Full Paper Track

CIKM 21, November 1-5, 2021, Virtual Event, Australia

A Lightweight Knowledge Graph Embedding Framework for
Efficient Inference and Storage

Haoyu Wang?, Yaqing Wang$, Defu Lian'® and Jing Gao®
$Purdue University, West Lafayette, Indiana, USA TUniversity of Science and Technology of China
°Yangize River Delta Information Intelligence Innovation Research Institute
$twang5346, wang5075, jinggao}@purdue.edu, Tliandefu@ustc.edu.cn

ABSTRACT

Knowledge graphs, which consist of entities and their relations,
have become a popular way to store structured knowledge. Knowl-
edge graph embedding (KGE), which derives a representation for
each entity and relation, has been widely used to capture the seman-
tics of the information in the knowledge graphs, and has demon-
strated great success in many downstream applications, such as the
extraction of similar entities in response to a query entity. However,
existing KGE methods cannot work well on emerging knowledge
graphs that are large-scale due to the constraints in storage and
inference efficiency. In this paper, we propose a lightweight KGE
model, LightKG, which significantly reduces storage as well as run-
ning time needed for inference. Instead of storing a continuous
vector for every entity, LightKG only needs to store a few code-
books, each of which contains some codewords that correspond
to the representatives among the embeddings, and the indices that
correspond to the codeword selections for entities. Hence LightKG
can achieve highly efficient storage. The efliciency of the down-
stream querying process can be significantly boosted too with the
proposed LightKG model as the relevance score between the query
and an entity can be efficiently calculated via a quick look-up in a
table that contains the scores between the query and codewords.
The storage and inference efficiency of LightKG is achieved by its
novel design. LightKG is an end-to-end framework that automati-
cally infers codebooks and codewords and generates an approxi-
mated embedding for each entity. A residual module is included in
LightKG to induce the diversity among codebooks, and a continuous
function is adopted to approximate codeword selection, which is
non-differential. In addition, to further improve the performance of
KGE, we propose a novel dynamic negative sampling method based
on quantization, which can be applied to the proposed LightKG
or other KGE methods. We conduct extensive experiments on five
public datasets. The experiments show that LightKG is search and
memory efficient with high approximate search accuracy. Also,
the dynamic negative sampling can dramatically improve model
performance with over 19% improvement on average.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 21, November 1-5, 2021, Virtual Event, Australia.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11...$15.00
hitps://doi.org/10.1145/3459637.3482224

1909

CCS CONCEPTS

« Information systems — Entity relationship models.

KEYWORDS
knowledge graph embedding, quantization

ACM Reference Format:

Haoyu Wang, Yaqing Wang, Defu Lian and Jing Gao. 2021. A Light-weight
Knowledge Graph Embedding Framework for Efficient Inference and Stor-
age. In Proceedings of the 30th ACM Int’l Conf. on Information and Knowledge
Management (CIKM’21), November 1-5, 2021, Virtual Event, Australia. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3459637.3482224

1 INTRODUCTION

A knowledge graph usually consists of triples in the form of (head
entity, relation, tail entity), which capture the relations between
pairs of entities. Such large-scale KGs can provide a huge volume of
knowledge for various downstream applications, such as question
answering [16, 48], information retrieval [11, 28], recommenda-
tion [39, 47], and drug discovery [33]. To leverage the structured
knowledge in KGs for these applications, usually an essential step
is to convert the knowledge into semantic embeddings [4, 45]. How-
ever, the scale of these gigantic KGs imposes significant challenges
in both space and time. With millions or even billions of entities,
the needed space to store the embeddings of all the triplets could
be huge. In addition, the semantic embeddings of knowledge graph
triples are often used for retrieval purpose, and thus deployed in
tasks, such as knowledge graph completion [4, 10, 27, 36, 45], knowl-
edge graph query [41], and knowledge graph reasoning [7]. When
the scale of the KG is too big, the inference based on the embed-
dings could suffer from high computation complexity. Motivated
by these challenges, we aim to develop a lightweight knowledge
graph embedding (KGE) framework which can not only reduce the
space used to store the embeddings but also speed up the inference
and retrieval based on these embeddings.

Although existing KGE methods have demonstrated to be effec-
tive, unfortunately it is not trivial to reduce the storage consumption
and improve inference efficiency of these methods. These methods
usually learn entity and relation embeddings in a continuous vector
space. Suppose entity and relation embeddings are d-dimensional,
and there are n, entities and n, relations. To store entity and rela-
tion representations, the space cost is 4ned + 4nrd Bytes if using 32
bit float representation. The storage consumption grows linearly
with the number of entities and the number of relations with slop
4d. The computational cost of inference and retrieval based on these
embeddings is also high. As an example, let’s consider the task of
conducting knowledge graph completion, i.e., the inference of miss-
ing facts based on existing triples. Consider a triple with missing

https://doi.org/10.1145/3459637.3482224

Full Paper Track

tail entity (h,r,?) and we need to identify this missing entry. To
select K entities which are most likely to form the triple, it is nec-
essary to compute a relevance score among h, r and each of the n,
entities and rank the entities according to the scores. KGE methods
calculate the relevance score as the Euclidean distance (translation-
based methods, such as TransE [4] and TransH [42]) or inner
product (bilinear models, such as DistMult [45] and RESCAL [30])
between the embeddings. Therefore, no matter which KGE method
is adopted, the time complexity need to search for K entities equals
to O(ned + Klogne), which could be a bottleneck when ne is very
big. With approximate search and compression approaches such
as hashing [13] and product quantization [20], acceleration and
compression can be achieved. However, these search indexes are
learnt independently, which are not related to the process of learn-
ing entity and relation representations. Hence, it is possible that
the adoption of these acceleration and compression techniques may
amplify approximation error and lead to low approximate search
accuracy.

In light of these challenges, we propose a lightweight knowledge
graph coding scheme, referred to as LightKG, to output approxi-
mate but accurate embeddings. Since usually the number of entities
contained in the knowledge graph is much larger than the num-
ber of relations, we only consider entity embeddings in this paper.
LightKG is based on the quantization of embeddings. It divides the
original d-dimensional entity embedding into m d/m-dimensional
subspace, in which m is a positive integer and it indicates the com-
pression ratio. In each subspace, suppose there are B codebooks
which consist of W codewords (d/m-dimensional latent vectors),
in which B is a small positive integer. We take the codeword that
is the most similar to the entity embedding within a codebook of
a subspace. Then we sum up these selected codewords, which is
treated as a slice of the entity embedding. The quantized entity
embedding is then composed by the concatenation of these slices.
By this quantization, for one entity, it can be represented by the ids
of its most similar codewords, which can be compactly encoded by
%mBlogW Bytes. As shown in Fig. 1, where there are 4 subspace
and 4 codewords in each of codebooks, the entity embedding is
encoded via 2 bits for each codebook, and 4 8-bits unsigned integers.
Comparing with 4d Bytes needed by traditional KGE methods, a
big saving in storage space by LightKG can be achieved. When the
output of LightKG is adopted for the inference of missing entities,
we just need to compute relevance scores via table look-up instead
of exhaustive search. As shown in Fig. 1, the scores between the
query vector and codewords are computed and stored in look-up
tables, and then to calculate the final relevance scores, we just need
to conduct a quick look up. The complexity could be O(n, + BWd).

However, it is difficult to train LightKG end-to-end directly
since it involves the selection of similar codewords, which is non-
differentiable and cannot be optimized via gradient descent. To
solve this problem, we use tempered softmax [19, 29] to approxi-
mate argmax used in codeword selection, and resort to the straight-
through estimator [3] to compute gradients. Another challenge in
the training of LightKG is how to prevent codebooks becoming
similar. In each subspace, there are multiple codebooks. If there is
no constraint, it is likely to get extremely similar or even the same
codebooks, which may make the model less expressive. To solve

1910

CIKM 21, November 1-5, 2021, Virtual Event, Australia

e 1] g [od] L[Ei=oo0001ny,] § 2
: e o] - | ol — Tacpoatioog, | @ 2
* [. I ol e 228(11100100), ,ﬁ'%_
& —[o] [[oo] | [11] — TE=(01001110), =
id in binary codebook codebook codebook codeboak
g |- = - - g |- = - -
ma:::-::.- L)) L) = E3) ()
rEr 2] FEPL L
i 2 x T f i
T \@ = @ o sum all the comespending vales in
£ the loakup table
& — [l | bd
s mm T EL TE T E e

&M W [M
Figure 1: Illustration of Efficient Inference

this challenge, we propose a residual module to ensure the diversity
of codebooks.

To further improve the performance of LightKG, we propose a
dynamic negative sampling method. The training of KGE meth-
ods requires both positive and negative samples in the training
set. Positive samples are simply those triples in the knowledge
graph, but from the huge space of possible negative samples (those
nonexistent triples), how to conduct negative sampling is a very
important step. Previously, people usually sample negative samples
uniformly [4]. However, it is difficult to obtain informative negative
samples in this way. To obtain high-quality negative samples, we
design a sampling strategy as follows. We define the probability
that a negative sample is high-quality based on its relevance score.
Sampling from this distribution increases the chances of getting
informative samples, but the pmf (probability mass function) of this
distribution is computationally complex [23]. To solve this problem,
we propose an approximate distribution, which can be computed
very efficiently based on clustering. As negative sampling prepares
the training data for KGE methods, the proposed new sampling
strategy applies to not only LightKG but also TransE, DistMult and
other KGE methods.

The contributions in this paper are summarized as follows: 1) We
propose a lightweight KGE framework-LightKG, which achieves
storage and inference efficiency with only minor loss in accuracy,
2) We propose a general dynamic negative sampling method, which
can efficiently obtain high-quality negative samples for effective
training of KGE methods, and 3) We conduct extensive experiments
on multiple public datasets to evaluate the proposed LightKG and
dynamic negative sampling method. The results reveal that both of
them are effective and lead to significant improvements compared
with state-of-the-art baselines.

2 RELATED WORK

In this section, we review works related to our task including KGE,
lightweight KGE and negative sampling for knowledge graphs.
Usually, KGE methods can be classified as translation-based mod-
els [4, 27, 36, 42], bilinear models [30, 38, 45] and deep learning-
based models [10, 34]. Translation-based models usually defines
the relevance scores according to the Euclidean distance or Manhat-
tan distance applied to embeddings. Bilinear models apply bilinear
functions to calculate relevance scores. The score of a triple is de-
fined as: hT Rt, , where h is the head entity vector, f is the tail entity
vector, and R is the relation matrix. Recently, deep learning-based
models are developed. For example, ConvE [10] uses multi-layer
convolutional network to learn entity and relation representations,
and R-GCN [34] employs graph neural network. In this paper, we

Full Paper Track

set TransE (one of the most representative translation-based meth-
ods) and DistMult (one of the most representative bilinear methods)
as the backbone of LightKG, and we also show that the proposed
LightKG can be extended to deep learning-based model ConvE.

The development of lightweight models has received increas-
ing attention, and well-known approaches include binarization
network [17, 31], product quantization [12, 20], and low precision
quantization [9, 18]. Few of them focus on KGE and they cannot
be directly applied to our task. To the best of our knowledge, only
one existing work [32] proposed a compression model for KGE.
However, it was based on product quantization, which was not
powerful enough to handle complex relations in knowledge graphs.
We adopt this method as a baseline in the experiments and show
that the proposed LightKG has better performance.

Another related problem is how to sample informative nega-
tive samples. In [5, 40], this problem was defined, and the authors
designed a generative adversarial learning framework to draw neg-
ative samples. However, the computation complexity of this frame-
work is high. In a recent work [36], a self-adversarial sampling
scheme RotatE was proposed to re-weight negative samples. In our
experiments, we also show that the proposed dynamic negative
sampling strategy outperforms RotatE.

3 METHODOLOGY

3.1 Problem Formulation

A knowledge graph (KG) can be represented as G = {(h,r, t)|h,t €
&,r € R}, where & represents the entity set and R represents
the relation set. We denote the number of entities as n, and the
number of relations as nr. The goal of knowledge graph embedding
(KGE) is to learn vector embedding h,t € R4 and r € RY. For a
triple (h,r,t), KGE methods also define a relevance score based
on the embeddings (h, r,t) , which quantifies how plausible the
triple exists in the graph. Existing methods usually adopt inner
product [45] or Euclidean distance [4] based on the embeddings as
the scoring function, which can be written as f(-) : EXR X & — R.
In this paper, we aim to design a lightweight KGE framework, which
reduces the required space and speeds up inference.

3.2 Overview

LightKG is an end-to-end framework, which learn quantized entity
embedding instead of continous-vector embeddings. Given an en-
tity embedding, we first split the embedding into multiple subspaces
and then learn the codeword (Section 3.3) that is the most similar
to the entity embedding in the i-th subspace for embedding com-
pression. To preserve the information of embbeding, we propose
a novel residual module (Section 3.4), which can leverage multi-
ple codewords to compress embeddings in a sequential manner. In
section 3.5, we introduce the loss function of the proposed frame-
work and the training procedure. To better understand our model,
we discuss the advantage of LightKG in Section 3.6. Finally, we
propose an effective negative sampling method, namely dynamic
negative sampling, to make up for the performance drop brought
by compression in Section 3.7.

3.3 Codeword Learning

The quantization methods divide a large set of data vectors into
groups and each group is represented by its centroids, which are

1911

CIKM 21, November 1-5, 2021, Virtual Event, Australia

refereed to as codewords. Existing methods usually learn codewords
via KMeans [12, 20], which is not differentiable. Thus, we cannot
directly adopt existing codeword learning methods in our end-to-
end framework. Specifically, the non-differentiabl issue is attributed
to the non-differentiable maximum selection operator arg max in
the codeword learning procedure.

To enable codeword learning in LightKG, we propose to approxi-
mate the maximum selection operator. Moreover, we adopt multiple
codebooks instead of one to preserve the information of original
embedding as much as possible. The details of including multiple
codebooks are introduced in the next subsection.

Formally, we divide an entity embedding e with d dimensions
into m subspaces. The divided entity embedding in the i-th sub-
space is denoted as e’ € R4/M and we can represent the original
entity embedding as e = [e!, €2, ..., ™]. We use B codebooks in each
subspace, each of which contains W codewords. Consider the b-th
codebook in the i-th subspace, the process of learning w? (i)-th code-
word can be represented as matrix multiplication, i.e. ci’vb (i) (i) =

Cb(i)o, where CP (i) € R4/™*W s the b-th codebook in the i-th sub-
space, and o is a one-hot vector with 0,5y = L. Thus, to overcome
the obstacle imposed by non-differentiable maximum selection op-
erator, we need to approximate the one-hot vector o, which can be
loosened by tempered softmax [29]. Specifically, the one-hot vec-
EXP(S(ei,C?(f))J"T]
Ly E’(P(S(e‘,cjf« /Ty’
where T is the temperature and s(-) is a similarity function. When
T — 0, 0 equals to o. Therefore, the codeword selection can be
~ CP(i)6. Following [3], we apply Straight-

tor o can be approximated via 6: 0j = 6; =

expressed as ci’vb o~
Through Estimator and rewrite o as 0 = 6 + stop_gradient(o — 9),
where stop_gradient indicates the operation to stop the calcula-
tion of this gradient. The one-hot vector o is used in the forward
propagation while 0 is used in the back propagation to approxi-
mately calculate gradients. Based on tempered softmax relaxation
and Straight-Through Estimator, LightKG is able to learn codebooks
stably in an end-to-end fashion.

The success of codeword selection also relies on the similarity
function s(-). The similarity function based on Euclidean distance
is usually applied for the codeword selection [20]. However, KGE
is not always in the Euclidean space [6], thereby making Euclidean
distance based similarity function inappropriate for our problem.
Hence, we do not make any assumption on the Euclidean space and
propose to learn the similarity function from data [10, 25, 45], which
can be parameterized as s(e, ¢) = el Mc, where M is the learnable
parameter. It can be considered as a generalized bilinear attention
function [21], which has shown to be effective in capturing data
similarity.

3.4 Residual Module

In the previous section, we introduced the component that con-
duct codeword learning. In this section, we present how to use B
codewords to get quantized embedding. The essence of LightKG
is that we split embeddings by subspaces and quantize each slice
by the selected codeword which is the most similar to the entity
embedding. Then the embedding of an entity in a subspace can be
obtained by a sum of the selected codewords among B codebooks.
However, if we simply quantize the embedding slice for B times to

Full Paper Track

CIKM 21, November 1-5, 2021, Virtual Event, Australia

(= () e __emp(s(r.g)) exp(s(xa.f (1)) [
= @ Residual O = Tiemp(s(arcl(1)) > c; (1 I.'
O vome @ ® | _ETEN & oo o
I.I f-.4 i I'_._J‘ ;.I | E:{'—LF: St [. e il 5
l.: 2o Resiom O o2y | @00\ | y O—0@E\ [«a= Zyi

e I. N '?_.4 Module ,f-.4 F 1 I | I_/ \'r-n—[] . 1 s “}‘_E [§_ \ i
b | d] —J - == g -
- = (@ yz

I:' 33|.:—- m} fodule —J:: |:| I _ﬂi-}‘_‘; A _,:E _H‘/—-"PL— - —: y Residual
I = f =)
i:' 3‘1‘:‘__‘: p—— ri 2 i.l | i Xy = el :‘__‘: Xy =X — V1 Module
@@ @@ | @ L

Figure 2: The framework of LightKG.

get B codewords and add the codewords to represent the quantized
embedding slice, then the derived codebooks tend to become simi-
lar to each other, and there are no additional benefits brought by
incorporating more codebooks. Thus, it is crucial to encourage the
diversity among codebooks.

One potential strategy is to impose some diversity regulariz-
ers (e.g., squared Frobenius norm, von Neumann divergence [22, 44],
cosine similarity [2, 43, 46]) into codebook computation. However,
this direct incorporation of diversity regularizers may result in two
issues. The first is that the regularizers can be satisfied by simply
changing the order of codewords in codebooks. Consider an exam-
ple in which we have B codesbooks that have exactly the same set
of codewords, but we simply change the order of the codewords.
Then these codebooks are considered to be diverse by the diver-
sity regularizers, but apparently such codebooks do not contain
different codewords and the selected codewords may be the same.
Second, the diversity regularizers need to be calculated between
each pair of codebooks in the same subspace, resulting in %
regularizer terms. Given m = 10 and B = 16, 1,200 regularizer terms
need to be calculated and the corresponding computation cost is
prohibitively high.

Inspired by [8], we propose a residual module to learn diverse
codebooks in each subspace. The residual module generate code-
books in a sequential way so that the residual information is learnt
from the previous steps. The details of this module is shown in
Figure 2. Formally, consider the i-th subspace of entity embedding
ep. Q(x; Cb(i)} : RA/m _, Rd/m genotes the function to quantize
x with codebook Cb(i}, ie. ci’v"(i) = Q(x;Cb(i}). The sequential
process can be described as the following recursive relation:

Xpar = xp = Q(xp; " (D)), 1 = e} (1)
According to Eqn. 1, the input of the quantization function Q(-) is
the residual error between the last input of Q(-) and the last quanti-
zation results. Therefore, the input of Q(-) is different each time and
we can avoid the generation of a trivial solution that involves simi-
lar codewords among codebooks, ensuring the diversities among
codewords. For each divided entity embedding, we can obtain its
corresponding quantized embeddings through the residual module
and then we concatenate all the quantized embedding of divided en-
tity embeddings to get our final quanzited embedding eg, as shown
in Fig. 2.
3.5 Loss Function
Now that the components are described, we summarize the pro-
posed LightKG framework and training process. LightKG takes the
triples in the knowledge graph as input and output the quantized
embeddings of entities. The entire framework can be trained in an

1912

end-to-end manner. To train LightKG, we first generate the negative
sample set G following KGE methods [4] by corrupting the ob-
served triples in the knowledge graph. We only corrupt tail entities
in triples in this paper. The training of KGE method is usually based
on margin-based loss [4] or cross entropy loss [10]. Here we use
margin-based loss as an example to present the overall loss defined
for LightKG. We use © to denote all the parameters to be learned
and the objective function of LightKG based on margin loss can be
written as follows:

Liightkc = e(h rt,t |O)
(h,r.t)eG, (hrt)eG

2

(h,r.t)eG, (hrt)eG

[f (hg 7, tg) = f(hg,m £) +7]s, ()

where hg, 4, t:; denotes the quantized entity embedding, [x]; de-
notes the positive part of x and y > 0 is the margin. The loss
function can be easily optimized via gradient descent methods like
SGD and ADAM. In the following sections, we drop © for simplicity
and refer to our loss function as Z(h,r,t] €G.(hrf)eG £(h,r,t, t').

3.6 Advantages of LightKG

We first justify the necessity of adopting LightKG, an end-to-end
framework, for memory and inference efficiency. Although there
exist some possible solution that could save space and accelerate
inference, the accuracy in querying or inference may need to be sac-
rificed. One possible solution is to first learn entity embedding and
then apply quantization-based methods like PQ [20] and OPQ [12]
to learn codebooks and codewords. In contrast to LightKG, this
is a post-compression approach as the compression is conducted
only after entity embedding is learnt. The quantization error of this
solution tends to be amplified when computing scores based on
Euclidean distance, as proved in the following Proposition 1. We
also give an example that shows the possible error made by this
solution. In addition, [24] points out that PQ and OPQ are based on
Euclidean distance and are incompatible with inner product-based
scoring function. Therefore, they are not suited for KGE, motivat-
ing us to seek a way to to learn codewords and codebooks via an
end-to-end mechanism for embedding compression.

ProrosITION 1. Directly applying quantization to entity embed-
ding may amplify error.

PrOOF. Suppose head embedding is h, tail embedding is t. And
their corresponding quantization embeddings are k and £. sup{||h—
h||2} = 8. Consider the TransE score error

h+r =tz |lh+r =tz < [|h—t - (h—1)||; < 25

Here the equation can be achieved. And the error of TransE score
is twice the error of quantization. m}

Full Paper Track

Next, we discuss the gains in storage and speed savings obtained
by using this LightKG framework for entity embedding. We consider
the downstream task of querying or completing a knowledge graph.

Given a query entity q € R4, the objective is to rank all the entities
according to the relevance to the query. According to LightKG
embeddings, this relevance score for entity ;. can be computed as:

m B _
D (ah ety () or (3)

(g ex)=, s

i=1 b=1
m . m . m B _
llg=ellf=) llg'1F+) llekl=2) > (a"ely (D). (@
=1 =1 =1 b=1 k

As can be seen, Eqn. 3 and Eqn. 4 define the relevance scores
based on the inner product and Euclidean distance respectively,
which could correspondingly be applied to translation-based and
bilinear models. Then, let us examine the storage savings. Be-
sides space needed to store the codebooks, we only need some
space to store the following information. If Eqn. 3 is adopted, then
only codeword indices in each subspace need to be stored, ie.
[w],lc(l}, w,,zc(l), . wf(m)] € {1,..,W}B™ If Eqn. 4 is adopted, only
codeword indices in each subspace and 1" ||e,fc| |g (the norm of
entity embeddings) should be stored. Therefore, the total mem-
ory cost of n, entities can be reduced from 4n.d Bytes (using 32
bit float representation) to 4BWd + %nemBlogW (inner product)
or 4BWd + —;ngmBlogW + 4ne (Euclidean distance), where 4BWd,
%ne mBlogW , and 4n, are the cost of storing codebooks, indices, and
entity embedding norms respectively. Usually n, is much bigger
than BW, so the compression ratio is around HS'IZD‘;—W. For example,
if we set the number of subspaces as 10, the number of codebooks in
each subspace as 16 and the number of codewords in each codebook
as 32, the memory cost is only around % of the memory needed to
store a continuous representation for each entity.

Furthermore, LightKG encoding can greatly reduce query or
inference time. If LightKG is not used, we need to score all the
entities for a query, so it costs O(ned) time. When LightKG is used,
then based on Eqn. 3 and Eqn. 4, the computation complexity can be
reduced to O(n, + BWd). The reason is that the scores between qri
and each codeword can be computed as the inner product between
the query vector and codeword according to Eqn. 3 and Eqn. 4,
and the number of codewords is far less than the number of all
entities. When n, is large, the speedup ratio is also large. Besides, the
querying process involve the searching for the top K entities with
the highest relevance scores. This is known as nearest neighbour
search or maximum inner product search. When LightKG is used,
this searching process can be coordinated with the inverted file
system practically to further improve the inference efficiency. We
discuss the computation complexity of combining inverted file
system with LightKG in Section 4.1.

3.7 Dynamic Negative Sampling

Preparing the training set is an important step for KGE. The key
is to obtain high-quality negative samples. Hence, to further im-
prove LightKG, we propose a quantization-based dynamic negative
sampling method named DSLightKG, that could improve sampling
efficiency and quality. This sampling strategy can not only work
with LightKG, but also apply to other KGE methods. In the follow-
ing, we use "DSX" to represent applying dynamic negative sampling
to KGE method X.

1913

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Algorithm 1: Dynamic Negative Sampling
Input: All corrupted candidate entities: {t; |(h,r, t;) ¢ G }; K for top-K
entities.

Output: top-K entities.

Seperate corrupted candidate entity embeddings into two parts
T'=[ti[1:d/2], ...tz [1:d/2]] and
T = [t;[d/2+1:d], .. tgr [d/z+1:d]].

Apply KMeans to T! and T? separately. Then get cluster centroid C!
corresponding to T' and C? corresponding to T2,

3 Compute the distance d' = —f(h[1:d/2], r[1 : d/2], C') and

d? =—f(h[d/2+1:d],r[dfz+1:d],C?).

-

4 Sort d' and d' in descending order.

5 Qutput = []; Visited[1:len(d"),1:len(d?)]=0; pqueue=PriorityQueue.
6 pqueue.push((1,1), d'[1] + d*[1])

7 while len{Output)<K do

8 ((i, j). d)=pqueue.pop()

o | Visited[i, j] = 1

0 Qutput.append((i, j))

1 if i < len(d") then

12 if j ==1 or Visited[i + 1, j — 1] == 1 then

13 |_ pqueue.push((i + 1, j), d' [i + 1] + d*[j])
1 if j < len(d®) then

15 if i == 1 or Visited[i — 1, j + 1] == 1 then

16 |_ pqueue.push((i, j + 1), d' [i] + d?[j +1])

return entity ids corresponding to Output.

Given a positive triple (h,r,t), we denote its corresponding
corrupted set as {fj, ..., t;; } (negative triples). According to Sec-
tion 3.5, the loss of the given triple is ;5 Y./, £(h,r,t,t;), which
is lower when the positive triple has a high relevance score than
that of the negative triple and vice versa. Here, t; is sampled from
{1" |(h,, t'} ¢ G} via uniform sampling. However, most of the ran-
domly generated negative samples are naive and tend to be less
informative. To further improve the sampling efficiency, we propose
to increase the weights of informative negative samples. In this
paper, we use the relevance score to distinguish the informative and
uninformative negative samples. The intuition is that if a negative
sample is not easy for the model to identify, this negative sample is
informative for the model at this stage. In KGE framework, we use
Euclidean distance or inner product to define the triple score, i.e.
given a triple (h, r, t), its score is defined as f(h,r,t) = —||h+r—t||2
or (h,r,t). For a negative sample (h,r,t;), we denote its score as
fi for short. A negative sample with a high score indicates that
it is informative. Thus, we propose to sample negative samples

. . o exp(fi)
according to the distribution as Py (i) = 5, exn(f)”
However, Py needs to compute the partition function }; ; exp(fj),
whose time complexity is O(ned). Since the complexity of comput-
ing Py is prohibitively high, we alternatively seek to approximate

Py (i) by probability Pp(i) based on top-K entities as follows:

P (i) = 5 (PP (@) + P (), ©)

top—K . e i € top-K entities .
where PDP @ = { If) otheriise ’ Pg @ = |£'| '
Here, top-K entities are refereed to as the K entities with the highest
scores according to exp(d;). The following proposition shows Pp (i)
is closer to Py(i) than discrete uniform distribution.

ProrosITION 2. When };cq Pr(i) = logy, .2, KL(Pf||Pp) <
KL(Pf||Py) holds, where Pp is the distribution of dynamic negative

Full Paper Track

sampling, Py is the distribution of discrete random sampling, Py is the
ideal negative distribution, K = |&'|/a and r is {i|i is top-K entities}.

PROOF. Recall that Pg(i) = ﬁ Pp(i) = 3(% + ﬁ) ifi e
exp(fi)

1 : o
21E7] otherwise, and Py(i) = T, 0"
In the following, i € 7 denotes {i € top-K entities}. Therefore

1

top-K entities and Pp(i) =

1]

we have KL(Pf||Py) = — X Pr()In(p 5y

), and KL(Pf||Pp) =

a1 ea

_ ZiETPI(i}hI(Z(Tf;Nr)} — Yier P1 (i)]n(%}. Then we have
KL(P;||Pu) - KL(Pr||Pp)

S | . |E'1+K
=) P()n(z)+) Pr(i)ln———

. g .
Because In(3) + Zier Pr()In(‘g +1) = In(3)+ Tier Pr()In(1+
a) = 0, we have KL(P;||Py) = KL(P;||Pp). Because softmax focus
on the largest value in one vector and a = |8' |/K is a large number,
the condition };c 4 Pr(i) = log,,,2 is easy to be satisfied.]

=In(3) +ZP;(1‘)]11(% +1)
€T

Although PS)P _K(i} can approximate Py, it is still challenging to
find an way to locate the top-K entities with a low computational
complexity. If we exhaustively compute all the scores and sort them
to get the top-K entities, the computation complexity is O(ned +
nelogK), which is even higher than that of computing Py. Inspired
by [1], PS)P _K(i} can be approximately computed efficiently via
quantization. Given a positive triple (h, r, t) and its negative sample
(h,r,t), we first divide entity embeddings T into two subspace
T! and T2. Then we apply KMeans to T! and T? respectively to
obtain their corresponding centroids C! and C2. The relevance
score is then calculated between h, r and C?, C? respectively. The
approximate top-K high-quality negative samples can be located
when we find K entities whose corresponding two centroids both
have high relevance scores based on h and r. The whole process
is summarized in Algorithm 1. The computation complexity of
dynamic sampling is O((kd + 2klogk + KlogK)n + nedkt), where n
is the number of training data. It is much less than the complexity
of exhaustive computing nedn since kt < n and k < n,. More
details about the complexity of dynamic negative sampling are in
Section 4.1.

4 COMPLEXITY ANALYSIS
4.1 Search with Inverted Index File Complexity

In this section, we discuss the search complexity with inverted file
index, which is mentioned in Section 3.6. Usually, nearest neighbour
search is coordinated with the inverted file to prevent an exhaustive
search of all of the vectors. We first apply KMeans with k cluster
centroids to entity embeddings. When conducting approximate top-
K nearest neighbour search, we get K (K > K) approximate nearest
neighbours via KMeans, and then seach K nearest neighbours from
K candidates via LightKG. Therefore, its time complexity is O(kd +
klogk + K + BWd), where kd + klogk is the cost of searching via
KMeans and K + BWd is the time complexity of LightKG. When n,
is very huge, kd + klogk can be much less than n,.

4.2 Dynamic Negative Sampling Complexity

Firstly, we analyze the complexity of negative sampling without
approximation (sampling from distribution P in Section 1). For one

1914

CIKM 21, November 1-5, 2021, Virtual Event, Australia

triple (h,r, t), it needs to compute the distance between h + r/h * r
and all entities, which costs O(nd). Therefore, totally it costs
O(nedn), where n is the number of train dataThen we consider
the complexity of the dynamic negative sampling. For the KMeans
step, it costs O(nedkt) [15], where t is the iteration times and k is
the number of clusters. For computing the distance between h +
r/h*r and centroids, it costs O(dk). Then sorting the distance costs
O(2klogk). Suppose we want to search top-K closest distance given
two sorted lists, it costs O(KlogK) via priority queue structure.
Therefore, totally dynamic negative sampling costs O((kd+2klogk+
KlogK)n +nedkt). Because usually the number of training data and
entities is huge, we have kt < n and k < n,. Thus, the complexity
of dynamic negative sampling is much less than the complexity of
negative sampling without approximation.
Table 1: Statistics of datasets.

Dataset #entities #relations #Train = #Validation #Test
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 483,142 50,000 59,071
FB15K237 14,541 237 272,115 17,535 20,466
YAGO3 123,182 37 1,079,040 5,000 5,000

5 EXPERIMENTS

In this section, we evaluate the proposed LightKG model and dy-
namic negative sampling method with the goal of answering the
following questions. 1) How does LightKG perform as compared
to state-of-the-art baselines? 2) Is the proposed dynamic negative
sampling effective and efficient in enabling the learning of better
embeddings? 3) Is the proposed LightKG able to extend to deep
learning-based KGE method? 4) Is the proposed residual module
effective in the learning of quantization model? 5) How does the
performance change with respect to different parameters? 6) How
does LightKG improve the search and memory efficiency?

5.1 Datasets and Experiment Settings

5.1.1 Datasets. We use four public benchmark datasets including
WN18 [4], WN18RR [37], FB15K [4] and FB15K237 [10] to evaluate
the proposed algorithm. Additional, we use a large-scale dataset
YAGOS3 [35] to show the efficiency of the proposed model. We
summarize the statistics of all the datasets in Table 1.

5.1.2 Baselines. We compare proposed LightKG and DSLightKG
(LightKG with dynamic sampling), with the following baselines:
TransE [4], ConvE [10], DistMult [45], OPQ [12], RVQ [8], and TS-
CL [32]. TransE and DistMult are representative translation-based
and bilinear KGE methods respectively. They provide the ceiling
performance for quantization models. OPQ, RVQ and TS-CL are
three quantization models. OPQ, RVQ are two post-compression
methods. TS-CL is an end-to-end quantization method.

5.1.3 Evaluation Metric and Implementation Details. To evaluate
the proposed model, we follow [36] and use standard evaluation
metrics Mean Reciprocal Rank (MRR) and Hits at N (Hits@N) in
the filtered setting. For both metrics, the higher the better. We rank
triples in the test set against all other generated candidate triples
which are not in the training, validation, and test set. In this paper,
we focus on the task of predicting the tail entity given a specific
relation and a head entity, ie., (h,r,?). We implement LightKG

Full Paper Track

based on OpenKE [14], an open source framework for KGE. We
setd = 200, m = 10, B = 16, and W = 32 in experiments. For
LightKG, we draw one negative sample for each positive sample.
For DSLightKG and DSTransE, we sample nine negative samples
from uniform sampling and one negative sample from dynamic
negative sampling. K in Eqn. 5 is set to be 100. To accelerate the
convergence of LightKG, we add one regularizer in Eqn. 2 following
[32]: ||eg — €|, where e is the entity embedding before quantization
and ey is the entity embedding after quantization. We tune its
coefficient and learning rate on the validation set via grid search
over {le-5,1e-4,1e-3,1e-2}.

Table 2: Comparison with baselines on the four datasets. TransE and
DistMult provides the ceiling performance for tasks respectively.
The highest scores per category are bold.

WN18 WNI18RR
Category | Method |
| | H@1 | H@10 | MRR | H@1 | H@10 | MRR
| TransE | 1254 | 89.78 | 4165 | 1.91 | 46.20 | 1747
Trandlati OPQ 730 | 6426 | 27.52 | 1.56 | 31.94 | 11.78
ranslation | gy 676 | 64.84 | 27.21 | 1.47 | 3200 | 11.71
TS-CL | 292 | 66.20 | 2469 | 054 | 29.71 | 10.56
LightKG | 8.42 | 89.10 | 38.91 | 1.66 | 45.31 | 16.95
| DistMult | 67.71 | 93.92 | 7873 | 41.07 | 47.13 | 4332
Bilin OPQ | 2812 | 56.64 | 37.77 | 17.29 | 31.11 | 21.98
ear RVQ | 1570 | 46.10 | 2550 | 539 | 20.39 | 10.35
TS-CL | 42.36 | 67.58 | 51.07 | 22.27 | 32.61 | 25.94
LightKG | 67.10 | 93.36 | 78.28 | 40.65 | 46.39 | 42.73
FB15K FB15K237
Category | Method | |
| | H@1 | H@10 | MRR | H@1 | H@10 | MRR
| TransE | 2512 | 65.56 | 39.25 | 20.93 | 46.66 | 29.49
ati OPQ | 15.88 | 4836 | 26.67 | 17.70 | 41.78 | 23.91
Translation | gy 13.23 | 44.64 | 2360 | 1593 | 42,11 | 24.75
TS-CL | 17.99 | 47.17 | 28.07 | 12.04 | 36.11 | 20.43
LightKG | 25.24 | 65.45 | 39.24 | 16.70 | 42.88 | 25.62
| DistMult | 42.08 | 82.74 | 56.45 | 21.86 | 48.12 | 3050
Bilin OPQ | 13.14 | 42.17 | 2271 | 15.89 | 44.95 | 24.79
ear RVQ 915 | 3452 | 17.54 | 20.22 | 46.34 | 28.94
TS-CL | 16.62 | 49.04 | 27.39 | 1431 | 40.89 | 23.22
LightKG | 40.97 | 82.09 | 55.47 | 19.69 | 47.57 | 28.84

5.2 Comparison with Baselines

In this section, we report the performance of baselines and the
proposed LightKG in Table 2 to answer the first question and present
our findings.

First, LightKG outperforms other quantization methods dramati-
cally. For quantizing TransE, the proposed LightKG has about 26.2%
improvement concerning Hits@10 on average compared with OPQ,
RVQ and TS-CL; for quantizing DistMult, the proposed LightKG
has about 35.5% improvement with respect to Hits@10 on average
compared with the quantization baselines. Therefore, LightKG is
much more effective when learning lightweight KGE compared
with existing quantization methods.

Second, comparing the performance of LightKG with respect to
that of TransE and DistMult which provide the ceiling performance,
the gap is not large. Because lightweight methods use much fewer
parameters than the original KGE methods that output continuous

1915

CIKM 21, November 1-5, 2021, Virtual Event, Australia

representations, their performance may not be as good as that of
the KGE methods. Therefore, the goal of LightKG is to reduce the
gap between itself with TransE and DistMult in terms of perfor-
mance. Compared with TransE, LightKG only drops about 2.75%
accuracy with respect to Hits@10 on average; compared with Dist-
Mult, LightKG only drops about 1.03% accuracy in terms of Hits@10
on average. Thus, LightKG can preserve the model’s performance
with less parameters.

Third, the performance of OPQ and RVQ depends on if the em-
beddings form a spherical shape in the low-dimensional space, but
LightKG does not have this restriction. OPQ and RVQ are based
on KMeans. However, KMeans is sensitive to data distribution.
We record their reconstruction errors of KMeans on FB15K and
FB15K237. The reconstruction error of KMeans on FB15K237 is
only 0.0069 while reconstruction error of KMeans on FB15K is
0.128. So OPQ and RVQ have better performance on FB15K237 than
on FB15K. Therefore, the two methods highly depend on data dis-
tribution. In contrast, because we choose a more general similarity
function s(-) instead of Euclidean distance for LightKG, LightKG
can handle a wider range of data distributions and thus achieve
much better performance.

Forth, Table 2 shows that the proposed model achieves more
improvements on WN18RR than that on FB15K237. Such an observa-
tion may indicate that the proposed model LightKG performs better
with a dense knowledge graph, where more context information is
available for each entity. The similar observation is also shown in
a contemporary work [26] for recommendation quantization task.

Table 3: Comparison with different negative sampling methods.

| FB15K237 FB15K
| Hits@1 | Hits@10 | MRR | IMP(%) | Hits@1 | Hits@10 | MRR | IMP(%)
TransE 20.93 46.66 29.49 37.23 2512 65.56 35.25 17.30
UTransE 27.59 58.62 38.06 6.33 23.68 71.65 42.08 9.41
TransE-adv 28.72 59.39 39.11 3.48 25.78 74.83 45.14 1.99
DSTransE 30.57 60.03 40.47 - 29.33 72.59 46.04 -
LighLKG 16.70 42.88 25.62 13.43 25.24 65.45 35.24 11.77
U'LightKG 16.86 43.77 25.65 13.29 30.75 67.69 43.62 0.55
LighLKG—adv 18.10 4492 27.07 7.35 30.70 67.90 43.60 0.60
DSLightKG 20.74 46.63 29.06 - 31.07 67.58 43.86 -

5.3 Dynamic Negative Sampling

In this section, we will answer the second question. We show
the results of different negative sampling methods on FB15K and
FB15K237 in Table 3. In the table, TransE and LightKG sample one
negative sample via uniform sampling; UTransE and ULightKG
sample ten negative samples via uniform sampling for TransE and
LightKG respectively; TransE-adv and LightKG-adv apply the state-
of-the-art adversary negative sampling method [36] to TransE and
LightKG and sample ten negative samples respectively; DSTransE
and DSLightKG apply the proposed dynamic negative sampling to
TransE and LightKG to sample ten negative samples respectively.
We record the running time of different negative sampling methods
to show the effectiveness of dynamic negative sampling. Based on
these results, we have the following findings.

First, dynamic sampling can improve model accuracy greatly. The
performance of DSTransE and DSLightKG is much better than that
of UTransE and ULightKG respectively on two datasets. DSTransE
has 7.87% improvement on average compared with UTransE; DS-
LightKG has 6.92% improvement averagely compared to ULightKG

Full Paper Track

and it achieves competitive results compared with TransE. It shows
the effectiveness of the proposed sampling strategy that introduces
more informative negative samples. As for adversary sampling,
it uses adaptive weights for different negative samples, but the
sampling is still conducted based on uniform sampling, making it
difficult to get informative samples in this way. Therefore, this base-
line performs better than uniform sampling, but its performance is
inferior compared with the proposed dynamic sampling strategy.

Second, sampling more negative samples can improve model
performance. On two datasets, UTransE and ULightKG both have
significant improvements compared with TransE and LightKG re-
spectively. The possible reason is that more negative samples pro-
vide more information between entities and relations, which helps
the learning of better representations.

Third, dynamic negative sampling is much more efficient than
exhaustive sampling. The running times of uniform, dynamic and
exhaustive sampling for one batch are 116.3, 519.7 and 1299.1 sec-
onds respectively. Dynamic negative sampling only costs less than
half of the time by exhaustive sampling. It also validates the time
complexity analysis in Section 4.1.

5.4 Extension to Deep Models

Deep learning-based KGE methods have attracted more and more at-
tention in recent years. Therefore, in this section, we study whether
the proposed LightKG can be applied to deep learning-based KGE
methods to answer the third question. We choose the state-of-the-
art deep model ConvE [10] as our baseline and apply LightKG to
quantize it. The results of ConvE and LightKG are shown in Table 4.

According to Table 4, LightKG is effective when applied to quan-
tize ConvE. The gap between ConvE and LightKG in terms of per-
formance is small, i.e., the MRR of LightKG only drops 2.57% with
respect to MRR compared with ConvE. It shows that LightKG is
a general framework which can also be applied to deep learning
based KGE methods to improve the efficiency with only very limited
drop in accuracy.

Table 4: The results of ConvE and LightKG on FB15K237.

| Hits@1 | Hits@10 | MRR | GAP(%)

48.52
47.04

30.71
29.92

ConvE
21.38 -2.57

21.92
LightKG-ConvE

5.5 Residual Mechanism

In this section, we demonstrate an ablation study with respect to
the proposed residual module to answer the forth question. We
show the results of the model with and without residual module
on FB15K237 dataset in Fig. 3.

According to Fig. 3(a), the residual mechanism significantly im-
proves the model’s performance. Compared with LightKG\R (the
model without the residual module), LightKG has 1.2% improve-
ment, 6.4% improvement and 4.7% improvement with respect to
Hits@1, Hits@10 and MRR respectively. This illustrates the benefit
of adopting the residual module to learn high-quality codebooks.
Similar patterns can be observed on LightKG with dynamic nega-
tive sampling. Compared with DSLightKG\R, according to Fig. 3(b),
DSLightKG has 6.9% improvement with respect to Hits@1 as well.
It achieves less improvement compared with LightKG on average.
A possible reason is that both DSLightKG and DSLightKG\R use

1916

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Hits@1

Hits@ 10 MRR Hits@10 MRR

(a) (b)
Figure 3: The results of the model with residual module and without
residual module on FB15K237. Fig. 3(a) shows the results LightKG
and LightKG without residual module (LightKG\R); Fig. 3(b) is DS-
LightKG and DSLightKG without residual module (DSLightKG\R).

Hits@ 1

—— CiramE

o H] 4 L3 a8 10 o
Tha number of negative samples via dynamic negative samping Tha rusmbar of negaiive samples via dynemic regative sampling

(a) (b)
Figure 4: The results of DSTransE and DSLightKG with different
number of negative samples sampled by dynamic negative sam-
pling on FB15K237.

2 4 [[0

dynamic negative sampling, which somewhat mitigate the issue
with DSLightKG\R.

Table 5: The results of DSLightKG adopting different depth of resid-
ual layers on FB15K237.

| Hits@1 | Hits@10 | MRR | GAP(%)

TransE 20.93 46.66 29.49 -
512x1 coding 18.01 41.49 25.93 | -12.00
256x%2 coding 21.97 46.11 29.85 +1.22
128x4 coding 21.54 46.91 29.83 +1.15
64x8 coding 22.69 47.60 30.92 +4.85
32x16 coding 20.74 46.63 29.06 -1.46
16x32 coding 21.43 45.75 29.69 +0.68

5.6 Sensitivity w.r.t Depth of Residual Layers

In this section, we study how the depth of residual layers influences
model performance to answer the fifth question. To ensure fair
comparison, we keep the total number of parameters constant, i.e.
the number of codewords in one codebook times the number of
codebooks in one subspace remain the same. We show the results
in Table 5. In this table, "i X j coding” means that each codebook
consists of i codewords and in each subspace there are j codebooks.
Jj represents the depth of residual layers as well.

According to Table 5, when the depth is greater then one, the
performance of DSLightKG is stable with respect to the depth. The
performance is very close to the ceiling performance achieved by
TransE, and for some depth parameters, the performance is even a
bit better than that of TransE. However, when the depth is set to
be one, the model performance has a big drop. The reason is that
when the depth is one, there is no residual layer in the model, and
thus the model degrades into TS-CL. Therefore, this result again
supports the effectiveness of the residual module.

Full Paper Track

5.7 Sensitivity w.r.t The Number of Negative
Samples via Dynamic Negative Sampling

In this section, we study how the number of negative samples sam-
pled via dynamic negative sampling influences model performance.
We show how Hits@1 and MRR of DSTransE and DSLightKG
change with respect to different numbers of negative samples sam-
pled via dynamic negative sampling in Fig. 4.

According to Fig. 4, the model performance and the number
of dynamic negative samples are not exactly positively correlated.
For DSTransE, 10% negative samples from dynamic sampling and
90% negative samples from uniform sampling achieve the best
performance; for DSLightKG, 30% negative samples from dynamic
sampling and 70% negative samples from uniform sampling achieve
the best performance. On one hand, because hard samples are
indistinguishable to the model, sampling too many hard samples
makes it too difficult to learn parameters. On the other hand, we
hope that dynamic negative sampling can approximate exhaustive
sampling but sampling too many hard samples may lead to the
deviation of the sampled data from the true distribution.

5.8 Efficiency Comparison

In this section, we study the efficiency of the proposed LightKG,
including both search efficiency and storage efficiency. We conduct
the experiment on WN18 and YAGO3. We apply an inverted file to
LightKG since it is a practical setting. We use KMeans to approxi-
mate search K candidate entities first, and then apply LightKG to
search K entities from the K candidates. The time for both the two
search processes is counted in the total search time. In this study,
We adopt the unfilter setting for evaluation to avoid additional
operations. We show the speedup ratio in Fig. 5, the accuracy of
approximate search in Fig. 6, and the compression ratio in Fig. 7.
We observe the following results.

First, recalling more entities from KMeans can improve accuracy
but decrease the efficiency of the model. From Fig. 6, we can see
that as the the number of recalled entities becomes bigger, the
performance of LightKG is closer to DistMult’s. However, from
Fig. 5, we find that the speedup ratio and the number of entities
recalled from KMeans are negatively correlated. This is in line with
our intuition. Recall the time complexity of search is O(kd+klogk +
K + BWd). Increasing the number of recalled entities corresponds
to increasing K, which leads to an increase in the running time.
However, with an increase in the number of recalled entities, more
candidates are provided for LightKG, which improves the accuracy.
Overall, we can find an equilibrium point where the model has a
fast speed with high accuracy. On WN18 dataset, if we choose to
recall 10000 entities, the model achieves good performance and is 4
times faster than exhaustive search; on YAGO3, when 5000 entities
are recalled, the model has good performance and is about 17 times
faster than exhaustive search.

Second, LightKG can save lots of storage space. According to
Fig. 7, on WN18 and YAGO3, the compression ratio is more than 7,
which also validates the space complexity analysis in Section 3.1.

Third, the advantage of LightKG is larger with more entities.
According to Fig. 5, the speedup ratio on YAGO3 is much greater
than that on WN18. Note that the search complexity of exhaustive
search grows linearly with the number of entities, but in the com-
plexity of LightKG, only the number of codebooks and codewords

1917

CIKM 21, November 1-5, 2021, Virtual Event, Australia

500 1000 2000 5000 B000 1000015000
The number of entities recalled via KMeans

(a) WN1s

500 1000 2000 5000 8000 1000016000
The numier of entities recalled via KMeans

(b) YAGO3
Figure 5: The speedup ratio of LightKG on WN18 and YAGO3.

[

0 2000 4000 6000 BOOO 10000 13000 14000
The number of entifos recalled via KMoans.

(b) YAGO3

0 2000 4000 6000 BOOO 10000 13000 14000
The number of eritios mcalled via KMo ans.

(a) WN18
Figure 6: The accuracy of approximate search on WN18 and YAGO3.

«10* 2« 10*

36

Rompe(KB)
= ra
R
Sompe(KB)
- o @

e
o
]

=

LightKie: Disthult Lighte: Distut

(a) WN1s (b) YAGO3

Figure 7: The storage cost of LightKG on WN18 and YAGO3.

play a role, which are much smaller than the number of entities.
Therefore, the speedup ratio is higher on dataset with more entities.

6 CONCLUSIONS

In this paper, we propose a lightweight KGE framework, LightKG,
for efficient inference and storage. We proposed to divide the space
of knowledge graph embeddding into subspace, and in each sub-
space, we use the combination of codewords within multiple code-
books to represent a slice of the knowledge graph embeddding.
This is a general framework, which can be easily plugged into most
of the KGE methods including TransE, DistMult and ConvE. To
further improve the model performance, we propose a dynamic
negative sampling strategy, which can draw informative negative
samples efficiently. We conduct extensive experiments on multi-
ple public benchmark datasets to evaluate the proposed LightKG
and sampling method. Experimental results show that LightKG has
less than 3% accuracy lost while it can obtain over 15x speedup
ratio for inference and 7x compression ratio. The dynamic negative
sampling method has more than 19% improvement on average.

ACKNOWLEDGEMENT

This work is supported in part by the US National Science Founda-
tion under grant NSF I1S-1747614 and NSF I15-2141037. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Full Paper Track

REFERENCES

[1]
[2

_—

B3]

[4

—

[5]
[6]

[

7
[8]
[9]

[10]

(1)

[12]

[13]

[14]

[15)

[16]

(7

[18)

[19]

[20

—_

[21)
[22)

[23)

[24

—

[25)

Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247-1260.
Yebo Bao, Hui Jiang, Lirong Dai, and Cong Liu. [n.d.]. Incoherent training of
deep neural networks to de-correlate bottleneck features for speech recognition.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013), 2787-2795.
Liwei Cai and William Yang Wang. 2017. Kbgan: Adversarial learning for knowl-
edge graph embeddings. arXiv preprint arXiv:1711.04071(2017).

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-
pher Ré. 2020. Low-Dimensional Hyperbolic Knowledge Graph Embeddings.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 6901-6914.

Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge reason-
ing over knowledge graph. Expert Systems with Applications 141 (2020), 112948,
Yongjian Chen, Tao Guan, and Cheng Wang. 2010. Approximate nearest neighbor
search by residual vector quantization. Sensors 10, 12 (2010), 11259-11273.
Matthien Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-
ing deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Laura Dietz, Alexander Kotov, and Edgar Meij. 2018. Utilizing knowledge graphs
for text-centric information retrieval. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval 1387-1390.
Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744-755.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In VIdb, Vol. 99. 518-529.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li. 2018. Openke: An open toolkit for knowledge embedding. In Proceedings of
the 2018 conference on empirical methods in natural language processing: system
demonstrations. 139-144.

John A Hartigan and Manchek A Wong. 1979. AK-means clustering algorithm.
Journal of the Royal Statistical Society: Series C (Applied Statistics) 28, 1 (1979),
100-108.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. 2019. Knowledge
graph embedding based question answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. 105-113.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. 2016. Binarized neural networks. Advances in neural information processing
systems 29 (2016), 4107-4115.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1(2017), 6869-6898.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117-128.

Jin-Hwa Kim, Jaechyun Jun, and Byoung-Tak Zhang. 2018. Bilinear attention
networks. arXiv preprint arXiv:1805.07932 (2018).

Brian Kulis, Matyds A Sustik, and Inderjit S Dhillon. 2009. Low-Rank Kernel
Learning with Bregman Matrix Divergences. journal of Machine Learning Re-
search 10, 2 (2009).

Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized ranking with importance
sampling. In Proceedings of The Web Conference 2020. 1093-1103.

Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing
Xie. 2020. Lightrec: A memory and search-efficient recommender system. In
Proceedings of The Web Conference 2020. 695-705.

Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. 2020. Geography-
aware sequential location recc dation. In Proceedings of the 26th ACM

1918

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

CIKM 21, November 1-5, 2021, Virtual Event, Australia

SIGKDD international conference on knowledge discovery & data mining. 2009—
2019.

Defu Lian, Xing Xie, Enhong Chen, and Hui Xiong. [n.d.]. Product Quantized
Collaborative Filtering. IEEE Transactions on Knowledge and Data Engineering
([n.d.]).

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 29.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2018. Entity-duet
neural ranking: Understanding the role of knowledge graph semantics in neural
information retrieval. arXiv preprint arXiv:1805.07591 (2018).

Chris] Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distri-
bution: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712 (2016).

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data.. In Ieml, Vol. 11. 809-816.
Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525-542.

Mrinmaya Sachan. 2020. Knowledge Graph Embedding Compression. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics.
Shengtian Sang, Zhihao Yang, Lei Wang, Xiaoxia Liu, Hongfei Lin, and Jian Wang.
2018. SemaTyP: a knowledge graph based literature mining method for drug
discovery. BMC bioinformatics 19, 1 (2018), 193.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593-607.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697-706.

Zhiging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

Kristina Toutanova, Dangi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-
hury, and Michael Gamon. 2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015 conference on empirical methods
in natural language processing. 1499-1509.

Théo Trouillon, Christopher R Dance, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2017. Knowledge graph completion via
complex tensor factorization. arXiv preprint arXiv:1702.06879 (2017).

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417-426.

Peifeng Wang, Shuangyin Li, and Rong Pan. 2018. Incorporating gan for nega-
tive sampling in knowledge representation learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Yuxiang Wang, Zhangpeng Ge, Haijiang Yan, Xiaoliang Xu, and Yixing Xia. 2019.
Semantic locality-based approximate knowledge graph query. Concurrency and
Computation: Practice and Experience 31, 24 (2019), e5345.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 28.

Pengtao Xie, Yuntian Deng, and Eric Xing. 2015. Diversifying restricted boltz-
mann machine for document modeling. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1315-1324.
Pengtao Xie, Aarti Singh, and Eric P Xing. 2017. Uncorrelation and evenness:
a new diversity-promoting regularizer. In International Conference on Machine
Learning. 3811-3820.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

Yang Yu, Yu-Feng Li, and Zhi-Hua Zhou. 2011. Diversity regularized machine. In
Twenty-Second International Joint Conference on Artificial Intelligence.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353-362.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander Smola, and Le Song.
2018. Variational reasoning for question answering with knowledge graph. In
Froceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Overview
	3.3 Codeword Learning
	3.4 Residual Module
	3.5 Loss Function
	3.6 Advantages of LightKG
	3.7 Dynamic Negative Sampling

	4 Complexity Analysis
	4.1 Search with Inverted Index File Complexity
	4.2 Dynamic Negative Sampling Complexity

	5 Experiments
	5.1 Datasets and Experiment Settings
	5.2 Comparison with Baselines
	5.3 Dynamic Negative Sampling
	5.4 Extension to Deep Models
	5.5 Residual Mechanism
	5.6 Sensitivity w.r.t Depth of Residual Layers
	5.7 Sensitivity w.r.t The Number of Negative Samples via Dynamic Negative Sampling
	5.8 Efficiency Comparison

	6 Conclusions
	References

