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ABSTRACT 

Adequate bonding between rebar and concrete is critical to ensuring the reliable performance of 
RC structures. It is found empirically that bond behavior is affected by many factors, including 
concrete cover, transverse reinforcement, rebar geometry, concrete properties, and etc. While 
many past studies have focused on the prediction of bond strength, how those factors influence the 
bond failure mode is not well investigated.  

The goal of this research is to develop a bond failure mode prediction model considering 
corrosion. The model development is based on bond testing results of 44 beam-end specimens with 
various rebar size, corrosion levels, covers, and stirrup confinement. This study adopts logistic and 
lasso logistic regression, where the failure mode is the categorical dependent variable and the 
aforementioned factors that could influence the bond behavior are the independent variables. The 
developed model can be can be further used for corroded RC structure performance evaluation. 
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INTRODUCTION 

Reinforced concrete (RC) has been widely used for civil infrastructures such as bridges, buildings, 
dams, and etc. The performance of the bonding between concrete and rebar (i.e., rebar-concrete 
interaction) is a critical factor to determine the performance of RC structure, as the bonding is to 
ensure the force transformation between concrete and rebar. The bond behavior directly affects the 
load carrying capacity and failure mode of the structure. Previous studies have shown that this 
bond is influenced by many factors such as concrete cover, concrete cover bar size ratio, transverse 
reinforcement, concrete properties, rebar corrosion, loading type, and etc. 

Most of the past research has studied the bond strength and how the aforementioned factors 
influence the ultimate bond load carrying capacity (e.g., Kivell, 2012; Almusallam et al., 1996). 
For example, Wang (2009) studied bond strength in unconfined concrete and found that the ratio 
of concrete cover to the diameter of main rebar contributes to the bond strength. Harajli et al. 
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(2004) recognized that the amount of transverse rebars influences both the bond strength and 
increases the ductility of bond failure in non-corroded structure. Torre-Casanova et al. (2013) and 
Castel (2016) both developed and incorporated the effects of stirrups confinement on rebar-
concrete bond strength in a numerical model. In addition, studies have showed that the bond 
strength is a function of compressive strength or tensile strength of concrete (Sajedi & Huang 
2015; Torre-Casanova et al., 2013; Castel et al., 2016). In addition, many studies have found 
corrosion of rebar has a significant impact on the bond strength prediction, and thus on the RC 
structure performance (e.g., Hussain et al., 1995; Kivell, 2012; Wang, 2009; Fu & Chun, 1997; 
Stanish, 1999; Sajedi & Huang 2015).  

Recognizing the failure mode of the concrete and rebar bond (i.e., either pull-out or 
splitting failure) is also critical to determine the performance of RC structures. Prediction of failure 
mode is also needed. Pull-out failure happens due to shearing of concrete between ribs, when there 
is adequate concrete cover that prevents splitting and presence of transvers reinforcement that 
maintains the small cracks (ACI, 2012). Splitting failure occurs under circumstances of lack of 
cover or confinement to attain full pull-out strength, and it is due to radial forces caused by 
deformation bearing forces that spreads to the sides of the member, leading in loss of concrete 
cover and bonding (ACI, 2012).  

However, the failure mode of the concrete and rebar bond in RC structures have not been 
well studied especially when corrosion is presented or under cyclic loading or the combination of 
the two. ACI (2012) uses transverse stirrups cross section and spacing to determine if the bond 
failure will be pull-out or splitting; while CEB-FIB (2010) determines pull-out failure when both 
concrete cover bar size ratio amount are larger than certain values. Zandi Hanjari et al. (2011) and 
Cucchiara et al. (2004) also studied the stirrup contribution to failure mode. Kivell (2012) showed 
that specimens with high corrosion levels (e.g. 12%) can change the mechanism of failure tending 
to see pull-out behavior accompanied by reduced stiffness at rupture point and that specimens 
subjected to cyclic loading showed a tendency of failing in pull-out.  

The goal of this paper is to develop a prediction model for bond failure mode considering 
various factors including cover to bar size ratio, transverse stirrups, corrosion, and loading type. 
In particular, this paper adopts logistic and lasso logistic regression for the model development. 
These two methods are suitable for categorical responses and compared with other approaches, 
they also yield to an explicit formulation, allowing for practical application from an engineering 
perspective. 

The outline of this paper is as follows: a review of logistic and lasso logistic regression 
methodology; brief explanation about the test data for the model development is summarized; 
model development and model selection are elaborated, and the performance of the two developed 
models are presented; and final statements and remarks are made in the Summary and Conclusions 
section.  

LOGISTIC AND LASSO LOGISTIC REGRESSION 

Supervised machine learning techniques have been widely used in engineering for response 
prediction, and it is generally categorized into regression and classification algorithms. While 
regression is suitable for numerical responses, classification method is appropriate for categorical 
responses (e.g., failure modes) (Mangalathu Sivasubramanian Pillai, 2017). In particular, logistic 
regression and lasso logistic regression are adopted in this study, as they provide an explicit 
formulation, which provide greater assistance from an engineering stand-point. 
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Logistic regression 

Logistic regression is a supervised machine learning technique used for categorical responses. This 
method evaluates the relation between independent and dependent variables (i.e., categorical 
response) through a logistic function. When the response is binary (e.g., let Y = 1 refer to pull-out 
failure and Y = 0 refer to splitting failure), the logistic regression formulation to predict the 
probability of Y being 1, p(x), is shown as: 
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where X = {Xi}, x = {xi}, Xi = independent variables selected, β0 and βi are logistic regression 
coefficients that can be estimated by maximum likelihood approach (Mangalathu Sivasubramanian 
Pillai, 2017), through likelihood function as shown below: 
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where subscript j refers to the jth observation data, x
˜

j  = {1 x}T and β = {β0 β1 β2 … βp}T. As Y is 
binary variable, Pr(Y = 0|x) = 1 – p(x). Note that deviance is proportional to –log[l(β)]; thus when 
maximizing l(β) to estimate, it is minimizing the deviance. 

Lasso logistic regression 

Lasso logistic regression uses the same prediction formulation as logistic regression (shown in Eq. 
(1)); the difference is that lasso logistic regression uses a different approach to assess the model 
parameters, β. lasso logistic is preferred when the independent variables are correlated and the size 
of data set used for the model development is small (Tibshirani, 1996). In particular, lasso logistic 
imposes a constraint on the coefficients in the maximum likelihood evaluation, which can be 
shown as follows:  
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where λ refers to penalty factor. Instead of minimizing the deviance, lasso logistic departs from 
optimality to stabilize a system (which is called sparse regularization to avoid over-fitting) by 
adding a cost of the sum of absolute values of the coefficients. Lasso regression is preferred mostly 
when a number of independent variables is large and the sample size is small; it reduces deviance 
of the fitted model without a substantial increase in the prediction bias. 

Model accuracy 

In this study, two different quantities are used to measure the model accuracy. One measure 
quantity is the sum of squared errors of prediction, SSE, which can be shown as below: 

 
2

( )j jSSE y p  x           (4) 

The other measure quantity is based on hit or miss method. With the prediction probability by Eq. 
(1), one could select a threshold, , to determine the failure mode. For example, by setting  = 
50%, then p(x)  50% indicates that the predicted failure will be pull-out failure; and p(x) < 50% 
indicates the failure is predicted to be splitting failure. Thus, there are four possible outcomes 
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(shown in Table 1) depending on if a failure mode is correctly predicted or not. As shown in Table 
1, TS and TN are the correct detections. To measure the model accuracy, the probability of correct 
detection, PCD, can be applied. In this study, it is calculated based on the number of TP (nTP), the 
number of TN tests (nTN), and the total number of tests, shown as following: 

TS TN
CD

TS TN FP

n nP
n n n




            (5) 
where nFP refers to the number of FP tests. 
 

Table 1. Four possible prediction outcomes 

Failure mode Predicted to be 
pull-out 

Predicted to be 
splitting 

Pull-out 
(Y = 1) 

True positive 
(TP) 

False positive 
(FP) 

Splitting 
(Y = 0) 

False positive 
(FP) 

True negative 
(TN) 

EXPERIMENTAL DATA 

To study the bond behavior of intact and corroded rebar, a group of beam-end specimens were 
designed. Based on previous study (Sajedi & Huang, 2015), the specimens were designed based 
on four factors: concrete compressive strength (f’c), the ratio of cover size to diameter of rebar 
(C/d), corrosion level (Q), and confinement provided by transverse reinforcement that can be 
described by index Ktr specified by (Orangun et al., 1977), as shown below 

600
tr yt

tr
b

A f
K

s d





           (6) 

Where Atr is the area of transverse reinforcement in inches squared (in2), fyt is the yield strength of 
transverse reinforcement in pounds per square inch (psi), s is the spacing of transverse 
reinforcement in inches (in), and db is the bar diameter in inches. The specimens are grouped in 
three based on designated compressive strength levels: 30MPa, 40MPa, and 50MPa. At this stage, 
only the group with 40MPa and a total of 44 specimens has been cast and tested. Table 2 shows 
the design parameters of the 44 specimens in this group. 

In summary, as shown in Table 2, there are 12 intact (0% corrosion) and 22 corroded 
specimens ranging from 5% to 20% as designed corrosion levels (corresponding to 3.2% to 15.6% 
actual corrosion levels measured after the load testing). Among the 44 specimens, 22 had 
transverse stirrups with Ktr ranging from 3.68 to 5.89, and the remaining 22 specimens were 
without transverse stirrups (i.e., Ktr = 0). The specimens were split into two groups, with each 
group being subjected to different loading behaviors. 18 specimens are tested under monotonic 
loading, while the rest were tested under cyclic loading. Moreover, as can be seen in Table 2, there 
were 10 specimens with the failure mode denoted as NA, indicating the failure mode is not 
recognizable or the test was not completed; thus, they have been removed from the collected data. 

The lab’s 55-kip actuator was mounted in a vertical position on a rigid frame secured to 
the base slab of the testing center. A special testing frame was designed and constructed to allow 
for the beam specimens to be subjected to monotonic or cyclic loading in a vertical position. This 
varied from the suggested horizontal setup shown in ASTM Standard A944-10. The testing frame 
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allowed the beam-end specimen’s rebar to connect to the actuator through a threaded rod welded 
to the rebar and attached to a special connection specifically design for this test, as shown in Figure 
1.  

 
Table 2. Experimental database for beam-end specimens 

Specimen d (mm) C 
(mm) C/d Q (%) 

designed 
Q (%) 
actual MC Ktr 

Failure 
mode 

1 15.875 50.8 3.2 0 0 0 0.00 0 
2 15.875 63.5 4.0 10 4.9 0 0.00 1 
3 15.875 76.2 4.8 20 7.6 0 0.00 0 
4 15.875 50.8 3.2 0 0 0 5.89 1 
5 15.875 63.5 4.0 10 5.3 0 5.89 1 
6 15.875 76.2 4.8 20 9.9 0 5.89 1 
7 15.875 50.8 3.2 20 0 1 0.00 1 
8 15.875 25.4 1.6 10 10.3 1 0.00 1 
9 15.875 63.5 4.0 5 11.0 1 0.00 1 
10 15.875 38.1 2.4 15 10.1 1 0.00 1 
11 15.875 76.2 4.8 0 12.0 1 0.00 1 
12 15.875 50.8 3.2 20 0 1 5.89 1 
13 15.875 25.4 1.6 10 7.9 1 5.89 N/A 
14 15.875 63.5 4.0 5 4.3 1 5.89 1 
15 15.875 38.1 2.4 15 8.2 1 5.89 1 
16 15.875 76.2 4.8 0 11.3 1 5.89 1 
17 19.05 38.1 2.0 0 0 0 0.00 0 
18 19.05 25.4 1.3 10 3.6 0 0.00 0 
19 19.05 50.8 2.7 20 15.6 0 0.00 N/A 
20 19.05 38.1 2.0 0 0 0 4.91 0 
21 19.05 25.4 1.3 10 3.2 0 4.91 0 
22 19.05 50.8 2.7 20 7.1 0 4.91 N/A 
23 19.05 38.1 2.0 5 0.0 1 0.00 0 
24 19.05 63.5 3.3 0 8.5 1 0.00 N/A 
25 19.05 25.4 1.3 10 7.6 1 0.00 1 
26 19.05 76.2 4.0 20 9.9 1 0.00 1 
27 19.05 50.8 2.7 15 13.4 1 0.00 1 
28 19.05 38.1 2.0 5 0 1 4.91 N/A 
29 19.05 63.5 3.3 0 8.6 1 4.91 0 
30 19.05 25.4 1.3 10 6.9 1 4.91 1 
31 19.05 76.2 4.0 20 7.7 1 4.91 1 
32 19.05 50.8 2.7 15 11.0 1 4.91 1 
33 25.4 63.5 2.5 0 0 0 0.00 0 
34 25.4 50.8 2.0 10 4.3 0 0.00 0 
35 25.4 38.1 1.5 20 10.2 0 0.00 0 
36 25.4 63.5 2.5 0 0 0 3.68 0 
37 25.4 50.8 2.0 10 7.7 0 3.68 0 
38 25.4 38.1 1.5 20 11.9 0 3.68 0 
39 25.4 63.5 2.5 0 0 1 3.68 0 
40 25.4 50.8 2.0 10 5.2 1 0.00 N/A 
41 25.4 38.1 1.5 20 13.1 1 0.00 N/A 
42 25.4 63.5 2.5 0 0 1 3.68 N/A 
43 25.4 50.8 2.0 10 5.7 1 3.68 N/A 
44 25.4 38.1 1.5 20 13.7 1 3.68 N/A 
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During the testing, the applied force and slippage at the force end and the slippage at the 
free end were recorded. From the results of testing, the two distinct failure modes, pull-out and 
splitting failure, could be determined. As mentioned before, tests that produced unusual results or 
could not be completed were dismissed and label as NA in Table 2. The failure modes are shown 
in Table 2, where the failure mode “1” refers to pull-out failure and failure mode “0” refers to 
splitting failure. 
 

 
(a) Testing set-up model 

 

 
(b) Real test set-up 

Figure 1. Testing frame set-up 

 

MODEL DEVELOPEMENT 

Independent variables selected for models 

To develop prediction models for the failure mode using Eq. (1), a preliminary study is first 
conducted to select potential xi. The variables that show the potential influences on the failure 
mode (Y) are: C/d, Ktr, Q, and MC, where MC is a dummy variable and defined as 

0
1

for specimensunder monotonic loading
MC

for specimensunder cyclic loading


 


       (7) 

In addition, the interactions among the four variables and higher orders of these variables are also 
examined using scatter plots. Figure 2 shows a scatter plot of an interaction term, C/dKtr vs. 
response, y, with a fitted logistic curve, as an example. As for results, the potential terms for xi are 
listed in Table 3. 
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Figure 2. Example of a logistic curve for an interaction term (KtrC/d) 

 

Table 3. Independent variables used in the model 

Term types xi  
Single variable Ktr, C/d, Q, MC   
Interaction with 2 variables KtrC/d, C/dQ, QMC, KtrMC, C/dMC, KtrQ 
Interaction with 3 variables KtrC/dQ, C/dQMC, KtrQMC, KtrC/dMC 
Interaction with 4 variables KtrC/dQMC 

 

Model selection 

Inserting the 15 terms shown in Table 3 into Eq. (1), the model is a full model with a model size 
of 15. A model selection is then applied to the full model to eliminate the variables that do not 
have a statistically significant contribution to the model prediction. For logistic regression, an all 
possible subset approach (Lindsey & Sheather, 2010) is adopted. In all possible subset, all possible 
combination of xi is first found for each reduced model size (varying from 1 to 14), resulting in a 
total of 32,717 models. The model parameters are then assessed using maximum likelihood 
approach. The models that have any model parameters with p-value larger than 10% or Variance 
Inflation Factors (VIFs) larger than 10 are considered to be invalid and they are not considered 
further in the model selection. Then for each model size, the model quality is measured by several 
statistical measurements: R-squared (R-sq), adjusted R-squared (Adj-R-sq), Akaike Information 
Criterion (AIC), and Bayesian Information Criterion (BIC). The model with the largest Adj-R-sq 
and lowest AIC and BIC are the most desirable model. For the same model size, the model with 
the largest Adj-R-sq also has the lowest AIC or BIC; however, when comparing the models with 
different model sizes, those statistical measurements can result in the different most desirable 
model. 

Table 4 shows the top three best models for different model sizes, and the best model for 
each model size is denoted in bold. Note that when the model size is larger than 3, none of the 
models are valid due to large p-values and VIFs. When comparing the models of model size 1 or 
2 with the models of model size 3, the model size 3 models have better accuracy in terms of R-sq 
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and Adj-R-sq, even though their AIC and BIC are very close for model size 2 and model size 3 
models. Table 4 also compares the SSE and PCD of the models. As shown in Table 4, model size 3 
models has much better accuracy in terms of SSE, while the difference in PCD for different model 
size models is not significant. 

As shown in Table 4, all the statistical measures point to the model with three terms (MC, 
KtrC/d, C/dQ) to be the best model that has the largest Adj-R-sq and lowest AIC and BIC. The 
statistics of the model coefficients for this model are listed in Table 5.  
 

Table 4. Statistics summary of top three logistic regression models for each model size 

Model 
size 

Independent 
variables 

R-sq 
(%) 

Adj-R-sq 
(%) AIC BIC SSE PCD 

1 
C/dMC 27.4 25.1 40.0 43.1 6.0 0.76 

MC 28.4 26.2 40.4 43.5 6.0 0.50 
C/dQ 30.5 28.4 39.1 42.2 5.8 0.73 

 KtrC/d, C/dQ 40.8 37.1 35.8 40.4 4.95 0.73 
2 MC, KtrC/d 44.9 40.3 36.2 40.7 4.69 0.85 
 MC, C/dQ 44.4 40.8 34.7 39.3 4.65 0.85 
 Q, KtrC/d, C/dMC 50.7 45.8 34.5 40.6 2.03 0.79 
3 Q, MC, KtrC/d 54.9 50.4 33.6 39.7 2.11 0.85 
 MC, KtrC/d, C/dQ 56.7 52.3 31.8 37.9 1.91 0.88 

 

 
Table 5. Model coefficients for the logistic regression model 

Model coefficients β0 
(Intercept) 

β1 
 (MC) 

β2 
(Ktr·C/d) 

β3 
(C/d·Q) 

Mean -3.06 2.41 0.15 9.43 
Standard deviation 1.13 1.07 0.08 4.59 

Coefficient of variance -0.37 0.44 0.53 0.49 
 

In lasso regression,  is estimated for a sequence of penalty factor values. For a given 
penalty factor value, the independent variables are auto-selected (i.e., the variables with the 
corresponding coefficient being zero are deleted) when applying the sparse regularization through 
the penalization. Thus, corresponding to the sequence of the penalty factor values, there is a 
sequence of models with various model sizes. It is suggested that the model with average deviance 
that is one standard deviation away from the minimum average deviance should be selected as the 
final model, which can balance prediction (measured by deviance) against false discovery. As 
results, the selected model based on the lasso regression has three variables: C/d, KtrC/d, and 
MCQ. The estimated model coefficients are provided in Table 6.  
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Table 4. Model coefficients for lasso logistic regression 

Model coefficients β0 
(Intercept) 

β1 
 (C/d) 

β2 
(Ktr·C/d) 

β3 
(MC·Q) 

Mean -3.56 0.70 0.10 53.35 
Standard deviation 0.41 0.10 0.01 6.18 

Coefficient of variance -0.12 0.14 0.10 0.12 
 

Logistic and lasso logistic regression comparison 

As shown in Table 5 and Table 6, all the mean values of 1, 2, and 3 are positive for both models. 
The positive coefficients show that the likelihood of being pull-out failure mode increases with the 
increase of the associated term. Even though the variable terms selected in both models are 
different, except KtrC/d, both models indicate that the failure mode leans to pull-out failure when 
more confinement (e.g., the ratio of cover to the diameter of rebar, C/d, and transverse stirrups) is 
provided, or corrosion level increases, or structure subjected to cyclic loading. In Kivell (2012), 
they have also found that specimens corroded specimens subjected to cyclic loading have more 
tendency of failing in pull-out. In addition, as expected, the coefficients of variance of  are much 
smaller for the lasso logistic regression than the ones for the logistic regression. 

Figures 3 and 4 show the predicted probabilities of the specimen based on the developed 
regression models compared to the actual value (e.g., 1 for pull-out failure and 0 for splitting 
failure). The predictions of a failure mode using lasso logistic regression are closer to actual failure 
mode compared to the failure modes found using logistic regression. In particular, when using 
logistic regression model, there are two prediction probabilities larger than 50%, but the actual 
failure modes are splitting failure (as shown Figure 3(a) marked as red circles); and there are three 
prediction probabilities less than 50%, but the actual failures modes are pull-out failure (as shown 
Figure 3(b) marked as red circles). When using lasso logistic regression model, all the prediction 
probabilities are less than 50% when the specimens fail in splitting (as shown in Figure 4(a) marked 
as red circles); and there are only two prediction probabilities less than 50% when the specimens 
fail in pull-out (as shown in Figure 4(b) marked as red circles). The better accuracy in lasso logistic 
regression are also shown in the terms of SSE and PCD defined earlier. Lasso logistic regression 
model has a smaller of SSE values and its probability of correct detection to be 94%, when using 
 = 50% as the threshold. 
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(a) Splitting failure (b) Pull-out failure 

Figure 3. Prediction plot based on logistic regression model 

 

  

(a) Splitting failure (b) Pull-out failure 

Figure 4. Prediction plot based on lasso logistic regression model 

 

Table 5. Logistic and lasso logistic comparison 

Model Independent variables used SSE PCD 
Logistic regression MC, KtrC/d, C/dQ  2.03 88% 

Lasso logistic regression C/d, KtrC/d, MCQ  1.5 94% 
 

SUMMARY AND CONCLUSIONS 

Adequate bonding between rebar and concrete is the key to ensuring the reliable performance of 
RC structures. This rebar-concrete bond behavior directly influences the structural load carrying 
capacity and structure failure mode. While many past studies have focused on the prediction of 
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bond strength, predictions on the bond failure mode (i.e., pullout failure or splitting failure) is not 
well investigated, particularly when the concrete is not well confined and/or corrosion is present.  

In this study, engineering machine learning techniques, logistic and lasso logistic 
regression, are implemented to develop bond failure mode prediction models. Compared with 
other machine learning techniques, logistic and lasso logistic regression are able to provide an 
explicit prediction formulation. To developed the prediction models, this study uses the bond tests 
of 44 beam-end specimens. For logistic regression, an all possible subset approach is adopted to 
simplify the model formulation by removing the variables that do not contribute to the model 
predictions. For lasso logistic, sparse regularization used in estimating the model parameters auto-
selects variables for the model.  

As results, both logistic and lasso logistic regression select 3 independent variables in their 
final model formulations. Even though the variables are not completely the same, they all suggest 
that the failure mode tends more to be pull-out failure when more confinement (e.g., the ratio of 
cover to the diameter of rebar, C/d, and transverse stirrups) is provided, corrosion level increases, 
or structure subjected to cyclic loading. In addition, the results show that the predictions of the 
failure mode using lasso logistic regression are closer to the true failure mode than the ones using 
logistic regression. When using a threshold,  = 50%, to determine the failure mode, the lasso 
logistic has a probability of correct detection of 94%. Since lasso logistic regression is suitable for 
large number of potential independent variables and small sample size, which is verified in this 
study. The results shows that the performance of lasso logistic regression is better than logistic 
regression. The prediction model developed in this study will be further updated when new 
experiment data become available. These models can be further used for corroded RC structure 
performance evaluation. 
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