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Abstract

In this paper we study the critical properties of the Heisenberg spin-1/2 model on a
comb lattice — a 1D backbone decorated with finite 1D chains – the teeth. We address
the problem numerically by a comb tensor network that duplicates the geometry of a
lattice. We observe a fundamental difference between the states on a comb with even and
odd number of sites per tooth, which resembles an even-odd effect in spin-1/2 ladders.
The comb with odd teeth is always critical, not only along the teeth, but also along
the backbone, which leads to a competition between two critical regimes in orthogonal
directions. In addition, we show that in a weak-backbone limit the excitation energy
scales as 1/(NL), and not as 1/N or 1/L typical for 1D systems. For even teeth in the
weak backbone limit the system corresponds to a collection of decoupled critical chains
of length L, while in the strong backbone limit, one spin from each tooth forms the
backbone, so the effective length of a critical tooth is one site shorter, L−1. Surprisingly,
these two regimes are connected via a state where a critical chain spans over two nearest
neighbor teeth, with an effective length 2L.
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1 Introduction

Antiferromagnetic Heisenberg spin chains have been studied intensively over the years. In
one-dimensional systems frustration is usually induced through competing interactions and
is known to lead to various exotic phases and quantum phase transitions. The effects from
competing interactions, which in 1D are often equivalent to geometric frustration, have been
studied intensively within the framework of J1 − J2 chains [1–6] and spin ladders [7–11].
Alternatively, geometric frustration can be added to a system through a decoration with dan-
gling spins [12–14], sometimes known as a Kondo necklace problem [15, 16]. Traditionally
the number of decorating spins in the necklace models is limited to just a few. In the present
manuscript we will focus on a so-called comb lattice where the number of pending spins is
comparable to the length of the main chain - the backbone.

The simplest comb lattice is a tree lattice that consists of spin chains coupled to each other
through one edge, as schematically sketched in Fig.1. A recently proposed comb tensor net-
work [17] provides an efficient way to simulate this model numerically. The method has been
bench-marked on a spin-1 Heisenberg comb lattice and has revealed a number of unusual
states caused by the lattice geometry. In particular, the states include an emergent critical spin
chain formed out of spin-1/2 edge states confined at the edges of the Haldane chains, and
higher-order edge-states emergent at the two corners of a comb lattice [17].

Identification of the universality classes of the quantum critical lines is of central interest
in one-dimensional many-body physics. In most of the cases the critical properties can be de-
scribed by the underlying conformal field theory (CFT). In some rare cases, however, this is not
possible due to perturbations that drive the system out of the conformal regime. Perhaps the
most celebrated example is associated with a relevant chiral perturbation that leads to a con-
tinuous quantum phase transition is a non-conformal Huse-Fisher universality class [18–20].
In the present manuscript we will provide another example, in which the conformal criticality
is destroyed by purely geometric frustration. This geometric frustration does not involve tri-
angular arrangements of spins or next-neighbor couplings, which clearly cause frustration to
a Néel spin pattern. Instead, within a valence bond picture it stems from the fact that a spin
with three neighbors can only form a valence bond with one of them.

In the present paper we study critical properties of the spin-1/2 Heisenberg model on a
comb lattice defined by the following Hamiltonian:

H = Jbb

N−1
∑

i=1

Si,1 · Si+1,1 + Jt

N
∑

i=1

L−1
∑

j=1

Si, j · Si, j+1, (1)

where Jbb, Jt > 0 are antiferromagnetic nearest-neighbor interactions along the backbone and
along the teeth, correspondingly. Without loss of generality we set the tooth coupling constant
to Jt = 1. By contrast to the spin-1 case [17], the system is critical even in the absence of
backbone interaction.

Unlike an infinite-dimensional Bethe lattice [21], the comb lattice is a one dimensional
system. This conclusion can be approached from two different starting points. First, the comb
can be viewed as a set of 1D chains – the teeth. When the backbone interaction is not relevant
it can be considered as a special boundary conditions (or boundary field) applied to critical
chains sitting on the teeth. In this respect, the comb lattice is a straightforward generaliza-
tion of a Y-junction of three chains [22] and of a chain with an impurity bond [23] studied
previously. For the latter it has been shown that the ground state of critical chains changes
drastically while tuning the impurity coupling. On the other hand, the comb is a highly deco-
rated chain – the backbone; and can be considered as a generalization of the necklace problem.
In this paper we study what happens in the interplay of these two regimes when the system is
critical, in particular, when it is critical in in both directions.
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Figure 1: (Color online) Sketch of the comb lattice. Each tooth corresponds to a
finite-size spin-1/2 Heisenberg chain with nearest-neighbor coupling constant Jt = 1.
Edge spins on one edge of the tooth are coupled along the backbone with coupling
constant Jbb.

In our study we will mainly focus on the three regimes: a weak backbone limit Jbb � 1,
a competition between the teeth and the backbone Jbb ≈ 1, and a strong backbone regime
Jbb � 1. Fig.2 provides a first insight into these three cases. It shows nearest-neighbor cor-
relations (blue) and bipartite entanglement entropy (green) on nearest-neighbor bonds. In
order to compute the entanglement entropy we divide the system into two different pieces in
two different ways, as shown in Fig.3, and compute the reduced density matrix ρ. The entan-
glement entropy is then given by S = −Trρ lnρ. In the first type of bi-partition, the system is
cut across the backbone such that each tooth belongs entirely to one of the two subsystems.
In this way we measure the entanglement carried by the backbone. In the second type of bi-
partition, one subsystem includes a set of sites at the tip of the selected tooth, while another
subsystem contains all the remaining part of the comb, as shown in the right panel of Fig.3.

In order to focus on bulk behavior, we look at a small window in the middle of the backbone
of a 30× 30 comb. When Jbb = 0.1 the correlations and the entanglement are concentrated
within the teeth, which remain almost uncorrelated and disentangled. One sees also a dimer-
ization that appears at the end of each tooth and associated Friedel oscillations. This is a
common consequence of open boundary conditions in critical Heisenberg chains. At inter-
mediate backbone couplings, specifically Jbb ≈ 1, the nearest-neighbor correlations along the
tooth and along the backbone are almost equal. Moreover, the entanglement is almost equally
distributed on all the bonds not too far from the backbone. In practice, this means that cut-
ting, say 3/4 of one tooth, or a half of the entire comb cost essentially the same amount of
entanglement. In the third regime the backbone coupling is so strong that the system prefers
to have as much correlation and entanglement within the backbone. As a results, the strong
backbone is almost completely decoupled from the rest of the system. This naturally makes
weakly coupled teeth one site shorter. In the following we will provide more details on each
of these three regimes.

2 The weak-backbone limit

Let us first consider the limit of a weak backbone interaction. According to Fig.2 we might
expect nearly decoupled Heisenberg chains on teeth. An isolated spin-1/2 Heisenberg chain is
known to be described by the Wess-Zumino-Witten (WZW) SU(2)k=1 [24] critical conformal
field theory (CFT) in 1+1D. According to WZW SU(2)1 CFT the singlet-triplet gap scales with
the length of a chain L as E1 − E0 = πv/L, up to some logarithmic corrections. In the limit
of nearly decoupled teeth the singlet-triplet excitation on the comb lattice can also be con-
sidered as a corresponding excitation of a single tooth. In the presence of a weak inter-tooth
interaction one naturally expects this excitation to be slightly delocalized, corresponding to a
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Figure 2: (Color online) Nearest-neighbor spin-spin correlations (upper panels) and
the entanglement entropy (lower panels) on a comb lattice with various coupling
constants on a backbone. Only a small part in the middle of the backbone of a comb
with 30× 30 sites is shown. The width of the lines and the intensity of the color are
proportional to the strength of the correlation (upper panels, blue) or entanglement
(lower panels, green).

cut type 1 cut type 2

Figure 3: (Color online) Two types of bipartition used in this work to compute the
entanglement entropy, background colors mark two subsystems created upon the
bipartition.

finite-width soliton along the backbone. Interestingly enough, the singlet-quintuplet excita-
tion of an isolated chain scales with its length as E2 − E0 = 4πv/L. It makes it energetically
favorable for a comb to accommodate several spin-1 solitons before exciting a tooth to a higher
state.

This picture is confirmed by our numerical results presented in Fig.4(a). By looking at the
excitation energy between the lowest state in the sectors with different total magnetization we
observe states with one, two and three magnetic solitons. It is spectacular that the finite-size
scaling of the two- and three- solitons state are in perfect agreement with the scaling for a
single soliton multiplied by a corresponding integer. In practice, this means that on a chosen
scale, these solitons remain almost decoupled.

The scaling deviates from linear behavior due to the presence of logarithmic corrections
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Figure 4: (Color online) Magnetic excitations in a weak-backbone regime. (a) Scal-
ing of the energy difference between the lowest energy state in the sector of total
magnetization Sz

tot = 1, 2,3 and the ground-state in the sector Sz
tot = 0 as a function

of the inverse of the tooth length 1/L. The symbols are the DMRG data, the red line
is the result of the fit of the singlet-triplet gap with∝ L−dapp , and the blue (green)
line is the result of the fit multiplied by an integer 2 (3). Inset: The same plot, but as
a function of 1/L0.9. (b-g) The distribution of local magnetization on a comb lattice
with L = 40 and N = 20. (b), (d), (f) The local magnetization on the backbone (blue
circles) and total magnetization of a tooth as a function of tooth index (red stars).
(c), (e), (g) Local magnetization, with the size of the circles proportional to the ab-
solute value of the magnetization, and with red and blue colors signifying positive
and negative signs of magnetization.

that for an isolated chain take the form∝− πv
L log L . Therefore, an apparent scaling dimension

dapp extracted from the fit to En− E0 = πvn/Ldapp is expected to be smaller than its true value
d = 1. This qualitatively agrees with our finding shown in Fig.4(a) that dapp ≈ 0.9. Another
source of log-corrections is caused by a weakening of the boundary conditions at one edge of a
tooth due to a presence of backbone interactions; although according to Fig.8(a) this boundary
effect is relatively small for Jbb ® 0.3.

Finally, we would like to stress the independence of the results on the number of teeth in
the comb. Of course, this statement is true only when the number of solitons is sufficiently
small compare to the total number of teeth; however even for three solitons allocated on a
comb with N = 8 teeth this property holds reasonably well.

So far we have only considered a comb with an even number of sites per tooth, but the
picture changes drastically when L is odd. An isolated Heisenberg chain with an odd number
of sites has total spin S = 1/2. Therefore, as soon as the backbone interaction is non-zero
the spin-1/2 degrees of freedom on each tooth form a critical spin-1/2 chain. This can be
detected, in particular, by looking at the Friedel oscillation profile along the backbone.

In an isolated spin-1/2 chain the open edges favor dimerization. This acts as fixed bound-
ary conditions and induces Friedel oscillations. According to the boundary conformal field
theory [25] at the critical point the dimerization scales away from the boundary as D∝ xd ,
where x is the distance to the boundary and d is the corresponding scaling dimension. For a
finite chain with N sites the conformal transformation gives:

D(i)∝
1

[(N/π) sin(πi/N)]d
, (2)
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Figure 5: (Color online) Friedel oscillations along the backbone in a comb with an
odd number of sites per tooth L. Symbols are our numerical data, lines are fit to the
CFT prediction for the envelope. The resulting critical exponents are d ≈ 0.44 for
17×16, d ≈ 0.48 for 21×20, and d ≈ 0.51 for 19×40, which are in good agreement
with the CFT prediction d = 1/2.

where D(i) = |〈Si−1,1 · Si,1〉 − 〈Si,1 · Si+1,1〉| is the dimerization on the backbone. In the WZW
SU(2)k critical theory the dimerization is induced by a j = 1/2 operator with scaling dimension
d = 2 j( j + 1)/(k + 2) [26]. So, for the critical spin-1/2 chain described by WZW SU(2)1 an
expected scaling dimension is d = 1/2. Fits of our data for different clusters are shown in
Fig.5. The numerically extracted values of the critical exponent d ≈ 0.51 for 19 × 40 and
d ≈ 0.48 for 21×20 are in a good agreement with the CFT prediction d = 1/2. It is important
that even at the edges the dimerization is very small. This is because every spin-1/2 sitting on
the backbone is mainly involved in the formation of a stronger dimer along the tooth each of
which also induces Friedel oscillations perpendicular to the backbone.

Let us now look at the excitation spectrum of a comb with odd tooth length in the weak
backbone regime. Quite surprisingly, the energy gap scales linearly with 1/(N L), as shown
in Fig.6(a). This can be justified by a simple argument illustrated in Fig.7. Each tooth of a
comb acts as an effective spin-1/2 degrees of freedom delocalized along the tooth. When the
backbone interaction is not too big the maximum of magnetization profile on each tooth is
approximately in its middle. So the effective distance between the nearest spin-1/2 degrees
of freedom is proportional to ∝ L, and more importantly does not change much along the
chain. Then the total length of an effective spin chain is proportional to (N L). According
to the CFT, the energy gap scales linearly with the effective length of a critical chain, which
implies∝ (N L)−1.

According to boundary CFT an excitation energy of a chain with conformally-invariant
boundary conditions scales with the length of the chain L̃ as πnv/ L̃, where v is a non-universal
sound velocity and n is a numerical factor associated with the energy levels that belongs to
the so-called conformal towers of states. The structure of the low-energy spectra for WZW
SU(2)k models with specified total spin has been worked out by Affleck et al. [26] by means
of conformal field theory. Numerical calculation of all low-lying energy levels is often a chal-
lenging and computationally demanding task. By contrast, it has long been known that energy
of magnetic excitations including singlet-triplet and singlet-quintuplet gaps can easily be ob-
tained with DMRG by converging the lowest energy states within different sectors of U(1)
symmetry, or in other words, with different total magnetization Sz

tot = 0, 1,2,... This method
does not provide the full low-energy spectra, including multiplicities of the energy levels, but
only the outer envelope. However, the special structure of the envelope is often sufficient to
distinguish between various CFT candidates [6, 27]. It turns out, that for the WZW SU(2)1
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Figure 6: (Color online) Magnetic excitations on a comb lattice with an odd number
of sites per tooth in the limit Jbb� 1. (a) Finite size scaling of the energy difference
between the singlet ground-state and the lowest triplet (red), quintuplet (blue) and
septuplet (green) states. Lines are linear fit of the singlet-triplet gap as a function of
1/(N L) multiplied by the expected structure of conformal tower n= 1,4, 9. (b) The
conformal tower of states extracted as a ratio of the gaps for each fixed size of the
comb. Results for n = 1 are trivial and shown for completeness. (c)-(f) Distribution
of local magnetization on a comb lattice with L = 19 and N = 40. (c), (e) Local
magnetization on the backbone (blue circles) and total magnetization of a teeth as
a function of tooth index i (red stars). (d), (f) Local magnetization, with the size of
the circles proportional to the absolute value of magnetization; red and blue colors
indicate positive and negative signs of magnetization

Figure 7: (Color online) Schematic representation of a state in a comb with an odd
number of sites per tooth. Each tooth is in the state with s = 1/2, which is delocalized
along the tooth. When the backbone interaction is sufficiently small, a maximal prob-
ability to find spin-1/2 is approximately in the middle of each tooth. So the distance
between two spin-1/2 degrees of freedom is proportional to L and the entire length
of the effective chain is proportional to (N L). Upon increasing the backbone interac-
tion, this maximum of the spin-1/2 profile on a tooth moves towards the backbone
but in a non-uniform way.

critical point with zero-spin ground-state, realized in spin-1/2 chains with even number of
sites, the form of the envelope is exceptionally simple: the singlet-triplet gap scales as (πv)/ L̃,
the singlet-quintuplet as (4πv)/ L̃, and the singlet-septuplet as (9πv)/ L̃.

The results presented in Fig.6(a) for a square comb with N = L − 1, exhibit a good agree-
ment with linear scaling with 1/(N L). This implies that in an effective CFT the linear measure
of the system is given by L̃∝ N L. In order to check the n= 1, 4,9-structure we fit the lowest
singlet-triplet gap toπv/(N L), and multiply the obtained linear function with n= 4 (blue line)
and n = 9 (green) which both are in excellent agreement with the data points. In Fig.6(b)
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we extract the value of the slope pre-factor n numerically and compare it with the CFT 1,4, 9
prediction. Note that it has been obtained by dividing various magnetic gaps by the singlet-
triplet gap, so results for n = 1 are trivial. In addition, by looking at the distribution of the
local magnetization shown in Fig.6(c)-(f) one can immediately recognize the butterfly profile
distinct for the critical chains and so different from the results obtained for the comb with even
number of sites per tooth.

To summarize, the ground state properties of a spin-1/2 comb with even and odd teeth are
fundamentally different. In a weak backbone limit Jbb � 1, the comb with even length teeth
tends to screen the effect of the backbone interaction, while the comb with odd length teeth,
as soon as the backbone coupling is non-zero, corresponds to the critical spin-1/2 chain in the
direction of a backbone. Here one can intuitively rely on an analogy with spin ladders: when
the number of legs is even each rung is in the j = 0 state; when the number of legs is odd the
rungs are in j = 1/2 states. This gives the celebrated conclusion that spin-1/2 ladders with
even number of legs are gapped, and it is gappless if the number of legs is odd. Moreover, the
delocalized nature of the spin-1/2 degrees of freedom in combs with odd teeth lead to a very
unusual (for one dimension) scaling of the excitation spectra - linear scaling with 1/(N L).
The low-energy physics of combs with mixed even and odd teeth can be guessed based on
these conclusions but the detailed numerical investigation of such mixed systems is beyond
the scope of this paper.

3 Formation of double-teeth chains

Let us now look what happens to the ground state when the backbone interaction is tuned
from Jbb << 1 to Jbb ≈ 1 in a comb with even teeth. As shown above in the regime with
small backbone coupling, the teeth are rather independent from each other and correspond
to the critical Heisenberg chain described by WZW SU(2)1 conformal field theory. In case
of isolated chains, open boundary conditions favor dimerization and act as a fixed boundary
condition, which in turn induce strong Friedel oscillations. We have already discussed the
profile of the Friedel oscillation along the backbone in the context of a comb with odd teeth
and weak backbone interaction. The profile of the Friedel oscillations along the isolated tooth
is given by a similar expression:

D( j)∝
1

[L sin(π j/L)]d
, (3)

where D( j) = (−1) j
�

〈Si, j−1 · Si, j〉 − 〈Si, j · Si, j+1〉
�

is the dimerization, 1 ≤ i ≤ N is a tooth
index, 1≤ j ≤ L is a site index within the tooth.

Fig.8(a) presents the Friedel oscillations along the middle tooth i = N/2 for various values
of the backbone interaction for a comb with L = 30 and N = 30. For small values of Jbb = 0.1
the shape of the envelope is well captured (red symbols and line) and the scaling dimensions
obtained numerically d ≈ 0.49 is in excellent agreement with the CFT prediction. Slight
increase of the backbone interaction smears down fixed boundary conditions and therefore
suppress the Friedel oscillations at the edge connected to the backbone. The effect is very small
for Jbb = 0.3, but starting from Jbb ≈ 0.5 the deviation from the CFT profile is significant.

We noticed that further increasing the backbone interaction drives the comb though a
point where the oscillation profile on a tooth resembles half of the CFT envelop on a chain
with double length. In Fig.8(a) this happens at Jbb ≈ 0.82. By fitting the Friedel oscillations
to the (twice as big) envelop D( j)∝ 1

[sin(π( j+L)/(2L))]d we find very good agreement with our
data points, although the critical exponent extracted from this fit d ≈ 0.65 is quite far from
the theoretical value d = 1/2.
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Figure 8: (Color online) (a) Friedel oscillations along the middle tooth for various
backbone couplings in a comb with L = 30 sites per tooth and N = 30 teeth. Red and
blue lines corresponds to the CFT fit with chain length L and 2L correspondingly. (b)
Entanglement entropy profile along the middle tooth for Jbb = 0.1 (green) and 0.82
(blue); lines are fit to the Calabrese-Cardy formula.

Figure 9: (Color online) Alternative representation of a comb geometry. When the
backbone interaction is comparable to the interaction within the teeth, the system can
be viewed as a collection of one-dimensional chains (dashed lines) with the distortion
in the middle of the chain.

This observation suggests that when the coupling along the backbone and along the tooth
are comparable Jbb ≈ Jt the comb resembles the collection of 1D chains extended over two
neighboring teeth as sketched in Fig.9.

We can extract the central charge from the entanglement entropy profile along a middle
tooth i = N/2. According to Calabrese-Cardy formula, in a finite-size chain with L sites and
open boundary conditions, the entanglement entropy scales with the size of the subsystem l
as [28]:

S̃L(l) = SL(l)− ζ〈Si, jSi, j+1〉=
c
6

ln
2L
π

sin
πl
L
+ s1 + log g, (4)

where c is a central charge and ζ ≈ 1 is a non-universal constant used to suppress the Friedel
oscillations [29] when the system is cut across the bond {(i, j), (i, j + 1)} and s1 and log g are
non-universal and universal constants. First, we benchmark the results for Jbb = 0.1. The fit
of our numerical data along the central tooth to the Calabreze-Cardy formula gives a central
charge c ≈ 0.94, which is in a decent agreement with the CFT prediction c = 1. At Jbb = 0.82
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when with the Friedel oscillations we observe the resemblance of a double-teeth chain, we
find that the entanglement entropy profile also looks like a half of the profile expected for a
chain with 2L sites. The result of the fit is in excellent qualitative and quantitative agreement
with c = 1 profile on a chain of length 2L.

In the simplest case of a comb with two teeth the formation of a double-teeth chain is
exact and has been studied by Affleck and Eggert [23]. One can identify the following three
regimes: When the coupling constant at the impurity is lower than the one in the bulk, the
system renormalizes to two decoupled chains each of size L. When the coupling at an impurity
is stronger than the coupling in the bulk, two spins connected by an impurity bond form a
singlet and are effectively decoupled from the remaining chains of size L − 1 each. Finally,
when there is no impurity, i.e. when the coupling on a selected bond is equal to the coupling
in the bulk, the system is equivalent to a chain with 2L sites. In a comb with multiple teeth,
restoration of the 2L chain is not expected to be exact, since each spin located at the backbone
has a coordination number three and not two. That is why the agreement with the CFT profiles
for chains with 2L sites shown in Fig.8 is impressive. As a final remark, let us point out that
upon further increase of the backbone interaction we observe the third regime discussed by
Affleck and Eggert: the backbone chain is decoupled from the teeth each of which is one site
shorter than before. In particular, it implies that the Friedel oscillation profile for Jbb = 10
shown in Fig.9(a) is antisymmetric as in the chains with odd number of sites.

4 Excitations at Jbb = 1

Now lets us take a closer look at the nature of the excited states when the backbone and tooth
coupling are comparable. For simplicity we take Jbb = Jt = 1. In order to extract the energy
gap we compute the energy of the ground-state and the lowest energy state in the sector of
Sz

tot = 1 (Sz
tot = 3/2 for N , L odd). The results obtained for various values of N and L are

summarized in Fig.10.
For a comb with even number of sites per tooth L the energy of magnetic excitations scales

to zero almost linearly with 1/L and shows fairly small finite-N dependence. Note, that the
even-odd-N effect is negligible in this case. In order to understand the nature of these excita-
tions we plot local magnetization profiles for both N -even (Fig.11) and N -odd (Fig.12). For
completeness we also include the profiles in the weak- and strong-backbone limits.

For L-even and in the weak backbone limit we observe a butterfly profile characteristic of
isolated critical spin chains with even number of sites. Notice on Fig.11(c) and Fig.12(c) that
the butterfly is not symmetric. This can be understood by looking at the magnetization profile
on a chain with 2L sites and a weak-bond impurity. The profiles for impurity coupling have
been obtained with the standard DMRG [30, 31] and are summarized in Fig.13. Indeed the
profile shown in Fig.13(c) looks similar to the profiles observed along the teeth in a weak-
backbone regime in Fig.11(c) and Fig.12(c). We also stress that these excitations are well
localized in the backbone direction as shown in Fig.11(b) and Fig.12(b), which agrees with
our picture of solitons.

The profile changes significantly at Jbb = 1. Along a tooth the butterfly structure is re-
placed by its half, which supports the formation of a critical chains over two-consecutive teeth
discussed above. The finite-N scaling shown in Fig.10(b) suggests that for any fixed and finite
value of L the gap, and therefore the correlation length along the backbone remains finite.
This implies that the profile observed in Fig.11(b) and Fig.12(b) will look like a soliton on a
large-N scale. In the present case, however this soliton is perturbed by boundaries.

Let us now look at the case of L-odd and N -even. In the weak-backbone regime, each tooth
is in a state with total spin-1/2, so along the backbone we observe a critical spin-1/2 chain
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Figure 10: (Color online) Finite-size scaling of energy gaps to the lowest magnetic
excitation at Jbb = 1. Finite size scaling is shown separately as a function of 1/L
in (a),(c),(f) and as a function of 1/N in (b),(d),(g). In (a)-(b) we show results for
L-even and N either even (circles) or odd (diamonds). Panels (c)-(e) show results
for L-odd and N -even, while panels (f)-(h) are for both N , L-odd. The lines in panels
(c),(f) are results of a fit of the form ∝ L−dL , and in panels (d),(g) of the form
∝ N−dN . Panels (e) and (h) show the data collapse for the best available pair of
(dN , dL). The values of dN ,L are summarized in the insets of panels (e) and (h). The
different colors on panels (a)-(d),(f)-(g) correspond to different widths/lengths of a
comb.
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Figure 11: (Color online) Local magnetization profile on combs with even L, N for
three different values of backbone interaction: (a)-(c) Jbb = 0.1 and L = N = 20;
(d)-(f) Jbb = 1 and L = N = 30; (g)-(i) Jbb = 10 and L = N = 30 . In (a),(d),(g) the
comb is unfolded as in Fig.9; backbone sites are placed at the coordinates (i, j = 0);
the radius of circles is proportional to the absolute value of local magnetization;
red and blue colors indicate positive and negative sign of magnetization. Panels
(b),(e),(h) show local magnetization on the backbone (blue circles) and total mag-
netization of teeth (red stars). Panels (c),(f),(i) show local magnetization along two
consecutive teeth in the middle of a comb (green and blue crosses), and average
magnetization profile along the teeth (red circles)

with a pronounced butterfly profile of local magnetization shown in Fig.14(b). Importantly,
the location of the maximum (or minimum) of magnetization on different teeth is almost
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Figure 12: (Color online) Same as Fig.11 but for L-even and N -odd: (a)-(c) and
L = 20, N = 21; (d)-(f) L = 30, N = 31; (g)-(i) L = 12, N = 13
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Figure 13: (Color online) Local magnetization along a finite-size chain at various
values of the coupling constant at the middle bond. (a) When the coupling is uniform
along the chain, the magnetization profile has a butterfly shape. When the coupling
on the middle bond is smaller, the double-butterfly structure emerges. The shape of
the magnetization profile at each half chain - non symmetric butterfly - is similar to
the profile observed in a comb.

the same, although the values at the maximum are very different (see Fig.14(a),(c)), which
qualitatively agrees with our picture sketched in Fig.7 with the uniform lattice spacing of an
effective spin-1/2 chain. By contrast, at Jbb = 1 the location of maxima on different teeth
are different (see Fig.14(d),(f)). So the distance between the effective spin-1/2 degrees of
freedom is not uniform, as sketched in Fig.15. As a result, the finite-size scaling of the energy
gap is not linear neither with 1/L(Fig.10(c)), nor 1/N(Fig.10(d)), nor with the product of
the two. Moreover, the larger N and L we take the more freedom (or disorder) we add to
the system, so less conformal the scalings are. This agrees with the fact that both values dN
and dL move away from the CFT-invariant dimension dN ,L = 1. In a critical 1D system, spin-
spin correlations decay with the distance between the spins as a power-law; therefore it is
natural to expect that the non-uniform distribution of the spin-1/2 degrees of freedom leads
to a non-uniform coupling constant in an effective spin-1/2 chain.

The same type of argument can be applied to a comb with both N and L odd. At Jbb = 0.1
effective spin-1/2 degrees of freedom are equally distant from each other as can be deduced
from Fig.16(a). However, the equidistance is destroyed at Jbb = 1 (see Fig.16 (d),(f)) and the
finite-size scaling of the gap is non-linear (Fig.10(f),(g)).
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Figure 14: (Color online) Same as Fig.11 but for odd L = 31 and even N = 30. In
panel (f) in addition to the average magnetization and central teeth profile, we also
show the results on the first and second teeth to highlight that the profiles change
along the backbone. In panel (g), with respect to panels (a) and (d), the size of
circles were enlarged by a factor of 2.

Figure 15: (Color online) Schematic representation of a state in a comb with odd
number of sites per tooth and Jbb ≈ 1. Spin-1/2 degrees of freedom are delocalized
along the teeth in a non-uniform way, so the emergent spin-1/2 degrees of freedom
are not equally spaced. This is effectively equivalent to the spin-1/2 chain with non-
uniform coupling constant Ji 6=const.
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Figure 16: (Color online) Same as Fig.11 but for odd L = N = 31. Here we plot
the difference in magnetization between the lowest energy state in the sector of
Sz

tot = 3/2 and the ground-state in the sector of Sz
tot = 1/2. In panel (g), with re-

spect to panels (a) and (d), the size of circles were enlarged by a factor of 2.
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Figure 17: (Color online) Scaling of the lowest magnetic gap in a strong-backbone
regime. Very low excitation energy (of the order of 10−3) is detected for L even
(squares and triangles). For odd L the finite-size gap is much larger, but van-
ishes in the thermodynamic limit. Lines are the result of the fit of equal-N data
to∝ (L − 1)−dL . The resulting values of the scaling dimension are within the range
0.83< dN < 0.89.

5 Large-backbone limit

Finally, let us consider the strong backbone limit Jbb � 1. According to Fig.2(e)-(f), when
the backbone interaction is sufficiently large, it is almost decoupled from the remaining teeth,
each of which becomes one site shorter. As we know from the discussion an even-odd effect
plays a crucial role. So let us start with L even. The shortening of the teeth is confirmed by the
anti-symmetric profile of the Friedel oscillations particularly for chains with an odd number
of sites, but also observed in a comb with even N = L = 30 at Jbb = 10 (see Fig.8(a)). As
the result, each tooth is in a state with total spin-1/2, weakly coupled to the strong backbone.
The entire picture resembles the story of a two-leg ladder, which remains in the rung-dimer
phase for any value of leg coupling constant. However the absence of the coupling along the
"second leg" of the ladder implies that dangling spins can be polarized at very low energy. On
various clusters from size 8× 8 up to 20× 10, for which we could reach the convergence, the
gap is of the order of 10−3 (see Fig.17).

The structure of the lowest excitations can be deduced from Fig.11(g)-(i) and Fig.12(g)-(i).
The triplet state corresponds to the two excited teeth far apart from each other. Interestingly
enough, for both - even and odd N - the maximum of magnetization is allocated at the second
and the N −1’s teeth. For some reason these excitations avoid the first and the last teeth when
Jbb� 1.

In case of odd L the system corresponds to the critical backbone chain which is almost
decoupled from the teeth with even (L−1) number of particles. By analogy with the previous
even-L case, this can be viewed as a critical chain decorated by spin-0 objects. Because of
the difference in couplings, it is energetically favorable to accommodate a triplet excitation
on a tooth than to excite the "heavy" backbone. However, since the backbone itself is critical
the excited tooth is delocalized as shown in Fig.14(g)-(i). The scaling of the excitation en-
ergy as in the case of an isolated chain is affected by the logarithmic corrections of the form
∝ − πv

(L−1) log(L−1) , which reduce apparent scaling dimension obtained from the numerical fit

to E1 − E0 = πv/(L − 1)dapp , from its CFT value d = 1.
The picture is a bit more complicated when both L and N are odd, since the backbone itself

is in the spin-1/2 state, which couples to a triplet excitation on a tooth and gives complicated
structure shown in Fig.16(g)-(i).
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bone interaction and total number of spins per tooth. Non-uniform lattice spacing
for L-odd is equivalent to the non-uniform coupling constant Ji that varies along the
chain.

6 Discussion

To summarize, we have studied numerically the Heisenberg spin-1/2 model on a comb lattice.
We have found very different properties of the low-energy states depending on whether the
number of sites per tooth is even or odd. The observed even-odd effect is similar to that of
spin-1/2 ladders with even and odd number of legs [7].

In each case we detect three main regimes while tuning the backbone interaction. They
are summarized in Fig.18. When L is even, by changing the backbone interaction one can
interpolate between nearly-decoupled chains of length L to an extended chains of length 2L
when backbone and teeth couplings are competing. Finally, in the strong-backbone limit the
system corresponds to a two-leg ladder with zero-coupling along one leg or to the decorated
spin-1/2 chain. The decorating spins are spin-1/2 degrees that corresponds to the ground-state
of teeth that contains odd L − 1 sites each.

For odd L the system corresponds to the critical chain with very unusual 1/(N L) finite-size
scaling of the spectrum due to delocalization of the spin-1/2s along the teeth. Tuning the
backbone interaction effectively changes the lattice spacing in an effective spin chain. When
the backbone interaction is comparable to the coupling along the teeth the effective spins are
placed along the chain in a non-uniform way so the conformal invariance of the system in
its usual sense is destroyed. However this opens an important question for conformal field
theory: how the two CFTs in 1+1D interact with each other; and how can one describe a
resulting effect of competing criticalities? In the present case the competition was induced
by the chosen geometry of the lattice and naturally leads to the competition between the two
CFTs. However, a similar scenario can be expected also on 2D lattices if rotation symmetry is
spontaneously broken, e.g. in case of helical or stripe states close to or at the critical point.
The answer to these questions lies far beyond the scope of this manuscript, however we hope
that the present work will stimulate further theoretical studies in this direction.
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