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ABSTRACT
Inferring causal effect from observational data has attracted much
attention from various domains. Under the potential outcome frame-
work, the estimation of counterfactuals is crucial for the investi-
gation of causal effect at the individual level. Existing representa-
tion learning approaches focus on learning one balanced feature
space, which ignores certain information predictive to the out-
comes. To fully utilize the predictive information, we propose a
Subspace learning based Counterfactual Inference (SCI) method to
estimate causal effect at the individual level. Different from existing
work, SCI learns both a common subspace, which preserves the
information across all the treatment groups, and treatment-specific
subspaces, which retain the information associated with each spe-
cific treatment. Learning from two kinds of subspaces helps SCI
obtain better causal effect estimations than state-of-the-art meth-
ods, demonstrated by a series of experiments on synthetic and
real-world datasets.

CCS CONCEPTS
• Computing methodologies → Machine learning algo-
rithms; Machine learning; • Information systems → Data
mining.
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1 INTRODUCTION
Individual Treatment Effect (ITE) is the difference between a unit’s
outcomes of different treatments, following the potential outcome
framework [21, 23], where a unit can be any physical object, treat-
ment is the action that applies (exposes, or subjects) to a unit, and
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the outcome is the result after applying the treatment. The esti-
mated ITE facilitates decision making across various domains, such
as healthcare [10], digital marketing [17], and sociology science [7].
With the estimated ITE, a doctor is able to figure out the best medi-
cation for a patient, a teacher is able to assign the most appropriate
study program to a student, and a job seeker is able to decide the
best training program in order to increase the employment chance.
In the above examples, a unit could be a patient, a student, or a job
seeker; The treatments are different medications, study programs
or job training programs; The outcomes are the patient’s status,
student’s test score or job seeker’s employment status.

The major challenge in ITE estimation from observational data
is how to handle the missing counterfactuals [1]. As a unit can only
take one treatment at a time, the unit’s potential outcomes of taking
other treatments cannot be observed. Counterfactuals refer to the
unobserved potential outcomes. This fact brings in the demand of
estimating other treatment outcomes known as the counterfactual
outcomes. However, estimating counterfactuals from the observa-
tional data encounters the issue of treatment selection bias. Treat-
ment selection bias comes from the phenomenon that individuals
may have different preferences on their treatment selections, result-
ing in distinct distributions between different treatment groups. For
example, suppose people with high education degrees are prone
to take the job training, the group with job training (treated group)
would be likely to contain more highly educated people compared
with the group without job training (control group).

There is some existing work that learns subspaces or latent rep-
resentations to facilitate the estimation of counterfactuals under
selection bias. Nearest neighbor matching through HSIC criteria
(HSIC-NNM) [2] learns an informative subspace for each treatment
and applies nearest neighbor matching on each subspace. How-
ever, HSIC-NNM only uses the corresponding treatment group
to learn the subspace, which might produce unstable subspaces
for data with unbalanced distributions. Other recent work focuses
on learning balanced representations and inferring the outcomes
based on the learned representations [13, 22]. However, the learned
balanced common representations ignore some treatment-specific
information which is critical for outcome prediction.

Motivated by the above challenge of learning treatment-guided
and balanced representations, we propose a novel Subspace learn-
ing based Counterfactual Inference method (SCI). Different from
existing methods, SCI learns the common subspace as well as the
treatment-specific subspaces, and the two kinds of subspaces com-
plement each other. The common subspace captures a balanced
representation across different treatment groups, which preserves
the information across the treatment groups and helps reduce the
selection bias. Simultaneously, treatment-specific subspaces retain
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Figure 1: Framework of the proposed method SCI. The
covariates X are fed into the common subspace, control
subspace and treated subspace simultaneously to get the
balanced common representation Z𝑐𝑜𝑚 and two treatment-
specific representations, Z𝑐𝑜𝑛𝑠𝑝𝑐 and Z𝑡𝑟𝑒𝑠𝑝𝑐 . After that, SCI con-
catenates the common representation to every treatment-
specific representation. Through the reconstruction and pre-
diction network, the reconstructed data and two potential
outcomes can be obtained.

the predictive information associated with each treatment. Conse-
quently, the proposed method enhances the treatment outcome pre-
diction. To demonstrate the effectiveness of the proposed method,
we conduct experiments on both synthetic and real-world datasets.
The experimental results confirm the benefit of learning both com-
mon and treatment-specific subspaces.

2 RELATED WORK
Existing methods for ITE estimation can be divided into two cate-
gories based on whether the ITE is estimated from one common
subspace or several subspaces. The first category of methods adopts
various machine learning methods to estimate ITE in one common
subspace: (1) Most matching-based methods belong to this category,
which map the original data to one common subspace and apply
various similarity metrics to find the neighbors, such as 𝑘-nearest
neighbor (𝑘-NN) matching [5], propensity score matching [20] and
deep match [14]; (2) Tree-based methods, such as Bayesian additive
regression trees (BART) [3] and random forest [25], which estimate
the ITE according to the leaf node that the unit belongs to; (3) Deep
learning based approaches which estimate ITE based on the sub-
space learned by the feed-forward neural networks [12, 13, 22], vari-
ational auto-encoder [18] or generative adversarial networks [11].

The second category estimates the ITE from several subspaces.
X-learner [15] adopts a meta-learning approach, which extracts
the meta information (i.e., the imputed treatment effect) from
treated/control subspace separately and combines the extracted
information in the last procedure. HSIC-NNM [2] maps the orig-
inal data to two informative subspaces related to control/treated
group, respectively, and finds the nearby units in the corresponding
subspace.

3 PRELIMINARY
In this work, we follow the potential outcome framework [21, 23].
First, we introduce some important notations and concepts. The

dataset is denoted as
{
X,T,Y𝐹

}
, where X ∈ R𝑁×𝑑 is the pre-

treatment covariate matrix with 𝑁 being the number of units in the
dataset and𝑑 is the number of covariates. T ∈ R𝑁×1 is the treatment
vector, and Y𝐹 ∈ R𝑁×1 is the observed outcome (factual outcome).
Besides, let x𝑖 ∈ R𝑑×1 and 𝑡𝑖 be the pre-treatment covariate vector
and the treatment of the 𝑖-th unit in the dataset, respectively. This
work mainly focuses on ITE estimation under binary treatment,
i.e., if 𝑡𝑖 = 1, the 𝑖-th unit belongs to the treated group; otherwise,
it belongs to the control group (𝑡𝑖 = 0). Before applying treatment
on the 𝑖-th unit, either 𝑦 (𝑖)0 (control outcome) or 𝑦 (𝑖)1 (treated out-
come), is the potential outcome. After applying treatment 𝑡𝑖 , the
observed outcome is the factual outcome, denoted as 𝑦𝐹

𝑖
, which

equals to the potential outcome of the treatment he/she choose, i.e.,
𝑦𝐹
𝑖
= 𝑦

(𝑖)
𝑡𝑖

. The outcome of the other treatment is considered as the
couterfactual outcome, denoted as 𝑦𝐶𝐹

𝑖
, where 𝑦𝐶𝐹

𝑖
= 𝑦

(𝑖)
1−𝑡𝑖 .

Under the potential outcome framework, the individual treat-
ment effect of the 𝑖-th unit is defined as: ITE𝑖 = 𝑦

(𝑖)
1 −𝑦 (𝑖)0 , which is

the difference between the potential treated and control outcomes.
In this work, we develop the SCI methods under three well-known
assumptions of potential outcome framework, that are stable unit
treatment value assumption (SUTVA), ignorability assumption and
positivity assumption [10].

4 METHODOLOGY
Overview. Estimating counterfactuals is essential in calculating
the ITE. To accurately estimate the counterfactuals, we propose the
subspace learning based counterfactual inference method (SCI).
Figure 1 shows the framework of SCI, which contains five major
components: subspace learning including common subspace, con-
trol subspace, and treated subspace, subspace combination and the
reconstruction & outcome prediction.
Objective Function. The objective function of SCI is:

L = L𝑓 +𝛼L𝑏+𝛽
(
L𝑐𝑜𝑛
𝑝𝑒𝑠𝑢 + L𝑡𝑟𝑒

𝑝𝑒𝑠𝑢

)
+𝜌LHSIC+𝛾L𝑟𝑒𝑐+_ | |𝑊 | |2, (1)

where L𝑓 is the factual outcome prediction loss; L𝑏 is the bal-
ancing regularization in the common subspace; L𝑐𝑜𝑛

𝑝𝑒𝑠𝑢 and L𝑡𝑟𝑒
𝑝𝑒𝑠𝑢

are the pseudo outcome losses in the control and treated subspace,
separately; LHSIC is the dependency regularization in subspace
combination; and L𝑟𝑒𝑐 is the reconstruction loss. The last term is
the 𝐿2 regularization on all parameters𝑊 (except the bias term). 𝛼 ,
𝛽 , 𝛾 , 𝜌 and _ are the hyper-parameters. The details of architecture
and each term in Eq. (1) will be described in the following.

4.1 Architecture
4.1.1 Control Subspace. The goal of learning a control subspace is
to investigate the treatment-specific information which is beneficial
to the control outcome inference. In the control subspace, the pre-
treatment feature X is fed into the representation network Φ𝑐𝑜𝑛 to
obtain the control-specific representation: Z𝑐𝑜𝑛𝑠𝑝𝑐 = Φ𝑐𝑜𝑛 (X), where
Φ𝑐𝑜𝑛 is a feed-forward neural network with 𝑑𝑐𝑜𝑛 hidden layers and
the exponential linear unit (ELU) [4] as the activation function.

To ensure that representation network Φ𝑐𝑜𝑛 (·) can encode
control-oriented information, an external linear prediction layer is
adopted to get the pseudo control outcome: Ỹ𝑐𝑜𝑛𝑠𝑝𝑐 = (w𝑐𝑜𝑛

𝑠𝑝𝑐 )
′
Z𝑐𝑜𝑛𝑠𝑝𝑐 +

𝑏𝑐𝑜𝑛𝑠𝑝𝑐 , where Z𝑐𝑜𝑛𝑠𝑝𝑐 ∈ R𝑘𝑐𝑜𝑛×𝑁 , w𝑐𝑜𝑛
𝑠𝑝𝑐 ∈ R𝑘𝑐𝑜𝑛 , 𝑘𝑐𝑜𝑛 is the dimension
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of the last hidden layer of Φ𝑐𝑜𝑛 . The representation Z𝑐𝑜𝑛𝑠𝑝𝑐 contains
predictive information specifically related to control outcomes,
thereby it can also be viewed as the meta-information extracted by
the linear prediction procedure. Different from the existing meta-
learning algorithm X-learner [15] that fixes the first step (meta-
information extraction step) and estimates the ITE in its second
step, we jointly optimize the control subspace learning network
and the potential outcome prediction network in order to obtain
better representations.

The control-specific representation and the control predictor
are learned only through the control group, therefore, due to the
selection bias, the predictor would not generalize well across the
whole dataset. To this end, we name the predicted outcome Ỹ𝑐𝑜𝑛𝑠𝑝𝑐

as the pseudo control outcome. When the pseudo control outcomes
approach the factual control outcomes at a certain degree, the
learned representations Z𝑐𝑜𝑛𝑠𝑝𝑐 can reveal the information related
to the control outcome prediction. We use the pseudo-difference
L𝑐𝑜𝑛
𝑝𝑠𝑒𝑢 to measure the distance between the pseudo control outcome

and the factual control outcome, which is formulated as follows. If
the outcome is continuous:

L𝑐𝑜𝑛
𝑝𝑠𝑒𝑢 =

1∑𝑁
𝑖=1 I(𝑡𝑖 = 0)

| | (Y𝐹 − Ỹ𝑐𝑜𝑛𝑠𝑝𝑐 ) · diag(1 − T) | |22, (2)

where I(·) is the indicator function. If the outcome is categorical,
the cross-entropy loss is adopted in Eqn. (2).

4.1.2 Treated Subspace. The treated subspace is analogical to the
control subspace, and the goal of adding a treated subspace is to
retain the treated-specific information which is helpful for esti-
mating treated outcomes. The treated-representation neural net-
work (denoted as Φ𝑡𝑟𝑒 ) is built to learn the treated-specific rep-
resentations: Z𝑡𝑟𝑒𝑠𝑝𝑐 = Φ𝑡𝑟𝑒 (X), where Z𝑡𝑟𝑒𝑠𝑝𝑐 ∈ R𝑁×𝑘𝑡𝑟𝑒 , and 𝑘𝑡𝑟𝑒 is
the dimension of the last layer of Φ𝑡𝑟𝑒 . The pseudo-difference in
the treated subspace is defined as: If the outcome is continuous:
L𝑡𝑟𝑒
𝑝𝑠𝑒𝑢 = 1∑𝑁

𝑖=1 I(𝑡𝑖=1)
| | (Y𝐹 − Ỹ𝑡𝑟𝑒𝑠𝑝𝑐 ) · diag(T) | |22. Similar to Eqn. (2),

by minimizing the loss L𝑡𝑟𝑒
𝑝𝑠𝑒𝑢 , the learned representation Z𝑡𝑟𝑒𝑠𝑝𝑐 is

capable of preserving predictive information particularly related to
treated outcome prediction.

4.1.3 Common Subspace. As mentioned in Section 4.1.1, only
adopting the treatment specific representation Z𝑐𝑜𝑛𝑠𝑝𝑐 and Z𝑡𝑟𝑒𝑠𝑝𝑐 is
insufficient to obtain satisfactory outcome predictions due to gen-
eralization error brought by the existence of the selection bias.
To overcome the selection bias, the control and treated subspaces
should share some common information. Therefore, we introduce
the common subspace as the linkage, which provides common infor-
mation for control/treated subspaces. The common subspace aims
to extract the cross-treatment information and reduce the selection
bias. We adopt the standard feed-forward neural network with𝑑𝑐𝑜𝑚
hidden layers, Z𝑐𝑜𝑚 = Φ𝑐𝑜𝑚 (X), where Z𝑐𝑜𝑚 ∈ R𝑁×𝑘𝑐𝑜𝑚 .

In order to reduce the selection bias, SCI adopts a balancing reg-
ularization to minimize the distribution distance between different
treatment groups. In particular, we adopt the integral probability
metric (IPM) [13, 19, 24] to measure the group distribution distance.
The balancing regularization is then formulated as:

L𝑏 = IPM (Φ𝑐𝑜𝑚 (X) · diag(T),Φ𝑐𝑜𝑚 (X) · diag(1 − T)) , (3)

where diag() denotes the diagonal matrix, and Φ𝑐𝑜𝑚 (X) · diag(T),
Φ𝑐𝑜𝑚 (X) · diag(1 − T) are the representations of the treated group
and control group, respectively. By minimizing L𝑏 , the balanced
representation can be learned in the common subspace, and the
selection bias can be reduced.

4.1.4 Subspace Combination. The representations learned by the
common subspace may be insufficient for outcome prediction, and
the representations learned by the control/treated subspaces may
be limited. To overcome the inadequacy of using a single sub-
space, SCI concatenates the normalized representations learned
from both the common subspace and the control/treated sub-

spaces: H𝑐𝑜𝑛 =

[
Z𝑐𝑜𝑛𝑠𝑝𝑐

Z𝑐𝑜𝑚

]
,H𝑡𝑟𝑒 =

[
Z𝑡𝑟𝑒𝑠𝑝𝑐

Z𝑐𝑜𝑚

]
, where H𝑐𝑜𝑛 is

the representation associated with the control outcome inference,
H𝑐𝑜𝑛 ∈ R(𝑘𝑐𝑜𝑛+𝑘𝑐𝑜𝑚)×𝑁 ; H𝑡𝑟𝑒 is the representation associated with
the treated outcome inference, and H𝑡𝑟𝑒 ∈ R(𝑘𝑡𝑟𝑒+𝑘𝑐𝑜𝑚)×𝑁 . To pre-
vent the treatment information leakage in this step, the following
regularization is imposed upon the concatenated representations:
LHSIC = HSIC(H𝑐𝑜𝑛,T) + HSIC(H𝑡𝑟𝑒 ,T), where HSIC denotes the
Hilbert-Schmidt Independence Criterion (HSIC) [8] and T is the
treatment assignment. By minimizing the LHSIC, it forces the the
final representations of X less dependent with the treatment assign-
ment T.

4.1.5 Reconstruction & Outcome Prediction. It is noticeable that
the concatenated representations would be sufficient to reconstruct
the original data, because it contains both cross-treatment and
treatment-specific information. As a consequence, to make the
concatenated representations more meaningful, SCI introduces the
decoder networks Ψ𝑐𝑜𝑛 and Ψ𝑡𝑟𝑒 to reconstruct the original control
and treated data: X̂𝑐𝑜𝑛 = Ψ𝑐𝑜𝑛 (H𝑐𝑜𝑛); X̂𝑡𝑟𝑒 = Ψ𝑡𝑟𝑒 (H𝑡𝑟𝑒 ) . The
reconstruction loss is calculated as follows:

L𝑟𝑒𝑐 =

𝑁∑
𝑖=1

(
(1 − 𝑡𝑖 ) | |X[:, 𝑖] − X̂𝑐𝑜𝑛 [:, 𝑖] | |22 + 𝑡𝑖 | |X[:, 𝑖] − X̂𝑡𝑟𝑒 [:, 𝑖] | |22

)
,

(4)
where X[:, 𝑖] is the 𝑖-th column of X. Minimizing L𝑟𝑒𝑐 guarantees
that the concatenated representations contain sufficient informa-
tion about the original data X.

We can then estimate the potential outcomes based on these
concatenated representations. Let 𝑓𝑐𝑜𝑛 and 𝑓𝑡𝑟𝑒 denote the predic-
tors for control and treated outcomes, respectively. The predicted
control outcome Ŷ0 and the predicted treated outcome Ŷ1 are cal-
culated as: Ŷ0 = 𝑓𝑐𝑜𝑛 (H𝑐𝑜𝑛), Ŷ1 = 𝑓𝑡𝑟𝑒 (H𝑡𝑟𝑒 ). The factual loss for
the prediction is calculated as follows. If the outcome is continuous
(or if it is categorical, the cross entropy loss is adopted):

L𝑓 = 1∑𝑁
𝑖=1 I(𝑡𝑖=0)

| | (Y𝐹 − Ỹ0) · 𝑑𝑖𝑎𝑔(1 − T) | |22
+ 1∑𝑁

𝑖=1 I(𝑡𝑖=1)
| | (Y𝐹 − Ỹ1) · 𝑑𝑖𝑎𝑔(T) | |22 .

(5)

5 EXPERIMENTS
Baselines. We compare SCI with the following baselines: Least
square Regression with the treatment as feature (OLS/LR1); Sepa-
rate linear regressors for each treatment group (OLS/LR2); HSIC-
NNM) [2]; PSM) [20]; k-NN) matching [5], Causal Forest [25],
BNN [13], CFR-MMD [22], CFR-WASS [22], TARNet [22], CE-
VAE [18]. In order to evaluate the effect of each component in
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Jobs (Rpol)

Method Within-sample Out-of-sample

OLS/LR1 0.297 ± 0.010 0.307 ± 0.084
OLS/LR2 0.295 ± 0.006 0.297 ± 0.084

HSIC-NNM 0.291 ± 0.019 0.311 ± 0.069
PSM 0.292 ± 0.019 0.307 ± 0.053
k-NN 0.230 ± 0.016 0.262 ± 0.038

Causal Forest 0.232 ± 0.018 0.224 ± 0.034

BNN 0.232 ± 0.008 0.240 ± 0.012
TARNet 0.228 ± 0.004 0.234 ± 0.012

CFR-MMD 0.213 ± 0.006 0.231 ± 0.009
CFR-WASS 0.225 ± 0.004 0.225 ± 0.010
CEVAE 0.212 ± 0.020 0.270 ± 0.045

SCI (Ours) 0.204 ± 0.008 0.225 ± 0.014
SCI-w/o-rec. 0.215 ± 0.007 0.233 ± 0.010
SCI-w/o-sub. 0.213 ± 0.006 0.231 ± 0.009
SCI-w/o-com. 0.214 ± 0.007 0.248 ± 0.010
SCI-w/o-pseu. 0.211 ± 0.006 0.237 ± 0.011
SCI-w/o-hsic. 0.208 ± 0.006 0.227 ± 0.011

Table 1: Performance comparison on Jobs Dataset.

SCI, we also compare SCI with its variants: SCI without reconstruc-
tion component (SCI-w/o-rec.); SCI without subspace component
(SCI-w/o-sub.); SCI without common space component (SCI-w/o-
com.); SCI without pseudo outcome component (SCI-w/o-pseu.);
SCI without HSIC regularization (SCI-w/o-hsic.).

5.1 Experiments on Real-world Datasets
Datasets. We evaluate the proposed SCI framework on the bench-
mark dataset, Jobs dataset [16]. The settings of Jobs dataset is the
same as the one in [6, 22].
Performance Metric. The Jobs dataset only provides the factual
outcomes. The ground truth of counterfactuals and ITE are un-
available. Following the settings in [22], we adopt the policy risk
to evaluate the ability of ITE estimator to support the decision
making. The policy loss is defined as the loss if the units are treated
according to specific policy. The smaller the policy risk is, the better
the ITE estimation model can support the decision making.
Performance Analysis. Table 1 shows the performance of SCI
and the baselines on 10 train/validation/test splits with 56/24/20
split ratio which is the same as [22]. From the table, it is observed
that SCI outperforms baseline methods in both cases, which indi-
cates that SCI can effectively estimate the treatment outcomes and
provide better treatment decision support. Among all baselines,
HISC-NNM learns subspaces that are predictive of the outcome
for both control and treated groups [2], but it ignores the common
information between two groups. Compared with HSIC-NNM and
representation learning based baselines, SCI achieves better out-
come estimations for the reason that the learned common subspace
and the treatment-specific subspaces complement each other. More-
over, by comparing SCI with its variants, it can be observed that
each component of SCI does contribute to the proposed model.

5.2 Experiments on Synthetic Dataset
To evaluate the robustness of SCI, we conduct experiments on a
synthetic dataset with different levels of selection bias.

1  2 3 4

1

0.2

0.4

0.6

0.8

CFR-WASS

CFR-MMD

TARNet

SCI

Figure 2: Performance Comparison on Synthetic Dataset.

Data Generation. Following the settings in [11], in the control
group, the pre-treatment feature vector of every unit (i.e., x) is
sampled from the distribution 𝑁 (010×1, 0.5 × (Σ + Σ𝑇 )), where Σ ∼
𝑈 ((−1, 1)10×10); In the treated group, every pre-treatment feature
vector is generated from distribution 𝑁 (`1110×1, 0.5×(Σ+Σ𝑇 )). For
every unit with feature x, its control and treated outcomes are gen-

erated as follows:
[
𝑦0
𝑦1

]
=

[
w0

𝑇 x + 𝑛0
w1

𝑇 x + 𝑛1,

]
, w0,w1 ∼ 𝑈 ((−1, 1)10×1),

and 𝑛0, 𝑛1 ∼ 𝑁 (0, 0.1) where 𝑦0(𝑦1) is the control (treated) out-
come of unit with covariate x. Following the above procedures, by
varying the value of `1, we can generate multiple datasets with
different levels of selection bias, because the larger the `1 is, the
smaller the overlapping of treated and control group is. Finally, we
generate four datasets with `1 = 1, 2, 3, 4, and in each dataset, there
are 5, 000/2, 500 units in the control/treated group.
Performance Metric. On the synthetic dataset, the ground truth
is known, so we adopt the precision in Estimation of Heteroge-
neous Effect (EPEHE) [9] as the performance metric: ÊPEHE =√

1
𝑁

∑𝑁
𝑖=1

(
[𝑦 (𝑖)1 − 𝑦

(𝑖)
0 ] − [𝑦 (𝑖)1 − 𝑦

(𝑖)
0 ]

)2
, where 𝑦 (𝑖)1 , 𝑦 (𝑖)0 are the

ground truth outcomes, and 𝑦 (𝑖)1 , 𝑦 (𝑖)0 are the estimated outcomes.
The lower the ÊPEHE is, the better the performance.
Results Analysis. Figure 2 shows the mean and variance of RMSE
on 10 realizations. The baselines we compare include TARNet, CFR-
MMD and CFR-WASS, which are the most competitive baselines on
the Jobs and Twins datasets. Figure 2 shows that SCI consistently
outperforms its competitors under different levels of selection bias.

6 CONCLUSIONS
In this paper, we propose a novel approach for counterfactual infer-
ence by learning two kinds of subspaces with an encoder-decoder
architecture. Different from existing work which learns a balanced
common subspace, the proposed method SCI learns two types of
subspaces: the common subspace preserves the across-treatment in-
formation and reduces the selection bias; and the treatment-specific
subspaces retain the complementary information related to each
treatment. Concatenating the representations learned from com-
mon and treatment-specific subspaces strengthens the ability of
counterfactual inference. Extensive experiments on both synthetic
and real-world datasets demonstrate the advantage of the proposed
approach in counterfactual inference as well as the ITE estimation.
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