into account the differential capacities of actors to comply with them. Of
295 particular concern are farmers with limited awareness of market demands, as well as high
296 forest, low-income countries that have historically conserved their forest, but have high
297 potential for agricultural production (Lyons-White et al., 2020). Such actors may require a
298 longer policy phase-in to give producers time to adapt, or they might be exempted from rules
299 that are difficult to achieve in their context. It has further been proposed that ZDC goal
300 definitions be adapted to allow for development-focused, community-led clearing in high
301 forest cover regions (Senior, 2018). However, making exceptions to the policy target dates or
302 scope creates serious tensions with ZDC effectiveness, which is highest when commitments
303 are stringent, comprehensive, cover both target products and their substitutes (e.g., oil palm
304 and soybeans, which may both be used for biofuel production), and are ambitious in cut-off
305 dates to prevent anticipatory clearing (Garrett et al., 2019). High-forest cover countries, for
306 instance, constitute some of the last vestiges of intact forest landscapes, which makes equity-
307 driven exceptions in these regions a serious loophole to the goal of preventing habitat loss
308 from commodity-driven deforestation (Potapov et al., 2017). To overcome tensions, we
309 propose that:

310 **P1:** ZDCs should be stringent and cover all producers, regions, and substitutable products
311 to undercut leakage opportunities, but be accompanied by commitments to support alternative
312 developments paths (i.e., with development aid or value-added industry) to offset negative
313 economic impacts resulting from exclusion choices, from the individual to national scale.

314 *4.3.2. Policy operationalization stage*

315 When implementing the supply chain policy, ensuring equity of access requires that
316 barriers related to awareness about the supply chain rules, the technical ability to implement
317 them (e.g., by identifying forest that should not be converted), and legal limitations to
318 participation (e.g. requiring full land tenure) are either removed or counteracted by the
319 provision of support to meet such rules. Financial constraints are a further barrier to

320 participation in ZDC markets, especially if vulnerable farmers have a low economic capacity
321 to bear the opportunity costs of such rules. To date, most implementation costs of ZDC
322 measures have been borne by farmers upstream, while such policies originated in
323 downstream demands (Garrett et al., 2021; Lyons-White et al., 2020). To decrease financial
324 barriers to access ZDC markets, downstream companies should share both the costs as well
325 as potential benefits arising from consumers' willingness to pay for deforestation-free
326 commodities (which may in turn enhance distributional equity). Assistance in overcoming
327 such barriers to compliance is likely to represent synergies with effectiveness, as it will
328 enhance the breadth and quality of compliance (Bardach and Kagan, 1982; Kiser and Ostrom,
329 2000). We thus posit that:

330 **P2:** ZDCs should pursue active dissemination of rules via trainings that are adapted to the
331 specific capacity gaps and concerns of various suppliers.

332 **P3:** ZDCs should further include active removal of barriers to compliance via
333 differentiated and locally targeted capacity-building measures, and both financial and in-kind
334 support.

335 **P4:** ZDCs should provide benefit-sharing schemes for compliance through price or non-
336 price mechanisms and consider payments to offset lost income, especially for farmers living
337 in poverty.

338 There are further two broader procedural design characteristics that are likely to boost
339 both effectiveness and access equity of ZDC measures. The co-production of rules and
340 implementation procedures with users is likely to enhance corporate knowledge on local
341 barriers and support needs for adoption, as well as enhance the legitimacy and cultural
342 appropriateness of such measures (Mena and Palazzo, 2012). Such co-production could lead
343 to the development of incentive systems that are more in line with local norms, attitudes and
344 values. In addition, coordination of ZDC actors with other (public and private) policymakers
345 can standardize requirements and co-finance support measures, making it easier for farmers
346 to comply, while shrinking the leakage market and improving monitoring capacities.

347 **P5:** ZDCs should involve the co-production of rules and implementation procedures with
348 affected supply chain members and surrounding communities.

349 **P6:** ZDC actors should further coordinate with other policy-making actors (private and
350 public) to enhance the inclusivity and complementarity of policies.

351 *4.3.3. Policy monitoring and enforcement stages*

352 It is also important to avoid unfair exclusion when monitoring the performance of ZDC
353 producers, and when deciding how to react to non-compliances. Unfair exclusion related to
354 size may occur when monitoring systems (e.g. satellite imagery) are only accurate in their
355 attribution as of a minimum area size, or when the lack of knowledge about ownership
356 patterns on the ground precludes an accurate assessment of a company's supply risk, and an
357 area is removed from the supply chain for that reason. Alternative monitoring technologies
358 and ground-truthing all relevant information can prevent such situations. When reacting to
359 non-compliance, it is important to assess whether non-compliance was due to delinquency, or
360 rather due to a lack of knowledge of rules or ways in which to comply with them. In the
361 former case, strict supply chain exclusion may be desirable. In the latter, however, a
362 collaborative compliance management approach (Bardach and Kagan, 1982), whereby ZDC
363 companies work with suppliers to bring them into compliance without excluding them at
364 first, may lead to greater equity in access as well as improved sustainability outcomes
365 (Koberg and Longoni, 2019).

366 **P7:** ZDCs should use inclusive oversight, equal monitoring, but differentiated
367 enforcement.

368 Table 3 provides an overview of the seven principles, alongside the criteria we used to
369 operationalize the principles and apply them to various ZDC implementation options in the
370 palm oil, soybean, cattle, and cocoa sectors. Section 5 summarizes our findings on how well
371 different implementation mechanisms are able to balance effectiveness and equity in access.

372 [Table 3 about here]

373 **5. Assessing likely tensions and synergies between access equity and effectiveness in
374 implemented ZDCs in the palm oil, soybean, cattle, and cocoa sectors**

375 *5.1. Comparative overview of ZDC implementation mechanisms and policy design*

376 Adapting the terminology of Auld et al. (2008), ZDCs can be implemented using a
377 variety of so-called “new Corporate Social Responsibility” tools (Carodenuto, 2019; Furumo
378 and Lambin, 2020; Garrett et al., 2019, 2018; Gibbs et al., 2016; Lambin et al., 2018). Table
379 4 shows an overview of existing examples of new CSR tools that have been used to
380 implement ZDCs in the palm oil, soybean, cattle and cocoa sectors, alongside their
381 differences with regard to the operationalization, monitoring, and enforcement of the
382 commitment as well as their incentive mechanisms. These differences are of high relevance
383 when evaluating the likely effectiveness and access equity of the tools in comparison.

384

[Table 4 about here]

385 Companies often pursue multiple interventions in parallel, making it more difficult to
386 tease apart their contributions. In order to be able to compare both different sectors as well as
387 different implementation approaches, we used the five largest companies in each sector as a
388 guide for collecting information on initiatives that have been adopted – ranging from their
389 own policy to collaborations they pursue – and then categorized these according to Auld et al.
390 (2008)'s terminology. This approach allows us to capture a comprehensive section of each
391 market. Figure 2 shows the results of the coding exercise, where we coded to what extent
392 different mechanisms followed the seven principles laid out in section 4.3. We include the
393 individual company policies of the five largest corporate actors, alongside the most
394 prominent example of industry agreements, public-private partnerships, and certification
395 schemes for each sector (if present).

396

[Figure 2 about here]

397 Select mechanisms, such as palm-focused single company policies or the cocoa-focused
398 public-private partnership CFI, show a number of synergistic design choices, while others
399 such as the Soy Moratorium or the cattle-focused public-private partnership TAC have very
400 few synergies. Where one outcome is favored, it is more often effectiveness than access
401 equity. However, and strikingly, many mechanisms include implementation choices that
402 contribute to neither effectiveness nor access equity, which leaves great room for
403 improvement.

404 Sections 5.2-5.6 present more in-depth evidence of the patterns shown in Figure 2 by
405 drawing on the most prominent sectoral example of each implementation mechanism and its
406 fit with the design principles P1-P7.

407 *5.2. Individual firm endeavors: the example of palm oil*

408 Individual firm-level sourcing policies can be found in all sectors under analysis, but
409 many of these policies are not or only poorly implemented (Garrett et al., 2019). We thus
410 focus on insights from No Deforestation, No Peat, No Exploitation (NDPE) policies in the oil
411 palm sector, which have existed since 2011 and have at least been partially implemented
412 (Lyons-White and Knight, 2018). In palm oil, actors typically differentiate between 'tied' or
413 'plasma' smallholders, which are smallholders that belong to concessions either as
414 outgrowers or shareholders of a part of the larger concession, and independent smallholders,

415 who started their farm on their own and have no assistance from larger grower companies
416 (Schoneveld et al., 2019b).

417 Equity in access to sustainable markets for smallholder farmers has been recognized as
418 core goal alongside environmental aims in corporate policies. All five companies analyzed –
419 and indeed, 41 out of 57 mid- and upstream palm oil companies with sustainable supply
420 chain policies (SPOTT, 2021) – have made a commitment to support and include
421 smallholders. Nonetheless, they all commit to gross-zero deforestation (i.e., no deforestation
422 beyond a cut-off date including no clearing of areas defined by High Carbon Stock approach)
423 in their entire supply chain, including all third-party suppliers and independent smallholder
424 farmers (P1). They balance these criteria mainly by using *differentiated enforcement* (P7) in
425 which smallholders are rarely excluded, but instead targeted with capacity building programs.
426 In addition, to date, most individual firm programs *pursue differentiated monitoring* (P7), as
427 they tend to monitor only large-scale concessions in their supply base (using satellite
428 imagery), which makes it unlikely that non-compliance by smaller producers will be detected
429 or punished.

430 Individual NDPE policies tend to include wide-reaching policy dissemination (P2) and
431 (more targeted) capacity building (P3), though such efforts are still mainly focused at
432 supplying plantations and palm oil mills, the first aggregation point of palm fruit. While
433 much producer-level capacity building is limited to pilot projects, some companies go beyond
434 that. Wilmar's training program on compliance with the public Indonesian Palm Oil Standard
435 reached 8,670 independent smallholders out of 18,100 farmers that directly supply their mills
436 (Wilmar, 2020), while Musim Mas cooperated with the International Finance Corporation to
437 roll out training on best agricultural management practices to 43,000 independent palm
438 smallholders (Musim Mas, 2021). Further, select farmers are aided in getting land titles and
439 other types of legal alignment (P3), albeit still on a pilot project level. While smallholder
440 support is becoming more common, it is however not always linked to zero-deforestation
441 compliance per se. Programs to support alternative livelihoods are few and far between and
442 mainly aimed at supporting farmers during the replanting period, rather than offering them an
443 alternative to palm production in the long term (P1).

444 Where most individual policies still fall short is on the provision of benefit sharing (P4),
445 as most do not offer improved market conditions for ZDC participation, unless it is coupled
446 with RSPO certification (see 5.5), and policy co-production (P5), as supply chain policies are
447 defined internally or in consultation with leading NGOs, but not with suppliers. Finally,

448 while NDPE policies are similar across the sector (thanks to a combination of stakeholder
449 interaction and institutional isomorphism (Roszkowska-Menkes and Aluchna, 2017)),
450 companies are still not centrally coordinated – among each other or with state actors – in how
451 they engage with suppliers and react to non-compliances (P6). This lack of alignment opens
452 the possibility that efforts are duplicated or undermine one another. However, efforts are
453 currently underway to address this issue, for instance through the Palm Oil Collaboration
454 Group and through landscape programs such as the Siak-Pelalawan Landscape program.
455 Overall, palm NDPE policies thus show considerable efforts at synergies, but still tend to
456 prioritize producer inclusion over effectiveness in a way that may allow for continued
457 deforestation in smaller and more informal land holdings.

458 *5.3. Industry agreements and moratoria: The example of soy*

459 The Soy Moratorium is a collective agreement signed in 2006 by all of the members
460 of the Brazilian Vegetable Processing (Portuguese acronym ABIOVE) and the National
461 Association of Cereal Exporters (Portuguese acronym ANEC), which accounted for 90% of
462 the companies in the Brazilian soy sector, to not source soy from areas in the Brazilian
463 Amazon deforested after July 24, 2006 (this was later amended to July 22, 2008). The
464 signatories to the agreement include all of the top five soy trading companies. This agreement
465 prioritizes effectiveness over equity in design, operationalization, and monitoring. The policy
466 design is stringent in terms of a zero-gross deforestation target covering all actors, but only
467 targets actors in the Brazilian Amazon, allowing farmers in the neighboring Amazonian
468 countries or Brazilian Cerrado to continue clearing (P1). This may be mitigated to a certain
469 extent by individual company global zero-deforestation commitments that on paper extend to
470 other production regions, but most often these are not implemented, given that there is no
471 monitoring or enforcement system (Garrett et al., 2019; Gollnow et al., 2018; zu Ermgassen
472 et al., 2020). In operationalizing the policy there were no efforts made to build capacity with
473 the farmers except in isolated areas, e.g., the Responsible Soy Project of Cargill in Santarem
474 (Jung and Polasky, 2018). The policy was developed in a top-down manner by industry (P5).
475 The only identifiable equity-mitigating impact is that the monitoring and enforcement
476 systems were aligned with existing legal processes already underway in Brazil, including
477 property boundary registration in Brazil's Environmental Property Cadaster (Cadastro
478 Ambiental Rural – CAR) (P3) and near-real time deforestation monitoring (INPE, 2020)
479 (P6).

480 Despite these features, the policy is unlikely to further marginalize or exclude many
481 farmers for several regions. First, soy production is a capital-intensive activity that already is
482 inaccessible to most poorer farmers (Garrett and Rausch, 2016; Russo Lopes et al., 2021).
483 Second, soy is undertaken on a range of farm sizes, but two-thirds of soy farmers in the
484 Amazon (North) region are commercial, rather than “family” farms, and even including
485 family farmers, the average farm size is >2,000 hectares (IBGE, 2017). Finally, producers
486 sell directly to traders rather than through intermediaries, which enables monitoring and
487 enforcement across the entire supply chain (Garrett et al., 2013). However, the penalty of
488 market exclusion is without exception so there is little room for capacity building, which
489 theoretically could lead to some producers who are excluded either selling into local leakage
490 markets (i.e., confined pork and poultry systems), which could be harmful to their livelihoods
491 if the marketing conditions decline (P7). Additionally, the narrow Amazonian scope coupled
492 with the negative disincentive could favor leakage to other areas, exacerbating effectiveness
493 (P1).

494 *5.4. Public-private partnerships: The example of cocoa*

495 The Cocoa and Forests Initiative was launched in 2017 as a highly ambitious, sector-
496 wide, public-private partnership that aimed to tackle the problem of commodity-driven
497 deforestation in a holistic fashion. It unites the governments of Ghana and Cote d’Ivoire –
498 countries which together account for 63% of global cocoa production and have been
499 identified as deforestation hotspots – with 35 cocoa and chocolate companies in the aim to
500 stop forest conversion for cocoa, eliminate cocoa production from national parks and legal
501 forest reserves, and restore forests in both countries (Carodenuto, 2019). In a step-wise,
502 multi-stakeholder approach, actors moved from statements of intent to joint action
503 frameworks and implementation plans, which ensured a strong coordination between public
504 and private actors (P6). Although cocoa farmers were not strongly involved in policy
505 development, some companies organized consultations in cocoa communities on the
506 implementation of the framework (P5). Participating cocoa processing and trading companies
507 have largely aligned their own policies with the initiative’s goals and focused their immediate
508 efforts on action in and around legal forest reserves and national parks (allowing for legal
509 alignment), while also investing in large-scale capacity-building measures promoting
510 agroforestry and climate-smart cocoa production (P3), and sensitization around deforestation
511 issues (P2). Positive incentive-setting for conservation (P4) was also integrated, as companies
512 promoted payments for ecosystem services to protect and restore forested areas. However,

513 such schemes are still at a small scale and not supported by any of the major actors we
514 assessed. As of 2019, only 1,340 farmers were participating in PES contracts (out of a target
515 of 215,900 by 2022). Most companies have focused more immediate action on their direct
516 supply chains (where they buy directly from cocoa cooperatives), rather than their indirect
517 suppliers, although estimates suggest that indirect supply chains account for around 50% of
518 cocoa sourced, and are likely where deforestation for cocoa farming is concentrated
519 (Carodenuto and Buluran, 2021) (P1).

520 On the other hand, the close alignment in public-private partnerships also increases the
521 interdependency of actors for policy implementation and enforcement to occur as planned. In
522 the case of CFI, governments were responsible for providing transparent satellite-based
523 monitoring systems with deforestation alerts, which would be “made publicly available for all
524 stakeholders to measure and monitor progress on the overall deforestation target” (CFI,
525 2017a, 2017b). Such monitoring systems had not yet materialized two years into the
526 agreement. Some companies such as Barry Callebaut or Cargill went ahead in developing
527 their own satellite monitoring capacities, while others ‘monitored’ supply chains by tracing
528 their supply chains and mapping out farm boundaries, but had no data on deforestation
529 patterns on those same areas. In the absence of up-to-date deforestation data, CFI
530 implementation to date has mainly been cooperative and focused on restoration and capacity-
531 building by teaching farmers about agroforestry and distributing and planting tree seedlings,
532 rather than reacting to ongoing deforestation issues. This likely increases the policy’s equity
533 at the expense of short-term effectiveness in stopping forest conversion (P7).

534 An important exception, and another key example of interdependencies at the heart of the
535 effectiveness-equity tension, is the decision of what should happen to farmers whose plots lie
536 in national parks and forest reserves. In line with the Joint Action Plans, companies
537 committed to excluding farmers found in such areas from their supply chain, and to reporting
538 such farms to governments such that farmers could be resettled elsewhere. Yet, the CFI
539 Framework documents also acknowledge the importance of social inclusion and avoiding
540 negative consequences, and attributes to governments the responsibility to mitigate the social
541 impacts of proposed land use changes, *inter alia* by ensuring the provision of alternative
542 livelihoods (CFI, 2017a, 2017b). In practice, the operationalization of such social safeguards
543 has been slow, while little information has been forthcoming on concrete plans for alternative
544 livelihood provision. In addition, necessary information such as the geo-spatial boundaries of
545 enclaves and ‘admitted farms’ (who operate legally in forest reserves) was still outstanding 2

546 years after the CFI was initiated (CFI, 2020a, 2020b). In their progress reports, some
547 companies reported that they were still waiting for relevant social safeguards to be
548 established before complying with their commitments, while others stated that they had
549 ceased purchasing from farms partly or fully within a protected area boundary (and negative
550 socio-economic effects of such decisions were likely not offset). Cote d'Ivoire
551 simultaneously intensified forest police control and surveillance to "secure" classified forests
552 and noted that such interventions had led to the "voluntary departure of farmer[s]" from
553 many such forests, without commenting on equity-related concerns (CFI, 2020b, p. 16). This
554 trade-off continues to be unresolved.

555 *5.5. Combining industry agreements and public-private partnerships: The example of*
556 *cattle in the Brazilian Amazon*

557 In 2009 Greenpeace launched a campaign that attributed responsibilities for large swathes
558 of deforestation in the Brazilian Amazon to cattle ranching (Greenpeace, 2009). Following
559 the campaign, the four larger meatpackers operating in Brazil and Greenpeace signed a
560 commitment to not source cattle from farms that deforested after October 2009, encroached
561 upon protected areas and indigenous lands, or employed slave labor (G4) (P1) (Gibbs et al.,
562 2016). In the same year the Federal Public Prosecutor (MPF) of the Brazilian state of Pará
563 launched an investigation addressing pervasive non-compliance with environmental and labor
564 laws among the meatpackers of the state, who were responsible for purchasing cattle farmed
565 illegally (Imazon, 2018). The MPF forced all larger companies to sign the so-called TAC
566 (*Termos de Ajustamento de Conduta*). TAC was an agreement of non-prosecution on the
567 condition that companies monitored and disclosed their suppliers and excluded from their
568 supply base cattle originating from farms that conducted illegal deforestation after August
569 2008, encroached upon protected areas and indigenous lands, or employed slave labor. In
570 2014 TAC was extended to the other states of the Amazon Biome (P1) (Cammelli et al., in
571 review). G4 signatories also signed TAC, such that both agreements today largely overlap,
572 except that G4 targets zero-gross and TAC targets zero-illegal deforestation (Boi na Linha,
573 2021). In the early years of the agreements, only G4 but not TAC signatories had set up a
574 monitoring system. The system relied on triangulating information on environmental crimes
575 from public agencies with self-reported farms boundaries, CAR information (over time partly
576 validated by public environmental agencies), and remotely sensed data about deforestation
577 (PRODES) from the Brazilian spatial agency (INPE), which detects deforestation patches
578 larger than 6.25 ha (Gibbs et al., 2016). In later years and especially after 2015, TAC

579 signatories started monitoring their suppliers using the same systems developed by G4
580 signatories, and the MPF started auditing the meatpackers performance on the agreements
581 (Capóssoli Armelin et al., 2020). The monitoring systems employed differed substantially
582 across TAC and G4 signatories and across the several consulting companies implementing
583 the monitoring. In 2020 a unified monitoring protocol was achieved after negotiations
584 involving companies and the MPF and led by NGOs (P6) (MPF, 2020). This protocol will
585 allow the MPF to produce public audits whose results are comparable, rank companies based
586 on compliance to the agreement and establish clear guidelines for non-compliant farmers to
587 regain compliance. Yet all companies were reluctant to disclose their producers' list,
588 reducing opportunities for assessments beyond independent (but long disputed) audits.

589 Both G4 and TAC are based on negative incentives (P4) and have a top-down design
590 (P5). TAC has been described as cooperative towards meatpackers, but coercive towards
591 farmers (Cammelli et al., in review). Yet neither TAC nor G4 have been fully implemented:
592 to date, only direct suppliers have been monitored and eventually excluded (MPF, 2020),
593 which opens a number of loopholes for cattle laundering across farms of any size (Pereira et
594 al., 2020), yet safeguards equity by preventing fragile smallholder calf producers from being
595 excluded (P7). Current assessments of G4 effectiveness found limited or no effect, due to
596 leakage (Alix-Garcia and Gibbs, 2017). To date the effectiveness of TAC is unassessed.

597 In 2020 and 2021 the two largest meatpackers committed to extend monitoring to their
598 indirect suppliers, as well as to provide some forms of technical assistance to foster
599 productivity and compliance, and to secure a sufficiently large supply base. To date technical
600 assistance is limited to a few pilot projects (P2-P3) (Marfrig, 2020). In addition, both
601 companies aim to extend monitoring to the Brazilian savannas (Cerrado), aiming for zero net
602 and zero illegal deforestation respectively.

603 *5.6. Certification schemes: The cases of RA, RSPO, and RTRS*

604 One of the most common ways for downstream companies with zero-deforestation
605 commitments to operationalize their commitments is to source goods certified under third-
606 party certification schemes such as the Rainforest Alliance (RA) standard (commonly used
607 for cocoa as well as coffee and other tropical commodities), the Roundtable on Sustainable
608 Palm Oil (RSPO), and the Round Table on Responsible Soy (RTRS) certifications. Out of
609 553 companies that disclosed information about how they tackle commodity-driven
610 deforestation in 2019, 71% had a target related to certification adoption (CDP, 2021).

611 As they were not originally designed to provide deforestation-free guarantees, some
612 standards have had to fundamentally reinvent themselves. For instance, RSPO introduced a
613 new zero-deforestation criterion during its standard revision in 2018, while the Rainforest
614 Alliance in its 2020 standard revision aligned its cut-off date for ecosystem conversion with
615 company commitments (Rainforest Alliance, 2020a). Today, all three standards that we
616 examine – RA, RSPO, and RTRS – include zero-gross deforestation rules (P1). In addition,
617 the multi-stakeholder procedures of such standards ensure a modicum of co-production and
618 consultation with producers (P5), although smallholder farmers are frequently
619 underrepresented in standard development and governance compared to other industry actors
620 or NGOs (Bennett, 2017; Schouten et al., 2012). While there is little direct government
621 involvement in rule-setting (P6), standards do refer to national legislation and some allow for
622 ‘national interpretations’ that make them more context-appropriate (P3).

623 However, there are other features in the ways that standards have traditionally functioned
624 that put them at odds with ZDC implementation in a strict sense. One element common to all
625 three standards is that to date, the majority of volume has been traded under ‘mass balance’
626 rules, in which certified product is mixed with conventional product at some point in the
627 supply chain. This process does not allow for traceability and may mean that illegal or
628 deforestation-associated products continue to flow into committed buyers’ products. In
629 response, standards also offer options for segregated and/or identity protected certified
630 products; in the case of cocoa and soy, however, this is only applied in a negligible share of
631 supply to date (Rainforest Alliance, 2020b; RTRS, 2020a). The palm sector provides a mixed
632 picture. While in 2019, Sime Darby sold 73% of its RSPO-certified palm oil under
633 segregated or identity preserved rules and only 27% as Mass Balance, the proportion of
634 certified palm oil sold under Mass Balance rules was 51% for Musim Mas, 66% for Wilmar,
635 87% for GAR, and 100% for Apical (RSPO, 2021a). Thus, not all actors involved in a
636 companies’ supply chain are necessarily covered by certification rules (P1).

637 A second concern is that the compliance monitoring model applied by standards –
638 centered on yearly audits, which may be done on a sample of farmers in group certifications –
639 is not well suited to comprehensively monitor deforestation in real time. Some certification
640 schemes until recently did not record farm boundaries, especially of smallholder farmers
641 operating in groups, and few use satellite monitoring to verify compliance. To better tackle
642 cocoa-driven deforestation, RA recently embarked on a mission to strengthen its code
643 compliance, among other things by asking for GPS locations of farms, and subsequently

644 found that 84 of their certified groups included farmers with land (illegally planted) in
645 protected areas. Another 30 groups were suspended for not providing geospatial information
646 (Rainforest Alliance, 2020c). To be effective for the purposes of ZDCs, compliance systems
647 thus need to be strengthened through quicker response times and better technological
648 monitoring solutions (P7). In addition, certification schemes tend to be adopted first by the
649 most advanced farmers, and may be dominated by farmers that have cleared in the past or
650 have no immediate plans for expansion, putting into question the additionality of schemes
651 (Garrett et al., 2016).

652 Finally, the inclusion of smallholders has been a consistent struggle especially for the
653 RSPO and RTRS, where independent smallholder farmers contribute 0.9% and 0.8% of total
654 certified supply, respectively (RSPO, 2021b; RTRS, 2020b). To tackle this gap, certification
655 organizations have aimed to simplify standards, introduced group certification, and offered
656 (limited) funding opportunities to assist farmer groups in covering audit expenses and
657 investments in capacity building. For example, between 2014 and 2018, the RSPO
658 Smallholder Support Fund, funded from 10% of the revenue generated from the trade of
659 Certified Sustainable Palm Oil (CSPO), could be used to support smallholders with the costs
660 incurred for training, project management, High Conservation Value (HCV) and Social and
661 Environmental Impact Assessment (SEIA), audit costs, as well as the tools and techniques to
662 support smallholder development, and benefitted over 28'000 individual smallholders.
663 Similarly, the Rainforest Alliance Rainforest Alliance's Africa Cocoa Fund (ACF), launched
664 in 2021, is a three-year, \$5 million fund to support cocoa farmers and help preserve the local
665 landscapes in West and Central Africa. It aims to create measurable, long-lasting positive
666 impact by building the capacity of those certified cocoa farmers who most need assistance to
667 implement RA certification standards.

668 Yet, access to such capacity building support is often mediated via NGOs or strong
669 producer institutions. The vast majority of certified smallholders learn about schemes and
670 their requirements via NGOs and/or firms (P2), and rely on such external assistance both to
671 reach standards and to maintain certification over time, which may affect the longevity of
672 certification impact (Brandi et al., 2015; Lemeilleur et al., 2015) (P3). Finally, a key benefit
673 of certification schemes – at least in theory – is that they are able to compensate producers for
674 enhanced practices via price premiums (P4). In practice, the extent of premium payments
675 varies dramatically both between standards and producers. Given an oversupply of certified
676 goods, premium erosion, and a recognition that most adjustments costs have historically been

677 borne by producers, some standard organizations have begun to respond by mandating an
678 annual increase in uptake by participating buyers (see the RSPO Shared Responsibility
679 guidelines) or setting minimum “sustainability differentials” to be paid to farmers, as RA is
680 introducing in the cocoa sector (Rainforest Alliance, 2020d).

681 **6. Discussion and conclusions**

682 In order to reach global goals for conservation and sustainable livelihoods, private supply
683 chain policies such as zero-deforestation commitments have to be designed in a way that
684 allows for effectiveness as well as equity in access for producers with varying adaptive
685 capacities. In this piece, we have provided the first comprehensive conceptualization of
686 access equity in the context of supply chain policies, identified policy design principles that
687 allow for synergies between effectiveness and access equity, and used these principles to
688 evaluate the leading implementation mechanisms for zero-deforestation commitments in the
689 most prominent forest-risk commodities: palm oil, cocoa, soybeans, and beef cattle. Our
690 work posits that synergies between the two goals are possible when deforestation prevention
691 goals remain ambitious and comprehensive, but suppliers with lower adaptive capacity are
692 supported in becoming compliant through widespread awareness raising actions, financial
693 and in-kind support for targeted capacity building, and differentiated compliance enforcement
694 that distinguishes between unwillingness and inability to comply. It is furthermore important
695 to involve affected actors in the co-production of implementation mechanisms and
696 enforcement solutions, and to support alternative rural development paths in areas where
697 commodity-driven development is undesirable due to the forest conversion risk.

698 When assessing the leading ZDC implementation mechanisms against these criteria, we
699 found that some showed encouraging signs of synergistic design choices that work to
700 strengthen both effectiveness and access equity, especially as companies have strengthened
701 their investment in raising the awareness of suppliers and other forms of outreach. Figure 3
702 shows the evaluation results, aggregated across the 28 evaluated initiatives, by ZDC design
703 principle. At least on paper, there is greatest commitment to synergies in coordinating
704 policies across private and public actors; disseminating ZDC rules to suppliers of all sizes;
705 and aiding suppliers with lower adaptive capacities in overcoming barriers to compliance
706 (though many such efforts are still in pilot phases and need to be scaled up significantly).

707 [Figure 3 about here]

708 Yet, more commonly we found that tensions between effectiveness and access equity
709 occurred through one of four main avenues:

- 710 1. Many companies choose not to monitor smaller or indirect suppliers, while only
711 taking compliance enforcement action when non-compliance (i.e., forest clearing)
712 was detected. This arguably mitigates access equity concerns, but only at the
713 expense of effectiveness and potential further clearing.
- 714 2. In many instances corporate actors state that they prefer engagement over
715 exclusion in the case of smallholders, but simultaneously focus on smallholder
716 capacity building activities that have only limited links to the issue of commodity-
717 driven deforestation, such as productivity improvements or on-farm tree planting.
718 While commendable in avoiding unfair market exclusion, such activities are
719 unlikely to reduce forest conversion rates by these smaller actors.
- 720 3. We find select instances where actors with lower adaptive capacity are likely to be
721 excluded without being provided with support for alternative livelihoods. This is
722 most often the case when identifying patterns of illegal deforestation (e.g. in
723 national parks), where responsibility is pushed back onto (unresponsive) state
724 actors, as well as when positive proof of compliance is required (as in the case of
725 using certification schemes).
- 726 4. Across the board we find few examples of policy co-production with affected
727 suppliers or needs-based incentive setting or benefit sharing.

728 Figure 3 further shows that initiatives tend to favor effectiveness over access equity in
729 designing commitments (P1), as few make mention of compensatory mechanisms or support
730 for alternative development paths. Yet, we also observe a high share of “neither” responses –
731 denoting design choices that do not support policy effectiveness, but also do not explicitly
732 target or improve access equity and may be examples of green washing or at least weak
733 commitment implementation. This demonstrates that there continues to be a large
734 implementation gap between commitments and best-practice suggestions for effectiveness
735 which also rely on the large-scale inclusion of producers (see also Garrett et al., 2019). We
736 thus identify more potential win-win outcomes than instances where committed actors are
737 forced to choose between ZDC effectiveness and access equity.

738 In the absence of sustained supplier engagement that puts the regulated – that is, farmers
739 and plantation companies – at the center and focuses on instigating targeted behavioral
740 changes, there is a high risk that supply chain policies will lack effectiveness (Jopke and

741 Schoneveld, 2018) and leave more marginalized actors, such as smallholder farmers, behind
742 (Colchester et al., 2016; Garrett et al., 2016; Haggar et al., 2017). We encourage further
743 systematic research on ZDC design, implementation, and impacts in the field, with an eye to
744 testing the proposed synergistic policy recommendations. Field-level verification is
745 particularly important for assessing how many of the aimed-for synergistic steps identified in
746 the policy documents (e.g., regarding coordination of public and private actors, or rolling out
747 smallholder support) are consistently implemented in practice. Transdisciplinary research
748 may also assess to what extent the proposed more ambitious design principles (e.g., regarding
749 the support of alternative development paths, or of needs-based incentive setting) may
750 feasibly be implemented in existing ZDC implementation mechanisms, or what other forms
751 of support and alignment (such as regulatory policy from importing countries or the
752 leveraging of blended finance) would be necessary to attain these goals.

753 Another interesting future research area is the timing and prioritization of effectiveness
754 versus access equity considerations. In times of rapid ecosystem and biodiversity loss, it
755 might be normatively acceptable to first focus on reigning in large-scale (corporate)
756 deforestation actors and only later turn to questions of smallholders and more marginalized
757 farmers, as has been done in practice in the palm oil sector. However, the palm sector also
758 presents a cautionary example. Emerging evidence indicates that large-scale actors
759 increasingly shift blame to smallholders and other unregulated actors, undermining the
760 functioning of current ZDC enforcement systems (Gaveau et al., 2017; Larsen et al., 2018).
761 As new initiatives emerge and old ones are revised, future work could delve more deeply into
762 temporal questions of effective and equitable policy design.

763 One limitation of the present study is that it did not explore the interactions between ZDC
764 design and contextual factors. ZDC effectiveness and access equity outcomes, their synergies
765 and tradeoffs are likely mediated by existing public policies (e.g. environmental regulation
766 and enforcement, institutional environment, monitoring infrastructure), commodity specific
767 features (e.g. perishability, transportability), civil society, social and market structures
768 affecting ZDC companies, as well as their interaction with each other and with their suppliers
769 (e.g. the number of supplier tiers, the level of market integration, length of the supply chain,
770 information asymmetries, poverty, education and producers organization). For instance, it is
771 likely that synergistic outcomes also rely on state actors in both importing and exporting
772 regions favoring coordination of supply chain zero-deforestation efforts. Future research
773 should highlight the interaction between ZDC design features and such contextual factors in

774 determining ZDC effectiveness and access equity (Garrett et al., 2021), and might aim to
775 determine ‘ideal’ ZDC implementation models that maximize synergies between
776 effectiveness and access equity in a given context.

777 A further limitation is that due to our study’s scope, our principles and assessment criteria
778 have focused on potential market exclusion stemming from the implementation of supply
779 chain policies. Future studies may aim to take a broader focus to also capture alternative
780 forms of access inequities (e.g. focused on gender, social status, or age) that interact with
781 supply chain policy implementation, or to examine other dimensions of equity (Klein et al.,
782 2015). Nevertheless, given the range of contexts spanned by existing forest-risk commodities,
783 our present analysis sets the basis for developing generalizable insights across multiple
784 commodities and supply chain, especially within the tropics. This heterogeneity also makes
785 existing initiatives ripe for future empirical analyses to explicitly examine the importance of
786 particular contextual factors in a comparative fashion.

787 Stepping back, we acknowledge that the market-based solutions analyzed above must
788 only be an intermediate strategy in the journey toward developing more sustainable
789 economies and food systems, as any sectoral efforts will ultimately reflect participatory
790 inequities and further entrench industry narratives about the role of corporations in
791 sustainable development (Dauvergne, 2018; Delabre et al., 2020). Longer-term solutions
792 require rethinking the reliance of tropical economies on agricultural exports for economic
793 growth and development and for high-income countries in the global north to assume greater
794 responsibility for their consumption footprints.

795

796 7. References

797 Adhikari, B., Boag, G., 2013. Designing payments for ecosystem services schemes: some
798 considerations. *Current Opinion in Environmental Sustainability, Terrestrial systems*
799 5, 72–77. <https://doi.org/10.1016/j.cosust.2012.11.001>

800 Agergaard, J., Fold, N., Gough, K.V., 2009. Global–local interactions: socioeconomic and
801 spatial dynamics in Vietnam’s coffee frontier. *The Geographical Journal* 175, 133–
802 145. <https://doi.org/10.1111/j.1475-4959.2009.00320.x>

803 Alix-Garcia, J., Gibbs, H.K., 2017. Forest conservation effects of Brazil’s zero deforestation
804 cattle agreements undermined by leakage. *Global Environmental Change* 47, 201–
805 217. <https://doi.org/10.1016/j.gloenvcha.2017.08.009>

806 Ansah, E.O., Kaplowitz, M.D., Lupi, F., Kerr, J., 2020. Smallholder participation and
807 procedural compliance with sustainable cocoa certification programs. *Agroecology*
808 and Sustainable Food Systems 44, 54–87.
809 <https://doi.org/10.1080/21683565.2019.1579776>

810 Atmadja, S., Verchot, L., 2012. A review of the state of research, policies and strategies in
811 addressing leakage from reducing emissions from deforestation and forest degradation
812 (REDD+). *Mitig Adapt Strateg Glob Change* 17, 311–336.
813 <https://doi.org/10.1007/s11027-011-9328-4>

814 Auld, G., Bernstein, S., Cashore, B., 2008. The new Corporate Social Responsibility. *Annual*
815 *Review of Environment and Resources* 33, 413–435.

816 Bardach, E., Kagan, R.A., 1982. *Going by the book: The problem of regulatory*
817 *unreasonableness*. Temple University Press, Philadelphia.

818 Bennett, E.A., 2017. Who governs socially-oriented voluntary sustainability standards? Not
819 the producers of certified products. *World Development* 91, 53–69.
820 <https://doi.org/10.1016/j.worlddev.2016.10.010>

821 Boi na Linha, 2021. Blog - As diferenças entre os compromissos da cadeia da carne [WWW
822 Document]. Boi na Linha. URL <https://www.boinalinha.org/blog/as-diferencias-entre->
823 [os-compromissos-da-cadeia-da-carne](https://www.boinalinha.org/blog/as-diferencias-entre-os-compromissos-da-cadeia-da-carne) (accessed 4.19.21).

824 Brandi, C., Cabani, T., Hosang, C., Schirmbeck, S., Westermann, L., Wiese, H., 2015.
825 *Sustainability Standards for Palm Oil: Challenges for Smallholder Certification Under*
826 *the RSPO*. *The Journal of Environment & Development* 24, 292–314.
827 <https://doi.org/10.1177/1070496515593775>

828 Brandi, C.A., 2017. Sustainability Standards and Sustainable Development – Synergies and
829 Trade-Offs of Transnational Governance. *Sustainable Development* 25, 25–34.
830 <https://doi.org/10.1002/sd.1639>

831 Brown, K., Corbera, E., 2003. Exploring equity and sustainable development in the new
832 carbon economy. *Climate Policy, Special Supplement on Climate Change and*
833 *Sustainable Development* 3, S41–S56. <https://doi.org/10.1016/j.clipol.2003.10.004>

834 Bush, S.R., Oosterveer, P., Bailey, M., Mol, A.P.J., 2015. Sustainability governance of chains
835 and networks: a review and future outlook. *Journal of Cleaner Production* 107, 8–19.
836 <https://doi.org/10.1016/j.jclepro.2014.10.019>

837 Byerlee, D., Falcon, W.P., Naylor, R.L., 2016. The Tropical Oil Crop Revolution: Food,
838 Feed, Fuel, and Forests, OUP Catalogue. Oxford University Press.

839 Cammelli, F., Garrett, R.D., Barlow, J., Parry, L., 2020. Fire risk perpetuates poverty and fire
840 use among Amazonian smallholders. *Global Environmental Change* 63, 102096.
841 <https://doi.org/10.1016/j.gloenvcha.2020.102096>

842 Capóssoli Armelin, M.J., Carvalho Burnier, P., Tiso B. R. Grossi, N., 2020. TAC da carne no
843 Pará e compromisso público da pecuária. Amigos da Terra (AdT) – Amazônia
844 Brasileira.

845 Carodenuto, S., 2019. Governance of zero deforestation cocoa in West Africa: New forms of
846 public–private interaction. *Environmental Policy and Governance* 29, 55–66.
847 <https://doi.org/10.1002/eet.1841>

848 Carodenuto, S., Buluran, M., 2021. The Effect of Supply Chain Position on Zero-
849 deforestation commitments: Evidence from the Cocoa Industry. *Journal of
850 Environmental Policy and Planning* forthcoming.

851 CDP, 2021. The Collective Effort to End Deforestation - A Pathway for Companies to Raise
852 Their Ambition. Carbon Disclosure Project.

853 CFI, 2020a. Cocoa & Forests Initiative Annual Report Ghana 2019. Cocoa and Forests
854 Initiative.

855 CFI, 2020b. Intermediate Pilot Phase Appraisal of the Cocoa & Forests Initiative January
856 2018 – December 2019. Cocoa and Forests Initiative.

857 CFI, 2017a. Joint Framework for Action Côte d'Ivoire. Cocoa and Forests Initiative.

858 CFI, 2017b. Joint Framework for Action Ghana. Cocoa and Forests Initiative.

859 Chan, K.M.A., Anderson, E., Chapman, M., Jespersen, K., Olmsted, P., 2017. Payments for
860 Ecosystem Services: Rife With Problems and Potential—For Transformation
861 Towards Sustainability. *Ecological Economics* 140, 110–122.
862 <https://doi.org/10.1016/j.ecolecon.2017.04.029>

863 Cheyns, E., Silva-Castañeda, L., Aubert, P.-M., 2020. Missing the forest for the data?
864 Conflicting valuations of the forest and cultivable lands. *Land Use Policy* 96, 103591.
865 <https://doi.org/10.1016/j.landusepol.2018.08.042>

866 Christopoulou, A., Steinweg, T., Thoumi, G., 2018. The Financing of Leakage Refiners:
867 Shareholders and Loan Issuers Include International Financial Institutions with Palm
868 Oil Policies. *Chain Reaction Research*, Washington, D.C.

869 Colchester, M., Anderson, P., Nelson, J., Luckyharto, D., Venant, M., Nounah, S., 2016.
870 How can ‘Zero Deforestation’ policies accommodate the rights and livelihoods of
871 local communities and indigenous peoples? Lessons from the field. *Forest Peoples
872 Programme*, Moreton-in-Marsh.

873 Corbera, E., Kosoy, N., Martínez Tuna, M., 2007. Equity implications of marketing
874 ecosystem services in protected areas and rural communities: Case studies from
875 Meso-America. *Global Environmental Change* 17, 365–380.
876 <https://doi.org/10.1016/j.gloenvcha.2006.12.005>

877 Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., Hansen, M.C., 2018. Classifying
878 drivers of global forest loss. *Science* 361, 1108–1111.
879 <https://doi.org/10.1126/science.aau3445>

880 Dauvergne, P., 2018. The Global Politics of the Business of “Sustainable” Palm Oil. *Global
881 Environmental Politics* 18, 34–52. https://doi.org/10.1162/glep_a_00455

882 DeFries, R.S., Fanzo, J., Mondal, P., Remans, R., Wood, S.A., 2017. Is voluntary
883 certification of tropical agricultural commodities achieving sustainability goals for
884 small-scale producers? A review of the evidence. *Environ. Res. Lett.* 12, 033001.

885 Delabre, I., Boyd, E., Brockhaus, M., Carton, W., Krause, T., Newell, P., Wong, G.Y., Zelli,
886 F., 2020. Unearthing the myths of global sustainable forest governance. *Global
887 Sustainability* 3. <https://doi.org/10.1017/sus.2020.11>

888 Dietz, T., Grabs, J., 2021. Additionality and Implementation Gaps in Voluntary Sustainability
889 Standards. *New Political Economy* 0, 1–22.
890 <https://doi.org/10.1080/13563467.2021.1881473>

891 Dou, Y., da Silva, R.F.B., McCord, P., Zaehringer, J.G., Yang, H., Furumo, P.R., Zhang, J.,
892 Pizarro, J.C., Liu, J., 2020. Understanding How Smallholders Integrated into
893 Pericoupled and Telecoupled Systems. *Sustainability* 12, 1596.
894 <https://doi.org/10.3390/su12041596>

895 FAO, 2021. FAOSTAT - Trade Crops and livestock products [WWW Document].
896 FAOSTAT. URL <http://www.fao.org/faostat/en/#data/TP> (accessed 4.19.21).

897 Folke, C., Österblom, H., Jouffray, J.-B., Lambin, E.F., Adger, W.N., Scheffer, M., Crona,
898 B.I., Nyström, M., Levin, S.A., Carpenter, S.R., Andries, J.M., Chapin, S., Crépin,
899 A.-S., Dauriach, A., Galaz, V., Gordon, L.J., Kautsky, N., Walker, B.H., Watson,
900 J.R., Wilen, J., de Zeeuw, A., 2020. An invitation for more research on transnational
901 corporations and the biosphere. *Nature Ecology & Evolution* 1–1.
902 <https://doi.org/10.1038/s41559-020-1145-2>

903 Fountain, A.C., Hütz-Adams, F., 2020. 2020 Cocoa Barometer. Cocoa Barometer
904 Consortium.

905 Furumo, P.R., Lambin, E.F., 2020. Scaling up zero-deforestation initiatives through public-
906 private partnerships: A look inside post-conflict Colombia. *Global Environmental
907 Change* 62, 102055. <https://doi.org/10.1016/j.gloenvcha.2020.102055>

908 Galudra, G., Sirait, M., Pasya, G., Fay, C., Suyanto, van Noordwijk, M., Pradhan, U., 2010.
909 RaTA: A Rapid Land Tenure Assessment manual for identifying the nature of land
910 tenure conflicts. World Agroforestry Centre, Bogor, Indonesia.

911 Garrett, R.D., Carlson, K.M., Rueda, X., Noojipady, P., 2016. Assessing the potential
912 additionality of certification by the Round table on Responsible Soybeans and the
913 Roundtable on Sustainable Palm Oil. *Environmental Research Letters* 11.
914 <https://doi.org/10.1088/1748-9326/11/4/045003>

915 Garrett, R.D., Gardner, T.A., Morello, T.F., Marchand, S., Barlow, J., de Blas, D.E., Ferreira,
916 J., Lees, A.C., Parry, L., 2017. Explaining the persistence of low income and
917 environmentally degrading land uses in the Brazilian Amazon. *Ecology and Society*
918 22.

919 Garrett, R.D., Lambin, E.F., Naylor, R.L., 2013. The new economic geography of land use
920 change: Supply chain configurations and land use in the Brazilian Amazon. *Land Use
921 Policy* 34, 265–275. <https://doi.org/10.1016/j.landusepol.2013.03.011>

922 Garrett, R.D., Levy, S., Carlson, K.M., Gardner, T.A., Godar, J., Clapp, J., Dauvergne, P.,
923 Heilmayr, R., le Polain de Waroux, Y., Ayre, B., Barr, R., Døvre, B., Gibbs, H.K.,
924 Hall, S., Lake, S., Milder, J.C., Rausch, L.L., Rivero, R., Rueda, X., Sarsfield, R.,
925 Soares-Filho, B., Villoria, N., 2019. Criteria for effective zero-deforestation
926 commitments. *Global Environmental Change* 54, 135–147.
927 <https://doi.org/10.1016/j.gloenvcha.2018.11.003>

928 Garrett, R.D., Levy, S.A., Gollnow, F., Hodel, L., Rueda, X., 2021. Have food supply chain
929 policies improved forest conservation and rural livelihoods? A systematic review.
930 Environmental Research Letters 16, 033002. <https://doi.org/10.3929/ethz-b-000475417>

932 Garrett, R.D., Rausch, L.L., 2016. Green for gold: social and ecological tradeoffs influencing
933 the sustainability of the Brazilian soy industry. The Journal of Peasant Studies 43,
934 461–493. <https://doi.org/10.1080/03066150.2015.1010077>

935 Garrett, R.D., Rueda, X., Levy, S., Bermudez Blanco, J.F., Shah, S., 2018. Measuring
936 impacts of supply chain initiatives for conservation: Focus on forest-risk food
937 commodities. Meridian Institute, Washington, D.C.

938 Gaveau, D.L.A., Pirard, R., Salim, M.A., Tonoto, P., Yaen, H., Parks, S.A., Carmenta, R.,
939 2017. Overlapping land claims limit the use of satellites to monitor no-deforestation
940 commitments and no-burning compliance. Conservation Letters 10, 257–264.
941 <https://doi.org/10.1111/conl.12256>

942 Gebara, M.F., 2013. Importance of local participation in achieving equity in benefit-sharing
943 mechanisms for REDD+: a case study from the Juma Sustainable Development
944 Reserve. International Journal of the Commons 7, 473–497.
945 <https://doi.org/10.18352/ijc.301>

946 German, L., Schoneveld, G.C., Pacheco, P., 2011. The Social and Environmental Impacts of
947 Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest
948 Frontier. Ecology and Society 16.

949 Gibbs, H.K., Munger, J., L'Roe, J., Barreto, P., Pereira, R., Christie, M., Amaral, T., Walker,
950 N.F., 2016. Did Ranchers and Slaughterhouses Respond to Zero-Deforestation
951 Agreements in the Brazilian Amazon? Conservation Letters 9, 32–42.
952 <https://doi.org/10.1111/conl.12175>

953 Gill, D.A., Cheng, S.H., Glew, L., Aigner, E., Bennett, N.J., Mascia, M.B., 2019. Social
954 Synergies, Tradeoffs, and Equity in Marine Conservation Impacts. Annual Review of
955 Environment and Resources 44, 347–372. <https://doi.org/10.1146/annurev-environ-110718-032344>

957 Giuliani, E., Ciravegna, L., Vezzulli, A., Kilian, B., 2017. Decoupling standards from
958 practice: The impact of in-house certifications on coffee farms' environmental and
959 social conduct. *World Development* 96, 294–314.

960 Goldman, E., Weisse, M., Harris, N., Schneider, M., 2020. Estimating the Role of Seven
961 Commodities in Agriculture-Linked Deforestation: Oil Palm, Soy, Cattle, Wood
962 Fiber, Cocoa, Coffee, and Rubber. WRI Publications.
963 <https://doi.org/10.46830/writn.na.00001>

964 Gollnow, F., Hissa, L. de B.V., Rufin, P., Lakes, T., 2018. Property-level direct and indirect
965 deforestation for soybean production in the Amazon region of Mato Grosso, Brazil.
966 *Land Use Policy* 78, 377–385. <https://doi.org/10.1016/j.landusepol.2018.07.010>

967 Grabs, J., 2020. Selling sustainability short? The private governance of labor and the
968 environment in the coffee sector. Cambridge University Press, Cambridge.

969 Grabs, J., Carodenuto, S.L., 2021. Traders as sustainability governance actors in global food
970 supply chains: A research agenda. *Business Strategy and the Environment* online first.
971 <https://doi.org/10.1002/bse.2686>

972 Grant, M.J., Booth, A., 2009. A Typology of Reviews: An Analysis of 14 Review Types and
973 Associated Methodologies. *Health Info Libr J* 26, 91–108.
974 <https://doi.org/10.1111/j.1471-1842.2009.00848.x>

975 Greenpeace, 2009. Slaughtering the Amazon. Greenpeace.

976 Haas, J.C., Loft, L., Pham, T.T., 2019. How fair can incentive-based conservation get? The
977 interdependence of distributional and contextual equity in Vietnam's payments for
978 Forest Environmental Services Program. *Ecological Economics* 160, 205–214.
979 <https://doi.org/10.1016/j.ecolecon.2019.02.021>

980 Haggar, J., Soto, G., Casanoves, F., Virginio, E. de M., 2017. Environmental-economic
981 benefits and trade-offs on sustainably certified coffee farms. *Ecological Indicators* 79,
982 330–337. <https://doi.org/10.1016/j.ecolind.2017.04.023>

983 Haupt, F., Bakhtary, H., Schulte, I., Galt, H., Streck, C., 2018a. Progress on Corporate
984 Commitments and their Implementation. Climate Focus, Amsterdam.

985 Haupt, F., König, S., Streck, C., Schulte, I., 2018b. Drivers of Change: How Effective are
986 Corporate Supply-Chain Commitments? Analysis of the Brazilian Beef and Soy
987 Sectors, and the Colombian Beef and Dairy Sector. Climate Focus, Washington, D.C.

988 Heilmayr, R., Rausch, L.L., Munger, J., Gibbs, H.K., 2020. Brazil's Amazon Soy
989 Moratorium reduced deforestation. *Nature Food* 1, 801–810.
990 <https://doi.org/10.1038/s43016-020-00194-5>

991 IBGE, 2017. Censo Agropecuaria 2017. Brazilian Institute of Geography and Statistics.

992 ImaZon, 2018. Will Meat-Packing Plants Help Halt Deforestation in the Amazon? ImaZon.
993 URL <https://amazon.org.br/en/will-meat-packing-plants-help-halt-deforestation-in-the-amazon/> (accessed 4.19.21).

995 INOBU, 2016. A Profile of Small-scale Oil Palm Farmers and The Challenges of Farming
996 Independently. Institut Penelitian Inovasi Bumi, Jakarta.

997 INPE, 2020. Projeto PRODES: Monitoramento Da Floresta Amazônica Brasileira Por
998 Satélite. Instituto Nacional de Pesquisas Espaciais.

999 ISEAL Alliance, 2019. Working with smallholders. Insights on the reach and characteristics
1000 of smallholder farmers within ISEAL member schemes. ISEAL Alliance, London.

1001 Jia, F., Zuluaga-Cardona, L., Bailey, A., Rueda, X., 2018. Sustainable supply chain
1002 management in developing countries: An analysis of the literature. *Journal of Cleaner
1003 Production* 189, 263–278. <https://doi.org/10.1016/j.jclepro.2018.03.248>

1004 Jopke, P., Schoneveld, G.C., 2018. Corporate commitments to zero deforestation. An
1005 evaluation of externality problems and implementation gaps, Occasional Paper.
1006 CIFOR, Bogor.

1007 Jung, S., Polasky, S., 2018. Partnerships to prevent deforestation in the Amazon. *Journal of
1008 Environmental Economics and Management* 92, 498–516.
1009 <https://doi.org/10.1016/j.jeem.2018.11.001>

1010 Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen,
1011 B., Adami, M., Aragão, L.E.O.C., Galbraith, D., 2018. Pervasive Rise of Small-scale
1012 Deforestation in Amazonia. *Scientific Reports* 8, 1600.
1013 <https://doi.org/10.1038/s41598-018-19358-2>

1014 Kiser, L.L., Ostrom, E., 2000. The three worlds of action: A metatheoretical synthesis of
1015 institutional approaches, in: McGinnis, M.D. (Ed.), *Polycentric Games and
1016 Institutions. Readings from the Workshop in Political Theory and Policy Analysis*.
1017 University of Michigan Press, Ann Arbor, pp. 179–222.

1018 Klein, C., McKinnon, M.C., Wright, B.T., Possingham, H.P., Halpern, B.S., 2015. Social
1019 equity and the probability of success of biodiversity conservation. *Global
1020 Environmental Change* 35, 299–306. <https://doi.org/10.1016/j.gloenvcha.2015.09.007>

1021 Klooster, D., 2005. Environmental certification of forests: The evolution of environmental
1022 governance in a commodity network. *Journal of Rural Studies, Certifying Rural
1023 Spaces: Quality-Certified Products and Rural Governance* 21, 403–417.
1024 <https://doi.org/10.1016/j.jrurstud.2005.08.005>

1025 Koberg, E., Longoni, A., 2019. A systematic review of sustainable supply chain management
1026 in global supply chains. *Journal of Cleaner Production* 207, 1084–1098.
1027 <https://doi.org/10.1016/j.jclepro.2018.10.033>

1028 Kroeger, A., Koenig, S., Thomson, A., Streck, C., 2017. Forest- and Climate-Smart Cocoa in
1029 Côte d'Ivoire and Ghana, Commodities Study. World Bank, Washington, D.C.
1030 <https://doi.org/10.1596/29014>

1031 Lambin, E.F., Gibbs, H.K., Heilmayr, R., Carlson, K.M., Fleck, L.C., Garrett, R.D., Waroux,
1032 Y. le P. de, McDermott, C.L., McLaughlin, D., Newton, P., Nolte, C., Pacheco, P.,
1033 Rausch, L.L., Streck, C., Thorlakson, T., Walker, N.F., 2018. The role of supply-
1034 chain initiatives in reducing deforestation. *Nature Climate Change* 8, 109.
1035 <https://doi.org/10.1038/s41558-017-0061-1>

1036 Larsen, R.K., Osbeck, M., Dawkins, E., Tuhkanen, H., Nguyen, H., Nugroho, A., Gardner,
1037 T.A., Zulfahm, Wolvekamp, P., 2018. Hybrid governance in agricultural commodity
1038 chains: Insights from implementation of 'No Deforestation, No Peat, No Exploitation'
1039 (NDPE) policies in the oil palm industry. *Journal of Cleaner Production* 183, 544–
1040 554. <https://doi.org/10.1016/j.jclepro.2018.02.125>

1041 le Polain de Waroux, Y., Baumann, M., Gasparri, N.I., Gavier-Pizarro, G., Godar, J.,
1042 Kuemmerle, T., Müller, R., Vázquez, F., Volante, J.N., Meyfroidt, P., 2018. Rents,
1043 Actors, and the Expansion of Commodity Frontiers in the Gran Chaco. *Annals of the
1044 American Association of Geographers* 108, 204–225.
1045 <https://doi.org/10.1080/24694452.2017.1360761>

1046 Lee, J., Gereffi, G., Beauvais, J., 2012. Global Value Chains and Agrifood Standards:
1047 Challenges and Possibilities for Smallholders in Developing Countries. *PNAS* 109,
1048 12326–12331. <https://doi.org/10.1073/pnas.0913714108>

1049 Lemeilleur, S., N'Y., Dao, N.A., Ruf, F., 2015. The productivist rationality behind a
1050 sustainable certification process: evidence from the Rainforest Alliance in the Ivorian
1051 cocoa sector. *IJSD* 18, 310. <https://doi.org/10.1504/IJSD.2015.072661>

1052 Lister, J., Dauvergne, P., 2014. Voluntary zero net deforestation: the implications of demand-
1053 side retail sustainability for global forests, in: Nikolakis, W., Innes, J. (Eds.), *Forests*
1054 and Globalization: Challenges and Opportunities for Sustainable Development.
1055 Routledge, London; New York.

1056 Loconto, A., Dankers, C., 2014. Impact of international voluntary standards on smallholder
1057 market participation in developing countries: a review of the literature. Food and
1058 Agricultural Organization of the United Nations, Rome.

1059 Lyons-White, J., Knight, A.T., 2018. Palm oil supply chain complexity impedes
1060 implementation of corporate no-deforestation commitments. *Global Environmental*
1061 *Change* 50, 303–313. <https://doi.org/10.1016/j.gloenvcha.2018.04.012>

1062 Lyons-White, J., Pollard, E.H.B., Catalano, A.S., Knight, A.T., 2020. Rethinking zero
1063 deforestation beyond 2020 to more equitably and effectively conserve tropical forests.
1064 *One Earth* 3, 714–726. <https://doi.org/10.1016/j.oneear.2020.11.007>

1065 Marfrig, 2020. Sustainability Progress Report 2020. Marfrig.

1066 McCubbins, M.D., Schwartz, T., 1984. Congressional Oversight Overlooked: Police Patrols
1067 versus Fire Alarms. *American Journal of Political Science* 28, 165–179.
1068 <https://doi.org/10.2307/2110792>

1069 McDermott, C.L., 2013. Certification and equity: Applying an “equity framework” to
1070 compare certification schemes across product sectors and scales. *Environmental*
1071 *Science & Policy* 33, 428–437. <https://doi.org/10.1016/j.envsci.2012.06.008>

1072 McDermott, M., Mahanty, S., Schreckenberg, K., 2013. Examining equity: A
1073 multidimensional framework for assessing equity in payments for ecosystem services.
1074 *Environmental Science & Policy* 33, 416–427.
1075 <https://doi.org/10.1016/j.envsci.2012.10.006>

1076 Mena, S., Palazzo, G., 2012. Input and Output Legitimacy of Multi-Stakeholder Initiatives.
1077 *Business Ethics Quarterly* 22, 527–556. <https://doi.org/10.5840/beq201222333>

1078 Merino, C., 2019. Investor primer on non-compliance protocols: Ending deforestation at the
1079 source. Ceres, Boston.

1080 Meyfroidt, P., Boerner, J., Garrett, R., Gardner, T., Godar, J., Kis-Katos, K., Soares-Filho, B.,
1081 Wunder, S., 2020. Focus on leakage and spillovers: informing land-use governance in
1082 a tele-coupled world. *Environ. Res. Lett.* <https://doi.org/10.1088/1748-9326/ab7397>

1083 MPF, 2020. Protocolo De Monitoramento De Fornecedores De Gado Da Amazônia.
1084 Ministério Público Federal, Brasília.

1085 Musim Mas, 2021. Key Lessons from Indonesia's Largest Palm Oil Independent
1086 Smallholders Project.

1087 Newton, P., Benzeev, R., 2018. The role of zero-deforestation commitments in protecting and
1088 enhancing rural livelihoods. *Current Opinion in Environmental Sustainability*,
1089 *Environmental change issues* 2018 32, 126–133.
1090 <https://doi.org/10.1016/j.cosust.2018.05.023>

1091 Pacheco, P., Poccard-Chapuis, R., 2012. The Complex Evolution of Cattle Ranching
1092 Development Amid Market Integration and Policy Shifts in the Brazilian Amazon.
1093 *Annals of the Association of American Geographers* 102, 1366–1390.
1094 <https://doi.org/10.1080/00045608.2012.678040>

1095 Pascual, U., Phelps, J., Garmendia, E., Brown, K., Corbera, E., Martin, A., Gomez-
1096 Baggethun, E., Muradian, R., 2014. Social Equity Matters in Payments for Ecosystem
1097 Services. *BioScience* 64, 1027–1036. <https://doi.org/10.1093/biosci/biu146>

1098 Pendrill, F., Persson, U.M., Godar, J., Kastner, T., 2019. Deforestation displaced: trade in
1099 forest-risk commodities and the prospects for a global forest transition. *Environ. Res.*
1100 *Lett.* 14, 055003. <https://doi.org/10.1088/1748-9326/ab0d41>

1101 Pereira, R., Rausch, L.L., Carrara, A., Gibbs, H.K., 2020. Extensive Production Practices and
1102 Incomplete Implementation Hinder Brazil's Zero-Deforestation Cattle Agreements in
1103 Pará. *Tropical Conservation Science* 13, 1940082920942014.
1104 <https://doi.org/10.1177/1940082920942014>

1105 Pereira, R., Simmons, C.S., Walker, R., 2016. Smallholders, Agrarian Reform, and
1106 Globalization in the Brazilian Amazon: Cattle versus the Environment. *Land* 5, 24.
1107 <https://doi.org/10.3390/land5030024>

1108 Pignataro, G., 2012. Equality of Opportunity: Policy and Measurement Paradigms. *Journal of*
1109 *Economic Surveys* 26, 800–834. <https://doi.org/10.1111/j.1467-6419.2011.00679.x>

1110 Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith,
1111 W., Zhuravleva, I., Komarova, A., Minnemeyer, S., Esipova, E., 2017. The last
1112 frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013.
1113 *Science Advances* 3, e1600821. <https://doi.org/10.1126/sciadv.1600821>

1114 Prokopy, L.S., Floress, K., Klotthor-Weinkauf, D., Baumgart-Getz, A., 2008. Determinants
1115 of agricultural best management practice adoption: Evidence from the literature.
1116 *Journal of Soil and Water Conservation* 63, 300–311.
1117 <https://doi.org/10.2489/jswc.63.5.300>

1118 Qaim, M., Sibhatu, K.T., Siregar, H., Grass, I., 2020. Environmental, Economic, and Social
1119 Consequences of the Oil Palm Boom. *Annual Review of Resource Economics* 12,
1120 321–344. <https://doi.org/10.1146/annurev-resource-110119-024922>

1121 Rainforest Alliance, 2020a. What's in our 2020 certification program? Deforestation [WWW
1122 Document]. URL <https://www.rainforest-alliance.org/business/wp-content/uploads/2020/06/2020-program-deforestation.pdf>

1123 Rainforest Alliance, 2020b. FAQ: What is Mass Balance Sourcing? [WWW Document].
1124 Rainforest Alliance. URL <https://www.rainforest-alliance.org/faqs/what-is-mass-balance-sourcing> (accessed 4.19.21).

1125 Rainforest Alliance, 2020c. Measures to Strengthen the Cocoa Sector [WWW Document].
1126 Rainforest Alliance for Business. URL <https://www.rainforest-alliance.org/business/2020-measures-to-strengthen-the-cocoa-sector> (accessed 7.12.21).

1127 Rainforest Alliance, 2020d. What's in our 2020 certification program? Shared responsibility
1128 [WWW Document]. URL <https://www.rainforest-alliance.org/business/2020-program-shared-responsibility.pdf>

1129 Romijn, L., 2014. Smallholder Farmers and Responsible Soy Production: Certification and
1130 Upgrading. Wageningen University.

1131 Roszkowska-Menkes, M., Aluchna, M., 2017. Institutional isomorphism and corporate social
1132 responsibility: towards a conceptual model. *Journal of Positive Management* 8, 3–16.
1133 <https://doi.org/10.12775/JPM.2017.007>

1134 RSPO, 2021a. RSPO Annual Communications of Progress (ACOP) [WWW Document].
1135 URL <https://www.rspo.org/members/acop> (accessed 4.19.21).

1141 RSPO, 2021b. RSPO Smallholders [WWW Document]. URL
1142 <https://www.rspo.org/smallholders> (accessed 7.19.21).

1143 RTRS, 2020a. RTRS Headlines 2019. Looking beyond 2020. Round Table on Responsible
1144 Soy Association.

1145 RTRS, 2020b. RTRS certification in Asia: the experience of small holders – RTRS. URL
1146 <https://responsiblesoy.org/rtrs-certification-in-asia-the-experience-of-small-holders?lang=en> (accessed 7.19.21).

1148 Russo Lopes, G., Bastos Lima, M.G., Reis, T.N.P. dos, 2021. Maldevelopment revisited:
1149 Inclusiveness and social impacts of soy expansion over Brazil's Cerrado in Matopiba.
1150 World Development 139, 105316. <https://doi.org/10.1016/j.worlddev.2020.105316>

1151 Schleifer, P., Sun, Y., 2018. Emerging markets and private governance: the political economy
1152 of sustainable palm oil in China and India. Review of International Political Economy
1153 25, 190–214. <https://doi.org/10.1080/09692290.2017.1418759>

1154 Schoneveld, G.C., Ekowati, D., Andrianto, A., Haar, S. van der, 2019a. Modeling peat- and
1155 forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res.
1156 Lett. 14, 014006. <https://doi.org/10.1088/1748-9326/aaf044>

1157 Schoneveld, G.C., van der Haar, S., Ekowati, D., Andrianto, A., Komarudin, H., Okarda, B.,
1158 Jelsma, I., Pacheco, P., 2019b. Certification, good agricultural practice and
1159 smallholder heterogeneity: Differentiated pathways for resolving compliance gaps in
1160 the Indonesian oil palm sector. Global Environmental Change 57, 101933.
1161 <https://doi.org/10.1016/j.gloenvcha.2019.101933>

1162 Schouten, G., Leroy, P., Glasbergen, P., 2012. On the deliberative capacity of private multi-
1163 stakeholder governance: The Roundtables on Responsible Soy and Sustainable Palm
1164 Oil. Ecological Economics, Sustainability in Global Product Chains 83, 42–50.
1165 <https://doi.org/10.1016/j.ecolecon.2012.08.007>

1166 Senior, M., 2018. RSPO No deforestation consultancy: high forest cover countries. Proforest,
1167 Oxford.

1168 Sorice, M.G., Donlan, C.J., Boyle, K.J., Xu, W., Gelcich, S., 2018. Scaling participation in
1169 payments for ecosystem services programs. PLOS ONE 13, e0192211.
1170 <https://doi.org/10.1371/journal.pone.0192211>

1171 SPOTT, 2021. Palm oil: ESG policy transparency assessments [WWW Document].
1172 SPOTT.org. URL <https://www.spott.org/palm-oil/> (accessed 2.15.21).

1173 ten Kate, A., Kuepper, B., Piotrowski, M., 2020. NDPE Policies Cover 83% of Palm Oil
1174 Refineries; Implementation at 78%. Chain Reaction Research, Washington, D.C.

1175 Thorlakson, T., Zegher, J.F. de, Lambin, E.F., 2018. Companies' contribution to
1176 sustainability through global supply chains. PNAS 115, 2072–2077.
1177 <https://doi.org/10.1073/pnas.1716695115>

1178 Tröster, R., Hiete, M., 2018. Success of voluntary sustainability certification schemes – A
1179 comprehensive review. Journal of Cleaner Production 196, 1034–1043.
1180 <https://doi.org/10.1016/j.jclepro.2018.05.240>

1181 Voora, V., Larrea, C., Bermudez, S., 2020. Global Market Report: Soybeans. The
1182 International Institute for Sustainable Development, Winnipeg, Manitoba.

1183 Wessel, M., Quist-Wessel, P.M.F., 2015. Cocoa production in West Africa, a review and
1184 analysis of recent developments. NJAS - Wageningen Journal of Life Sciences 74–75,
1185 1–7. <https://doi.org/10.1016/j.njas.2015.09.001>

1186 Wilmar, 2020. Sustainability Report 2019 - Sustainable Sourcing. Wilmar International.

1187 Wilmar International, 2015. Grievance Procedure for the Implementation of Wilmar's No
1188 Deforestation, No Peat, No Exploitation Policy. Wilmar International, Singapore.

1189 Zimmerer, K.S., Lambin, E.F., Vanek, S.J., 2018. Smallholder telecoupling and potential
1190 sustainability. Ecology and Society 23.

1191 zu Ermgassen, E.K.H.J., Ayre, B., Godar, J., Lima, M.G.B., Bauch, S., Garrett, R., Green, J.,
1192 Lathuillière, M.J., Löfgren, P., MacFarquhar, C., Meyfroidt, P., Suavet, C., West, C.,
1193 Gardner, T., 2020. Using supply chain data to monitor zero deforestation
1194 commitments: an assessment of progress in the Brazilian soy sector. Environ. Res.
1195 Lett. 15, 035003. <https://doi.org/10.1088/1748-9326/ab6497>

1196

1197 **8. Tables**

1198 *Table 1. Top five firms handling forest-risk commodities, by sector and volumes
1199 sourced/used/capacity*

Palm oil	Soybeans
----------	----------

Company	Volume sourced in 2019 (million MT; % of world trade)	Company	Volumes sourced in 2017 (million MT; % of world trade)
Wilmar International Ltd.	24.7 (44%)	Archer Daniels Midland	15.9 (10.6%)
Golden Agri Resources Ltd	9.4 (17%)	Cargill	14.5 (9.7%)
Musim Mas	9.1 (16%)	Louis Dreyfus Company	13.0 (8.7%)
Apical Group Ltd.	8.7 (15%)	Cofco	12.0 (8.1%)
Sime Darby Bhd.	3.4 (6%)	Bunge	9.3 (6.3%)
Cattle		Cocoa	
Company	Brazilian slaughtering capacity in 2017 (heads/day; estimated % of total capacity)	Company	Volumes used in 2019 (million MT; % of world trade)
JBS	34'420 (42%)	Barry Callebaut	1.03 (25%)
Minerva	11'880 (14.7%)	Olam	1.0 (24%)
Marfrig	10'000 (12.4%)	Cargill	0.82 (20%)
Mercúrio	2'000 (2.5%)	Ecom	0.74 (18%)
Masterboi	1'700 (2.1%)	Sucden	0.50 (12%)

Notes: Palm volumes sourced (in metric tonnes, MT) represent all palm oil and palm oil products, including crude palm oil, crude palm kernel oil, derivatives refined from CPO and CPKO, and crude palm kernel expeller. From RSPO ACOP (RSPO, 2021a). Soy volumes (in MT) sourced from Voora et al. (2020). Cocoa volumes used (in MT) represent all cocoa products, using ICCO conversion rates: cocoa beans 1.0, cocoa butter 1.33, cocoa paste/liquor 1.25, cocoa powder and cocoa cake 1.18, from Fountain and Hütz-Adams (2020). Palm, soy, and cocoa world trade volumes approximated via global aggregate imports (palm oil and palm kernel oil; soybean; cocoa bean), in MT, from FAO Stats (FAO, 2021). Given extensive inter-company trade between large companies, percentage values should not be read as mutually exclusive (and thus not summed to arrive at market coverage).

1209

1210 *Table 2. Barriers to sustainable market access and policy design criteria to avoid unfair*
1211 *market exclusion*

Barrier type	Examples	Counteracted by...	References (selected)
Education and access to information	Knowledge about initiatives, openness toward innovation	Outreach, awareness raising	(Adhikari and Boag, 2013; Brandi et al., 2015; Jia et al., 2018; Loconto and Dankers, 2014; Prokopy et al., 2008; Tröster and Hiete, 2018)
Technological capacity	Good agricultural practices, book keeping, access to correct inputs	Simplify criteria, offer technical assistance, integrate trainings and capacity building	(Adhikari and Boag, 2013; Brandi et al., 2015; Jia et al., 2018; Loconto and Dankers, 2014; McDermott, 2013)
Financial resources	Assets, capital available for sustainable investments	Financial support, premium payments	(Adhikari and Boag, 2013; Brandi et al., 2015; Jia et al., 2018; Loconto and Dankers, 2014; Prokopy et al., 2008;

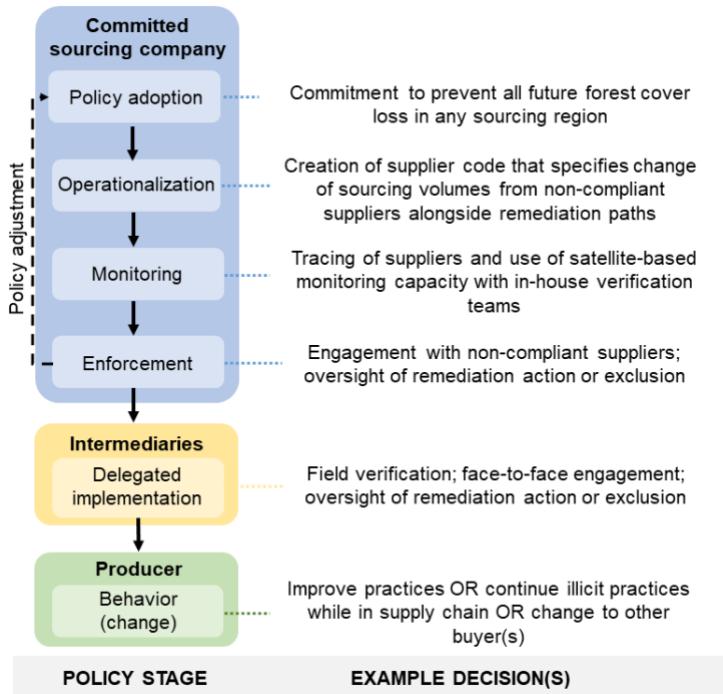
			Sorice et al., 2018; Tröster and Hiete, 2018)
Legal standing	Land rights and tenure, adherence to land use designation	Simplify criteria, assistance in attaining correct legal documents, lobbying for regulatory alignment	(Adhikari and Boag, 2013; Brandi et al., 2015; McDermott, 2013; Schoneveld et al., 2019b)
Organizational scale and quality	Farm size, group membership	Simplify criteria, support group formation	(Adhikari and Boag, 2013; Brandi et al., 2015; Loconto and Dankers, 2014; Prokopy et al., 2008; Tröster and Hiete, 2018)
Attitudes, values and norms	Pro-environmental attitudes, non-monetary values and behavioral norms toward conservation	Participatory program design; norm-based rather than financial policy framings; community-level implementation	(Prokopy et al., 2008; Sorice et al., 2018; Tröster and Hiete, 2018)

1212

1213 *Table 3. Seven design principles for effectiveness-access equity synergies and associated*
 1214 *evaluation criteria*

	Design principle	Evaluation Criteria
1	ZDCs should be stringent and cover all producers, regions, and substitutable products to undercut leakage opportunities, but be accompanied by commitments to support alternative developments paths (i.e., with development aid or value-added industry) to offset negative economic impacts resulting from exclusion choices, from the individual to national scale.	1.1. Deforestation reduction target 1.2. Policy scope (actors) 1.3. Policy scope (regions) 1.4. Cut-off date 1.5. Offsetting of negative impacts resulting from exclusions
2	ZDCs should pursue active dissemination of rules via trainings that are adapted to the particular capacity gaps and concerns of various suppliers.	2.1. Evidence of active policy dissemination
3	ZDCs should further include active removal of barriers to compliance via differentiated and locally targeted capacity-building measures, and both financial and in-kind support.	3.1. Capacity building 3.2. Legal alignment
4	ZDCs should provide benefit-sharing schemes for compliance through price or non-price mechanisms and consider payments to offset lost income, especially for farmers living in poverty.	4.1. Evidence of benefit sharing
5	ZDCs should involve the co-production of rules and implementation procedures with supply chain members and surrounding communities.	5.1. Evidence of co-production of policy operationalization

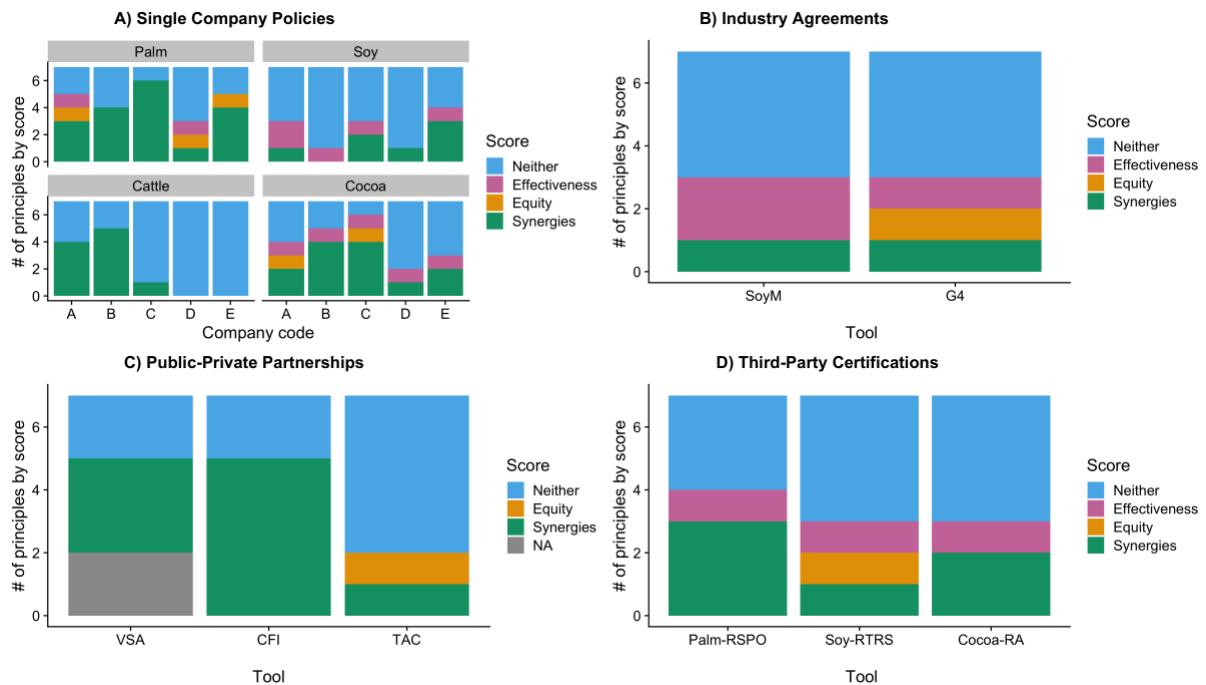
6	ZDC actors should further coordinate with other actors (private and public) to enhance the inclusivity and complementarity of policies.	6.1. Evidence of coordination of public and private actors
7	ZDCs should use inclusive oversight, equal monitoring, but differentiated enforcement.	7.1. Inclusive monitoring 7.2. Enforcement approach

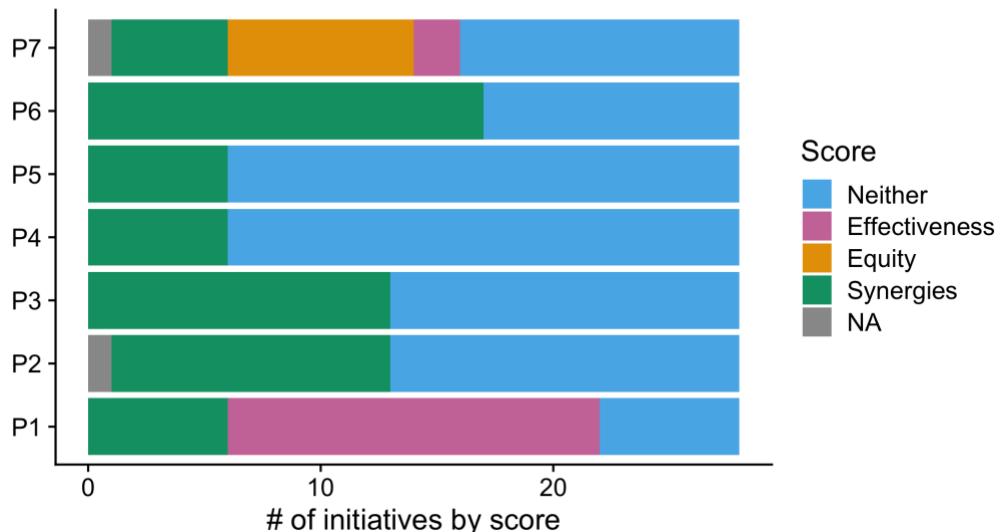

1215

1216 *Table 4. Overview of most common ZDC implementation mechanisms in forest-risk*
 1217 *commodities. It should be noted that there may be overlap between various mechanisms in*
 1218 *the same region, and that initiatives may change from one type to another over time (e.g.*
 1219 *from industry agreements to public-private partnerships, if state support is added)*

New CSR tool	Application in the context of ZDC implementation	Example of implementation approach (location and associated commodity, where not evident)	Operationalization of commitment	Monitoring of commitment	Enforcement of commitment	Incentive mechanism
Individual firm endeavors (with potential NGO partnership)	Corporate ZDC policies translated into supplier codes of conduct and time-bound action plans (may include collaboration with NGOs to map, monitor, and engage with suppliers)	No Deforestation, Peat, and Exploitation (NDPE) policies (global, palm oil) Forest protection supply chain policies (global, cocoa)	Firm-wide policy (with potential design input from NGOs) Supplier code of conduct ZDC requirement integrated in purchasing contracts	Satellite monitoring Supplier self-reporting Supplier audits (with potential third-party involvement)	Supplier education workshops One-on-one trainings Grievance procedures (verified non-compliance leads to action plans or market exclusion)	Negative: threat of sanctions, e.g. market access exclusion, for non-compliance (albeit potential support for movement toward compliance)
Industry (association) codes of conduct and agreements	Industry-wide agreements, bans, or moratoria	G4/G6 Zero Deforestation Cattle Agreements (Brazil) Soy Moratorium (Brazil)	Collective agreements to avoid sourcing from high-risk regions or non-compliant suppliers	Supply chain tracing Satellite monitoring	Acceptance of product predicated on provenance or producer behavior	Negative: market access exclusion
Public-private partnerships	Collaboration with public policy actors to support policy enforcement	Termo de Ajustamento de Conduta (Brazil, cattle) Cocoa and Forests Initiative (Ghana, Côte d'Ivoire)	Alignment of corporate policy to local legal framework	Satellite monitoring	Acceptance of product predicated on legality	Negative: market access exclusion for illegal products
	Jurisdictional approaches to sustainable sourcing regions	IDH Verified Sourcing Area pilots (global; palm oil, cattle)	Public-private commitment to action plan that reduces deforestation in the region	Agreed-upon KPI assessed by multi-stakeholder group, likely reliance on governmental data	Follow-through on targeted investments or preferential sourcing	Positive: provision of targeted investments or preferential sourcing
Non-state market-driven private sector hard law	Third-party certification schemes	Roundtable on Sustainable Palm Oil Round Table on Responsible Soy Rainforest Alliance (cocoa)	Integration of ZDC definitions into rules of third-party certification	Third-party (sample-based) auditing of certification rules	Preferential sourcing of certified over non-certified products	Positive: Improved market access and/or price premiums for certified products

1221


9. Figures


1222

1223 *Figure 1. The stages of ZDC implementation along a stylized supply chain*

1224

1225 *Figure 2. Overview of alignment of main ZDC implementation mechanisms with design principles for effective and equitable zero-deforestation policies. The scoring evaluates to*

1227 what extent ZDC implementation mechanisms in the four forest-risk commodities are aligned
1228 with the synergistic design principles (Synergies), favor effectiveness over access equity
1229 (Effectiveness), favor access equity over effectiveness (Equity), or do not contribute to either
1230 goal (Neither). Each mechanism is evaluated for the seven design principles (P1-P7). As the
1231 VSA has only just started, we were only able to evaluate 5 out of 7 principles.

1232

Figure 3. Evaluation of seven design principles for synergies between ZDC effectiveness and equity in access in 28 examples of ZDC implementation. The scoring evaluates to what extent ZDC implementation mechanisms are aligned with the synergistic design principles (Synergies), favor effectiveness over access equity (Effectiveness), favor access equity over effectiveness (Equity), or do not contribute to either goal (Neither). In one case, P2 and P7 were unable to be scored as the initiative is still under development.

1239