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ABSTRACT

Adequate bonding between rebar and concrete is critical to ensuring the reliable performance of
RC structures. It is found empirically that bond behavior is affected by many factors, including
concrete cover, transverse reinforcement, rebar geometry, concrete properties, and etc. While
many past studies have focused on the prediction of bond strength, how those factors influence the
bond failure mode is not well investigated.

The goal of this research is to develop a bond failure mode prediction model considering
corrosion. The model development is based on bond testing results of 44 beam-end specimens with
various rebar size, corrosion levels, covers, and stirrup confinement. This study adopts logistic and
lasso logistic regression, where the failure mode is the categorical dependent variable and the
aforementioned factors that could influence the bond behavior are the independent variables. The
developed model can be can be further used for corroded RC structure performance evaluation.
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INTRODUCTION

Reinforced concrete (RC) has been widely used for civil infrastructures such as bridges, buildings,
dams, and etc. The performance of the bonding between concrete and rebar (i.e., rebar-concrete
interaction) is a critical factor to determine the performance of RC structure, as the bonding is to
ensure the force transformation between concrete and rebar. The bond behavior directly affects the
load carrying capacity and failure mode of the structure. Previous studies have shown that this
bond is influenced by many factors such as concrete cover, concrete cover bar size ratio, transverse
reinforcement, concrete properties, rebar corrosion, loading type, and etc.

Most of the past research has studied the bond strength and how the aforementioned factors
influence the ultimate bond load carrying capacity (e.g., Kivell, 2012; Almusallam et al., 1996).
For example, Wang (2009) studied bond strength in unconfined concrete and found that the ratio
of concrete cover to the diameter of main rebar contributes to the bond strength. Harajli et al.
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(2004) recognized that the amount of transverse rebars influences both the bond strength and
increases the ductility of bond failure in non-corroded structure. Torre-Casanova et al. (2013) and
Castel (2016) both developed and incorporated the effects of stirrups confinement on rebar-
concrete bond strength in a numerical model. In addition, studies have showed that the bond
strength is a function of compressive strength or tensile strength of concrete (Sajedi & Huang
2015; Torre-Casanova et al., 2013; Castel et al., 2016). In addition, many studies have found
corrosion of rebar has a significant impact on the bond strength prediction, and thus on the RC
structure performance (e.g., Hussain et al., 1995; Kivell, 2012; Wang, 2009; Fu & Chun, 1997;
Stanish, 1999; Sajedi & Huang 2015).

Recognizing the failure mode of the concrete and rebar bond (i.e., either pull-out or
splitting failure) is also critical to determine the performance of RC structures. Prediction of failure
mode is also needed. Pull-out failure happens due to shearing of concrete between ribs, when there
is adequate concrete cover that prevents splitting and presence of transvers reinforcement that
maintains the small cracks (ACI, 2012). Splitting failure occurs under circumstances of lack of
cover or confinement to attain full pull-out strength, and it is due to radial forces caused by
deformation bearing forces that spreads to the sides of the member, leading in loss of concrete
cover and bonding (ACI, 2012).

However, the failure mode of the concrete and rebar bond in RC structures have not been
well studied especially when corrosion is presented or under cyclic loading or the combination of
the two. ACI (2012) uses transverse stirrups cross section and spacing to determine if the bond
failure will be pull-out or splitting; while CEB-FIB (2010) determines pull-out failure when both
concrete cover bar size ratio amount are larger than certain values. Zandi Hanjari et al. (2011) and
Cucchiara et al. (2004) also studied the stirrup contribution to failure mode. Kivell (2012) showed
that specimens with high corrosion levels (e.g. 12%) can change the mechanism of failure tending
to see pull-out behavior accompanied by reduced stiffness at rupture point and that specimens
subjected to cyclic loading showed a tendency of failing in pull-out.

The goal of this paper is to develop a prediction model for bond failure mode considering
various factors including cover to bar size ratio, transverse stirrups, corrosion, and loading type.
In particular, this paper adopts logistic and lasso logistic regression for the model development.
These two methods are suitable for categorical responses and compared with other approaches,
they also yield to an explicit formulation, allowing for practical application from an engineering
perspective.

The outline of this paper is as follows: a review of logistic and lasso logistic regression
methodology; brief explanation about the test data for the model development is summarized;
model development and model selection are elaborated, and the performance of the two developed
models are presented; and final statements and remarks are made in the Summary and Conclusions
section.

LOGISTIC AND LASSO LOGISTIC REGRESSION

Supervised machine learning techniques have been widely used in engineering for response
prediction, and it is generally categorized into regression and classification algorithms. While
regression is suitable for numerical responses, classification method is appropriate for categorical
responses (e.g., failure modes) (Mangalathu Sivasubramanian Pillai, 2017). In particular, logistic
regression and lasso logistic regression are adopted in this study, as they provide an explicit
formulation, which provide greater assistance from an engineering stand-point.



Logistic regression

Logistic regression is a supervised machine learning technique used for categorical responses. This
method evaluates the relation between independent and dependent variables (i.e., categorical
response) through a logistic function. When the response is binary (e.g., let Y = 1 refer to pull-out
failure and Y = 0 refer to splitting failure), the logistic regression formulation to predict the
probability of ¥ being 1, p(x), is shown as:

exp(f+ 2.5
1+exp(ﬂ0 +Zﬂixi)
where X = {Xi}, x = {x;}, Xi = independent variables selected, fo and f; are logistic regression

coefficients that can be estimated by maximum likelihood approach (Mangalathu Sivasubramanian
Pillai, 2017), through likelihood function as shown below:

I(B) = i(ijTi‘j - log[l + exp(ij[i)]) 2)

p(x)=Pr(Y =1|X=x)=

(1)

where subscript j refers to the j™ observation data, x,; = {1 x}T and B = {fo f1 f> ... B»}T. As Yis

binary variable, Pr(Y = 0|x) = 1 — p(x). Note that deviance is proportional to —log[/(p)]; thus when
maximizing /(B) to estimate, it is minimizing the deviance.

Lasso logistic regression

Lasso logistic regression uses the same prediction formulation as logistic regression (shown in Eq.
(1)); the difference is that lasso logistic regression uses a different approach to assess the model
parameters, B. lasso logistic is preferred when the independent variables are correlated and the size
of data set used for the model development is small (Tibshirani, 1996). In particular, lasso logistic
imposes a constraint on the coefficients in the maximum likelihood evaluation, which can be
shown as follows:

(p)= i[y,wxj ~n[(+ep(X B)]- 231 |] ()

where 4 refers to penalty factor. Instead of minimizing the deviance, lasso logistic departs from
optimality to stabilize a system (which is called sparse regularization to avoid over-fitting) by
adding a cost of the sum of absolute values of the coefficients. Lasso regression is preferred mostly
when a number of independent variables is large and the sample size is small; it reduces deviance
of the fitted model without a substantial increase in the prediction bias.

Model accuracy

In this study, two different quantities are used to measure the model accuracy. One measure
quantity is the sum of squared errors of prediction, SSE, which can be shown as below:

SSE:\/Z(Y/ —p(x_/.))2 4)

The other measure quantity is based on hit or miss method. With the prediction probability by Eq.
(1), one could select a threshold, «, to determine the failure mode. For example, by setting o =
50%, then p(x) > 50% indicates that the predicted failure will be pull-out failure; and p(x) < 50%
indicates the failure is predicted to be splitting failure. Thus, there are four possible outcomes
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(shown in Table 1) depending on if a failure mode is correctly predicted or not. As shown in Table
I, TS and TN are the correct detections. To measure the model accuracy, the probability of correct
detection, Pcp, can be applied. In this study, it is calculated based on the number of TP (nzp), the
number of TN tests (n7v), and the total number of tests, shown as following:

P~ Ny + Mgy
cp "~
Nps ¥ Npy + Npp (5)

where nrp refers to the number of FP tests.

Table 1. Four possible prediction outcomes

. Predicted to be Predicted to be
Failure mode

pull-out splitting
Pull-out True positive False positive
(Y=1 (TP) (FP)
Splitting False positive True negative
(Y=0) (FP) (TN)

EXPERIMENTAL DATA

To study the bond behavior of intact and corroded rebar, a group of beam-end specimens were
designed. Based on previous study (Sajedi & Huang, 2015), the specimens were designed based
on four factors: concrete compressive strength (f°c), the ratio of cover size to diameter of rebar
(C/d), corrosion level (Q), and confinement provided by transverse reinforcement that can be
described by index K- specified by (Orangun et al., 1977), as shown below

Ktr = A”—fyt (6)
600s-d,

Where A, is the area of transverse reinforcement in inches squared (in?), £, is the yield strength of
transverse reinforcement in pounds per square inch (psi), s is the spacing of transverse
reinforcement in inches (in), and dj is the bar diameter in inches. The specimens are grouped in
three based on designated compressive strength levels: 30MPa, 40MPa, and 50MPa. At this stage,
only the group with 40MPa and a total of 44 specimens has been cast and tested. Table 2 shows
the design parameters of the 44 specimens in this group.

In summary, as shown in Table 2, there are 12 intact (0% corrosion) and 22 corroded
specimens ranging from 5% to 20% as designed corrosion levels (corresponding to 3.2% to 15.6%
actual corrosion levels measured after the load testing). Among the 44 specimens, 22 had
transverse stirrups with K, ranging from 3.68 to 5.89, and the remaining 22 specimens were
without transverse stirrups (i.e., K, = 0). The specimens were split into two groups, with each
group being subjected to different loading behaviors. 18 specimens are tested under monotonic
loading, while the rest were tested under cyclic loading. Moreover, as can be seen in Table 2, there
were 10 specimens with the failure mode denoted as NA, indicating the failure mode is not
recognizable or the test was not completed; thus, they have been removed from the collected data.

The lab’s 55-kip actuator was mounted in a vertical position on a rigid frame secured to
the base slab of the testing center. A special testing frame was designed and constructed to allow
for the beam specimens to be subjected to monotonic or cyclic loading in a vertical position. This
varied from the suggested horizontal setup shown in ASTM Standard A944-10. The testing frame



allowed the beam-end specimen’s rebar to connect to the actuator through a threaded rod welded
to the rebar and attached to a special connection specifically design for this test, as shown in Figure
1.

Table 2. Experimental database for beam-end specimens

. C 0 (%) 0 (%) Failure
Specimen  d (mm) (mm) cld designed actual Mc Ko mode
1 15.875 50.8 3.2 0 0 0 0.00 0
2 15.875 63.5 4.0 10 4.9 0 0.00 1
3 15.875 76.2 4.8 20 7.6 0 0.00 0
4 15.875 50.8 3.2 0 0 0 5.89 1
5 15.875 63.5 4.0 10 5.3 0 5.89 1
6 15.875 76.2 4.8 20 9.9 0 5.89 1
7 15.875 50.8 32 20 0 1 0.00 1
8 15.875 254 1.6 10 10.3 1 0.00 1
9 15.875 63.5 4.0 5 11.0 1 0.00 1
10 15.875 38.1 2.4 15 10.1 1 0.00 1
11 15.875 76.2 4.8 0 12.0 1 0.00 1
12 15.875 50.8 3.2 20 0 1 5.89 1
13 15.875 25.4 1.6 10 7.9 1 5.89 N/A
14 15.875 63.5 4.0 5 43 1 5.89 1
15 15.875 38.1 2.4 15 8.2 1 5.89 1
16 15.875 76.2 4.8 0 11.3 1 5.89 1
17 19.05 38.1 2.0 0 0 0 0.00 0
18 19.05 254 1.3 10 3.6 0 0.00 0
19 19.05 50.8 2.7 20 15.6 0 0.00 N/A
20 19.05 38.1 2.0 0 0 0 491 0
21 19.05 254 1.3 10 32 0 491 0
22 19.05 50.8 2.7 20 7.1 0 491 N/A
23 19.05 38.1 2.0 5 0.0 1 0.00 0
24 19.05 63.5 33 0 8.5 1 0.00 N/A
25 19.05 25.4 1.3 10 7.6 1 0.00 1
26 19.05 76.2 4.0 20 9.9 1 0.00 1
27 19.05 50.8 2.7 15 13.4 1 0.00 1
28 19.05 38.1 2.0 5 0 1 491 N/A
29 19.05 63.5 33 0 8.6 1 491 0
30 19.05 254 1.3 10 6.9 1 491 1
31 19.05 76.2 4.0 20 7.7 1 491 1
32 19.05 50.8 2.7 15 11.0 1 491 1
33 254 63.5 2.5 0 0 0 0.00 0
34 25.4 50.8 2.0 10 43 0 0.00 0
35 25.4 38.1 1.5 20 10.2 0 0.00 0
36 25.4 63.5 2.5 0 0 0 3.68 0
37 25.4 50.8 2.0 10 7.7 0 3.68 0
38 25.4 38.1 1.5 20 11.9 0 3.68 0
39 25.4 63.5 2.5 0 0 1 3.68 0
40 25.4 50.8 2.0 10 5.2 1 0.00 N/A
41 25.4 38.1 1.5 20 13.1 1 0.00 N/A
42 25.4 63.5 2.5 0 0 1 3.68 N/A
43 25.4 50.8 2.0 10 5.7 1 3.68 N/A
44 25.4 38.1 1.5 20 13.7 1 3.68 N/A




During the testing, the applied force and slippage at the force end and the slippage at the
free end were recorded. From the results of testing, the two distinct failure modes, pull-out and
splitting failure, could be determined. As mentioned before, tests that produced unusual results or
could not be completed were dismissed and label as NA in Table 2. The failure modes are shown
in Table 2, where the failure mode “1” refers to pull-out failure and failure mode “0” refers to
splitting failure.

Fixation to Left Actuator Frame Fixation to Right Actuator Frame

Fixation to Strong-Floor

(a) Testing set-up model (b) Real test set-up

Figure 1. Testing frame set-up

MODEL DEVELOPEMENT
Independent variables selected for models

To develop prediction models for the failure mode using Eq. (1), a preliminary study is first
conducted to select potential x;. The variables that show the potential influences on the failure
mode (V) are: C/d, Kir, Q, and MC, where MC is a dummy variable and defined as

(7)

In addition, the interactions among the four variables and higher orders of these variables are also
examined using scatter plots. Figure 2 shows a scatter plot of an interaction term, C/d-K; vs.
response, y, with a fitted logistic curve, as an example. As for results, the potential terms for x; are
listed in Table 3.

MC < 0 for specimens under monotonic loading
1 for specimens under cyclic loading
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Figure 2. Example of a logistic curve for an interaction term (K -C/d)

Table 3. Independent variables used in the model

Term types Xi
Single variable Ky, Cld, O, MC
Interaction with 2 variables  K,-C/d, C/d-Q, O-MC, K,-MC, C/d-MC, K;-Q
Interaction with 3 variables  K,-C/d-Q, C/d-Q-MC, Ky Q-MC, K4-Cld-MC
Interaction with 4 variables  K;-C/d-Q-MC

Model selection

Inserting the 15 terms shown in Table 3 into Eq. (1), the model is a full model with a model size
of 15. A model selection is then applied to the full model to eliminate the variables that do not
have a statistically significant contribution to the model prediction. For logistic regression, an all
possible subset approach (Lindsey & Sheather, 2010) is adopted. In all possible subset, all possible
combination of x; is first found for each reduced model size (varying from 1 to 14), resulting in a
total of 32,717 models. The model parameters are then assessed using maximum likelihood
approach. The models that have any model parameters with p-value larger than 10% or Variance
Inflation Factors (VIFs) larger than 10 are considered to be invalid and they are not considered
further in the model selection. Then for each model size, the model quality is measured by several
statistical measurements: R-squared (R-sq), adjusted R-squared (4dj-R-sq), Akaike Information
Criterion (4/C), and Bayesian Information Criterion (BIC). The model with the largest Adj-R-sq
and lowest AIC and BIC are the most desirable model. For the same model size, the model with
the largest Adj-R-sq also has the lowest AIC or BIC; however, when comparing the models with
different model sizes, those statistical measurements can result in the different most desirable
model.

Table 4 shows the top three best models for different model sizes, and the best model for
each model size is denoted in bold. Note that when the model size is larger than 3, none of the
models are valid due to large p-values and VIF's. When comparing the models of model size 1 or
2 with the models of model size 3, the model size 3 models have better accuracy in terms of R-sq
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and Adj-R-sq, even though their A/C and BIC are very close for model size 2 and model size 3
models. Table 4 also compares the SSE and Pcp of the models. As shown in Table 4, model size 3
models has much better accuracy in terms of SSE, while the difference in Pcp for different model
size models is not significant.

As shown in Table 4, all the statistical measures point to the model with three terms (MC,
K- Cld, C/d-Q) to be the best model that has the largest Adj-R-sq and lowest 4/C and BIC. The
statistics of the model coefficients for this model are listed in Table 5.

Table 4. Statistics summary of top three logistic regression models for each model size

Model Independent R-s Adj-R-s
size Varli)ables (%;] é%) T oaic pic SSE - Pep
Cld-MC 27.4 25.1 40.0 43.1 6.0 0.76
1 MC 28.4 26.2 404 435 6.0 0.50
Cld-Q 30.5 28.4 39.1 422 5.8 0.73
Ki-Cld, Cld-Q 40.8 37.1 358 404 495 0.73
2 MC, Ky-Cld 44.9 40.3 36.2 40.7 4.69 0.85
MC, Cld-Q 44 4 40.8 347 393 465 0.85
0, K,Cld, Cld-MC  50.7 45.8 345 40.6 2.03 0.79
3 0, MC, KCld 54.9 50.4 336 39.7 211 0.85

MC, K« Cld, Cld-Q  56.7 52.3 3.8 379 191 0.88

Table 5. Model coefficients for the logistic regression model

. 0 1 2 3
Model coefficients (Int e[i cept) (]6[@ (K,f cdy dﬂ 0)
Mean -3.06 2.41 0.15 9.43
Standard deviation 1.13 1.07 0.08 4.59
Coefficient of variance -0.37 0.44 0.53 0.49

In lasso regression, f is estimated for a sequence of penalty factor values. For a given
penalty factor value, the independent variables are auto-selected (i.e., the variables with the
corresponding coefficient being zero are deleted) when applying the sparse regularization through
the penalization. Thus, corresponding to the sequence of the penalty factor values, there is a
sequence of models with various model sizes. It is suggested that the model with average deviance
that is one standard deviation away from the minimum average deviance should be selected as the
final model, which can balance prediction (measured by deviance) against false discovery. As
results, the selected model based on the lasso regression has three variables: C/d, K;-C/d, and
MC-Q. The estimated model coefficients are provided in Table 6.



Table 4. Model coefficients for lasso logistic regression

. 0 1 2 3
Model coefficients (Int 5 cept) (g id) Kf Cld) ( M[é 0)
Mean -3.56 0.70 0.10 53.35
Standard deviation 0.41 0.10 0.01 6.18
Coefficient of variance -0.12 0.14 0.10 0.12

Logistic and lasso logistic regression comparison

As shown in Table 5 and Table 6, all the mean values of f1, /5, and £ are positive for both models.
The positive coefficients show that the likelihood of being pull-out failure mode increases with the
increase of the associated term. Even though the variable terms selected in both models are
different, except Ks-C/d, both models indicate that the failure mode leans to pull-out failure when
more confinement (e.g., the ratio of cover to the diameter of rebar, C/d, and transverse stirrups) is
provided, or corrosion level increases, or structure subjected to cyclic loading. In Kivell (2012),
they have also found that specimens corroded specimens subjected to cyclic loading have more
tendency of failing in pull-out. In addition, as expected, the coefficients of variance of B are much
smaller for the lasso logistic regression than the ones for the logistic regression.

Figures 3 and 4 show the predicted probabilities of the specimen based on the developed
regression models compared to the actual value (e.g., 1 for pull-out failure and 0 for splitting
failure). The predictions of a failure mode using lasso logistic regression are closer to actual failure
mode compared to the failure modes found using logistic regression. In particular, when using
logistic regression model, there are two prediction probabilities larger than 50%, but the actual
failure modes are splitting failure (as shown Figure 3(a) marked as red circles); and there are three
prediction probabilities less than 50%, but the actual failures modes are pull-out failure (as shown
Figure 3(b) marked as red circles). When using lasso logistic regression model, all the prediction
probabilities are less than 50% when the specimens fail in splitting (as shown in Figure 4(a) marked
as red circles); and there are only two prediction probabilities less than 50% when the specimens
fail in pull-out (as shown in Figure 4(b) marked as red circles). The better accuracy in lasso logistic
regression are also shown in the terms of SSE and Pcp defined earlier. Lasso logistic regression
model has a smaller of SSE values and its probability of correct detection to be 94%, when using
a = 50% as the threshold.
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Figure 4. Prediction plot based on lasso logistic regression model

Table 5. Logistic and lasso logistic comparison

Model Independent variables used SSE Pcp
Logistic regression MC, Ki-Cld, Cld-Q 2.03  88%
Lasso logistic regression Cld, Ky-Cld, MC-Q 1.5 94%

SUMMARY AND CONCLUSIONS
Adequate bonding between rebar and concrete is the key to ensuring the reliable performance of

RC structures. This rebar-concrete bond behavior directly influences the structural load carrying
capacity and structure failure mode. While many past studies have focused on the prediction of
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bond strength, predictions on the bond failure mode (i.e., pullout failure or splitting failure) is not
well investigated, particularly when the concrete is not well confined and/or corrosion is present.

In this study, engineering machine learning techniques, logistic and lasso logistic
regression, are implemented to develop bond failure mode prediction models. Compared with
other machine learning techniques, logistic and lasso logistic regression are able to provide an
explicit prediction formulation. To developed the prediction models, this study uses the bond tests
of 44 beam-end specimens. For logistic regression, an all possible subset approach is adopted to
simplify the model formulation by removing the variables that do not contribute to the model
predictions. For lasso logistic, sparse regularization used in estimating the model parameters auto-
selects variables for the model.

As results, both logistic and lasso logistic regression select 3 independent variables in their
final model formulations. Even though the variables are not completely the same, they all suggest
that the failure mode tends more to be pull-out failure when more confinement (e.g., the ratio of
cover to the diameter of rebar, C/d, and transverse stirrups) is provided, corrosion level increases,
or structure subjected to cyclic loading. In addition, the results show that the predictions of the
failure mode using lasso logistic regression are closer to the true failure mode than the ones using
logistic regression. When using a threshold, o = 50%, to determine the failure mode, the lasso
logistic has a probability of correct detection of 94%. Since lasso logistic regression is suitable for
large number of potential independent variables and small sample size, which is verified in this
study. The results shows that the performance of lasso logistic regression is better than logistic
regression. The prediction model developed in this study will be further updated when new
experiment data become available. These models can be further used for corroded RC structure
performance evaluation.
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