PLOS

Check for
updates

G OPEN ACCESS

Citation: Yang Y, Gritton H, Sarter M, Aton SJ,
Booth V, Zochowski M (2021) Theta-gamma
coupling emerges from spatially heterogeneous
cholinergic neuromodulation. PLoS Comput Biol
17(7): €1009235. https:/doi.org/10.1371/journal.
pcbi. 1009235

Editor: Jonathan Rubin, University of Pittsburgh,
UNITED STATES

Received: December 18, 2020
Accepted: July 1, 2021
Published: July 30, 2021

Copyright: © 2021 Yang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Data is held at
https://github.com/YihaoYang/HeterACh-
FreqCoupling.

Funding: This work was supported by National
Institute on Drug Abuse RO1DA045063 https:/
www.drugabuse.gov (MS), National Institute of
Neurological Disorders and Stroke PO50NS091856
https://www.ninds.nih.gov (MS), National Institute
of Neurological Disorders and Stroke R01
NS118440 https://www.ninds.nih.gov (SJA),
National Institute of Mental Health DP2 MH 104119

RESEARCH ARTICLE

Theta-gamma coupling emerges from
spatially heterogeneous cholinergic
neuromodulation

Yihao Yang', Howard Gritton®?2, Martin Sarter®, Sara J. Aton®*, Victoria Booth®°*,
Michal Zochowski®®*

1 Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America,

2 Department of Comparative Biosciences and Bioengineering, University of lllinois at Urbana-Champaign,
Urbana, lllinois, United States of America, 3 Department of Psychology and Neuroscience Program,
University of Michigan, Ann Arbor, Michigan, United States of America, 4 Department of Molecular, Cellular,
and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America,

5 Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, Michigan, United
States of America, 6 Department of Physics and Biophysics Program, University of Michigan, Ann Arbor,
Michigan, United States of America

* vbooth @umich.edu (VB); michalz@ umich.edu (MZ)

Abstract

Theta and gamma rhythms and their cross-frequency coupling play critical roles in percep-
tion, attention, learning, and memory. Available data suggest that forebrain acetylcholine
(ACh) signaling promotes theta-gamma coupling, although the mechanism has not been
identified. Recent evidence suggests that cholinergic signaling is both temporally and spa-
tially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and
diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can
generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory
(E-I) neural network models, we simulate the effects of ACh on neural excitability by varying
the conductance of a muscarinic receptor-regulated K* current. In E-I networks with local
excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-
gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-
modulated firing arises within regions with high ACh signaling, while theta or mixed theta-
gamma activity occurs at the peripheries of these regions. High gamma activity also alter-
nates between different high-ACh regions, at theta frequency. Our results are the first to
indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized
theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by
which ACh signaling supports the brain region-specific attentional processing of sensory
information.

Author summary

Recent evidence indicating that ACh signaling is both transient and spatially circum-
scribed raises the question of how this feature impacts information processing in cortical
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networks. Here we demonstrate that spatially segregated ACh modulation of excitatory-
inhibitory neural networks generates theta-modulated gamma rhythms, a hallmark of
attention and information processing. Theta-gamma coupling arises naturally as neuronal
activity traverses high-ACh regions of the network, and gamma activity alternates between
distinct high- ACh sites at theta frequency. These findings provide novel insights into
neurophysiological mechanisms for ACh-regulated theta-gamma coupling and
uncoupling.

Introduction

Acetylcholine (ACh) signaling in neocortex emanates from the basal forebrain (BF). Recent
anatomical studies indicate that in contrast to more traditional views of the BF projection sys-
tem as “diffusely” organized, afferent and efferent projections of the BF ACh system are highly
topographically organized [1-4]. Prior notions of BF ACh activity as having relatively low tem-
poral resolution and spatial selectivity, and characterized by predominantly extra-synaptic
actions (i.e., “volume” transmission) [5-8], have also been refuted by more recent evidence
indicating fast and spatially discrete ACh spread [8,9]. As a functional corollary of these devel-
opments, the prior conceptualization of ACh as acting diffusely and globally has been chal-
lenged by studies indicating event- or task trial-specific ACh signaling in specific neocortical
regions [8,10]. Fig 1 shows data from multiple electrochemical recording sites in proximity,
demonstrating asynchronous, spatially segregated neocortical ACh signaling.

Here, we investigate in silico the effects of temporally static but spatially circumscribed, het-
erogeneous activation of muscarinic ACh receptors on the activity patterns of excitatory-
inhibitory (E-I) neural networks. Our simulation results indicate that localized theta (~ 5
— 10Hz) and gamma (~ 30 — 100Hz) band activity rhythms emerge in response to spatially
segregated ACh modulation of neural excitability. Here, the modeled spatial cholinergic distri-
butions are meant to represent a short snapshot from the evidence of spatially circumscribed
ACh signaling in recording studies in rodents (Fig 1D), where discrete locations of high levels
of cholinergic signaling were observed adjacent to locations with low levels of cholinergic
activity. We analyzed the emerging neuronal activity patterns in the presence of stationary
high levels of cholinergic signaling in a single versus in multiple locations of the network.
Localized, gamma band activity rhythms emerged in cells undergoing high levels of choliner-
gic stimulation. Moreover, for multiple high-ACh ‘hotspots’, these gamma oscillations
appeared only within the currently active network regions, resulting in their modulation at
theta frequency.

Our results postulate that theta-gamma coupling is an emergent property of spatially segre-
gated ACh modulation of neural response properties. We further identified mechanisms
underlying the dependence of theta-gamma coupled activity on the spatial distribution of sim-
ulated ACh neuromodulation. In particular, gamma-band activity was supported in high-ACh
regions via the pyramidal-interneuron gamma (PING) mechanism [11], where inhibitory
interneurons strongly modulate and synchronize activity of pyramidal cells [11,12]. Theta
band modulation of gamma activity within or between high-ACh regions was associated with
spike frequency adaptation, linked to effects of muscarinic receptor activation on M-type K*
currents [13]. These mechanisms led to intrinsically tight coupling between gamma and theta
band activity where the degree of theta-gamma coupling correlated with proximity to high-
ACh regions. Additionally, we investigated the consequences of spatially heterogeneous ACh
modulation on the attentional processing of external (sensory) stimuli.
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Fig 1. Spatial localization and asynchronicity of cholinergic signals. Cholinergic signaling is largely asynchronous and can influence target circuitry in
a temporally and spatially highly heterogenous manner. Data recorded in prelimbic cortex (A) are shown here. The four platinum (Pt) recording sites
fabricated onto a ceramic backbone electrode are illustrated in B and the placement of these recording sites in prelimbic cortex are shown in A. C depicts
the dimensions of an individual recording site. The upper and lower pairs of recording sites were separated by 100 pm. The data shown in D-G were
recorded via an upper sensor (“sensor 1) and a lower sensor (“sensor 2”). The neurochemical recording scheme, shown in C, was previously described in
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detail. Amperometric measures were validated in terms of reflecting newly released acetylcholine (ACh) release [10,52-54]. D. Fixed-potential
amperometry signals from a representative animal during a 23.5-hour recording. Scored sleep states are identified above the raw amperometry signals
shown below and include rapid eye movement (REM), Slow-wave sleep (SWS) and waking (WAKE) periods. Transients are denoted by arrows with
unique transients shown in the same color as the corresponding trace and common transients shown as double blue arrows. E. Cholinergic transient
event rates as a function of sleep state. Absolute event rates across the two sites show a high degree of similarity between one another. REM sleep states
show the highest event rates/minute while SWS states show the fewest. F, G. Event rasters contrasting the timing of transient events for the two sites
shown in d and e. Data from the opposite channel is shown relative to the onset of transient events for sensor 2 (F) or sensor 1 (G). A total of 524 events
were detected from sensor 2 and 382 events were detected from sensor 1 in the 23.5-hour recording. Note that while the highest concentration of activity
is coincident across the two sensors, only a fraction of each channels events occurred in close proximity (+2.5 s) to one another (sensor 1: 40.3%; sensor 2:
29.9%).

https://doi.org/10.1371/journal.pchi.1009235.g001

Theta-gamma coupled activity in cortical and hippocampal areas is thought to be a hall-
mark of attentive cognitive processing [14] and multiple experimental studies have shown that
ACh signaling promotes theta-gamma coupling in these circuits [15,16] (see Discussion). Our
modeling results propose that this cognitively significant firing pattern is directly caused by
spatially heterogeneous modulation of neural properties due to spatially circumscribed release
of ACh.

Results

New experimental data indicates that cholinergic signaling is largely asynchronous and can
influence target circuitry in a temporally and spatially highly heterogenous manner. An exam-
ple of such evidence is presented on Fig 1. In this experiment four platinum recording sites
were fabricated onto a ceramic backbone electrode where the upper and lower pairs of record-
ing sites were separated by 100 um (Fig 1A). Fig 1D depicts sample measurements (in terms of
currents) depicting localized temporal changes of ACh concentrations. Further analysis of
these transients indicates that, while their overall number follows standard notion that the
highest ACh release is during REM and the lowest happens during the SWS (Fig 1E), this
release is localized and highly asynchronous (Fig 1F and 1G).

Here we elucidated, using in silico modeling, the dynamical changes in neuronal activity
patterns stemming from such a localized and asynchronous mode of ACh signaling. Namely,
we investigated how spatially localized regions of ACh neuromodulation generated network-
wide oscillatory activity in the gamma and theta frequency bands, in two-dimensional E-I net-
works. Using Hodgkin-Huxley type model neurons, ACh effects on the slow, adapting M-type
K" current were simulated by varying its maximal conductance, g, , in individual cells across
the network. Through the action of muscarinic receptors, ACh blocks the M-type K* current,
thus low values of g, _corresponded to high ACh modulation. Spatially heterogeneous ACh
modulation was achieved by constructing spatial mappings of g, values for individual cells in
the network. The g, map mimicked the post-synaptic effects of spatially localized, asynchro-
nous transients of ACh release in a short time window (as suggested by results shown in Fig 1).
To this end, we postulate that relevant network dynamics occur on two separate temporal
scales: 1) fast dynamics on a timescale of milliseconds associated with neuronal firing, and 2)
slow timescales on the order of 5-10 s associated with localized ACh release and subsequent
degradation or uptake. Here, for simplicity, we investigated fast scale neuronal dynamics in
the presence of fixed spatial distributions of ACh. In the g, maps, each unit square corre-
sponded to a single cell in the model network (i.e. the unit length, being the side of the square,
corresponded to the minimal distance between modeled cells), and the dimensions of g; mod-
ulated regions we consider encompass, on average, tens of neurons.

With network connectivity fixed in a local excitation/global inhibition topology, we show
that different g, spatial mappings, which affect the excitability of both E and I cells, result in
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gamma and theta band rhythmic activity. While there is evidence that the M-current is present
not only in excitatory pyramidal cells, but also in various classes of inhibitory interneurons,
namely somatostatin positive (SST+) neurons [17], we obtained qualitatively similar results
when neuromodulatory effects of the M-current were included only in excitatory neurons (S1
Fig). Consistent with previous work [11,12], continuously active E and I cells in regions of low
8k, values, corresponding to high ACh modulation, show gamma band oscillatory activity.
Here, theta band modulation of gamma activity is an emergent property of the network, gener-
ated as firing activity traverses within or between spatially segregated low g regions. Below,
we first illustrate this novel mechanism for theta-gamma coupling with a randomly generated,
spatial g, mapping and then analyze the mechanism in more detail for simple spatial g,

mappings.

Coexistence of theta/gamma rhythms is caused by spatially segregated g,
distributions

To illustrate the emergence of theta-gamma coupled firing activity due to a spatially complex
ACh landscape, we generated a spatially heterogeneous g, mapping by randomly assigning
n =9 center positions of low g, regions or "hotspots’ of radius r = 4.2 (units in minimal dis-
tance between model cells, Fig 2A).

Cells within the g, "hotspots’ exhibited gamma band firing activity that was intermittently
interrupted as activity moved to other regions with low g, values, with network activity
cycling periodically through the hotspots with theta band frequency. As illustrated in the raster
plot in Fig 2B, this activity pattern resulted in subpopulations of E cells showing theta-band
modulated gamma activity, and high power in both the theta and gamma frequency ranges in
overall network activity (Fig 2E). Individual E cell’s firing frequencies were directly correlated
with their g, values (Fig 2C, 2D and 2F). Namely, E cells near the centers of low g, regions
(i.e. corresponding to highest concentrations of ACh) had the highest firing frequencies (Fig
2C) with higher power gamma band activity (Fig 2D and 2F), while E cells with moderate g;
values fired in theta band ranges. Cells outside the g, hotspots showed little activity.

For comparison, in S2 Fig we show sample raster plots and analysis of network wide activity
patterns and cell spiking frequencies for homogeneous g, spatial maps. In these simulations,
we have kept g; at the same value for all the neurons and varied the value between 0 and 1.5
mS/cm’. We observed emergence of networkwide gamma band oscillations, and cellular spik-
ing in that frequency, for low values of g , while systematic theta band oscillations were not

present across the entire g, range.
s

Characterization of gamma and theta band activity caused by a single peak
gk distribution

To understand how spatially heterogeneous distributions generate coupled theta-gamma activ-
ity, we next analyzed simple spatial gi, distributions. For a single low gx; region (Fig 3), firing
activity was restricted to within the g, hotspot by the higher neuronal excitability elicited by
low g, values and by the global inhibition provided to the rest of the network by the firing
cells within the hotspot. Gamma range firing frequency of E cells within the gx, hotspot was
generated by gating of E cell firing by local I cells through the PING mechanism [18-20]. As
the radius r of the low gx; hotspot increased (without changing its minimum value; S3 Fig), the
number of neurons exhibiting gamma slightly increased and theta band activity remained low
(Fig 3B). As the hotspot radius increased past r = 5.5, however, the number of neurons
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Fig 2. Theta and gamma band activity generated by a spatially heterogeneous g, distribution. A, Randomly generated spatial map of g, values on the 20x20 E cell

lattice. B, Spike raster plot illustrating portion of E cell (cells 1-400) and I cell (cells 401-500) firing patterns. The pixel color indicates cell g, value (same color scale as

in A). The shaded area indicates the time range of snapshots in F. C, Average E cell firing frequencies plotted as cell position on the E cell lattice showing highest firing
within the regions or "hotspots’ of low g; . D, Dominant rhythmic activity of individual E cells (dark blue = none, light blue = theta band, green = gamma band and

yellow = mixed, both gamma and theta) displayed on E cell lattice illustrating that E cells with lower g, values showed stronger and more stable gamma activity while
cells with moderate g, values exhibited stronger theta rhythm. E, Power spectrum analysis of E cell network firing. High power exhibited in both theta (5-12Hz) and

gamma (40-60Hz) rhythm bands. F, Distribution of g;_values for cells showing specific rhythmic activity illustrating correlation of activity type with g, value (same

color code as in D). G, Snapshots of E cell firing rates from 4500-4850 ms during the simulation shown in B (shaded area). Cells inside the orange contour lines have g;

values less than 0.6 mS/cm?.

https://doi.org/10.1371/journal.pcbi.1009235.g002

primarily exhibiting gamma band activity started to decrease while the number of neurons fir-
ing at mixed theta and gamma ranges started to increase. While gamma neurons were located
within the center of the gx, hotspot, theta neurons or neurons showing mixed theta-gamma
band activity were located towards the hotspot’s outer edges (Fig 3C and 3D). Thus, theta band
activity was generated due to firing activity spatially drifting within the gz, hotspot (Fig 3E).

This result echoed our previous findings [13] in similar 2D E-I networks with spatially uni-
form gx, values. In those networks, when g, values were low, firing activity was spatially local-
ized in a subregion of the network with surrounding cells showing intermittent firing, leading
to drifting of an activity bump. When gy values were higher (gx>0.2 mS/cm?), the bump
exhibited translational motion across the whole network promoted by spike frequency adapta-
tion mediated by the g, regulated M-type K* current. Here, similarly to those results, the
movement of firing activity within gx, hotspots with larger radius resulted in theta band
rhythmicity.
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https://doi.org/10.1371/journal.pcbi.1009235.9003
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We further investigated how the emergence of theta/gamma oscillations due to a single g
hotspot depended on the constant current applied to individual cells (which corresponds to
external input) and the level of simulated ACh concentration (i.e. lower bound of gx, value
within the hotspot, S4 Fig). The emergence of theta/gamma oscillations was very robust across
these parameters. We generally observed that the oscillations emerged within the hotspot for
lower minimal values of gx,, except when neuronal external current was high and the oscilla-
tions were not confined to a hotspot but spread throughout the network. Another exception
was for the lowest value of gx,, when firing activity was stationary within the hotspot and only
gamma oscillations were observed.

We additionally investigated how the theta and gamma oscillatory frequency changes with
the size of the hot spot (S5 Fig). We observed that frequencies in both bands tend to decrease
with the increase of hotspot radius. This is most likely due to the fact that as the hotspot
increases in size the local feedback inhibition increases reducing the excitation individual cells
receive.

Finally, we investigated how network topology (i.e. rewiring of the excitatory connectivity)
affected the emergence of theta/gamma oscillations (S6 Fig). We observed that increasingly
random E-E connectivity abolished theta band oscillations, while the presence of gamma band
activity remained largely unchanged. This result suggests that the generation of theta-gamma
coupling requires that synaptic excitation which is generally more local than synaptic inhibi-
tion in the network. We also observed a decrease in gamma frequency as a function of network
rewiring. This is due to the fact that increasingly random connectivity promotes zero phase
synchrony causing EPSPs mediated by spiking of presynaptic neurons to partially fall within
the spike and/or refractory time of their postsynaptic targets, reducing their excitatory effect
and the overall level of excitation in the network (S6B Fig).

Characterization of theta/gamma band oscillations and their coupling
emerging from a double peak gy distribution

To investigate the emergence of rhythmic network activity when two spatially adjacent loca-
tions experienced cholinergic modulation at the same time, we considered the presence of two
gxs hotspots in the network (Fig 4). Fig 4A shows an example of this kind of gx, mapping, in
which d represents the distance between the two gx; hotspot centers while r denotes their
radius (units in minimal distance between model cells). Here, cells located in the center of the
hotspots exhibited theta-modulated gamma rhythms (mixed) while those on the peripheries of
the hotspots showed primarily theta activity (Fig 4B). This occurred because spiking activity
alternated between the hotspots at theta frequency. When a given hotspot was active it pre-
dominantly exhibited gamma band oscillation. This resulted in strong theta-gamma coupling
as the gamma band oscillations appeared at a given site with theta band frequency (Fig 4B).

To analyze the properties of theta-gamma coupling as a function of the size and relative
position of the hotspots, we varied the parameters r and d of the gx, spatial mapping and iden-
tified the numbers of cells showing primarily gamma or theta band activity, or theta-gamma
coupled firing (Fig 4C, 4D and 4E). We observed that the numbers of neurons with theta,
gamma and mixed rhythms increased monotonically with larger r (Fig 4C and 4E). At the
same time, the highest number of cells representing all three types of dynamics (i.e. theta,
gamma and mixed) happened around d = 6 with gamma and theta cell numbers declining
faster for larger d than the mixed rhythm population. (Fig 4D).

To better understand these effects, we closely analyzed network dynamics for chosen sets of
parameters. The parametric locations of the raster plots and cell statistics for different rhythms
depicted on Fig 4F, 4G and 4H are indicated in Fig 4C, 4D and 4E. Whenr=4.2and d =4
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Fig 4. Theta/gamma band rhythms generated with a double peaked spatial distribution of gx. A, Example of double peaked spatial mapping of g, values for
corresponding neurons on the 20x20 E cell lattice for hotspot radius r = 4.6 and distance between hotspot centers d = 8. B, Dominant rhythmic activity of individual E
cells (dark blue = none, light blue = theta band, green = gamma band and yellow = mixed, both gamma and theta) plotted at cell position on the E cell lattice due to
double peaked g, spatial distribution shown in A. C, D and E, Numbers of neurons exhibiting dominant theta (C), dominant gamma (D), or theta-gamma coupled
activity (E) as a function of radius of gi hotspots r and the distance between hotspot centers d for a double peaked g spatial distribution. F, G and H, Spike raster plots
(top panels) and histograms for the dominant rhythmic activity exhibited by neurons based on their individual gi; values (bottom panels) for networks with double
peaked g distributions with r and d values indicated by labels in C, D, E. In the raster plots, E cells are numbered 1 to 400, and I cells are numbered 401 to 500. Color
indicates g values of cells with the scale in A. I, Snapshots of E cell firing rates from 4500-4800 ms during the simulation in H (shaded area in H; r and d values
indicated by label H in C). Cells inside the orange contour lines have g, values less than 0.6 mS/cm?.

https://doi.org/10.1371/journal.pcbi.1009235.g004
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(Fig 4F), two gx; hotspots were small enough and sufficiently close to each other that cells in
both spots fired simultaneously. Active neurons mainly fired with gamma rhythmicity except a
few neurons with intermediate gx, values carried a theta rhythm. No neurons exhibited both
rhythms in this case.

In contrast, for larger r and d values, cells in the two spots started to show alternating firing
patterns (Fig 4G and even more so Fig 4H and 4I) with mixed theta-gamma rhythmicity. As
described above, firing activity alternated between the two spots such that cells in each spot
fired intermittently at gamma frequency with the alternation in activity between the spots
occurring at theta frequencies. This alternation in firing between the hotspots occurred due to
competition between the local excitation among cells within the hotspot, global inhibition gen-
erated by cells in the other hotspot and the magnitude of spike frequency adaptation (SFA)
mediated by the activation of the M-current. Firing within the active hotspot mediated inhibi-
tory signaling received by E cells in the silent hotspot. Due to their high excitability with low
gxs values, feedback excitation with neighboring cells and small effects of SFA due to previ-
ously low activation, the silent hotspot E cells could start firing and inhibit the active hotspot.
Subsequently as the SFA accumulated in the activated region the other hotspot can get trig-
gered and take over. For larger radius values, theta-gamma activity dominated the network as
activity moved consistently between the hotspots and only a few cells at the centers of the hot-
spots fired primarily at gamma frequency (Fig 4H).

All the simulation results presented here were performed for an M-current activation time
constant of 7, = 75ms following [21]. To better understand how the M-current timescale affects
frequency of theta and gamma band oscillations, we performed additional simulations scan-
ning different values of 7,€[25ms, 125ms] (S7 Fig). As expected, we observe a significant slow-
down of theta band frequency with increased 7., while no systematic changes were detected in
gamma band oscillations.

We also analyzed how theta and gamma frequency changed as a function of gx; hotspot size
and the distance between hotspot centers (S8 Fig) and as a function of connectivity of the
excitatory subnetwork (S9 Fig). We observed that frequencies of both theta and gamma oscilla-
tions decreased as the hotspots’ radius increased. However, the frequencies of the two oscilla-
tions showed opposite trends with the increase of hotspot center distance-frequency of the
theta band decreased while the gamma frequency generally increased. We attribute this effect
to the fact that as the two hotspots are positioned farther apart it takes longer for them to
switch their activations. When excitatory connectivity was made increasingly random (S9 Fig),
activity switching between the two hotspots stopped and firing became synchronous with cells
in both hotspots exhibiting gamma band oscillations.

Finally, we investigated whether similar dynamical switching between the hotspots would
occur if, instead of gx, hotspots, increased excitability was driven with additional external cur-
rent in two hotspots (I,, ; see Materials and Methods), with a homogeneous gx; map across
the network (S10 Fig). We observed that only for very narrow range of gi values is it possible
to get localized, selective activity switching between the two stimulation hotspots with theta
frequency (namely for gx, ~0.2). For other values of gx, activity switching does not take place,
or is not specific to the neurons within the hotspots (i.e other neurons outside the hotspots
become activated; S10 Fig-black colored spikes in addition to red spikes). This non-specific
activation obliterated theta band oscillations. Thus, we interpret these results that while emer-
gence of theta/gamma oscillations may be possible in response to heterogeneous patterns of
external drive, they occur for a narrow band of network gx, modulation and they are signifi-
cantly less robust.
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Variability of theta/gamma band oscillations with spatially random g
distributions

The analysis in the preceding sections illustrates that, in networks with local excitation and
global inhibition, theta-modulated gamma band firing occurred in cells on the outer edges of
individual gi, hotspots or, if the gx, hotspot was large compared to the excitation range, within
the hotspot itself. With multiple, spatially separated gx, hotspots, all cells within gx; hotspots
can exhibit theta-modulated gamma band firing as competition between local excitation and
global inhibition within and between hotspot cells causes alternation of firing episodes. These
results indicate that both sizes as well as relative positions of the hotspots matter. In the more
biologically realistic scenario of spatially random g distributions consisting of multiple hot-
spots, these same mechanisms contribute to generating theta-gamma coupled firing, however
we found that resulting strengths of theta and gamma band activity were highly variable,
depending on the specific realization of the g, spatial map (i.e. positions of the hotspots).

As an example, Fig 5 shows different realizations of gx, spatial mappings with 6 hotspots of
radius r = 5.4 (Fig 5A and 5B, star in S5 Fig) and r = 2.8 (Fig 5C and 5D, square in S8 Fig).
Despite the same hotspot properties, the number and size of effective low gx, regions was var-
ied as hotspots could overlap and coalesce if their centers were next to each other. Network
dynamics were likewise highly variable with some mappings showing clear coexistence of
theta/gamma rhythms (Fig 5A and 5C) while in others gamma (Fig 5B) or theta (Fig 5D)
power dominated. This is due to the fact that for the gx, mappings with coexisting theta/
gamma rhythms, individual hotspots coalesced into larger but spatially distinct low g regions
(Fig 5A and 5C; note that networks have periodic boundary conditions so hotspots may wrap
around the lattice). In these cases, theta-gamma coupling was generated similarly as in the
double peaked gx; spatial distribution. On the other hand, gamma power dominated when the
individual gx, hotspots coalesced into an effective single low g region (wrapped around the
corners of the network, Fig 5B). The strongest theta power was generated when hotspot centers
were more evenly dispersed across the network and activity traveled successively along the low
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Fig 5. Examples of variability in theta/gamma rhythms for randomly generated spatial gx, distributions. The gx spatial mappings (color plots), network spike
raster plots (right panels, top) and network frequency power spectrum (right panels, bottom) for two pairs (A, B and C, D) of gx, map realizations with the same
sets of parameters. A, B The results of 2 random gx; mappings with 6 hotspots of radius r = 5.4 (marked by ’star’ in S5 Fig). C, D The results of 2 random g
mappings with 6 hotspots of radius r = 2.8 (marked by ’square’ in S5 Fig).

https://doi.org/10.1371/journal.pchi.1009235.g005
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gk, regions (Fig 5D). This observed variability in theta/gamma power provides a possible
insight into experimental inter-animal variability, as the relative locations of ACh release sites
could be highly individualized within the experimental subjects.

To gain a better understanding of the variability in observed network rhythmicity, we simu-
lated effects of random g, mappings having different numbers of hotspots of different sizes
(S11 Fig) and measured mean theta and gamma power (and their ratio) and their relative stan-
dard error (RSE) across simulation runs with different instantiations of the mappings. We
additionally measured peak theta and gamma frequency for each of these hotspot distributions
(S12 Fig). As shown in the example above, the relative power amplitudes varied significantly
for maps consisting of the same number of hotspots having the same sizes, reporting relatively
high RSE, except for the situation when only one hotspot was present.

Vicinity to high ACh region modulates strength of theta/gamma coupling

It has been shown experimentally that ACh release promotes theta-gamma coupling, and fur-
thermore, this coupling is specifically mediated via M1 muscarinic receptors [8,15]. In our
simulations, cells showing the strongest theta-gamma coupling were located within g hot-
spots, when a single large hotspot (Fig 3), or more than one hotspot were present (Fig 4). To
investigate how the strength of theta-gamma coupling varied with location relative to the posi-
tion of the hotspots, we constructed local field potential (LFP) signals at different distances
from a gx, hotspot (Fig 6). Here, specifically, we used a double peaked gx, spatial mapping (Fig
6A) since this network showed the most robust theta/gamma coupling. The locations at which
LFP was calculated is bounded by “C” and “D”, corresponding to the respective panels show-
ing rasterplots from those locations (Fig 6C and 6D, red dots correspond to spikes of the neu-
rons used for LFP calculation at these respective locations). The LFP signal was computed
from the spike trains of the 12 E cells closest to the marked location (see Materials and Meth-
ods). For completeness, S13 Fig shows the results for an LFP signal generated directly from the
voltage traces of the selected cells, with results remaining qualitatively the same. The locations
were chosen to be progressively further away from the center of one of the g hotspots (x-axis
in Fig 6B). Separately filtering the LFP signal in the theta and gamma bands (Fig 6E corre-
sponding to location C and Fig 6F corresponding to location D), we calculated the modulation
index (MI) to quantify the coupling strength between the two signals as described in the Mate-
rials and Methods section. MI values as a function of distance from the gx, hotspot center
decreased (Fig 6B), showing that theta-gamma coupling strength decreased with distance from
the g hotspot.

Gamma frequency spiking is evident primarily at the locations which have low g; (high
ACh; In Fig 6C, blue dots correspond to spikes of neurons located within the gx, hotspot as
color coded on Fig 6A). This is due to the fact that only these locations can generate reliable
PING dynamics. Away from these regions, even if activity of the network briefly traverses a
given location, the gamma oscillations will be greatly reduced or not present at all (due to lack
of excitability mediated by low gx;). Thus, the diminished theta-gamma coupling away from
the gx; hotspot is due to reduction of local gamma oscillations. Examples of the two filtered
LFP signals at different network locations are shown in Fig 6D and 6E.

Effect of gx; modulation on network response to external stimuli

Behavioral attentional tasks, particularly visual attention tasks, report differences in responses
to sensory-mediated stimuli depending on whether such stimuli undergo attentional process-
ing [22,23]. Localized cholinergic signaling was shown to be necessary and sufficient for the
attentional elevation of the processing of stimuli [24,25].
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Fig 6. Strength of theta-gamma coupling as a function of the distance from the low gx; region. A local field potential (LEP)
signal was constructed from spike trains of E cells at different distances from the center of a g, hotspot. A, Double peaked g
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spatial mapping with locations marked to calculate LFPs. B, Modulation Index (MI) between gamma and theta filtered LFP
traces as a function of the distance from the center of the g hotspot (as indicated in A.) C and D, Example raster plot of the
network-wide spiking near the hotspot (C, as marked on A) and away from the hotspot (D, as marked on A). E cells are
numbered 1 to 400, and I cells are numbered 401 to 500. Cells used to compute the LFP signal are marked in red. E and F,
Examples of theta (blue curve) and gamma (orange curve) filtered LFP signals computed at locations near (C) and far (D) from
the hotspot, marked on A, B.

https://doi.org/10.1371/journal.pchi.1009235.9006

To investigate how spatially heterogeneous gx, modulation (simulating ACh mediated
attentional drive) affects responses to external (sensory) stimuli, we measured relative changes
in firing frequency of a subset of excitatory cells targeted by an external excitatory drive, I', . ,
when the targeted E cells were inside or outside of a g, hotspot (i.e. within or outside atten-
tional drive, respectively). We compared three situations corresponding to three behavioral
conditions: 1) targeted E cells are inside the gx; hotspot corresponding to presentation of a sen-
sory stimulus which is attended to; 2) targeted E cells are outside the g, hotspot corresponding
to presentation of a sensory stimulus but attention is directed elsewhere; and finally 3) the sub-
set of E cells is targeted by the external drive but there is no gx; modulation in the network
(spatially homogeneous gx; at the default value) corresponding to presentation of a sensory
stimulus in the absence of attention. These conditions were simulated for single (Fig 7; left col-
umn) and double (Fig 7; right column) peaked gx, spatial mappings.

We observed that for the spatial mapping with single peak gk, the firing response of the tar-
geted neurons (Fig 7A; location marked by arrow) was significantly higher when they were
located in the g hotspot (condition 1), relative to their response to the stimulus in the absence
of gis modulation (condition 3) (Fig 7A). When targeted cells were outside the gi, hotspot (Fig
7C location marked by arrow), their firing response to the stimulus (condition 2) was signifi-
cantly suppressed compared to their response in the absence of gx; modulation (condition 3)
(Fig 7C and 7E). This suppression was due to the global inhibition induced by the cells firing
in the gx, hotspot that attenuated the response to the external stimulus.

For the spatial mapping having two gx, peaks, responses of targeted cells were generally the
same as for the single hotspot case whether the targeted cells were located inside or outside of a
gxs hotspot (Fig 7B and 7D). We additionally observed that when the targeted cells were in one
of the gx, hotspots, their firing dominated the network, shutting down activation at the other
hotspot. This led to abolition of theta-gamma coupling as the neurons in the targeted hotspot
fired at gamma frequency.

Discussion

Cholinergic signaling is necessary and sufficient for the detection of cues in attentional con-
texts. Moreover, cholinergic signaling influences the degree of forebrain desynchronicity
across circadian stages. Until recently it has been thought that cholinergic signaling occurs at a
relatively low temporal resolution but also with highly limited spatial selectivity. In contrast,
recent results indicated that ACh release is more localized and asynchronous within activated
brain modalities (for example, Fig 1). Such evidence for spatially heterogenous ACh signaling
has remained rare, in part because until the advent of biosensors and, more recently, the GRA-
Bach sensor, prior methods available for monitoring ACh release did not allow for measure-
ments at a relevant spatial resolution. However, using the ACh3.0 GRAB sensor, spatially
heterogenous cholinergic signaling was recently shown in the somatosensory cortex of walking
mice. Cholinergic hotspots with a diameter of about 40 pm were selectively activated by runs
and appeared to be surrounded by inactive areas of similar diameters (see Fig 30 in [26]).
Using a prior version of this sensor to monitor ACh release in hippocampal slices, the size of
hotspots was concluded to be even smaller, about 16.5 um in diameter [27]. The aim of this
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Fig 7. Firing response to an external stimulus with single and double peak g, spatial distributions. A, B, C, D, Average E
cell firing frequencies plotted as cell position on the E cell lattice showing varied firing responses to an external excitatory
stimulus targeting a subset of E cells. Dashed circles indicate location and radius of gk hotspots and arrows indicate location of
targeted cells. Targeted cells were either inside (A, B) or outside (C, D) of the gk, hotspot. E, The change in average firing
responses of the targeted E cells to the external stimulus relative to their responses in the absence of ggs modulation
(homogeneous g, at default value). Yellow (blue) bars correspond to when targeted E cells are inside (outside) the gx, hotspot.
The four bars from left to right correspond to cases shown in A, C, B and D, respectively.

https://doi.org/10.1371/journal.pcbi.1009235.9007

modeling study was to understand how a highly heterogenous distribution of ACh affects
rhythmic network firing activity.

We have previously shown [12], using biophysical computational modeling, that a network
of randomly coupled excitatory and inhibitory neurons can generate transient gamma oscil-
latory activity in response to simulated spatially global but temporally brief pulses of ACh.
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This effect was mediated by blockage of the M-type K* current (i.e. gx, conductance). Depend-
ing on network connectivity, gamma activity decayed with the simulated gy, transient modula-
tion or was sustained in the network after the g, transient completely dissipated.

In contrast, the present study demonstrates that in a network with local excitation/global
inhibition connectivity, spatially heterogenous ACh modulation, modeled by varying the M-
current differently in different cells, leads to the emergence of spatially localized theta and
gamma band activity rhythms.

The appearance of the individual rhythms and theta-modulated gamma oscillations
strongly depended on the specific features of the spatial distribution of the maximal conduc-
tance of the M-current, gk, (i.e. the number of gx, hotspots and their radius). Furthermore, we
identified two basic mechanisms mediating strong theta-gamma coupling. First, if a single g
hotpot is present and its size is larger spatially than the scope of the local excitation (i.e. range
of E-E connectivity), the neuronal activation moves throughout the population encompassed
by the hotspot. Second, when two or more gx, hotspots are present, the neuronal activity alter-
nates between the hotspots. In both cases, the activated population exhibits gamma band activ-
ity. The emerging gamma rhythm is mediated via the PING mechanism, whereas the
emerging theta rhythm is caused by activity traversing g hotspots, mediated by SFA.

Together, these simulations revealed that spatially heterogenous release of ACh leads to the
manifestation of theta and gamma oscillations and their coupling. For spatially homogeneous
gk, distributions, when g is low there is effectively no spike frequency adaptation in the net-
work and thus gamma oscillations may be supported indefinitely (S2 Fig). On the other hand,
homogeneous g, distributions at high values lead to random neuronal spike-frequency adap-
tation patterns, without consistent formation of theta band oscillations. However, spatially
localized and constrained regions of low gx; allow for theta band modulation of the activity
within these regions with gamma oscillations emerging during phases of firing activity. Fur-
thermore, the specific pattern and frequencies of observed oscillatory activity is highly depen-
dent on the specific distribution of ACh release sites and neuronal network structure. For
example, the specific frequencies observed in the theta and gamma range depend on network
wiring topology and the cellular signaling properties (i.e. excitatory cell input or inhibitory
time constant; S14 Fig, supplemental material). These in silico network dynamics reproduce
important in vivo results, as discussed below.

Network connectivity plays a role in supporting the emergence of theta-band activity. The
local excitation/global inhibition connectivity structure allows for firing activity in discrete
and localized network sites, with the gx, distribution controlling the location and sequence of
activated sites. We have shown, that similar results are obtained when inhibitory neurons had
sparser random connectivity to both excitatory and inhibitory targets (515 Fig, supplemental
material). In general, as long as inhibition has a larger footprint than excitation in the network,
qualitatively similar dynamics will be obtained. Such connectivity is thought to be found on
the meso-scale in the connectivity of functional modules [28]. In addition we believe that a
larger inhibitory footprint could be potentially obtained via long range excitatory connections
that specifically target locally connected inhibitory cells.

Brain rhythms in the theta (~ 5 — 12Hz) and gamma (~ 30 — 100Hz) frequency bands
have been shown to critically contribute to essential cognitive processes in many brain regions,
including the cortex and hippocampus [19,20,29-32]. Recently, the coupling of these rhythms,
such that the amplitude of gamma band activity is modulated by the phase of theta band activ-
ity, has been identified as a key component of the neuronal local field potential (LFP) or elec-
trocorticogram (ECoG) observed during perceptual, attentional and other cognitive processes
[22,33-37]. Such cross-frequency coupling has been proposed to signify the cooperation of
diverse circuits and neuronal populations in order to integrate multiple cognitive operations
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and force the execution of stimuli-bound cognitive or behavioral outputs [38,39]. For example,
in rats performing a signal-detection based attention task, successful performance of the task
was shown to be dependent on the appearance of theta-modulated gamma band activity in the
LFP measured in the prefrontal cortex (PFC) [15]. Generation of coupled theta-gamma activity
was associated with fast (or transient), cue-bound cholinergic signaling in the PFC. Importantly,
disruption of post-synaptic ACh signaling, by blocking muscarinic M1 acetylcholine receptors
(mAChRs), attenuated gamma synchronicity, disrupted theta-gamma coupling and caused
detection failures [15]. Studies in hippocampal and entorhinal cortical circuits have similarly
shown that ACh signaling promotes theta-gamma coupling [16]. Our simulation results suggest
that such muscarinic-dependent theta and gamma activity may be generated by spatially hetero-
geneous modulation of neural properties due to spatially circumscribed release of ACh.

The above cited results concentrate on theta and gamma oscillatory components found in
the LFP signal, rather than directly in neural spiking activity. There are a limited number of
studies suggesting that local increases in ACh signaling can lead to increases in gamma peri-
odic multiunit spiking in the neocortex [40] and theta periodic spiking in the hippocampus
[41]. However, to our knowledge the relationship of ACh and theta-gamma LFP coupling to
spiking of neurons has not been studied in vivo. Clearly, there is a substantial need for such
research.

Previous computational models for theta-gamma coupling activity in E-I networks relied
on the presence of two populations of inhibitory cells that gate the firing of E cells with differ-
ent time scales [42-46]. Namely, a fast I population generates E cell firing at gamma frequen-
cies through the PING mechanism, while a slower I population gates the gamma oscillatory
firing at theta frequencies. In the novel mechanism we describe here, obtaining theta band
rhythmicity is mediated by activation of muscarinic receptors that modulate activity on time-
scales corresponding to theta band oscillation via SFA. Here, both excitatory and inhibitory
cell populations are endowed with the M-current, however similar results are observed when
muscarinic receptors are expressed (within the model) on excitatory pyramidal cells only.

In our networks, the strength of theta-gamma coupling varied with distance from the center
of a gx, hotspot. In LFP measurements within the hotspot, gamma oscillations were tightly
aligned with the peaks of the theta rhythm. This functional coupling decreased for locations
away from the hotspot, leaving the theta and gamma band activity largely uncoupled. Although
the available data from in vivo recordings already support the view that theta-gamma coupling
is caused by, and occurs in the region of, elevated cholinergic signaling and muscarinic M1
receptor stimulation [15], prior electrochemical recording techniques have not achieved levels
of spatial resolution that would allow the characterization of hotspots and their "colder"
boundaries. More recent G-protein coupled ACh sensors appear capable of differentiating lev-
els of cholinergic signaling on a scale of tens of micrometers [27]. However, measuring LFPs
simultaneously with fluorescence imaging remains challenging and, for the observation of
theta-gamma coupling, may require simultaneous recordings during task performance [15].
Progress in the development of in vivo recording techniques may soon allow a direct test of the
neurobiological validity of our findings.

We observed that spatially localized gx, hotspots acted to gate responses to external excit-
atory input to the network. External stimuli applied to E cells within a hotspot generated a dra-
matic increase in spiking frequency of stimulated neurons and, to a smaller degree, around the
network, as compared to the response of the stimulus in the absence of gx; modulation. Con-
versely, when external stimuli were applied to cells located outside the g hotspot, stimulated
cells showed a significantly reduced response compared to their response in the absence of gx
modulation. These results mirror electrophysiological findings from primate visual cortex,
where attention localized to neurons’ retinotopic field augment firing rate responses [47] as
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well as coherence of firing with theta and gamma oscillations [22,37]. This effect provides a
mechanism not only to aid in detection and discrimination of sensory stimuli in attended loca-
tions [39], but also may aid in selective communication of responses to attended stimuli
between distant cortical areas [22,37].

Our present results suggest that cholinergic activity influences target circuitry in a highly
spatially heterogenous manner which influences the locations of cellular rhythmic activity.
Results presented here consider “time-frozen” gx, (ACh) spatial distributions while in reality,
they will be continually changing. The time scale of ACh diffusion/uptake can be inferred
from Fig 1C to be somewhere between 5-15s, which is clearly long enough to establish stable
theta/gamma band rhythms by the presented mechanism. Further development of our model
by integrating the impact of such temporal dynamics, may have interesting implications for
understanding the neuronal mechanisms contributing to, for example, the ‘Biased Competi-
tion” model of attention, that is, the mechanisms that allow behaviorally significant stimuli to
undergo feature extraction, while the processing of competing stimuli, even if placed in the
same receptive field, is suppressed [48,49].

With our prior neurobiological and computational findings about the functional signifi-
cance of fast, transient cholinergic signals, conceptualizations about the regulation and func-
tion of cholinergic neurons have advanced from traditional views about monolithic
neuromodulator actions to temporally and spatially differentiated signaling across, for exam-
ple, cortical layers and microcolumns. Together with our present results, this new paradigm
for cholinergic signaling suggests novel underlying mechanisms for how cholinergic activity
can rapidly re-direct information flow in target circuitry and thus play an essential role for
maintaining behavioral and cognitive flexibility [8,50].

Materials and methods
Experimental recordings

The evidence depicted in Fig 1 was adopted from experiments which measured fast, transient
cholinergic signals (“transients”) across circadian cycles in the cortex and hippocampus [51].
Data recorded in prelimbic cortex are shown here. The four platinum (Pt) recording sites were
fabricated onto a ceramic backbone electrode where the upper and lower pairs of recording
sites were separated by 100 um. The data shown were recorded via an upper sensor (“sensor 1)
and a lower sensor (“sensor 2”). The neurochemical recording scheme, was previously
described in detail, while amperometric measures were validated in terms of reflecting newly
released acetylcholine (ACh) [10,52-54]. Briefly, newly released ACh is hydrolyzed by endoge-
nous acetylcholinesterase (AChE), and the resulting choline is oxidized by choline oxidase
immobilized onto the Pt electrodes. The resulting hydrogen peroxide is oxidized electrochemi-
cally and current yields are recorded amperometrically. m-phenylenediamine (mPD) was elec-
tropolymerized onto the electrodes to enhance the selectivity for detecting analyte relative to
currents produced by potential electroactive interference. Electrodes were calibrated prior to
implantation into the brain. Electrochemistry data were collected via the FAST-16 recording
system at a sampling frequency of 20 Hz. Electrophysiological signals were acquired at 128 Hz
for sleep scoring analysis as previously reported (Opp ICELUS Acquisition program: [55].
Scored sleep states include rapid eye movement (REM) sleep, slow-wave sleep (SWS) and wak-
ing (WAKE) periods.

Cortical neuron model

Neuron membrane potential dynamics were described by a Hodgkin-Huxley based model of
cholinergic modulation in pyramidal cells [21,56]. The effects of ACh as mediated through
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muscarinic ACh receptors were shown to be well modeled by varying the maximum conduc-
tance gx, of a slow, low-threshold K" mediated adaptation current. The model also featured a
fast, inward Na" current, a delayed rectifier K* current and a leakage current. With C = 1uF
/cm?, units of V; being millivolts and units of t being milliseconds, the current balance equa-
tion for the i”" cell was

av, ,» ,-
i —8vai (Vi = Vi) _ng,”?(Vi - Vi) —ngzi(Vvi Vi) —gV,= V) +1

ioo i drive

C

—I' 4+

syn noise

where a constant current I’

inive Was externally applied and I, represented the synaptic current
received by the i’ neuron.

For some simulations we added noisy input current pulses I’ . dictated by a Poisson pro-

cess (Poisson Rate 4 = 1—1)0 ms™") with amplitude of 6yA/ cm? and duration 1ms.

Activation of the inward Na* current was instantaneous and governed by the steady-state
activation function m; ..(V;) = {1+exp[(~V;-30.0)/9.5]} ". The Na* inactivation gating variable
h; was governed by

dh, h (V) —h,

i i

dr %w(V2)

where h,.(V) = {1+exp[(V+40.5)/6.0]} " and 7,(V) = 0.37+2.78{1+exp[(V+40.5)/6.0]} .
The delayed rectifier K™ current was gated by ;, the dynamics of which was given by

i

d (V)

i

dn, n(V,) —n,

where 1,.(V) = {1+exp[(-V~30.0)/10.0] " and 7,,(V) = 0.37+1.85{1+exp[(V+27.0)/15.0]} .
To model ACh blockade of the muscarine-sensitive M-current observed in cortical neu-
rons, the maximum conductance of the slow, low-threshold K* current in the i cell, &k > Was

varied between 1.5 mS/cm” for no ACh modulation and 0 mS/cm? for strong ACh modula-
tion. In this model neuron, decreasing values of g, increase membrane excitability as reflected
in the frequency-current relation (Fig 8), as well as affect spike-frequency adaptation and the
neural phase response curve [56,57]. The dynamics of the corresponding gating variable z;
were governed by

dat

z

d _z.(V) -~

where z..(V) = {1+exp[(— V=39.0)/5.0]} . These M-current kinetics are similar to M-current
models in [58] and [59]. Values of other parameters were: gn, = 24.0mS/cm?, 8, = 3.0mS [em?,
gL= 0.02mS/cm®, Vg = 55.0mV, Vi = =90.0mV and V; = —60.0mV, 1, = 75ms.

Network model

We simulated two-dimensional networks with 400 excitatory (E) neurons and 100 inhibitory
(I) neurons evenly distributed over separate square lattices (20x20 E cell lattice and 10x10 I
cell lattice, Fig 9). The inhibitory cells accounted for 20% of cells similar to what has been
reported experimentally in the cortex [60]. A local excitation-global inhibition network topol-
ogy (similar to center-surround or lateral inhibition topologies) was used in which E cells sent
outgoing connections to their 40 nearest neighbors on the E cell lattice and to their 10 nearest
neighbors on the I cell lattice. Inhibitory cells sent outgoing connections to all E cells and all I
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Fig 8. Cholinergic modulation of neuron frequency-current relationship. A, Frequency-current (f-I) curve of the cortical neuron model with different g values
simulating different levels of ACh neuromodulation (gx, = 0 mS/cm” for high ACh modulation and g, = 1.5 mS/cm” for no ACh neuromodulation). B, Spike-Frequency-
Adaptation (SFA) showed by the voltage traces of different gx, values with current of 1.5pA/cm? being applied (Same color code with A).

https://doi.org/10.1371/journal.pcbi.1009235.9008

cells. Periodic boundary conditions were imposed on cells near the lattice edges. This is an
established network scheme for cortical connectivity with the ability to balance short-range
excitation and global inhibition [61].

To investigate how the observed results persist with random but sparse inhibitory connec-
tivity, we performed additional simulations where we reduced the density of inhibitory con-
nectivity to as low as 40% (S15 Fig). The observed network dynamics did not change
qualitatively.

To illustrate network dynamics on a raster plot, we indexed neurons by lattice column such
that a neuron’s index. ID;, was set to the sum of its lattice y-coordinate and the product of its
lattice x-coordinate with the length of lattice network, ID; = y;+x;xL (L =20 for E-cells and
L =10 for I-cells). The first 400 indices were assigned to E-cells while I-cells” indices ranged
from 401 to 500.

The synaptic current I, represented the total synaptic current received by neuron i and

was givenby I = > .I' whereI] = w,>_ exp (— #) (V,. - Efs'yﬂ) at times >t (spike time
of j™ neuron’s k™ spike). w;; is the ij™ element in the adjacency matrix for the weighted
directed graph for synaptic connections in our network model. We used 0.01 mS/cm?, 0.05
m$S/cm?, 0.04 mS/cm” and 0.04 mS/cm” for E-E, E-I, I-] and I-E synaptic strengths, respec-
tively. For all synapses we used the same decay time constant 7= 3.0 ms. The reversal potential
of the synaptic current (E/,) was set to 0 mV for excitatory synapses and -75mV for inhibitory

synapses.

Generation of heterogenous ACh spatial maps

To simulate spatially heterogeneous distribution of ACh levels, we constructed a mapping of
maximal conductance values gi, across the E cell and I cell lattices (Fig 9, bottom layer). The

g,’j values for E cells, based on their i, j position in the 20x20 lattice, were computed by an

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009235  July 30, 2021 20/29


https://doi.org/10.1371/journal.pcbi.1009235.g008
https://doi.org/10.1371/journal.pcbi.1009235

PLOS COMPUTATIONAL BIOLOGY Theta and gamma rhythms intrinsically emerge via segregated ACh signaling

Inhibitory
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Excitatory
layer

LT

Fig 9. Schematic showing E—I network connectivity and spatially heterogeneous g, distribution. Network
consisted of 100 inhibitory neurons (blue top layer) and 400 excitatory neurons (red middle layer) evenly distributed
over square lattices periodic boundary conditions. E-E and E-I synapses were short range (red arrows) while I-I and
I-E synapses (blue arrows) were global. Bottom layer shows an example of a heterogeneous g;._spatial distribution

mapping (yellow to blue indicates high to low g, values).

https://doi.org/10.1371/journal.pcbi.1009235.g009

iterative process that approximates locally diffusive spread of g, in response to a point source
release with subsequent decay. The iterative process and resulting g, mapping were computed
prior to simulation of neural network activity and remained constant throughout the network
simulation. In the iterative process, initially, all g}é values were set to 1.5 mS/cm? and the sites
of point source release were chosen.

The value of g}{s at iteration step n+1 was computed by:

i+1,

g () —2g¢ (n) + g (n) i g (n) —2¢d (n) + g (n)
(AX)Z (Ay)2
+ BAt(maxg, — gi (n)) + gk (n)

g,’g’s(n + 1) = DAt — R,At

where the first term with coefficient D as the diffusion constant represented discrete diffusion
on the 2D lattice network, R;; simulated the effect of ACh release (modeled by a decreased g
level) and B was the decay constant to represent the effect of ACh decay. Periodic boundary
conditions were imposed for cells at the lattice edges. The iteration time-step was At. For sim-
plification we set At, Ax, Ay = 1 for unit time step and unit distances on the lattice. The g, lev-
els for the I cells were assigned as the average value of the 4 nearest E cells in the 2x2 block
centered on the I cell. Simulations shown in S1 Fig hold g fixed at 0 mS/cm? across all I cells,
without qualitatively changing results.
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In all g, mappings, we set the lower bound of g to be 0.2 m$S/cm” and the upper bound to

1.5 mS/cm?, if not otherwise specified. The iterative process was frozen at different time steps
to yield low g (high ACh) regions with different radii. The frozen g, mappings dictated the

g}(]s values used during the simulations of neural network activity.

Measurements of dynamics

All results are averages over four simulation replications from random initial conditions, if not
specified otherwise. To detect the network-wide oscillatory rhythms, we performed Fourier
transforms of the correlogram of the spiking raster plot. We used peak power in the range 2.5
—20 Hz to detect theta band power and in the 25-100 Hz range to detect gamma band activity.

We note that gamma oscillations specifically constitute a wide range of frequencies. The
specific realization of gamma frequency will depend on specific inhibitory synaptic time-con-
stant used and the drive that the cell receives (internal, coming from the local network, or
external from other brain modality).

To detect an individual cell’s rhythmic activity, we performed Fourier transforms of the
autocorrelation function of neuronal spiking time-series data. Power in the theta and gamma
frequency bands were compared to the average power over all frequencies to identify if a cell
exhibited theta or gamma rhythms.

Local field potentials and coupling strength

To simulate the local field potential (LFP) measurements at different locations in the network,
we first convolved the discrete neuronal spiking times with a Gaussian function to generate
continuous spike traces for each neuron (V(t) for i neuron). The Gaussian filter had a o of
1.5 ms. To compute the LFP at a particular location in the network, spike traces for the E cell
at the location and for its 12 nearest neighbor E cells were summed. For the results shown in
S13 Fig, we constructed LFP traces by directly summing the voltage traces of these cells.

The LFP trace was filtered at the two frequency ranges determined by the peak frequencies
within theta and gamma bands, respectively. We denoted the theta and gamma band filtered
LFP signals by x¢(t) and x,(t) respectively. The amplitude envelope of x,(t), denoted as A,(t),
was extracted using a standard Hilbert transform. To quantify the phase coupling of theta-
gamma rhythms, the modulation index (MI) for phase-amplitude coupling between theta and
gamma bands was computed as described in [62].

Supporting information

S1 Fig. Network dynamics with no M-current in the I-population. For this simulation, the
gk values of I-population are 0 mS/cm? and E-cells have the same g, values as in Fig 4H
(radius at 6.1 and distance between two spots is 8 units.) The I-I and I-E synaptic strengths
were adjusted to 0.06 and 0.035 mS/cm? respectively. A: Spike raster plot illustrating E cell
(cells 1-400) and I cell (401-500) firing patterns. B: Dominant rhythmic activity of individual
E-cells (dark blue = none, light blue = theta band, green = gamma band and yellow = mixed,
both gamma and theta) plotted at cell position on the E-cell lattice.

(TIF)

S2 Fig. Network dynamics with homogeneous gx, maps. A: The number of neurons primar-
ily exhibiting gamma (green curve) or theta (blue curve) rhythms as a function of the gx, value
that is uniform in all cells in the network. B: The rhythm power of network dynamics in theta
band (blue curve) and gamma band (green curve) as a function of the network g, value. C, D:
Spike raster plots illustrating E cell (cells 1-400) and I cell (401-500) firing patterns with
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network gx, values at 0.2 (C) and 1.2 (D) mS/cm?.
(TIF)

S3 Fig. Cross-sections of single peak g, distribution. A plot illustrating the cross-sections of
gk, values with different radii in the simulations of single peak gx, distributions; (Fig 3.)
(TIF)

$4 Fig. Gamma and theta band firing varies with gy, level within a single peak distribution
and with neural external drive current. For a single gx; hotspot spatial mapping (r = 5.6), the
lower bound of gi; reached at the center of the hotspot (x-axis, in mS/cm?, g, upper bound

i
drive

was set to 1.5 mS/cm?) and the external input current to all neurons, I . . (y-axis) was varied.
Panels show measures of network theta power (A), network gamma power (B), ratio of theta
to gamma power (C), and numbers of cells primarily firing in the theta frequency band (D), in
the gamma frequency band (E) and with power in both bands (mixed, F). Network theta
power and the number of cells primarily exhibiting theta rhythmicity were sensitive to level of
gk in its spatial distribution. Specifically, for a single gk, hotspot with radius r = 5.6 gamma/theta
band activity depended on the minimum gx; value within the hotspot and the external input cur-
rent I applied to the neurons. Smaller values for the lower bound of gi; increased the differ-
ence in neuron modulation within the hotspot compared to outside the hotspot, and larger
values of the input current promoted network-wide excitability (i.e. not limited to g, hot spots),
leading to global strengthening in theta/gamma power (top/right rows/columns). For dynamics
localized to discrete spots of activity (bottom/left-center rows/columns), increased network
power in the gamma band, and higher numbers of cells primarily exhibiting gamma activity,
occurred for the lower minimum g, values.

(TIF)

S5 Fig. Theta and gamma band frequencies vary with the size of gx; hotspot within a single
peak distribution. Here the gi, lower bound (i.e. within the hotspot) is g, = 0.2 mS/cm?,

while its upper bound (i.e background value) is g, = 1.5mS/cm?. The external input current to
all neurons, I' . = 3.0 pA/cm?.

drive
(TIF)

S6 Fig. Effect of E cell connectivity topology on network dynamics with single peak gg dis-
tribution. A, Power of network theta and gamma rhythms as a function of E cell synaptic con-
nection rewiring probability with a single gx, hotspot (r = 5.7). It shows the drastic decrease of
theta rhythm across the network as network E-cells’ connections became less local. B, The
prominent frequency in gamma band as a function of E cell rewiring probability. Inset shows
gxs spatial mapping on the E cell 2D lattice for the single hotspot (r = 5.7). C and D, Examples
of spiking raster plots with E cell rewiring probability at p = 0 and p = 0.875, respectively, dem-
onstrating the shift from theta-gamma coupled activity to a synchronized gamma rhythm. E
cells are numbered 1 to 400, and I cells are numbered 401 to 500. Color indicates g, values of
cells with the scale in the inset in B. We investigated how network topology affected the
observed oscillatory rhythms with a single peak g spatial distribution. To this effect, we pro-
gressively rewired initially local E-E connections to random E cells across the network. The
rewiring probability, p, (x-axis on S6A Fig and B) denotes the fraction of E-E connections
rewired: when p = 0 the network has the original local excitation/global inhibition connectiv-
ity, whereas for p = 1 the network has random excitation spanning the whole network. We
observed two major effects as a function of the increased rewiring. First, theta power was sig-
nificantly diminished for p > 0.1 while gamma power remained relatively high across all
rewired connectivities (S6A Fig). This observation underscores the importance of local
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excitatory connectivity in supporting localized firing within the gx; hotspot. Secondly, the fre-
quency of gamma oscillations almost linearly decreased with increasing rewiring (S6B Fig).
This is due to the fact, that the random connectivity mediates emergence of zero-phase syn-
chrony between the excitatory neurons. This in turn makes the presynaptic spike arrive on the
target excitatory cells at the time when they are (partially) in their refractory times, reducing
the impact the EPSP has on these cells. This finally decreases the amount of overall excitation
in the network reducing the frequency of gamma. The two rasterplots (S6C and S6D Fig)
exemplify these observations.

(TIF)

S7 Fig. Changes in network dynamics as a function of M-current time constant, 7,. For the
simulations, the double peaked gy, spatial mapping is the same as in Fig 4H (the spot radius is
r = 6.1 and distance between two spots is d = 8 units.) (A) The frequency in theta band
decreased as the M-current time constant, 7,, increased. (B) The frequency in gamma band
largely didn’t change as the M-current time constant was increased. (C), (D) Spike raster plots
illustrating E cell (cells 1-400) and I cell (401-500) firing patterns when M-current time con-
stant was 25 ms and 125 ms, respectively.

(TIF)

S8 Fig. Theta and gamma band frequencies vary with features of a double peaked g, spa-
tial distribution. Heatmaps showing the most prominent frequency in the power spectrum of
network firing in the theta band (A) and in the gamma band (B) as the radius r of the gi hot-
spots and distance d between hotspot centers is varied. Labels F, G and H correspond to same
labels in Fig 4(main). White squares indicate networks without significant power in theta or
gamma frequency bands. The frequency of network theta and gamma band activity changed as
the radius r and distance d between g, hotspot centers were varied in a double peaked gx; spa-
tial distribution (S8 Fig). Theta band activity decreased in frequency as the distance between
the hotspot centers increased. This was due to fact that the amount of bleed-over excitation
from the active hotspot to the silent hotspot decreased as a function of distance between the
hotspots. This bleed-over excitation increased excitatory input to the inactive hotspot, subse-
quently allowing for faster switching between the hot spots when they were close. Gamma
band frequency was approximately inversely correlated to the number of cells in the network
predominantly exhibiting gamma firing frequency (compare S8B Fig with Fig 4 in main part).
In particular, when many cells fired predominantly at gamma frequency, more E cells
recruited their local I cells into the PING inhibitory gating that is signaled globally in the net-
work. This stronger inhibitory gating slowed the release of E cells from inhibition and thus
network gamma band activity.

(TIF)

S9 Fig. Effect of network topology on theta-gamma coupling in a double peak g distribu-
tion. A, Power of network theta band activity decreased with increased probability of rewiring
synapses between E cells for a double peak gy mapping with hotspot radius r = 5.4 and dis-
tance between hotspot centers d = 6. The introduction of E-E synaptic connections between
the different hotspots allowed cells to fire at the same time and synchronously. B and C, Spike
raster plots for E cell rewiring probability at 0 and 0.875, respectively. E cells are numbered 1
to 400, and I cells are 401 to 500. Color indicates g values of cells with the scale in the inset in
A. As in the single peak g, spatial distribution, theta-gamma coupled firing activity was sensi-
tive to changes in the local excitation, global inhibition connectivity structure of the network.
In this case, we considered a double peak gx; spatial mapping which exhibited strong theta-
gamma coupling: (r = 5.4, d = 6) and randomly rewired E-E synapses with varying probability.
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We observed drastic decreases in network theta power with increased E cell rewiring probabil-
ity (S9 Fig). As rewiring probability increased, network dynamics changed from theta-modu-
lated gamma band activity occurring in each gi, hotspot (rewiring probability at 0; S9B Fig) to
synchronized gamma band activity in both g, hotspots (rewiring probablity at 0.875; S9C
Fig). This was caused by an increase in E-E connectivity between cells in different hotspots.
The resulting additional excitation from the active hotspot enabled cells in the silent hotspot to
overcome the global inhibition and fire at the same time as the active hotspot and in synchrony
with those cells. Theta-gamma coupled activity was well maintained in the ’small-world” net-
work regime (when the rewiring probability was small, ~0.2). Generally, localized spots of
spiking activity (and thus their switching) was obtained when the spatial extent of excitation
was smaller than that of inhibition.

(TIF)

$10 Fig. Network dynamics on homogeneous g, spatial map with two hotspots created by
increased constant current drive. A) Illustration of applied current distribution for corre-

sponding neurons on the 20 x 20 E cell lattice. Red color indicates neuros receiving I, , . =

drive
4.5 pA/cm? and black color indicates cells receiving I, = 3.0pA/cm?. B-I, Spiking raster
plots (top panels) and network frequency power spectrums (bottom panels) for homogeneous
gk values (as denoted above the panels) between 0 and 1.4 mS/ cm?.

(TIF)

S11 Fig. Variability in network rhythmic activity in randomly generated gx, maps. A, B and
C: Power of network theta (A) and gamma (B) rhythms and their ratio (C) computed from
networks with randomly generated g, spatial mappings when the number of hotspot centers
was varied from 1 to 20 (y-axis) and hotspot radius r was varied from 2.8 to 5.4 (x-axis). Posi-
tions of hotspot centers were randomly chosen on the excitatory cell lattice. Results were aver-
aged over 4 realizations of the gx, mapping with different positions of hotspot centers. The
’star’ marker corresponds to parameters for Fig 5A and 5B in main part and the square’
marker corresponds to parameters for Fig 5C and 5D in main part. D, E and F, The relative
standard error (RSE) of the power of network theta (D) and gamma (E) rhythms and their
ratio (F) computed from the 4 realizations of the randomly generated gk, spatial mapping with
varying hotspot number (y-axis) and radius (x-axis). To systematically consider spatially ran-
dom g, distributions, we varied the number of g hotspots and their radius r, and then gener-
ated multiple gx, spatial mappings with different locations of hotspot centers. Network power
in the theta and gamma bands, as well as theta-gamma power ratio, averaged over simulations
from 4 realizations of the gi; mapping, varied widely. This was due to high variation in net-
work rhythmic activity generated across the 4 gx, mappings realizations. Computation of the
relative standard error (RSE) in power of network activity in the theta and gamma frequency
bands across the g, mapping realizations showed that gamma band power was generally simi-
lar, but theta band power and, thus, theta-gamma power ratio, showed higher variability across
mapping realizations.

(TIF)

$12 Fig. Theta and gamma band frequencies vary with features of randomly generated g,
maps. Heatmaps show the most prominent frequency in the power spectrum of network firing
in the theta band (A) and in the gamma band (B) as the number of hotspot centers was varied
from 1 to 20 (y-axis) and hotspot radius r was varied from 2.8 to 5.4 (x-axis).

(TIF)

$13 Fig. Strength of theta-gamma coupling as a function of the distance from the low gx;
region. Modulation Index (MI) between gamma and theta filtered LFP traces as a function of
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the distance from the center of the gi, hotspot as in Fig 6. The only difference is here we use
the sum of cell voltage traces for the LFP calculation.
(TIF)

$14 Fig. Changes in theta and gamma frequencies as a function of cellular signaling prop-
erties. For these simulations, the double peaked gx; spatial mapping is the same as in Fig 4H
(radii r = 6.1 and distance between two spots d = 8 units). A) The theta band frequency
increased as the E-cell external current I’, , ,

quency increased as the E-cell external current I

input was increased. B) The gamma band fre-
drive

input was increased. C) The theta band
frequency increased as the decay time constant for inhibitory synapses 7; was increased. D)
The gamma band frequency decreased as the decay time constant for inhibitory synapses 7;
was increased. For C and D we kept the product of inhibitory synaptic strength and 7; constant
in order to achieve similar inhibition level across the set of simulations.

(TIF)

S15 Fig. Network dynamics with sparse inhibitory connectivity. For the simulations, the
double peaked gx; spatial mapping is the same as in Fig 4H (radii is 6.1 and distance between
two spots is 8 units.) Spike raster plots illustrating E cell (cells 1-400) and I cell (401-500) fir-
ing patterns. A, Default inhibitory synaptic connectivity (all-to-all, 0.04 mS/cm? as inhibitory
synaptic strength, detailed in Materials and Methods section). B, Random connectivity with 80
percent of default inhibitory synaptic density, inhibitory synaptic strengths are adjusted to
0.045 mS/cm’. C, Random connectivity with 60 percent of default inhibitory synaptic density,
inhibitory synaptic strengths are adjusted to 0.048 mS/cm”. D, Random connectivity with 40
percent of default inhibitory synaptic density, inhibitory synaptic strengths are adjusted to
0.075 mS/cm®.

(TIF)
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