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Abstract

Theta and gamma rhythms and their cross-frequency coupling play critical roles in percep-

tion, attention, learning, and memory. Available data suggest that forebrain acetylcholine

(ACh) signaling promotes theta-gamma coupling, although the mechanism has not been

identified. Recent evidence suggests that cholinergic signaling is both temporally and spa-

tially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and

diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can

generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory

(E-I) neural network models, we simulate the effects of ACh on neural excitability by varying

the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local

excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-

gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-

modulated firing arises within regions with high ACh signaling, while theta or mixed theta-

gamma activity occurs at the peripheries of these regions. High gamma activity also alter-

nates between different high-ACh regions, at theta frequency. Our results are the first to

indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized

theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by

which ACh signaling supports the brain region-specific attentional processing of sensory

information.

Author summary

Recent evidence indicating that ACh signaling is both transient and spatially circum-

scribed raises the question of how this feature impacts information processing in cortical
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networks. Here we demonstrate that spatially segregated ACh modulation of excitatory-

inhibitory neural networks generates theta-modulated gamma rhythms, a hallmark of

attention and information processing. Theta-gamma coupling arises naturally as neuronal

activity traverses high-ACh regions of the network, and gamma activity alternates between

distinct high-ACh sites at theta frequency. These findings provide novel insights into

neurophysiological mechanisms for ACh-regulated theta-gamma coupling and

uncoupling.

Introduction

Acetylcholine (ACh) signaling in neocortex emanates from the basal forebrain (BF). Recent

anatomical studies indicate that in contrast to more traditional views of the BF projection sys-

tem as “diffusely” organized, afferent and efferent projections of the BF ACh system are highly

topographically organized [1–4]. Prior notions of BF ACh activity as having relatively low tem-

poral resolution and spatial selectivity, and characterized by predominantly extra-synaptic

actions (i.e., “volume” transmission) [5–8], have also been refuted by more recent evidence

indicating fast and spatially discrete ACh spread [8,9]. As a functional corollary of these devel-

opments, the prior conceptualization of ACh as acting diffusely and globally has been chal-

lenged by studies indicating event- or task trial-specific ACh signaling in specific neocortical

regions [8,10]. Fig 1 shows data from multiple electrochemical recording sites in proximity,

demonstrating asynchronous, spatially segregated neocortical ACh signaling.

Here, we investigate in silico the effects of temporally static but spatially circumscribed, het-

erogeneous activation of muscarinic ACh receptors on the activity patterns of excitatory-

inhibitory (E-I) neural networks. Our simulation results indicate that localized theta (* 5

− 10Hz) and gamma (* 30 − 100Hz) band activity rhythms emerge in response to spatially

segregated ACh modulation of neural excitability. Here, the modeled spatial cholinergic distri-

butions are meant to represent a short snapshot from the evidence of spatially circumscribed

ACh signaling in recording studies in rodents (Fig 1D), where discrete locations of high levels

of cholinergic signaling were observed adjacent to locations with low levels of cholinergic

activity. We analyzed the emerging neuronal activity patterns in the presence of stationary

high levels of cholinergic signaling in a single versus in multiple locations of the network.

Localized, gamma band activity rhythms emerged in cells undergoing high levels of choliner-

gic stimulation. Moreover, for multiple high-ACh ‘hotspots’, these gamma oscillations

appeared only within the currently active network regions, resulting in their modulation at

theta frequency.

Our results postulate that theta-gamma coupling is an emergent property of spatially segre-

gated ACh modulation of neural response properties. We further identified mechanisms

underlying the dependence of theta-gamma coupled activity on the spatial distribution of sim-

ulated ACh neuromodulation. In particular, gamma-band activity was supported in high-ACh

regions via the pyramidal-interneuron gamma (PING) mechanism [11], where inhibitory

interneurons strongly modulate and synchronize activity of pyramidal cells [11,12]. Theta

band modulation of gamma activity within or between high-ACh regions was associated with

spike frequency adaptation, linked to effects of muscarinic receptor activation on M-type K+

currents [13]. These mechanisms led to intrinsically tight coupling between gamma and theta

band activity where the degree of theta-gamma coupling correlated with proximity to high-

ACh regions. Additionally, we investigated the consequences of spatially heterogeneous ACh

modulation on the attentional processing of external (sensory) stimuli.
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Fig 1. Spatial localization and asynchronicity of cholinergic signals. Cholinergic signaling is largely asynchronous and can influence target circuitry in

a temporally and spatially highly heterogenous manner. Data recorded in prelimbic cortex (A) are shown here. The four platinum (Pt) recording sites

fabricated onto a ceramic backbone electrode are illustrated in B and the placement of these recording sites in prelimbic cortex are shown in A. C depicts

the dimensions of an individual recording site. The upper and lower pairs of recording sites were separated by 100 μm. The data shown in D-G were

recorded via an upper sensor (“sensor 1) and a lower sensor (“sensor 2”). The neurochemical recording scheme, shown in C, was previously described in
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Theta-gamma coupled activity in cortical and hippocampal areas is thought to be a hall-

mark of attentive cognitive processing [14] and multiple experimental studies have shown that

ACh signaling promotes theta-gamma coupling in these circuits [15,16] (see Discussion). Our

modeling results propose that this cognitively significant firing pattern is directly caused by

spatially heterogeneous modulation of neural properties due to spatially circumscribed release

of ACh.

Results

New experimental data indicates that cholinergic signaling is largely asynchronous and can

influence target circuitry in a temporally and spatially highly heterogenous manner. An exam-

ple of such evidence is presented on Fig 1. In this experiment four platinum recording sites

were fabricated onto a ceramic backbone electrode where the upper and lower pairs of record-

ing sites were separated by 100 μm (Fig 1A). Fig 1D depicts sample measurements (in terms of

currents) depicting localized temporal changes of ACh concentrations. Further analysis of

these transients indicates that, while their overall number follows standard notion that the

highest ACh release is during REM and the lowest happens during the SWS (Fig 1E), this

release is localized and highly asynchronous (Fig 1F and 1G).

Here we elucidated, using in silico modeling, the dynamical changes in neuronal activity

patterns stemming from such a localized and asynchronous mode of ACh signaling. Namely,

we investigated how spatially localized regions of ACh neuromodulation generated network-

wide oscillatory activity in the gamma and theta frequency bands, in two-dimensional E-I net-

works. Using Hodgkin-Huxley type model neurons, ACh effects on the slow, adapting M-type

K+ current were simulated by varying its maximal conductance, gKs
, in individual cells across

the network. Through the action of muscarinic receptors, ACh blocks the M-type K+ current,

thus low values of gKs
corresponded to high ACh modulation. Spatially heterogeneous ACh

modulation was achieved by constructing spatial mappings of gKs
values for individual cells in

the network. The gKs
map mimicked the post-synaptic effects of spatially localized, asynchro-

nous transients of ACh release in a short time window (as suggested by results shown in Fig 1).

To this end, we postulate that relevant network dynamics occur on two separate temporal

scales: 1) fast dynamics on a timescale of milliseconds associated with neuronal firing, and 2)

slow timescales on the order of 5–10 s associated with localized ACh release and subsequent

degradation or uptake. Here, for simplicity, we investigated fast scale neuronal dynamics in

the presence of fixed spatial distributions of ACh. In the gKs
maps, each unit square corre-

sponded to a single cell in the model network (i.e. the unit length, being the side of the square,

corresponded to the minimal distance between modeled cells), and the dimensions of gKs
mod-

ulated regions we consider encompass, on average, tens of neurons.

With network connectivity fixed in a local excitation/global inhibition topology, we show

that different gKs
spatial mappings, which affect the excitability of both E and I cells, result in

detail. Amperometric measures were validated in terms of reflecting newly released acetylcholine (ACh) release [10,52–54]. D. Fixed-potential

amperometry signals from a representative animal during a 23.5-hour recording. Scored sleep states are identified above the raw amperometry signals

shown below and include rapid eye movement (REM), Slow-wave sleep (SWS) and waking (WAKE) periods. Transients are denoted by arrows with

unique transients shown in the same color as the corresponding trace and common transients shown as double blue arrows. E. Cholinergic transient

event rates as a function of sleep state. Absolute event rates across the two sites show a high degree of similarity between one another. REM sleep states

show the highest event rates/minute while SWS states show the fewest. F, G. Event rasters contrasting the timing of transient events for the two sites

shown in d and e. Data from the opposite channel is shown relative to the onset of transient events for sensor 2 (F) or sensor 1 (G). A total of 524 events

were detected from sensor 2 and 382 events were detected from sensor 1 in the 23.5-hour recording. Note that while the highest concentration of activity

is coincident across the two sensors, only a fraction of each channels events occurred in close proximity (±2.5 s) to one another (sensor 1: 40.3%; sensor 2:

29.9%).

https://doi.org/10.1371/journal.pcbi.1009235.g001
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gamma and theta band rhythmic activity. While there is evidence that the M-current is present

not only in excitatory pyramidal cells, but also in various classes of inhibitory interneurons,

namely somatostatin positive (SST+) neurons [17], we obtained qualitatively similar results

when neuromodulatory effects of the M-current were included only in excitatory neurons (S1

Fig). Consistent with previous work [11,12], continuously active E and I cells in regions of low

gKs
values, corresponding to high ACh modulation, show gamma band oscillatory activity.

Here, theta band modulation of gamma activity is an emergent property of the network, gener-

ated as firing activity traverses within or between spatially segregated low gKs
regions. Below,

we first illustrate this novel mechanism for theta-gamma coupling with a randomly generated,

spatial gKs
mapping and then analyze the mechanism in more detail for simple spatial gKs

mappings.

Coexistence of theta/gamma rhythms is caused by spatially segregated gKs

distributions

To illustrate the emergence of theta-gamma coupled firing activity due to a spatially complex

ACh landscape, we generated a spatially heterogeneous gKs
mapping by randomly assigning

n = 9 center positions of low gKs
regions or ’hotspots’ of radius r = 4.2 (units in minimal dis-

tance between model cells, Fig 2A).

Cells within the gKs
’hotspots’ exhibited gamma band firing activity that was intermittently

interrupted as activity moved to other regions with low gKs
values, with network activity

cycling periodically through the hotspots with theta band frequency. As illustrated in the raster

plot in Fig 2B, this activity pattern resulted in subpopulations of E cells showing theta-band

modulated gamma activity, and high power in both the theta and gamma frequency ranges in

overall network activity (Fig 2E). Individual E cell’s firing frequencies were directly correlated

with their gKs
values (Fig 2C, 2D and 2F). Namely, E cells near the centers of low gKs

regions

(i.e. corresponding to highest concentrations of ACh) had the highest firing frequencies (Fig

2C) with higher power gamma band activity (Fig 2D and 2F), while E cells with moderate gKs

values fired in theta band ranges. Cells outside the gKs
hotspots showed little activity.

For comparison, in S2 Fig we show sample raster plots and analysis of network wide activity

patterns and cell spiking frequencies for homogeneous gKs
spatial maps. In these simulations,

we have kept gKs
at the same value for all the neurons and varied the value between 0 and 1.5

mS/cm2. We observed emergence of networkwide gamma band oscillations, and cellular spik-

ing in that frequency, for low values of gKs
, while systematic theta band oscillations were not

present across the entire gKs
range.

Characterization of gamma and theta band activity caused by a single peak

gKs distribution

To understand how spatially heterogeneous distributions generate coupled theta-gamma activ-

ity, we next analyzed simple spatial gKs distributions. For a single low gKs region (Fig 3), firing

activity was restricted to within the gKs hotspot by the higher neuronal excitability elicited by

low gKs values and by the global inhibition provided to the rest of the network by the firing

cells within the hotspot. Gamma range firing frequency of E cells within the gKs hotspot was

generated by gating of E cell firing by local I cells through the PING mechanism [18–20]. As

the radius r of the low gKs hotspot increased (without changing its minimum value; S3 Fig), the

number of neurons exhibiting gamma slightly increased and theta band activity remained low

(Fig 3B). As the hotspot radius increased past r = 5.5, however, the number of neurons
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primarily exhibiting gamma band activity started to decrease while the number of neurons fir-

ing at mixed theta and gamma ranges started to increase. While gamma neurons were located

within the center of the gKs hotspot, theta neurons or neurons showing mixed theta-gamma

band activity were located towards the hotspot’s outer edges (Fig 3C and 3D). Thus, theta band

activity was generated due to firing activity spatially drifting within the gKs hotspot (Fig 3E).

This result echoed our previous findings [13] in similar 2D E-I networks with spatially uni-

form gKs values. In those networks, when gKs values were low, firing activity was spatially local-

ized in a subregion of the network with surrounding cells showing intermittent firing, leading

to drifting of an activity bump. When gKs values were higher (gKs>0.2 mS/cm2), the bump

exhibited translational motion across the whole network promoted by spike frequency adapta-

tion mediated by the gKs regulated M-type K+ current. Here, similarly to those results, the

movement of firing activity within gKs hotspots with larger radius resulted in theta band

rhythmicity.

Fig 2. Theta and gamma band activity generated by a spatially heterogeneous gKs
distribution. A, Randomly generated spatial map of gKs

values on the 20×20 E cell

lattice. B, Spike raster plot illustrating portion of E cell (cells 1−400) and I cell (cells 401−500) firing patterns. The pixel color indicates cell gKs
value (same color scale as

in A). The shaded area indicates the time range of snapshots in F. C, Average E cell firing frequencies plotted as cell position on the E cell lattice showing highest firing

within the regions or ’hotspots’ of low gKs
. D, Dominant rhythmic activity of individual E cells (dark blue = none, light blue = theta band, green = gamma band and

yellow = mixed, both gamma and theta) displayed on E cell lattice illustrating that E cells with lower gKs
values showed stronger and more stable gamma activity while

cells with moderate gKs
values exhibited stronger theta rhythm. E, Power spectrum analysis of E cell network firing. High power exhibited in both theta (5-12Hz) and

gamma (40-60Hz) rhythm bands. F, Distribution of gKs
values for cells showing specific rhythmic activity illustrating correlation of activity type with gKs value (same

color code as in D). G, Snapshots of E cell firing rates from 4500–4850 ms during the simulation shown in B (shaded area). Cells inside the orange contour lines have gKs

values less than 0.6 mS/cm2.

https://doi.org/10.1371/journal.pcbi.1009235.g002
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Fig 3. Gamma and theta band cell firing with a single peak gKs distribution. A, Example single peak gKs mapping projected on the 20×20 E cell lattice where r indicates

the radius of the approximately circular region (hotspot) with low gKs values. B, The number of neurons primarily exhibiting gamma (green curve), theta (blue curve) and

mixed rhythms (yellow curve) as a function of the radius of the gKs hotspot. C, D, Dominant rhythmic activity of individual E cells (dark blue = none, light blue = theta

band, green = gamma band and yellow = mixed, both gamma and theta) plotted at cell position on the E cell lattice for gKs hotspot radius of r = 5.5 and r = 6.1, respectively.

E, Snapshots of E cell firing activities from 4500–4750 ms during the simulation shown in D (gKs hotspot radius r = 6.1). Cells inside the orange contour lines have gKs

values less than 0.6 mS/cm2.

https://doi.org/10.1371/journal.pcbi.1009235.g003
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We further investigated how the emergence of theta/gamma oscillations due to a single gKs
hotspot depended on the constant current applied to individual cells (which corresponds to

external input) and the level of simulated ACh concentration (i.e. lower bound of gKs value

within the hotspot, S4 Fig). The emergence of theta/gamma oscillations was very robust across

these parameters. We generally observed that the oscillations emerged within the hotspot for

lower minimal values of gKs, except when neuronal external current was high and the oscilla-

tions were not confined to a hotspot but spread throughout the network. Another exception

was for the lowest value of gKs, when firing activity was stationary within the hotspot and only

gamma oscillations were observed.

We additionally investigated how the theta and gamma oscillatory frequency changes with

the size of the hot spot (S5 Fig). We observed that frequencies in both bands tend to decrease

with the increase of hotspot radius. This is most likely due to the fact that as the hotspot

increases in size the local feedback inhibition increases reducing the excitation individual cells

receive.

Finally, we investigated how network topology (i.e. rewiring of the excitatory connectivity)

affected the emergence of theta/gamma oscillations (S6 Fig). We observed that increasingly

random E-E connectivity abolished theta band oscillations, while the presence of gamma band

activity remained largely unchanged. This result suggests that the generation of theta-gamma

coupling requires that synaptic excitation which is generally more local than synaptic inhibi-

tion in the network. We also observed a decrease in gamma frequency as a function of network

rewiring. This is due to the fact that increasingly random connectivity promotes zero phase

synchrony causing EPSPs mediated by spiking of presynaptic neurons to partially fall within

the spike and/or refractory time of their postsynaptic targets, reducing their excitatory effect

and the overall level of excitation in the network (S6B Fig).

Characterization of theta/gamma band oscillations and their coupling

emerging from a double peak gKs distribution

To investigate the emergence of rhythmic network activity when two spatially adjacent loca-

tions experienced cholinergic modulation at the same time, we considered the presence of two

gKs hotspots in the network (Fig 4). Fig 4A shows an example of this kind of gKs mapping, in

which d represents the distance between the two gKs hotspot centers while r denotes their

radius (units in minimal distance between model cells). Here, cells located in the center of the

hotspots exhibited theta-modulated gamma rhythms (mixed) while those on the peripheries of

the hotspots showed primarily theta activity (Fig 4B). This occurred because spiking activity

alternated between the hotspots at theta frequency. When a given hotspot was active it pre-

dominantly exhibited gamma band oscillation. This resulted in strong theta-gamma coupling

as the gamma band oscillations appeared at a given site with theta band frequency (Fig 4B).

To analyze the properties of theta-gamma coupling as a function of the size and relative

position of the hotspots, we varied the parameters r and d of the gKs spatial mapping and iden-

tified the numbers of cells showing primarily gamma or theta band activity, or theta-gamma

coupled firing (Fig 4C, 4D and 4E). We observed that the numbers of neurons with theta,

gamma and mixed rhythms increased monotonically with larger r (Fig 4C and 4E). At the

same time, the highest number of cells representing all three types of dynamics (i.e. theta,

gamma and mixed) happened around d = 6 with gamma and theta cell numbers declining

faster for larger d than the mixed rhythm population. (Fig 4D).

To better understand these effects, we closely analyzed network dynamics for chosen sets of

parameters. The parametric locations of the raster plots and cell statistics for different rhythms

depicted on Fig 4F, 4G and 4H are indicated in Fig 4C, 4D and 4E. When r = 4.2 and d = 4
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Fig 4. Theta/gamma band rhythms generated with a double peaked spatial distribution of gKs. A, Example of double peaked spatial mapping of gKs values for

corresponding neurons on the 20×20 E cell lattice for hotspot radius r = 4.6 and distance between hotspot centers d = 8. B, Dominant rhythmic activity of individual E

cells (dark blue = none, light blue = theta band, green = gamma band and yellow = mixed, both gamma and theta) plotted at cell position on the E cell lattice due to

double peaked gKs spatial distribution shown in A. C, D and E, Numbers of neurons exhibiting dominant theta (C), dominant gamma (D), or theta-gamma coupled

activity (E) as a function of radius of gKs hotspots r and the distance between hotspot centers d for a double peaked gKs spatial distribution. F, G and H, Spike raster plots

(top panels) and histograms for the dominant rhythmic activity exhibited by neurons based on their individual gKs values (bottom panels) for networks with double

peaked gKs distributions with r and d values indicated by labels in C, D, E. In the raster plots, E cells are numbered 1 to 400, and I cells are numbered 401 to 500. Color

indicates gKs values of cells with the scale in A. I, Snapshots of E cell firing rates from 4500–4800 ms during the simulation in H (shaded area in H; r and d values

indicated by label H in C). Cells inside the orange contour lines have gKs
values less than 0.6 mS/cm2.

https://doi.org/10.1371/journal.pcbi.1009235.g004
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(Fig 4F), two gKs hotspots were small enough and sufficiently close to each other that cells in

both spots fired simultaneously. Active neurons mainly fired with gamma rhythmicity except a

few neurons with intermediate gKs values carried a theta rhythm. No neurons exhibited both

rhythms in this case.

In contrast, for larger r and d values, cells in the two spots started to show alternating firing

patterns (Fig 4G and even more so Fig 4H and 4I) with mixed theta-gamma rhythmicity. As

described above, firing activity alternated between the two spots such that cells in each spot

fired intermittently at gamma frequency with the alternation in activity between the spots

occurring at theta frequencies. This alternation in firing between the hotspots occurred due to

competition between the local excitation among cells within the hotspot, global inhibition gen-

erated by cells in the other hotspot and the magnitude of spike frequency adaptation (SFA)

mediated by the activation of the M-current. Firing within the active hotspot mediated inhibi-

tory signaling received by E cells in the silent hotspot. Due to their high excitability with low

gKs values, feedback excitation with neighboring cells and small effects of SFA due to previ-

ously low activation, the silent hotspot E cells could start firing and inhibit the active hotspot.

Subsequently as the SFA accumulated in the activated region the other hotspot can get trig-

gered and take over. For larger radius values, theta-gamma activity dominated the network as

activity moved consistently between the hotspots and only a few cells at the centers of the hot-

spots fired primarily at gamma frequency (Fig 4H).

All the simulation results presented here were performed for an M-current activation time

constant of τz = 75ms following [21]. To better understand how the M-current timescale affects

frequency of theta and gamma band oscillations, we performed additional simulations scan-

ning different values of τz2[25ms, 125ms] (S7 Fig). As expected, we observe a significant slow-

down of theta band frequency with increased τz, while no systematic changes were detected in

gamma band oscillations.

We also analyzed how theta and gamma frequency changed as a function of gKs hotspot size

and the distance between hotspot centers (S8 Fig) and as a function of connectivity of the

excitatory subnetwork (S9 Fig). We observed that frequencies of both theta and gamma oscilla-

tions decreased as the hotspots’ radius increased. However, the frequencies of the two oscilla-

tions showed opposite trends with the increase of hotspot center distance–frequency of the

theta band decreased while the gamma frequency generally increased. We attribute this effect

to the fact that as the two hotspots are positioned farther apart it takes longer for them to

switch their activations. When excitatory connectivity was made increasingly random (S9 Fig),

activity switching between the two hotspots stopped and firing became synchronous with cells

in both hotspots exhibiting gamma band oscillations.

Finally, we investigated whether similar dynamical switching between the hotspots would

occur if, instead of gKs hotspots, increased excitability was driven with additional external cur-

rent in two hotspots (Iidrive; see Materials and Methods), with a homogeneous gKs map across

the network (S10 Fig). We observed that only for very narrow range of gKs values is it possible

to get localized, selective activity switching between the two stimulation hotspots with theta

frequency (namely for gKs ~0.2). For other values of gKs, activity switching does not take place,

or is not specific to the neurons within the hotspots (i.e other neurons outside the hotspots

become activated; S10 Fig–black colored spikes in addition to red spikes). This non-specific

activation obliterated theta band oscillations. Thus, we interpret these results that while emer-

gence of theta/gamma oscillations may be possible in response to heterogeneous patterns of

external drive, they occur for a narrow band of network gKs modulation and they are signifi-

cantly less robust.
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Variability of theta/gamma band oscillations with spatially random gKs
distributions

The analysis in the preceding sections illustrates that, in networks with local excitation and

global inhibition, theta-modulated gamma band firing occurred in cells on the outer edges of

individual gKs hotspots or, if the gKs hotspot was large compared to the excitation range, within

the hotspot itself. With multiple, spatially separated gKs hotspots, all cells within gKs hotspots

can exhibit theta-modulated gamma band firing as competition between local excitation and

global inhibition within and between hotspot cells causes alternation of firing episodes. These

results indicate that both sizes as well as relative positions of the hotspots matter. In the more

biologically realistic scenario of spatially random gKs distributions consisting of multiple hot-

spots, these same mechanisms contribute to generating theta-gamma coupled firing, however

we found that resulting strengths of theta and gamma band activity were highly variable,

depending on the specific realization of the gKs spatial map (i.e. positions of the hotspots).

As an example, Fig 5 shows different realizations of gKs spatial mappings with 6 hotspots of

radius r = 5.4 (Fig 5A and 5B, star in S5 Fig) and r = 2.8 (Fig 5C and 5D, square in S8 Fig).

Despite the same hotspot properties, the number and size of effective low gKs regions was var-

ied as hotspots could overlap and coalesce if their centers were next to each other. Network

dynamics were likewise highly variable with some mappings showing clear coexistence of

theta/gamma rhythms (Fig 5A and 5C) while in others gamma (Fig 5B) or theta (Fig 5D)

power dominated. This is due to the fact that for the gKs mappings with coexisting theta/

gamma rhythms, individual hotspots coalesced into larger but spatially distinct low gKs regions

(Fig 5A and 5C; note that networks have periodic boundary conditions so hotspots may wrap

around the lattice). In these cases, theta-gamma coupling was generated similarly as in the

double peaked gKs spatial distribution. On the other hand, gamma power dominated when the

individual gKs hotspots coalesced into an effective single low gKs region (wrapped around the

corners of the network, Fig 5B). The strongest theta power was generated when hotspot centers

were more evenly dispersed across the network and activity traveled successively along the low

Fig 5. Examples of variability in theta/gamma rhythms for randomly generated spatial gKs distributions. The gKs spatial mappings (color plots), network spike

raster plots (right panels, top) and network frequency power spectrum (right panels, bottom) for two pairs (A, B and C, D) of gKs map realizations with the same

sets of parameters. A, B The results of 2 random gKs mappings with 6 hotspots of radius r = 5.4 (marked by ’star’ in S5 Fig). C, D The results of 2 random gKs
mappings with 6 hotspots of radius r = 2.8 (marked by ’square’ in S5 Fig).

https://doi.org/10.1371/journal.pcbi.1009235.g005
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gKs regions (Fig 5D). This observed variability in theta/gamma power provides a possible

insight into experimental inter-animal variability, as the relative locations of ACh release sites

could be highly individualized within the experimental subjects.

To gain a better understanding of the variability in observed network rhythmicity, we simu-

lated effects of random gKs mappings having different numbers of hotspots of different sizes

(S11 Fig) and measured mean theta and gamma power (and their ratio) and their relative stan-

dard error (RSE) across simulation runs with different instantiations of the mappings. We

additionally measured peak theta and gamma frequency for each of these hotspot distributions

(S12 Fig). As shown in the example above, the relative power amplitudes varied significantly

for maps consisting of the same number of hotspots having the same sizes, reporting relatively

high RSE, except for the situation when only one hotspot was present.

Vicinity to high ACh region modulates strength of theta/gamma coupling

It has been shown experimentally that ACh release promotes theta-gamma coupling, and fur-

thermore, this coupling is specifically mediated via M1 muscarinic receptors [8,15]. In our

simulations, cells showing the strongest theta-gamma coupling were located within gKs hot-

spots, when a single large hotspot (Fig 3), or more than one hotspot were present (Fig 4). To

investigate how the strength of theta-gamma coupling varied with location relative to the posi-

tion of the hotspots, we constructed local field potential (LFP) signals at different distances

from a gKs hotspot (Fig 6). Here, specifically, we used a double peaked gKs spatial mapping (Fig

6A) since this network showed the most robust theta/gamma coupling. The locations at which

LFP was calculated is bounded by “C” and “D”, corresponding to the respective panels show-

ing rasterplots from those locations (Fig 6C and 6D, red dots correspond to spikes of the neu-

rons used for LFP calculation at these respective locations). The LFP signal was computed

from the spike trains of the 12 E cells closest to the marked location (see Materials and Meth-

ods). For completeness, S13 Fig shows the results for an LFP signal generated directly from the

voltage traces of the selected cells, with results remaining qualitatively the same. The locations

were chosen to be progressively further away from the center of one of the gKs hotspots (x-axis

in Fig 6B). Separately filtering the LFP signal in the theta and gamma bands (Fig 6E corre-

sponding to location C and Fig 6F corresponding to location D), we calculated the modulation

index (MI) to quantify the coupling strength between the two signals as described in the Mate-

rials and Methods section. MI values as a function of distance from the gKs hotspot center

decreased (Fig 6B), showing that theta-gamma coupling strength decreased with distance from

the gKs hotspot.

Gamma frequency spiking is evident primarily at the locations which have low gKs (high

ACh; In Fig 6C, blue dots correspond to spikes of neurons located within the gKs hotspot as

color coded on Fig 6A). This is due to the fact that only these locations can generate reliable

PING dynamics. Away from these regions, even if activity of the network briefly traverses a

given location, the gamma oscillations will be greatly reduced or not present at all (due to lack

of excitability mediated by low gKs). Thus, the diminished theta-gamma coupling away from

the gKs hotspot is due to reduction of local gamma oscillations. Examples of the two filtered

LFP signals at different network locations are shown in Fig 6D and 6E.

Effect of gKs modulation on network response to external stimuli

Behavioral attentional tasks, particularly visual attention tasks, report differences in responses

to sensory-mediated stimuli depending on whether such stimuli undergo attentional process-

ing [22,23]. Localized cholinergic signaling was shown to be necessary and sufficient for the

attentional elevation of the processing of stimuli [24,25].
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Fig 6. Strength of theta-gamma coupling as a function of the distance from the low gKs region. A local field potential (LFP)

signal was constructed from spike trains of E cells at different distances from the center of a gKs hotspot. A, Double peaked gKs
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To investigate how spatially heterogeneous gKs modulation (simulating ACh mediated

attentional drive) affects responses to external (sensory) stimuli, we measured relative changes

in firing frequency of a subset of excitatory cells targeted by an external excitatory drive, Iidrive,
when the targeted E cells were inside or outside of a gKs hotspot (i.e. within or outside atten-

tional drive, respectively). We compared three situations corresponding to three behavioral

conditions: 1) targeted E cells are inside the gKs hotspot corresponding to presentation of a sen-

sory stimulus which is attended to; 2) targeted E cells are outside the gKs hotspot corresponding

to presentation of a sensory stimulus but attention is directed elsewhere; and finally 3) the sub-

set of E cells is targeted by the external drive but there is no gKs modulation in the network

(spatially homogeneous gKs at the default value) corresponding to presentation of a sensory

stimulus in the absence of attention. These conditions were simulated for single (Fig 7; left col-

umn) and double (Fig 7; right column) peaked gKs spatial mappings.

We observed that for the spatial mapping with single peak gKs, the firing response of the tar-

geted neurons (Fig 7A; location marked by arrow) was significantly higher when they were

located in the gKs hotspot (condition 1), relative to their response to the stimulus in the absence

of gKs modulation (condition 3) (Fig 7A). When targeted cells were outside the gKs hotspot (Fig

7C location marked by arrow), their firing response to the stimulus (condition 2) was signifi-

cantly suppressed compared to their response in the absence of gKs modulation (condition 3)

(Fig 7C and 7E). This suppression was due to the global inhibition induced by the cells firing

in the gKs hotspot that attenuated the response to the external stimulus.

For the spatial mapping having two gKs peaks, responses of targeted cells were generally the

same as for the single hotspot case whether the targeted cells were located inside or outside of a

gKs hotspot (Fig 7B and 7D). We additionally observed that when the targeted cells were in one

of the gKs hotspots, their firing dominated the network, shutting down activation at the other

hotspot. This led to abolition of theta-gamma coupling as the neurons in the targeted hotspot

fired at gamma frequency.

Discussion

Cholinergic signaling is necessary and sufficient for the detection of cues in attentional con-

texts. Moreover, cholinergic signaling influences the degree of forebrain desynchronicity

across circadian stages. Until recently it has been thought that cholinergic signaling occurs at a

relatively low temporal resolution but also with highly limited spatial selectivity. In contrast,

recent results indicated that ACh release is more localized and asynchronous within activated

brain modalities (for example, Fig 1). Such evidence for spatially heterogenous ACh signaling

has remained rare, in part because until the advent of biosensors and, more recently, the GRA-

BACh sensor, prior methods available for monitoring ACh release did not allow for measure-

ments at a relevant spatial resolution. However, using the ACh3.0 GRAB sensor, spatially

heterogenous cholinergic signaling was recently shown in the somatosensory cortex of walking

mice. Cholinergic hotspots with a diameter of about 40 μm were selectively activated by runs

and appeared to be surrounded by inactive areas of similar diameters (see Fig 3O in [26]).

Using a prior version of this sensor to monitor ACh release in hippocampal slices, the size of

hotspots was concluded to be even smaller, about 16.5 μm in diameter [27]. The aim of this

spatial mapping with locations marked to calculate LFPs. B, Modulation Index (MI) between gamma and theta filtered LFP

traces as a function of the distance from the center of the gKs hotspot (as indicated in A.) C and D, Example raster plot of the

network-wide spiking near the hotspot (C, as marked on A) and away from the hotspot (D, as marked on A). E cells are

numbered 1 to 400, and I cells are numbered 401 to 500. Cells used to compute the LFP signal are marked in red. E and F,

Examples of theta (blue curve) and gamma (orange curve) filtered LFP signals computed at locations near (C) and far (D) from

the hotspot, marked on A, B.

https://doi.org/10.1371/journal.pcbi.1009235.g006
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modeling study was to understand how a highly heterogenous distribution of ACh affects

rhythmic network firing activity.

We have previously shown [12], using biophysical computational modeling, that a network

of randomly coupled excitatory and inhibitory neurons can generate transient gamma oscil-

latory activity in response to simulated spatially global but temporally brief pulses of ACh.

Fig 7. Firing response to an external stimulus with single and double peak gKs spatial distributions. A, B, C, D, Average E

cell firing frequencies plotted as cell position on the E cell lattice showing varied firing responses to an external excitatory

stimulus targeting a subset of E cells. Dashed circles indicate location and radius of gKs hotspots and arrows indicate location of

targeted cells. Targeted cells were either inside (A, B) or outside (C, D) of the gKs hotspot. E, The change in average firing

responses of the targeted E cells to the external stimulus relative to their responses in the absence of gKs modulation

(homogeneous gKs at default value). Yellow (blue) bars correspond to when targeted E cells are inside (outside) the gKs hotspot.

The four bars from left to right correspond to cases shown in A, C, B and D, respectively.

https://doi.org/10.1371/journal.pcbi.1009235.g007
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This effect was mediated by blockage of the M-type K+ current (i.e. gKs conductance). Depend-

ing on network connectivity, gamma activity decayed with the simulated gKs transient modula-

tion or was sustained in the network after the gKs transient completely dissipated.

In contrast, the present study demonstrates that in a network with local excitation/global

inhibition connectivity, spatially heterogenous ACh modulation, modeled by varying the M-

current differently in different cells, leads to the emergence of spatially localized theta and

gamma band activity rhythms.

The appearance of the individual rhythms and theta-modulated gamma oscillations

strongly depended on the specific features of the spatial distribution of the maximal conduc-

tance of the M-current, gKs (i.e. the number of gKs hotspots and their radius). Furthermore, we

identified two basic mechanisms mediating strong theta-gamma coupling. First, if a single gKs
hotpot is present and its size is larger spatially than the scope of the local excitation (i.e. range

of E-E connectivity), the neuronal activation moves throughout the population encompassed

by the hotspot. Second, when two or more gKs hotspots are present, the neuronal activity alter-

nates between the hotspots. In both cases, the activated population exhibits gamma band activ-

ity. The emerging gamma rhythm is mediated via the PING mechanism, whereas the

emerging theta rhythm is caused by activity traversing gKs hotspots, mediated by SFA.

Together, these simulations revealed that spatially heterogenous release of ACh leads to the

manifestation of theta and gamma oscillations and their coupling. For spatially homogeneous

gKs distributions, when gKs is low there is effectively no spike frequency adaptation in the net-

work and thus gamma oscillations may be supported indefinitely (S2 Fig). On the other hand,

homogeneous gKs distributions at high values lead to random neuronal spike-frequency adap-

tation patterns, without consistent formation of theta band oscillations. However, spatially

localized and constrained regions of low gKs allow for theta band modulation of the activity

within these regions with gamma oscillations emerging during phases of firing activity. Fur-

thermore, the specific pattern and frequencies of observed oscillatory activity is highly depen-

dent on the specific distribution of ACh release sites and neuronal network structure. For

example, the specific frequencies observed in the theta and gamma range depend on network

wiring topology and the cellular signaling properties (i.e. excitatory cell input or inhibitory

time constant; S14 Fig, supplemental material). These in silico network dynamics reproduce

important in vivo results, as discussed below.

Network connectivity plays a role in supporting the emergence of theta-band activity. The

local excitation/global inhibition connectivity structure allows for firing activity in discrete

and localized network sites, with the gKs distribution controlling the location and sequence of

activated sites. We have shown, that similar results are obtained when inhibitory neurons had

sparser random connectivity to both excitatory and inhibitory targets (S15 Fig, supplemental

material). In general, as long as inhibition has a larger footprint than excitation in the network,

qualitatively similar dynamics will be obtained. Such connectivity is thought to be found on

the meso-scale in the connectivity of functional modules [28]. In addition we believe that a

larger inhibitory footprint could be potentially obtained via long range excitatory connections

that specifically target locally connected inhibitory cells.

Brain rhythms in the theta (* 5 − 12Hz) and gamma (* 30 − 100Hz) frequency bands

have been shown to critically contribute to essential cognitive processes in many brain regions,

including the cortex and hippocampus [19,20,29–32]. Recently, the coupling of these rhythms,

such that the amplitude of gamma band activity is modulated by the phase of theta band activ-

ity, has been identified as a key component of the neuronal local field potential (LFP) or elec-

trocorticogram (ECoG) observed during perceptual, attentional and other cognitive processes

[22,33–37]. Such cross-frequency coupling has been proposed to signify the cooperation of

diverse circuits and neuronal populations in order to integrate multiple cognitive operations
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and force the execution of stimuli-bound cognitive or behavioral outputs [38,39]. For example,

in rats performing a signal-detection based attention task, successful performance of the task

was shown to be dependent on the appearance of theta-modulated gamma band activity in the

LFP measured in the prefrontal cortex (PFC) [15]. Generation of coupled theta-gamma activity

was associated with fast (or transient), cue-bound cholinergic signaling in the PFC. Importantly,

disruption of post-synaptic ACh signaling, by blocking muscarinic M1 acetylcholine receptors

(mAChRs), attenuated gamma synchronicity, disrupted theta-gamma coupling and caused

detection failures [15]. Studies in hippocampal and entorhinal cortical circuits have similarly

shown that ACh signaling promotes theta-gamma coupling [16]. Our simulation results suggest

that such muscarinic-dependent theta and gamma activity may be generated by spatially hetero-

geneous modulation of neural properties due to spatially circumscribed release of ACh.

The above cited results concentrate on theta and gamma oscillatory components found in

the LFP signal, rather than directly in neural spiking activity. There are a limited number of

studies suggesting that local increases in ACh signaling can lead to increases in gamma peri-

odic multiunit spiking in the neocortex [40] and theta periodic spiking in the hippocampus

[41]. However, to our knowledge the relationship of ACh and theta-gamma LFP coupling to

spiking of neurons has not been studied in vivo. Clearly, there is a substantial need for such

research.

Previous computational models for theta-gamma coupling activity in E-I networks relied

on the presence of two populations of inhibitory cells that gate the firing of E cells with differ-

ent time scales [42–46]. Namely, a fast I population generates E cell firing at gamma frequen-

cies through the PING mechanism, while a slower I population gates the gamma oscillatory

firing at theta frequencies. In the novel mechanism we describe here, obtaining theta band

rhythmicity is mediated by activation of muscarinic receptors that modulate activity on time-

scales corresponding to theta band oscillation via SFA. Here, both excitatory and inhibitory

cell populations are endowed with the M-current, however similar results are observed when

muscarinic receptors are expressed (within the model) on excitatory pyramidal cells only.

In our networks, the strength of theta-gamma coupling varied with distance from the center

of a gKs hotspot. In LFP measurements within the hotspot, gamma oscillations were tightly

aligned with the peaks of the theta rhythm. This functional coupling decreased for locations

away from the hotspot, leaving the theta and gamma band activity largely uncoupled. Although

the available data from in vivo recordings already support the view that theta-gamma coupling

is caused by, and occurs in the region of, elevated cholinergic signaling and muscarinic M1

receptor stimulation [15], prior electrochemical recording techniques have not achieved levels

of spatial resolution that would allow the characterization of hotspots and their "colder"

boundaries. More recent G-protein coupled ACh sensors appear capable of differentiating lev-

els of cholinergic signaling on a scale of tens of micrometers [27]. However, measuring LFPs

simultaneously with fluorescence imaging remains challenging and, for the observation of

theta-gamma coupling, may require simultaneous recordings during task performance [15].

Progress in the development of in vivo recording techniques may soon allow a direct test of the

neurobiological validity of our findings.

We observed that spatially localized gKs hotspots acted to gate responses to external excit-

atory input to the network. External stimuli applied to E cells within a hotspot generated a dra-

matic increase in spiking frequency of stimulated neurons and, to a smaller degree, around the

network, as compared to the response of the stimulus in the absence of gKs modulation. Con-

versely, when external stimuli were applied to cells located outside the gKs hotspot, stimulated

cells showed a significantly reduced response compared to their response in the absence of gKs
modulation. These results mirror electrophysiological findings from primate visual cortex,

where attention localized to neurons’ retinotopic field augment firing rate responses [47] as
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well as coherence of firing with theta and gamma oscillations [22,37]. This effect provides a

mechanism not only to aid in detection and discrimination of sensory stimuli in attended loca-

tions [39], but also may aid in selective communication of responses to attended stimuli

between distant cortical areas [22,37].

Our present results suggest that cholinergic activity influences target circuitry in a highly

spatially heterogenous manner which influences the locations of cellular rhythmic activity.

Results presented here consider “time-frozen” gKs (ACh) spatial distributions while in reality,

they will be continually changing. The time scale of ACh diffusion/uptake can be inferred

from Fig 1C to be somewhere between 5-15s, which is clearly long enough to establish stable

theta/gamma band rhythms by the presented mechanism. Further development of our model

by integrating the impact of such temporal dynamics, may have interesting implications for

understanding the neuronal mechanisms contributing to, for example, the ‘Biased Competi-

tion’ model of attention, that is, the mechanisms that allow behaviorally significant stimuli to

undergo feature extraction, while the processing of competing stimuli, even if placed in the

same receptive field, is suppressed [48,49].

With our prior neurobiological and computational findings about the functional signifi-

cance of fast, transient cholinergic signals, conceptualizations about the regulation and func-

tion of cholinergic neurons have advanced from traditional views about monolithic

neuromodulator actions to temporally and spatially differentiated signaling across, for exam-

ple, cortical layers and microcolumns. Together with our present results, this new paradigm

for cholinergic signaling suggests novel underlying mechanisms for how cholinergic activity

can rapidly re-direct information flow in target circuitry and thus play an essential role for

maintaining behavioral and cognitive flexibility [8,50].

Materials and methods

Experimental recordings

The evidence depicted in Fig 1 was adopted from experiments which measured fast, transient

cholinergic signals (“transients”) across circadian cycles in the cortex and hippocampus [51].

Data recorded in prelimbic cortex are shown here. The four platinum (Pt) recording sites were

fabricated onto a ceramic backbone electrode where the upper and lower pairs of recording

sites were separated by 100 μm. The data shown were recorded via an upper sensor (“sensor 1)

and a lower sensor (“sensor 2”). The neurochemical recording scheme, was previously

described in detail, while amperometric measures were validated in terms of reflecting newly

released acetylcholine (ACh) [10,52–54]. Briefly, newly released ACh is hydrolyzed by endoge-

nous acetylcholinesterase (AChE), and the resulting choline is oxidized by choline oxidase

immobilized onto the Pt electrodes. The resulting hydrogen peroxide is oxidized electrochemi-

cally and current yields are recorded amperometrically. m-phenylenediamine (mPD) was elec-

tropolymerized onto the electrodes to enhance the selectivity for detecting analyte relative to

currents produced by potential electroactive interference. Electrodes were calibrated prior to

implantation into the brain. Electrochemistry data were collected via the FAST-16 recording

system at a sampling frequency of 20 Hz. Electrophysiological signals were acquired at 128 Hz

for sleep scoring analysis as previously reported (Opp ICELUS Acquisition program: [55].

Scored sleep states include rapid eye movement (REM) sleep, slow-wave sleep (SWS) and wak-

ing (WAKE) periods.

Cortical neuron model

Neuron membrane potential dynamics were described by a Hodgkin-Huxley based model of

cholinergic modulation in pyramidal cells [21,56]. The effects of ACh as mediated through
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muscarinic ACh receptors were shown to be well modeled by varying the maximum conduc-

tance gKs of a slow, low-threshold K+ mediated adaptation current. The model also featured a

fast, inward Na+ current, a delayed rectifier K+ current and a leakage current. With C = 1μF
/cm2, units of Vi being millivolts and units of t being milliseconds, the current balance equa-

tion for the ith cell was

C
dVi

dt
¼ �gNam

3

i;1hi Vi � VNað Þ � gKdr
n4

i Vi � VKð Þ � giKs
zi Vi � VKð Þ � gL Vi � VLð Þ þ Iidrive

� Iisyn þ Iinoise

where a constant current Iidrive was externally applied and Iisyn represented the synaptic current

received by the ith neuron.

For some simulations we added noisy input current pulses Iinoise dictated by a Poisson pro-

cess (Poisson Rate l ¼ 1

150
ms�1) with amplitude of 6μA/cm2 and duration 1ms.

Activation of the inward Na+ current was instantaneous and governed by the steady-state

activation function mi,1(Vi) = {1+exp[(−Vi−30.0)/9.5]}−1. The Na+ inactivation gating variable

hi was governed by

dhi

dt
¼

h1ðViÞ � hi

thðViÞ

where h1(V) = {1+exp[(V+40.5)/6.0]}−1 and τh(V) = 0.37+2.78{1+exp[(V+40.5)/6.0]}−1.

The delayed rectifier K+ current was gated by ni, the dynamics of which was given by

dni

dt
¼

n1ðViÞ � ni

tnðViÞ

where n1(V) = {1+exp[(−V−30.0)/10.0]−1 and τn(V) = 0.37+1.85{1+exp[(V+27.0)/15.0]}−1.

To model ACh blockade of the muscarine-sensitive M-current observed in cortical neu-

rons, the maximum conductance of the slow, low-threshold K+ current in the ith cell, giKs
, was

varied between 1.5 mS/cm2 for no ACh modulation and 0 mS/cm2 for strong ACh modula-

tion. In this model neuron, decreasing values of gKs increase membrane excitability as reflected

in the frequency-current relation (Fig 8), as well as affect spike-frequency adaptation and the

neural phase response curve [56,57]. The dynamics of the corresponding gating variable zi
were governed by

dzi
dt

¼
z1ðViÞ � zi

tz

where z1(V) = {1+exp[(−V−39.0)/5.0]}−1. These M-current kinetics are similar to M-current

models in [58] and [59]. Values of other parameters were: gNa = 24.0mS/cm2, gKdr
¼ 3:0mS=cm2,

gL = 0.02mS/cm2, VNa = 55.0mV, VK = −90.0mV and VL = −60.0mV, τz = 75ms.

Network model

We simulated two-dimensional networks with 400 excitatory (E) neurons and 100 inhibitory

(I) neurons evenly distributed over separate square lattices (20×20 E cell lattice and 10×10 I

cell lattice, Fig 9). The inhibitory cells accounted for 20% of cells similar to what has been

reported experimentally in the cortex [60]. A local excitation-global inhibition network topol-

ogy (similar to center-surround or lateral inhibition topologies) was used in which E cells sent

outgoing connections to their 40 nearest neighbors on the E cell lattice and to their 10 nearest

neighbors on the I cell lattice. Inhibitory cells sent outgoing connections to all E cells and all I
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cells. Periodic boundary conditions were imposed on cells near the lattice edges. This is an

established network scheme for cortical connectivity with the ability to balance short-range

excitation and global inhibition [61].

To investigate how the observed results persist with random but sparse inhibitory connec-

tivity, we performed additional simulations where we reduced the density of inhibitory con-

nectivity to as low as 40% (S15 Fig). The observed network dynamics did not change

qualitatively.

To illustrate network dynamics on a raster plot, we indexed neurons by lattice column such

that a neuron’s index. IDi, was set to the sum of its lattice y-coordinate and the product of its

lattice x-coordinate with the length of lattice network, IDi = yi+xi×L (L =20 for E-cells and

L = 10 for I-cells). The first 400 indices were assigned to E-cells while I-cells’ indices ranged

from 401 to 500.

The synaptic current Iisyn represented the total synaptic current received by neuron i and

was given by Iisyn ¼
P

jI
ij
syn where Iijsyn ¼ wij

P
kexp �

t�tjk
t

� �
Vi � Ej

syn

� �
at times t>tjk (spike time

of jth neuron’s kth spike). wij is the ijth element in the adjacency matrix for the weighted

directed graph for synaptic connections in our network model. We used 0.01 mS/cm2, 0.05

mS/cm2, 0.04 mS/cm2 and 0.04 mS/cm2 for E-E, E-I, I-I and I-E synaptic strengths, respec-

tively. For all synapses we used the same decay time constant τ = 3.0 ms. The reversal potential

of the synaptic current (Ej
syn) was set to 0 mV for excitatory synapses and -75mV for inhibitory

synapses.

Generation of heterogenous ACh spatial maps

To simulate spatially heterogeneous distribution of ACh levels, we constructed a mapping of

maximal conductance values gKs across the E cell and I cell lattices (Fig 9, bottom layer). The

gi;jKs
values for E cells, based on their i, j position in the 20×20 lattice, were computed by an

Fig 8. Cholinergic modulation of neuron frequency-current relationship. A, Frequency-current (f-I) curve of the cortical neuron model with different gKs values

simulating different levels of ACh neuromodulation (gKs = 0 mS/cm2 for high ACh modulation and gKs = 1.5 mS/cm2 for no ACh neuromodulation). B, Spike-Frequency-

Adaptation (SFA) showed by the voltage traces of different gKs values with current of 1.5μA/cm2 being applied (Same color code with A).

https://doi.org/10.1371/journal.pcbi.1009235.g008
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iterative process that approximates locally diffusive spread of gKs
in response to a point source

release with subsequent decay. The iterative process and resulting gKs
mapping were computed

prior to simulation of neural network activity and remained constant throughout the network

simulation. In the iterative process, initially, all gi;jKs
values were set to 1.5 mS/cm2 and the sites

of point source release were chosen.

The value of gi;jKs
at iteration step n+1 was computed by:

gi;jKs
n þ 1ð Þ ¼ DDt

giþ1;j
Ks

ðnÞ � 2gi;jKs
ðnÞ þ gi�1;j

Ks
ðnÞ

ðDxÞ
2

þ
gi;jþ1

Ks
ðnÞ � 2gi;jKs

ðnÞ þ gi;j�1

Ks
ðnÞ

ðDyÞ
2

 !

� RijDt

þ BDtðmaxgKs
� gijKs

ðnÞÞ þ gijKs
ðnÞ

where the first term with coefficient D as the diffusion constant represented discrete diffusion

on the 2D lattice network, Rij simulated the effect of ACh release (modeled by a decreased gKs

level) and B was the decay constant to represent the effect of ACh decay. Periodic boundary

conditions were imposed for cells at the lattice edges. The iteration time-step was Δt. For sim-

plification we set Δt, Δx, Δy = 1 for unit time step and unit distances on the lattice. The gKs
lev-

els for the I cells were assigned as the average value of the 4 nearest E cells in the 2×2 block

centered on the I cell. Simulations shown in S1 Fig hold gKs fixed at 0 mS/cm2 across all I cells,

without qualitatively changing results.

Fig 9. Schematic showing E—I network connectivity and spatially heterogeneous gKs
distribution. Network

consisted of 100 inhibitory neurons (blue top layer) and 400 excitatory neurons (red middle layer) evenly distributed

over square lattices periodic boundary conditions. E-E and E-I synapses were short range (red arrows) while I-I and

I-E synapses (blue arrows) were global. Bottom layer shows an example of a heterogeneous gKs
spatial distribution

mapping (yellow to blue indicates high to low gKs
values).

https://doi.org/10.1371/journal.pcbi.1009235.g009
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In all gKs
mappings, we set the lower bound of gKs

to be 0.2 mS/cm2 and the upper bound to

1.5 mS/cm2, if not otherwise specified. The iterative process was frozen at different time steps

to yield low gKs
(high ACh) regions with different radii. The frozen gKs

mappings dictated the

gi;jKs
values used during the simulations of neural network activity.

Measurements of dynamics

All results are averages over four simulation replications from random initial conditions, if not

specified otherwise. To detect the network-wide oscillatory rhythms, we performed Fourier

transforms of the correlogram of the spiking raster plot. We used peak power in the range 2.5

−20 Hz to detect theta band power and in the 25−100 Hz range to detect gamma band activity.

We note that gamma oscillations specifically constitute a wide range of frequencies. The

specific realization of gamma frequency will depend on specific inhibitory synaptic time-con-

stant used and the drive that the cell receives (internal, coming from the local network, or

external from other brain modality).

To detect an individual cell’s rhythmic activity, we performed Fourier transforms of the

autocorrelation function of neuronal spiking time-series data. Power in the theta and gamma

frequency bands were compared to the average power over all frequencies to identify if a cell

exhibited theta or gamma rhythms.

Local field potentials and coupling strength

To simulate the local field potential (LFP) measurements at different locations in the network,

we first convolved the discrete neuronal spiking times with a Gaussian function to generate

continuous spike traces for each neuron (Vi(t) for ith neuron). The Gaussian filter had a σ of

1.5 ms. To compute the LFP at a particular location in the network, spike traces for the E cell

at the location and for its 12 nearest neighbor E cells were summed. For the results shown in

S13 Fig, we constructed LFP traces by directly summing the voltage traces of these cells.

The LFP trace was filtered at the two frequency ranges determined by the peak frequencies

within theta and gamma bands, respectively. We denoted the theta and gamma band filtered

LFP signals by xθ(t) and xγ(t) respectively. The amplitude envelope of xγ(t), denoted as Aγ(t),

was extracted using a standard Hilbert transform. To quantify the phase coupling of theta-

gamma rhythms, the modulation index (MI) for phase-amplitude coupling between theta and

gamma bands was computed as described in [62].

Supporting information

S1 Fig. Network dynamics with no M-current in the I-population. For this simulation, the

gKs values of I-population are 0 mS/cm2 and E-cells have the same gKs values as in Fig 4H

(radius at 6.1 and distance between two spots is 8 units.) The I-I and I-E synaptic strengths

were adjusted to 0.06 and 0.035 mS/cm2 respectively. A: Spike raster plot illustrating E cell

(cells 1–400) and I cell (401–500) firing patterns. B: Dominant rhythmic activity of individual

E-cells (dark blue = none, light blue = theta band, green = gamma band and yellow = mixed,

both gamma and theta) plotted at cell position on the E-cell lattice.

(TIF)

S2 Fig. Network dynamics with homogeneous gKs maps. A: The number of neurons primar-

ily exhibiting gamma (green curve) or theta (blue curve) rhythms as a function of the gKs value

that is uniform in all cells in the network. B: The rhythm power of network dynamics in theta

band (blue curve) and gamma band (green curve) as a function of the network gKs value. C, D:

Spike raster plots illustrating E cell (cells 1–400) and I cell (401–500) firing patterns with
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network gKs values at 0.2 (C) and 1.2 (D) mS/cm2.

(TIF)

S3 Fig. Cross-sections of single peak gKs distribution. A plot illustrating the cross-sections of

gKs values with different radii in the simulations of single peak gKs distributions; (Fig 3.)

(TIF)

S4 Fig. Gamma and theta band firing varies with gKs level within a single peak distribution

and with neural external drive current. For a single gKs hotspot spatial mapping (r = 5.6), the

lower bound of gKs reached at the center of the hotspot (x-axis, in mS/cm2, gKs upper bound

was set to 1.5 mS/cm2) and the external input current to all neurons, Iidrive (y-axis) was varied.

Panels show measures of network theta power (A), network gamma power (B), ratio of theta

to gamma power (C), and numbers of cells primarily firing in the theta frequency band (D), in

the gamma frequency band (E) and with power in both bands (mixed, F). Network theta

power and the number of cells primarily exhibiting theta rhythmicity were sensitive to level of

gKs in its spatial distribution. Specifically, for a single gKs hotspot with radius r = 5.6 gamma/theta

band activity depended on the minimum gKs value within the hotspot and the external input cur-

rent Iidrive applied to the neurons. Smaller values for the lower bound of gKs increased the differ-

ence in neuron modulation within the hotspot compared to outside the hotspot, and larger

values of the input current promoted network-wide excitability (i.e. not limited to gKs hot spots),

leading to global strengthening in theta/gamma power (top/right rows/columns). For dynamics

localized to discrete spots of activity (bottom/left-center rows/columns), increased network

power in the gamma band, and higher numbers of cells primarily exhibiting gamma activity,

occurred for the lower minimum gKs values.

(TIF)

S5 Fig. Theta and gamma band frequencies vary with the size of gKs hotspot within a single

peak distribution. Here the gKs lower bound (i.e. within the hotspot) is gKs = 0.2 mS/cm2,

while its upper bound (i.e background value) is gKs = 1.5mS/cm2. The external input current to

all neurons, Iidrive ¼ 3:0 μA=cm .

(TIF)

S6 Fig. Effect of E cell connectivity topology on network dynamics with single peak gKs dis-

tribution. A, Power of network theta and gamma rhythms as a function of E cell synaptic con-

nection rewiring probability with a single gKs hotspot (r = 5.7). It shows the drastic decrease of

theta rhythm across the network as network E-cells’ connections became less local. B, The

prominent frequency in gamma band as a function of E cell rewiring probability. Inset shows

gKs spatial mapping on the E cell 2D lattice for the single hotspot (r = 5.7). C and D, Examples

of spiking raster plots with E cell rewiring probability at p = 0 and p = 0.875, respectively, dem-

onstrating the shift from theta-gamma coupled activity to a synchronized gamma rhythm. E

cells are numbered 1 to 400, and I cells are numbered 401 to 500. Color indicates gKs values of

cells with the scale in the inset in B. We investigated how network topology affected the

observed oscillatory rhythms with a single peak gKs spatial distribution. To this effect, we pro-

gressively rewired initially local E-E connections to random E cells across the network. The

rewiring probability, p, (x-axis on S6A Fig and B) denotes the fraction of E-E connections

rewired: when p = 0 the network has the original local excitation/global inhibition connectiv-

ity, whereas for p = 1 the network has random excitation spanning the whole network. We

observed two major effects as a function of the increased rewiring. First, theta power was sig-

nificantly diminished for p > 0.1 while gamma power remained relatively high across all

rewired connectivities (S6A Fig). This observation underscores the importance of local
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excitatory connectivity in supporting localized firing within the gKs hotspot. Secondly, the fre-

quency of gamma oscillations almost linearly decreased with increasing rewiring (S6B Fig).

This is due to the fact, that the random connectivity mediates emergence of zero-phase syn-

chrony between the excitatory neurons. This in turn makes the presynaptic spike arrive on the

target excitatory cells at the time when they are (partially) in their refractory times, reducing

the impact the EPSP has on these cells. This finally decreases the amount of overall excitation

in the network reducing the frequency of gamma. The two rasterplots (S6C and S6D Fig)

exemplify these observations.

(TIF)

S7 Fig. Changes in network dynamics as a function of M-current time constant, τz. For the

simulations, the double peaked gKs spatial mapping is the same as in Fig 4H (the spot radius is

r = 6.1 and distance between two spots is d = 8 units.) (A) The frequency in theta band

decreased as the M-current time constant, τz, increased. (B) The frequency in gamma band

largely didn’t change as the M-current time constant was increased. (C), (D) Spike raster plots

illustrating E cell (cells 1–400) and I cell (401–500) firing patterns when M-current time con-

stant was 25 ms and 125 ms, respectively.

(TIF)

S8 Fig. Theta and gamma band frequencies vary with features of a double peaked gKs spa-

tial distribution. Heatmaps showing the most prominent frequency in the power spectrum of

network firing in the theta band (A) and in the gamma band (B) as the radius r of the gKs hot-

spots and distance d between hotspot centers is varied. Labels F, G and H correspond to same

labels in Fig 4(main). White squares indicate networks without significant power in theta or

gamma frequency bands. The frequency of network theta and gamma band activity changed as

the radius r and distance d between gKs hotspot centers were varied in a double peaked gKs spa-

tial distribution (S8 Fig). Theta band activity decreased in frequency as the distance between

the hotspot centers increased. This was due to fact that the amount of bleed-over excitation

from the active hotspot to the silent hotspot decreased as a function of distance between the

hotspots. This bleed-over excitation increased excitatory input to the inactive hotspot, subse-

quently allowing for faster switching between the hot spots when they were close. Gamma

band frequency was approximately inversely correlated to the number of cells in the network

predominantly exhibiting gamma firing frequency (compare S8B Fig with Fig 4 in main part).

In particular, when many cells fired predominantly at gamma frequency, more E cells

recruited their local I cells into the PING inhibitory gating that is signaled globally in the net-

work. This stronger inhibitory gating slowed the release of E cells from inhibition and thus

network gamma band activity.

(TIF)

S9 Fig. Effect of network topology on theta-gamma coupling in a double peak gKs distribu-

tion. A, Power of network theta band activity decreased with increased probability of rewiring

synapses between E cells for a double peak gKs mapping with hotspot radius r = 5.4 and dis-

tance between hotspot centers d = 6. The introduction of E-E synaptic connections between

the different hotspots allowed cells to fire at the same time and synchronously. B and C, Spike

raster plots for E cell rewiring probability at 0 and 0.875, respectively. E cells are numbered 1

to 400, and I cells are 401 to 500. Color indicates gKs values of cells with the scale in the inset in

A. As in the single peak gKs spatial distribution, theta-gamma coupled firing activity was sensi-

tive to changes in the local excitation, global inhibition connectivity structure of the network.

In this case, we considered a double peak gKs spatial mapping which exhibited strong theta-

gamma coupling: (r = 5.4, d = 6) and randomly rewired E-E synapses with varying probability.
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We observed drastic decreases in network theta power with increased E cell rewiring probabil-

ity (S9 Fig). As rewiring probability increased, network dynamics changed from theta-modu-

lated gamma band activity occurring in each gKs hotspot (rewiring probability at 0; S9B Fig) to

synchronized gamma band activity in both gKs hotspots (rewiring probablity at 0.875; S9C

Fig). This was caused by an increase in E-E connectivity between cells in different hotspots.

The resulting additional excitation from the active hotspot enabled cells in the silent hotspot to

overcome the global inhibition and fire at the same time as the active hotspot and in synchrony

with those cells. Theta-gamma coupled activity was well maintained in the ’small-world’ net-

work regime (when the rewiring probability was small, ~0.2). Generally, localized spots of

spiking activity (and thus their switching) was obtained when the spatial extent of excitation

was smaller than that of inhibition.

(TIF)

S10 Fig. Network dynamics on homogeneous gKs spatial map with two hotspots created by

increased constant current drive. A) Illustration of applied current distribution for corre-

sponding neurons on the 20 × 20 E cell lattice. Red color indicates neuros receiving Iidrive ¼

4:5 μA=cm and black color indicates cells receiving Iidrive ¼ 3:0μA=cm . B-I, Spiking raster

plots (top panels) and network frequency power spectrums (bottom panels) for homogeneous

gKs values (as denoted above the panels) between 0 and 1.4 mS/cm2.

(TIF)

S11 Fig. Variability in network rhythmic activity in randomly generated gKs maps. A, B and

C: Power of network theta (A) and gamma (B) rhythms and their ratio (C) computed from

networks with randomly generated gKs spatial mappings when the number of hotspot centers

was varied from 1 to 20 (y-axis) and hotspot radius r was varied from 2.8 to 5.4 (x-axis). Posi-

tions of hotspot centers were randomly chosen on the excitatory cell lattice. Results were aver-

aged over 4 realizations of the gKs mapping with different positions of hotspot centers. The

’star’ marker corresponds to parameters for Fig 5A and 5B in main part and the ’square’

marker corresponds to parameters for Fig 5C and 5D in main part. D, E and F, The relative

standard error (RSE) of the power of network theta (D) and gamma (E) rhythms and their

ratio (F) computed from the 4 realizations of the randomly generated gKs spatial mapping with

varying hotspot number (y-axis) and radius (x-axis). To systematically consider spatially ran-

dom gKs distributions, we varied the number of gKs hotspots and their radius r, and then gener-

ated multiple gKs spatial mappings with different locations of hotspot centers. Network power

in the theta and gamma bands, as well as theta-gamma power ratio, averaged over simulations

from 4 realizations of the gKs mapping, varied widely. This was due to high variation in net-

work rhythmic activity generated across the 4 gKs mappings realizations. Computation of the

relative standard error (RSE) in power of network activity in the theta and gamma frequency

bands across the gKs mapping realizations showed that gamma band power was generally simi-

lar, but theta band power and, thus, theta-gamma power ratio, showed higher variability across

mapping realizations.

(TIF)

S12 Fig. Theta and gamma band frequencies vary with features of randomly generated gKs
maps. Heatmaps show the most prominent frequency in the power spectrum of network firing

in the theta band (A) and in the gamma band (B) as the number of hotspot centers was varied

from 1 to 20 (y-axis) and hotspot radius r was varied from 2.8 to 5.4 (x-axis).

(TIF)

S13 Fig. Strength of theta-gamma coupling as a function of the distance from the low gKs
region. Modulation Index (MI) between gamma and theta filtered LFP traces as a function of
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the distance from the center of the gKs hotspot as in Fig 6. The only difference is here we use

the sum of cell voltage traces for the LFP calculation.

(TIF)

S14 Fig. Changes in theta and gamma frequencies as a function of cellular signaling prop-

erties. For these simulations, the double peaked gKs spatial mapping is the same as in Fig 4H

(radii r = 6.1 and distance between two spots d = 8 units). A) The theta band frequency

increased as the E-cell external current Iidrive input was increased. B) The gamma band fre-

quency increased as the E-cell external current Iidrive input was increased. C) The theta band

frequency increased as the decay time constant for inhibitory synapses τI was increased. D)

The gamma band frequency decreased as the decay time constant for inhibitory synapses τI
was increased. For C and D we kept the product of inhibitory synaptic strength and τI constant

in order to achieve similar inhibition level across the set of simulations.

(TIF)

S15 Fig. Network dynamics with sparse inhibitory connectivity. For the simulations, the

double peaked gKs spatial mapping is the same as in Fig 4H (radii is 6.1 and distance between

two spots is 8 units.) Spike raster plots illustrating E cell (cells 1–400) and I cell (401–500) fir-

ing patterns. A, Default inhibitory synaptic connectivity (all-to-all, 0.04 mS/cm2 as inhibitory

synaptic strength, detailed in Materials and Methods section). B, Random connectivity with 80

percent of default inhibitory synaptic density, inhibitory synaptic strengths are adjusted to

0.045 mS/cm2. C, Random connectivity with 60 percent of default inhibitory synaptic density,

inhibitory synaptic strengths are adjusted to 0.048 mS/cm2. D, Random connectivity with 40

percent of default inhibitory synaptic density, inhibitory synaptic strengths are adjusted to

0.075 mS/cm2.

(TIF)
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30. Tiesinga PHE, Fellous J-M, José J V, Sejnowski TJ. Computational model of carbachol-induced delta,

theta, and gamma oscillations in the hippocampus. Hippocampus. 2001; 11: 251–274. https://doi.org/

10.1002/hipo.1041 PMID: 11769308
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