Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Data Poisoning Attack against Recommender System Using
Incomplete and Perturbed Data

Hengtong Zhang!>", Changxin Tian**', Yaliang Li®, Lu Su!, Nan Yang?,
Wayne Xin Zhao®>**, Jing Gao'*
1School of Electrical and Computer Engineering, Purdue University, USA
2School of Information, Renmin University of China, China
Gaoling School of Artificial Intelligence, Renmin University of China
“Beijing Key Laboratory of Big Data Management and Analysis Methods, China
SDepartment of Computer Science and Engineering, State University of New York at Buffalo, USA
6 Alibaba Group
htzhang. work@gmail.com,{tianchangxin,yangnan}@ruc.edu.cn,
yaliang.li@alibaba-inc.com,{lusu,jinggao}@purdue.edu,batmanfly@gmail.com

ABSTRACT

Recent studies reveal that recommender systems are vulnerable
to data poisoning attack due to their openness nature. In data poi-
soning attack, the attacker typically recruits a group of controlled
users to inject well-crafted user-item interaction data into the rec-
ommendation model’s training set to modify the model parameters
as desired. Thus, existing attack approaches usually require full
access to the training data to infer items’ characteristics and craft
the fake interactions for controlled users. However, such attack
approaches may not be feasible in practice due to the attacker’s
limited data collection capability and the restricted access to the
training data, which sometimes are even perturbed by the privacy
preserving mechanism of the service providers. Such design-reality
gap may cause failure of attacks. In this paper, we fill the gap by
proposing two novel adversarial attack approaches to handle the in-
completeness and perturbations in user-item interaction data. First,
we propose a bi-level optimization framework that incorporates a
probabilistic generative model to find the users and items whose in-
teraction data is sufficient and has not been significantly perturbed,
and leverage these users and items’ data to craft fake user-item
interactions. Moreover, we reverse the learning process of recom-
mendation models and develop a simple yet effective approach
that can incorporate context-specific heuristic rules to handle data
incompleteness and perturbations. Extensive experiments on two
datasets against three representative recommendation models show
that the proposed approaches can achieve better attack performance
than existing approaches.

+ The first two authors contributed equally to this work.
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °21, August 14-18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08...$15.00
https://doi.org/10.1145/3447548.3467233

2154

CCS CONCEPTS

« Information systems — Personalization; - Security and pri-
vacy — Web application security.

KEYWORDS
Adversarial learning, Recommender system, Data poisoning

ACM Reference Format:

Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne
Xin Zhao, Jing Gao. 2021. Data Poisoning Attack against Recommender
System Using Incomplete and Perturbed Data. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
'21), August 14-18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3447548.3467233

1 INTRODUCTION

In the era of information explosion, how to precisely locate the
needed information becomes a challenging task for online service
users. To tackle such a challenge, service providers (e.g., YouTube,
Amazon, and eBay) deploy recommender systems, which suggest
items (e.g., products, movies, etc.) to specific users based on their
profiles and historical behaviors. These systems play an important
role in helping users to make their decisions and choices.

In normal scenarios, the results from online recommender sys-
tems are generally considered to be reasonable and unbiased. How-
ever, recommender systems’ openness (i.e., recommendation mod-
els are learned based on user data which is usually publicly accessi-
ble) and the great influence on online users offer both opportunities
and incentives for adversarial attackers. Particularly, attackers can
inject fake data into the training set of the recommendation model
to make the model behave abnormally (e.g., to promote some tar-
get items to users). This kind of attacks is named data poisoning
attacks [6, 14-16, 22, 26-28]. Specifically, the attacker utilizes con-
trolled users to inject well-crafted fake user-item interaction data
into the training set. The objective is to manipulate the representa-
tions inferred for the target items so that they are similar to that of
the target users.

Though yielding reasonably good performance, almost all these
works assume an attacker can obtain the entire training data of
the target recommendation model. However, such assumption is

Research Track Paper

often impractical in the real world. First, online service providers
may restrict one’s access to the full user-item interaction data or
even perturb these data [20, 21] to enforce user privacy. Second,
the attacker’s capability of collecting massive user-item interaction
data may be limited by his/her resources and/or the platform’s data
volume restriction. These practical issues may make the existing
attack approaches suffer performance decrease. In data poisoning
attacks, the attacker employs controlled users to interact with tar-
get items and some selected items (referred to as proxy items). In
essence, such a process shapes these controlled users’ represen-
tations to further influence the representations of target items to
accomplish the attack goals. Hence, the attacker needs complete and
accurate user-item interaction data to select proper proxy items for
controlled users. When part of the training data is removed or mod-
ified, the attack approaches cannot correctly find the appropriate
proxy items.

In this paper, we conduct a pioneer study on practical attack
approaches against recommendation models, based on incomplete
and perturbed user behavior data. Since recommender systems
are generally blackbox for the public, we utilize a local surrogate
model to craft fake user-item interactions. Our first approach RAPU-
G (Recommendation Attack for Partial and PertUrbed Data - Global
View) formulates the attack as a bi-level optimization problem. The
upper-level problem defines the overall attack objective, and the
lower-level problem specifies the recommendation model’s learn-
ing objective using both original and injected data. Since solving
for the optimal fake data in the bi-level optimization framework in-
volves the optimization over the entire original data set, we regard
this approach as a global-view approach. As mentioned above, the
incomplete and perturbed user data may hinder the attack frame-
work from capturing certain users’ and items’ characteristics. To
handle such issue, we incorporate a probabilistic model into the
bi-level optimization framework to: (1) find the users and items
whose interaction data are sufficient and have not been significantly
perturbed; and (2) leverage these users’ and items’ data to craft the
fake user-item interactions.

To improve the efficiency of the attack, we further backtrack
the optimization process of recommendation models in depth and
propose a much simpler yet effective greedy approach named
RAPU-R (Recommendation Attack for Partial and PertUrbed Data
- Reverse). The RAPU-R method starts from the attack goal and re-
verse the optimization process to obtain the proper proxy items for
controlled users. In essence, to promote a target item to a specific
user, the attacker needs to inject well-crafted user-item interac-
tions into the recommendation model’s training set so that the
representation of the target item moves towards that of the user.
Thus, RAPU-R should first infer the optimal modification of the
target item’s representation that can accomplish the attack goal.
Then from the optimization’s point of view, to let the target item’s
representation move along the optimal modification instead of stay-
ing at the original place, the controlled user has to use their own
representations to influence that of the target item. Based on such
a principle, we can further determine the desired representation
of the controlled users. Finally, with the controlled user’s desired
representation, we can search for appropriate items based on their
representations and heuristic rules. Moreover, since the amount of
fake data injected by controlled users is very small compared with

2155

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

the entire dataset’s size, the representation of an overwhelming
majority of users and items is not influenced. Hence, the proposed
reversing approach does not have to repeatedly update the rec-
ommendation models’ parameters as the global-view approach.
Therefore, the reversing method is much more efficient.

In the experiments, we use three representative recommendation
models as target models and conduct attacks on two real-world
datasets to evaluate the proposed poisoning attack approaches.
Experimental results show that the proposed RAPU-G and RAPU-
R outperform baseline attack approaches and can effectively pro-
mote target items, especially when the training data is incomplete
or perturbed. We also conduct extra studies on the characteristics
of the proposed approaches.

2 THREAT MODEL

In this paper, we study top-K recommendation via implicit feedback,
one of the most widely adopted recommendation settings. Its formal
definition is given below:

Definition 2.1 (Top-K Recommendation via Implicit Feedback).
Consider a user-item interaction dataset, in which data records
associate a user u and an item i. Under the implicit setting, there
are only positive feedback signals, which indicate users’ positive
interactions (e.g., clicks or purchase) with items. The recommen-
dation system’s task is to provide the users with a personalized
ranking of size K.

With the recommendation task defined above, now let us detail
the threat model of the proposed attack.

Attack Goal: An attacker’s goal is to promote a set of target
items to as many target users as possible. Specifically, suppose the
system recommends K items to each user, the attacker’s goal is to
maximize averaged display rate, which denotes the fraction of target
users whose top-K recommendations results include the target items.

The Knowledge and Capability of the Attacker: In this pa-
per, we assume that the attacker has the following knowledge and
capability:

(1) The attacker can access only part of the training set of the
target recommendation model. In the data collected by the
attacker, part of each user’s (or item’s) historical interactions
are removed or perturbed.

(2) The attacker has limited resources, i.e., he/she can control a
limited number of users.

(3) Since normal users often interact with a small number of
items, we also limit the maximum number of items each
controlled user can interact with. Such a restriction is im-
posed to prevent the controlled users from being detected
by simple anomaly detectors.

(4) The attacker does not know the details about the target
recommendation system. For instance, the parameters and
the architecture of the recommendation model.

Attack Approach: To achieve the attack goal, we consider the
most general scenario in which the attacker recruits controlled users
who can visit or rate the target and the selected proxy items. Besides,
the set of user-item interactions before and after controlled users
inject fake data are referred to as original data and manipulated
data, respectively.

Research Track Paper

Moreover, since the attacker does not know the exact architec-
ture or parameters of the target model, we leverage a local surrogate
recommendation model to craft the fake user-item interactions and
directly use them to poison the target system. The intuition behind
such design is that: if two recommendation models can both pro-
duce satisfactory recommendation results on a given dataset, then
the poisoning samples generated for one of the recommendation
models can be used to attack the other. Specifically, we choose
to use Weighted Regularized Matrix Factorization (WRMF) [12],
a fundamental and representative factorization-based model for
recommendations with implicit interaction, as the surrogate model.
Due to space limitation, please refer to Appendix A.4 for the detailed
formulation. We will discuss the transferability of the poisoning
samples in our experiment section in detail.

3 RAPU-G: THE GLOBAL VIEW METHOD

In this section, we first formalize the attack approach via a bi-level
optimization problem and then propose a probabilistic generative
model (PGM) integrated with the bi-level optimization framework
to handle the issues caused by the incomplete and perturbed data.

3.1 Attack as an Optimization Problem

In RAPU-G, we directly learn fake user-item interactions for con-
trolled users by solving a bi-level optimization problem that is
similar to [5, 15, 22]. On one hand, the lower-level problem solves
for the optimal parameters of the recommendation model given
both the original data and the fake data injected by the controlled
users. On the other hand, the upper-level problem solves for the
optimal fake data to accomplish the attack goal given current model
parameters obtained via solving the lower-level problem.

Formally, let 7 denote the set of items, ¢ and U’ denote the set
of normal users and controlled users respectively,and R € RIUXIZ
and R* € RIYXIZ1 denote the original data and the fake data. We
formulate the bi-level optimization problem in Eq. (1).

min L(Rg+),

* . 5 * Pk (1)
st. 0" =arg m91n (Ltrain(R, Rg) + Lirain(R :Ré))>

where 6 denotes the model parameters, ﬁg and R* denote the rec-
ommendation predictions from the models trained on original data
and fake data with parameter 0 respectively, L;r4in denotes the
training loss of the recommendation model, and £ is the adversar-
ial attack objective, which can be adjusted for different malicious
goals. Since solving for the optimal fake data involves the optimiza-
tion over the entire original dataset, we regard the approach as a
global-view approach.

In this paper, we aim to promote target items to as many normal
users as possible. Thus, the adversarial attack objective function can

be defined as: £ = — ZtE‘T (ZuE’M ZUE]J g(fut —fuv)), where fui
is the predicted score that the user u gives to the item i, 7~ denotes
the set of target items, 7;; is the set of top-K recommended items
for a user u according to the predicted interaction, and g(x) =
1+€Xp(+x/b) denote the Wilcoxon-Mann-Whitney loss [1], where b
is a parameter called width.

2156

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Algorithm 1: Generative Process of User-Item Interactions

1 for each user u do

2 Draw a keeping ratio: Kffj) ~U(0,1);
3 Draw a decent ratio: yl(,u) ~U(0,1);
4 end

5 for each item i do

6 Draw a keeping ratio: K;I) ~U(0,1);
7 Draw a decent ratio: ylm ~U(0,1);
s end

9 for each possible user-item pair (u, i) do
(1) K(U) +K(I)
Draw a keeping indicator &,,; ~ Bernoulli(—*———
if 5 = 0 then
‘ Sample the observation as: P(ry; = 0;5,; =0) =1;
else if 51(411.) =1then

10);
11
12

13
(2) YLU)
Draw a decent indicator &,,; ~ Bernoulli(
if 52) = 0 then
‘ Sample the observation from: r,,; ~ N (7, 0'3) ;
else if Sl(fi) =1 then
‘ Sample the observation from: ry,; ~ N (#yi, 02) ;

T
14 +Yi(');
15
16
17

18

19 end

3.2 Handling Incomplete and Perturbed Data
via Probabilistic Generative Model

As one can see, in Eq. (1), the lower-level optimization problem
mainly relies on the original data collected by the attacker, i.e., R, to
learn the parameters of the local surrogate recommendation model,
i.e., 0. Existing works generally assume that the attacker can access
to the full training set. However, as discussed in the introduction,
this assumption does always hold in real world. When part of the
original data R is perturbed or removed, the local recommendation
model cannot estimate the normal users” and items’ characteristics
precisely. In this case, the attack framework might be unable to find
the proper proxy items for the controlled users to interact with. To
tackle this challenge and estimate users’ and items’ characteristics
more accurately, we propose to integrate the bi-optimization frame-
work with a PGM to handle the incompleteness and perturbations.

3.2.1 Overview. In a benign recommendation dataset, observed
records indicate positive user-item interactions (e.g., a user clicks
on an item), and the user-item pairs that do not exist in the observed
records are treated as negative user-item interactions (e.g., a user
does not click on an item). Both positive and negative user-item
interactions contribute to inferring the characteristics of users and
items. In the proposed PGM, we do not assume that all the user-
item interactions (both positive and negative) are genuine. Instead,
we consider all the possibilities that may result in the observed
positive or negative interactions. An positive user-item interaction
may be a real positive interaction, or otherwise, the outcome of
possible perturbations. Similarly, a negative user-item interaction
may be a real negative interaction, or otherwise, the outcome of
the online service provider’s removals (e.g., removing a positive
interaction) or perturbations. To model these phenomena, in the
PGM, we introduce parameters to model the chance of a user’s (or
an item’s) historical interactions being removed or modified. For

Research Track Paper

each possible user-item interaction, the PGM infers the possibility
that an interaction is real or the outcome of a modification.

3.2.2 Detailed Description of PGM. The proposed PGM is detailed
in Algorithm 1. For each user u and each item i, we define variable
KLU) and K;I), respectively, to estimate the ratio of its interaction
records that are not removed (line 2 and 6). Similarly, we use variable
Y and ym respectively, to define the ratio of its interaction
records that are not modified (line 3 and 7). All these four variables
are drawn from a uniform distribution between 0 and 1, i.e., U (0, 1),
since we do not assume any prior knowledge of them.

Then we exhaust all the possible user-item pairs regardless of
whether there is an observed positive interaction between them.
For each possible user-item interaction pair, we first sample a bi-

nary indicator 5'5;) from a Bernoulli distribution to infer whether
the potential interaction is included in the attacker’s data (line 10)

(U>+ @

or not, i.e., 5() . Bernoulli(—). Here the parameter of
Bernoulli dlstr1but10n is calculated by taking the average of k.’
) since both the user and the item involved in the interaction

determme whether a potential positive interaction is kept or re-

and K;

moved. When 51(;) = 0, the observation is determined to be negative

(line 11-12). Otherwise, we sample another binary indicator 51(5)

(u) . I)
from a Bernoulli distribution, i.e., 5() - Bernoulll(u), to

infer whether the observed 1nteract10n comes from an intentional
modification (6u? = 0, line 15-16) or otherwise, comes from the

characteristics of the user/item (515?) = 1, line 17-18). Formally, if

51(3) = 0, we draw the observed interaction from a Gaussian distri-
bution centered at 7, which is the averaged interaction. Otherwise,
if 51(5) 1, we draw the observed interaction from a Gaussian
distribution centered at 7y;, which is the prediction of the arbitrary
surrogate recommendation model.

The PGM specifies a negative log-likelihood of observations,
latent variables, and parameters given (1) the hyper-parameters
and (2) predictions from the recommendation model:

Lpgm
2
- > logp(5,). 8.7
(u,i)
_ Z logBernoullr((s(l) |K<U), ED) logBernoulh((S(z) Iy(m’ ;1))
(w,i)
N 51(41")51(42) log N(rui | Fus, 07) = 5(1)(1 5(2)) log N (rui | 7, 07)
(1) (1) _
- (1-9,;,)logI[s,; =0],

()

I
vy

e

- oy

Tui | K > s Puis 07)

where I[x] is the indicator function that evaluates to 1 when x is
true, and 0 otherwise.

The proposed PGM can be viewed as an extension upon an
arbitrary model-based recommendation method. To incorporate the
PGM into the bi-level optimization framework, we simply replace
the training loss on original data, i.e., Lsrqin(R, ﬁg) in the lower-
level of Eq. (1), with the joint negative log likelihood specified by
the PGM, i.e., Lpgm (R, Ry). By plugging the negative log-likelihood
above into the lower-level, the optimization problem becomes:

nl’ii*n L(Rg+),
@

st. 0" =arg mgn (Lpgm (RRg) + Lirain(R*,RY)).

2157

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Remarks: If we look into the formulation of the negative log-
likelihood, we can find only the user-item interactions that are
inferred as real data (in contrast to the outcomes of removals and
perturbations) are used to infer the characteristics/representations
of users and items (term: 5(1)5(2) log N (ryi | fui» @?)). Thus, the
attack framework can leverage accurately estimated user/item rep-
resentations to find proper proxy items for controlled users to
launch the attacks.

Algorithm 2: Learning fake user data with EM and Gradi-
ent Descent
Input: max iteration for inner and outer objective: L and T;
learning rate for inner and outer objective: o and 7;
1 fort=1toTdo
2 for m=1to M do

3 Surrogate model forward:
Ry-1), R o1y = Modelsyr (U, I, U501V ;

4 Use EM to compute the PGM latent variables and
parameters for each user-item pair.;

5 Optimize inner objective with SGD: 8™ « (m=1) _
Vo (Lpgm (R, ﬁg(mfl)) + Ltrain (R R;(m 1)))

6 end

7 0 — 6M) .

8 | R=R'—p-VrL(Re);
9 Update fake data: R* « Project(R + PRp);
end

3.3 Learning Method of RAPU-G

The overall learning algorithm is summarized in Algorithm 2. In
each outer iteration ¢ € {1...T}, we first re-train the surrogate model
by performing parameter updates for L iterations (inner iterations,
line 2-6), and then use PGD and projection operator to update fake
data R* (line 8-9).

Specifically, in each inner iteration, we first perform the forward
process to get the current recommendation predictions on original
data ﬁe(m—l) (line 3), and then solve for the PGM latent variables
and parameters via EM algorithm [4] (line 4) :

E-step: In E-step, we compute expectation of the latent variables
for all the possible user and item combinations (u, i). Obviously, a
specific pair is surely not removed by the service provider if we
observe ry; = 1, i.e., E[(?I(;) | ryi =1] =1, and 515? does not exist
if 551? = 0. Thus, we need to derive the expectation of 51(1? when

ryi = 0 and the expectation of 5,3?) when 51(4? =0

1 ~
B8 11k y D v D s, rs = 0]

Kui - TuiN(O | Pui, (73) +(1-Tu))N(O | 7, 0'3))
((TuiN(O | Fuiy 02) + (1= Tur) N(O | 7,08)) + (1 - Kui)
E[s(” Lo o b8 = 11
_ 1—‘ui/\/(rui I Tui, O-E)

T TuiN(rui | Fui 02) + (1= Tud) N(rui | 7, 0%)
(U) l()), (I

where K,; = HT - u
for the values of N (#yi,

evaluated at ry;.

®)

Tyi s N (rui | ru,,a,) stand
o2)’s probabrllty density function (PDF)

Research Track Paper

()

M-step: We define ES) = E[éﬁ) | K,(f” D (U>,yl. , Fui, ryi | and

Ky s Yu
Eﬁ) = E[éé?) | K;U),Klf”,y,(f/),y;[), Fui, rui] for simplicity, which

are computed from the E-step. To update the parameters of the gen-

erative model, i.e., Kl(lU), Klm, yl(lU), ylf” , we directly take the deriva-
tive of the negative log likelihood with respect to K,(JU) , K;I) , y,iU) , yl@ :
(1) (1)
) _ Zie] Eui K(I) _ Zue"uEui
“ [ry - i lup @
4
(2) (1) (2) (1)
w) _ Zier By 16,7) oy _ ZueuBuy 105,
‘ e 150 ' 180y
216] (ui) ZuE"LI (ui)

On getting the PGM latent variables and parameters via EM, we
use stochastic gradient descend (SGD) to solve the bi-level opti-
mization problem defined in Eq. (2). The optimization approach we
used here is identical to [22]. Note that in line 9, we smooth the fake
data via the popularity of each item to obtain the final fake data.
The intuition of this operation is that the popularity is a significant
prior knowledge for attacks. Specifically, the popularity matrix can

be estimated as: Ry [u, i] = Cix, where c; is the total number of

Cm

interactions related to item i and ¢4 is the maximum interaction
number among all items. We normalize the fake data into feasible
region (i.e., ry; € {0,1}).

4 RAPU-R: THE REVERSING ATTACK
APPROACH

In this section, we reverse the optimization process of a recom-
mendation model from a reverse review to propose an efficient yet
effective attack approach.

4.1 Attack via Reversing the Optimization
Process

For simplicity of discussion, we use the aforementioned WRMF [12,
18], to conduct our analysis. While, our discussion on WRMF can
be easily extended to other recommendation models.

Consider a simple case in which the attacker wants to promote
the target item i to a user u. We denote the representations of user
u and item i as py, and q;, respectively. Promoting the target item i
to a user u means that we want to maximize their inner product, i.e.:
Fui = Pu-qi. Since the attacker cannot modify observed interactions
of normal users in the training set, we focus on leveraging the
controlled users to manipulate the representation of the target item
i and further accomplish the promotion goal. Formally, let € be the
perturbation on g;, the optimal €, i.e., € should satisfy:

€" =argmax p, - (q; + €).
€

Obviously, the optimal €* = p,, in our case.

Thus, we have transformed the problem of promoting target
item i into the problem of shifting q; by €*. To achieve this goal,we
need to make the sum of terms involving item i in the training loss
decrease after q; is shifted by €*. Formally, we have to let controlled
users (e.g., user m) inject fake data to make:

Z L(Pu,qr*'e*;rmi) < Z L(Pm, qi;rmi)s (5)

meUUU’ meUVU’

2158

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

o0
@;’ Pu q:

Ems OO —
®)

Target Item
Useru

lembedding

Optimal
Perturbation €

Proxy Item
Target item i

embedding Pu qite interaction

1) Find the optimal
perturbation for target item i

2) Let training loss favor
q; + € rather than q;

3) Determine proxy items for
controlled users to move q; to q; + €

Figure 1: Overview of RAPU-R

Algorithm 3: Workflow of RAPU-R.

Input: normal user representations P, item representations Q, set
of target item 7, number of controlled users M;
1 for m=1toM do

2 Find the optimal direction of perturbation for target items 7
€' = Yierargmax, py - (qi+€) ;
3 Get the optimal representations for the controlled user m:

P, =argming, L(pm, qi + €"57mi) ;

4 Find the best proxy item set 7 that should be interacted with,
based on the similarity between the item representation and
q", where: ¢* = argming (py, - ¢ - 1) ;

5 Controlled user m clicks the best proxy item set Z3.

¢ end

where L is the loss function of a single user-item interaction pair?.

As one can see from Eq. (5), both normal users and controlled
users interact with the target item i. However, the attacker can
only control the interaction data generated by the controlled users.
Hence, the practical surrogate goal is to only consider that the
controlled users inject fake data:

D L(Pu @i+ €57mi) < D L(Pus 4is Tmi)-

mel’ mel’

Q)

Towards the attack goal, the next step is to determine the proxy
items for controlled users. From the view of optimization, the opti-
mal representation for a controlled user m, i.e., p},, should satisfy:

P = argnj}inL(pm»qi + €5 mi),

which provides the largest chance to make Eq. (6) hold.

Now, we know the optimal representations for the controlled
users. Ideally, the controlled users should have all their represen-
tations close to pj,. By looking into the update of p,, during the
training process, we find that the ideal item representation to shape
a controlled user’s representation as pj, should satisfy:

q =arg mqin(pi‘n “q-1).)

With the ideal representation, we may simply exhaust the items
in the item set I to search for top items whose representations are
close to q* as proxy items. Since the injected fake user-item inter-
actions do not significantly influence the representations of most
non-target items, we do not explicitly include the model parameter
updates like Eq. (2) in RAPU-R. Such an approximation strategy
makes the proposed RAPU-R much more efficient than existing

!For the recommendation model WRMF specified in Eq. (10) (in Appendix A.4)
. L(rmi, pu,qi + €") is a quadratic loss defined as L(rmi, pu,qi + €°)
Wmi (rmi —Pu - (qi + e))Z .

Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Table 1: Comparison between the Proposed RAPU-G, RAPU-R and the State-of-the-art Approach RevAdv. Here, the maxi-
mum numbers of iterations for the outer objective and EM algorithm are T and E, respectively. 7 is the unroll steps constant
introduced in [22]. || is the number of parameters. U, I and U’ stand for the set of real users, items and controlled users.

Time Complexity Type of Technique Handle Incompleteness and Perturbations Performance
RAPU-G | O(T - (z|0|+E - |U||L])) Bi-level optimization Yes (PGM to identify perturbations or removals) Best
RAPU-R o(|U||1)) Greedy search algorithm Yes (Focus on effective and popular proxy items) Similar to RevAdv
with heuristic rules
RevAdv Oo(T - 710]) Bi-level optimization N/A Similar to RAPU-R

methods based on bi-level optimization frameworks. Finally, we
summarize the workflow of the attack approach in Algorithm 3.

Handling Data Incompleteness and Perturbations: There
are two mechanisms in RAPU-R that handle the data incomplete-
ness and perturbations issue. First, given a specific target item,
RAPU-R greedily forces all the controlled users to interact with the
most useful proxy items in terms of reshaping the characteristics
of the target item. Such a design can naturally decrease the impact
of perturbations and removals since the controlled users can still
launch successful attacks with only a small part of uninfluenced
useful proxy items. Second, we incorporate context-specific heuris-
tic rules to flexibly reduce the proxy item candidates to find the
items that are not influenced by the removals and perturbations.
For instance, in this paper, we search the proxy items only within
the items with the highest popularity (top 10%). When user-item in-
teraction data suffers removals or perturbations, the popular items
have a larger chance of maintaining enough data records so that
their representations can be more accurately estimated.

4.2 Comparison of Approaches RAPU-G,
RAPU-R and the State-of-the-art Attack

This section presents a comparison of the two proposed approaches
and the state-of-the-art attack approach RevAdv [22]. Here, we
summarize the key differences between the proposed approaches
and RevAdyv to highlight our insights and advantages in Table 1.
In a nutshell, the proposed RAPU-G can empirically achieve the
best attack performance, since it is with a more elaborately designed
probabilistic modeling process. In contrast, the proposed RAPU-
R is a simple yet efficient approach, which can achieve comparable
performance with RevAdv with a far less time complexity. Thus,
it is particularly suitable to launch large scale attacks or conduct
vulnerable tests to evaluate the robustness of recommendation mod-
els. In terms of handling data incompleteness and perturbations,
RAPU-G directly utilizes the proposed PGM to identify the possible
perturbations and removals. Only the user-item interactions that
are inferred as real data are used to estimate items’ characteris-
tics and discover proper proxy items. In contrast, RAPU-R finds
proper proxy items by reversing the learning process. It explicitly
focuses on using the popular proxy items with the highest chances
to accomplish the attack goal. These proxy items are not severely
impacted by data removals and perturbations, empirically.

5 EXPERIMENTS

In this section, we conduct the experiments to verify the effective-
ness of the proposed two approaches.

2159

5.1 Experiment Settings

5.1.1 Datasets. In this paper, we evaluate our approaches on widely-
used two real-world datasets MovieLens-100k (MovieLens) [8] and
Amazon Instant Video (Amazon-Video) [9]. The detailed descriptions
of these two dataset are in Appendix A.5.

5.1.2 Baseline Attack Methods. We compare our proposed method
to several baseline methods. The parameters of these approaches
are set as the original papers suggest.

e None: The circumstance when no attack is conducted.

e Random: In this attack, controlled users click the target items
and some other randomly chosen items.

e Popular: Following [6, 16], each controlled user selects 10%
popular items and 90% other random items as the proxy items.

e Projected gradient ascent attack (PGA) [15]: This approach
focuses on attacking matrix factorization based recommendation
models. PGA aims to assign high rating scores to the target items
and randomly generate filler items for the fake users to rate.

e Co-visitation attack (CoVis.) [26]: This baseline attack is
designed for association-rule-based recommendation models. In
this approach, the attacker finds the proxy items to inject fake
co-visitations by solving a standard linear programming problem.

e Supervised random walks attack (SRWA) [6]: SRWA also
formulates the poisoning attack as an optimization problem and
assumes target is a graph-based recommendation model.

e Revisit Adv.(RevAdv.) [22]: It also formulates poisoning at-
tack problem as a bi-level optimization problem solved via gradient-
based approaches. This is the state-of-the-art attack approach.

5.1.3 Targeted Recommendation Methods. In this section, we con-
sider the following victim methods to attack. These methods are
implemented via RecBole [29] library. The parameters of these
target methods are shown in Appendix A.7.

e WRMF [12]:Itis a fundamental and representative factorization-
based model for recommendations with implicit feedback (see Sec-
tion 2 for more details).

e Neural Collaborative Filtering (NCF) [11]: It is a popular
framework that explores non-linearities in modeling complex user-
item interactions. We adopt Generalized Matrix Factorization (GMF)
as the instantiation of NCF.

e LightGCN [10]: It is the state-of-the-art GNN-based method,
which discards the feature transformation and the nonlinear acti-
vation functions in the GCN aggregator.

5.1.4 Target Items. Following [22], we uniformly sample 5 items
together from the whole item set as a target item set and measure
the hit ratio at 50 (HR@50) on the target item set, where it is
considered as a hit if one of these items appears in the ranked list.

Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Table 2: HR@50 of different attacks against different victim models with 90% training data + 10% perturbed data on two datasets.
We use bold and underline fonts to denote the best performance and second best performance method, respectively.

Percentage of Controlled Users
Dataset Method WRMF NCF LightGCN
0.5% 1% 3% 5% 0.5% 1% 3% 5% 0.5% 1% 3% 5%
None .0541 .0541 .0541 .0541 .0814 .0814 .0814 .0814 0679 .0679 0679 .0679
Random | .0593 .0604 .0666 .0682 .0917 1108 .1527 .1386 .0656 .0727 .0709 .0809
Popular .0600 .0641 .0725 .0755 0944 1132 .1612 .1463 .0648 0736 .0823 .0960
PGA 0612 .0619 .0678 .0737 .0967 1062 1222 1417 .0612 .0703 .0785 .0861
MovieLens SRWA .0594 0634 .0725 .0722 | .0958 .1099 .1209 .1433 .0664 0715 .0768 .0801
CoVis. 0622 .0655 .0732 .0801 .0996 1124 1537 .1656 0653 .0736 .0823 .0960
RevAdv. | 0642 0719 0783 0856 | 1109 1353 1841 1958 | .0651 0775 0990 1176
RAPU-G | .0715 .0779 .0950 .1116 | .1190 .1431 .1859 .2129 .0764 .0856 .1139 .1597
RAPU-R | .0734 .0843 .0945 .0959 | .1165 .1413 .1715 1952 .0721 .0793 .0906 .1082
None .0074 .0074 .0074 .0074 .0369 .0369 .0369 .0369 .0228 .0228 .0228 .0228
Random | .0571 .0709 .0913 .0998 | .0793 .0839 .0935 .0852 0522 .0674 1186 .1493
Popular .0554 .0769 .0954 .0936 .0807 .0899 .0995 .1198 .0565 .0756 .1518 .2116
. PGA .0556 .0779 .0927 .0993 | .0725 .0879 .0921 .0952 .0480 .0633 .1112 .1504
Amazon-Video
SRWA .0521 0730 .0971 .1020 .0746 .0849 .0919 .0955 .0532 .0662 .1181 .1609
CoVis. 0607 .0789 .0955 .0946 | .0866 .0998 .1066 1164 0575 .0766 .1523 .2216
RevAdv. | .0734 0913 1297 .1488 | .0902 .1169 .1496 .1734 | .1066 .1541 2717 3386
RAPU-G | .0777 .1087 .1482 .1709 | .0945 .1471 .1742 .2186 | .1088 .1808 .3929 .4976
RAPU-R | .0770 .1045 .1212 .1065 | .1010 .1112 .1358 1475 .0977 1333 2639 3242

5.1.5 General Attack Settings. Unless otherwise stated, we use the
following settings for all the attack approaches: The number of
proxy items selected by each controlled user are set to 100 and 10
for the MovieLens and the Amazon-Video dataset respectively. The
percentage of controlled users is fixed to 3%; the width of Wilcoxon-
Mann-Whitney loss, b, is set to 0.1, the initial value of keeping ratio
and decent ratio (in the PGM) is set to 0.8, the prior of the prediction
feedback’s standard deviation oy is set to 0.3, § is set to 1.

To simulate the incompleteness and perturbations in real-world
data, we build synthetic datasets based on the two evaluation
datasets. Specifically, for each dataset, we randomly down-sample
the user-item interaction records to 90% of the original data size and
add 10% (w.r.t. the original data size) randomly perturbed data. The
detailed data synthesis protocol is summarized in Appendix A.6.

5.2 Results Analysis

In this section, we present the major comparison results for evalu-
ating our proposed approachs.

5.2.1 Results under Default Setting. Table 2 summarizes the overall
results of different attack approaches against three representative
target recommendation models.

As shown in Table 2, the proposed global-view approach RAPU-
G achieves the best performances in 21 out of 24 scenarios and out-
performs the state-of-the-art method RevAdv by a significant mar-
gin in all scenarios. The proposed reversing based approach RAPU-
R, despite its great efficiency (over 10x faster than RevAdv?), still out-
performs the state-of-the-art method RevAdv in 11 out of 24 cases.
For instance, compared with RevAdv, RAPU-G achieves over 15%
performance improvement on the MovieLens dataset facing WRMF.
Moreover, when the percentage of controlled users increases, the

2This is estimated by running both approaches for 10 times and taking the average on
the Movielens dataset.

2160

performance gap between the proposed RAPU-G becomes more
significant. For instance, compared with RevAdv, RAPU-G achieves
5.4% and 14.7% performance increases on the Amazon-Video dataset
facing WRMF, when the percentage of controlled users rises from
0.5% to 5%. We also observe that the fake data generated by RAPU-
G and RAPU-R for WRMF can also be used to attack NCF and
LightGCN effectively. This phenomenon demonstrates the strong
transfer-ability of the fake data.

5.2.2 Analysis. Among the baseline methods, Random and Popular
attacks are heuristics-driven approaches, which are mostly agnostic
to recommendation models. Thus, they suffer from poor perfor-
mance. PGA, SRWA, CoVis and RevAduv all formulate the attack as
a bi-level or integer optimization problems over the data collected
by attacker and directly solve for the optimal fake user-item inter-
actions for controlled users. Since there are no strategies to handle
the negative effect caused by the incomplete and perturbed dataset,
these methods cannot accurately estimate the items’ characteristics
and select proper proxy items for controlled users. Consequently,
these methods all suffer from performance drop.

In contrast, the proposed RAPU-G integrates a probabilistic
model with a bi-level optimization attack framework to infer whether
a positive (or negative) user-item interaction is from the original
training data or the outcome of removals or perturbations. The
interactions inferred as real user-item interactions play a more im-
portant role than other data records in learning the model. Such
a “denoising” process enhances the robustness of RAPU-G when
facing the partial and perturbed data.

It is somehow surprising that RAPU-R has very good perfor-
mance and even outperforms the sophisticated RAPU-G in 3 out
of 24 scenarios, especially when the percentage of controlled user
is below 1%. The reason for RAPU-R’s good performance is that
it greedily forces all the controlled users to interact with the most

Research Track Paper

influential proxy items in terms of reshaping the representation of
the target items. It can also leverage heuristic rules such as item pop-
ularity to further narrow down the search scope of finding proper
proxy items. Hence, though not directly pursuing a “global opti-
mal” solution, it empirically achieves good performances, especially
when controlled user’s percentage is low.

5.3 Impact of the Percentage of Data Removal
and Perturbations

Apart from Table 2, we also conduct extensive experiments to eval-
uate the robustness of attack methods with different ratios of data
removal and perturbations.

First, we evaluate the attack performances when different ra-
tios of user-item interaction records are removed from the dataset
(Figure 2). Due to space limit, we only show the results on the
Movielens dataset. From Figure 2, we can find that the performance
of RAPU-G (pink line) is consistently better than the state-of-the-
art baseline method RevAdv (brown line). The proposed reversing
based approach RAPU-R (grey line) can achieve comparable or even
better performance compared with RevAdv. Moreover, its time com-
plexity is far lower. In scenarios like attacking NCF and LightGCN
on the Movielens dataset, the performance of RAPU-G is almost
unchanged while RevAdv suffers performance decrease.

Next, we evaluate the attack performances in more challenging
scenarios when different ratios of perturbed user-item interaction
records are added into the dataset (Figure 3). Here we focus on
the results of attacking WRMF on the Movielens dataset. From
Figure 3, we can find that the performance of RAPU-G (pink line) is
also much better than the state-of-the-art method RevAdv (brown
line) in both scenarios. For instance, when the percentage of per-
turbed data is 20%, the performance of RevAdy is similar to other
less sophisticated attack approaches, but RAPU-G can maintain a
significantly superior performance. The proposed efficient revers-
ing based approach RAPU-R also performs well, especially for the
ratios of 15-20%.

@ Rundom-B- PGA @~ Covis. A RAPUG

@ Rundom - PGA @ Covis. A~ RAPU-G
9% Popular - SRWA 4~ RevAdv.—M- RAPU-R

-3¢ Popular -sfe- SRWA—4— RevAdv. -~ RAPU-R

A A,
A— A—K —
ol S A><M 0181 4. e
A e
- | — x ~ -
2 0.09 A 2 o16] \
CRNE CH \
= — e &
T 0.08 . .\. +— =, ’LQ\ .
@ e \x
0.07r+> +\+/+ * + ﬁ\
%"'7‘ 0121 il g r::‘,hz'l-

100% 90% 80% 70% 60% 50%
Percentage of the Training Data

100/« 90% 80% T0% 60% 50%
Percentage of the Training Data

(a) Attack WRMF (b) Attack NCF

Figure 2: Impact of Training Data on MovieLens. (The results
of attacking LightGCN is placed in the Appendix).

5.4 Impact of the Number of Proxy Items per
Controlled User

Given a specific percentage of controlled users, the number of
proxy items each controlled user interacts with is another important
influence factor in these attack methods. In this part, we fix the
percentage of training data and controlled users to 90% and 3%,
respectively, and vary the number of proxy items. On the Movielens

2161

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

@ Rundom - PGA @ Covis. A RAPUG @ Random-B- PGA @ Covis. —h- RAPUG
3¢ Popular - SRWA—b— Revadv. - RAPU-R % Popular + SRWA~b- Revadv. - RAPU-R
.1 0.10 /A\
0.10 A\A 3 A A><-§_
- 0.09 be
Z 0.09{ ® — < \. 2 \0\0\
S e —d So.08 P
g 0\ g™ % x ’\0\
0.08 +
— 0.07
’/0\:‘.¥6
— o
0.07 'I-< .|.<» 0.06
0—0—'> P
0% 5% 10% 15% 20/., 0 20 40 60 8 100

Percentage of the Perturbed Data Number of Proxy Items per Controlled User

Figure 3: Impact of the Per- Figure 4: Impact of the Num-
centage of Data Perturba- ber of Proxy Items per Con-
tions on Movielens against trolled User on Movielens
WRMEF. against WRMF.

dataset, we vary the number of proxy items per controlled user in
a range of 0 to 100. The tuning results are shown in Figure 4.

From Figure 4, we can see that the performance of attack base-
lines decrease as the number of proxy items increases when the
number exceeds a certain threshold. This finding is somehow coun-
terintuitive. We note that previous works [6, 16] also have similar
observations for the attacks against recommendation models with
explicit feedback. A possible reason is that “good” proxy items are
limited, and using too many proxy items might introduce extra
noise. Instead, compared with baseline attacks, our attacks are very
stable and can effectively promote the target items with different
numbers of proxy items.

5.5 The Detectability of the Proposed Attacks

In real-world online platforms, anomaly detectors are usually de-
ployed to detect potential malicious users. In this section, we study
the detectability of our attack, i.e., whether the controlled users can
be detected as anomalies in the representation space. We extract
representations of normal users and controlled users learned by
WRMF on manipulated data, and using t-SNE [23] to visualize them.

Component -2
Component - 2

Component -2

0 LI -0

0
Component - 1

(c) RAPU-R

0
Component - 1

(b) RAPU-G

(a) Popular Attack

Figure 5: Controlled Users in the Representation Space.

In Figure 5, we plot the controlled users and 512 (randomly
sampled) normal users in the representation space to compare the
proposed attack approaches with the heuristic-based Popular at-
tack. From Figure 5(a), it can be observed that the controlled users
guided by Popular attack tend to form clusters in the representation
space. Instead, as shown in Figure 5(b) and Figure 5(c), the repre-
sentations of controlled users guided by RAPU-G and RAPU-R are
scattered evenly in the representation space. This means that these
controlled users are actually more similar to normal users, so it is
difficult to identify the controlled users via distribution discrepancy.
Thus, the controlled users guided by our approaches can be well
camouflaged as normal users.

Research Track Paper

6 RELATED WORK

General Data Poisoning Attacks. Data poisoning attacks, in
which attackers pollute the training data by injecting well-crafted
adversarial samples to force the target model to behave abnormally,
have been studied against a wide range of machine learning models,
such as SVM [3, 25], neural networks [7, 17], regression methods
[13, 24]. However, the majority of the prior work assumes that the
attacker observes the whole training set and all the observed data
samples are real and unchanged. In contrast, our paper studies a
more practical setting, where the attacker has to handle incomplete
and even perturbed training data to accomplish the attack goal.

Data Poisoning Attacks against Recommendation Models.
The impact of data poisoning attacks has also been recognized in
recommendation systems [5, 15]. Earlier work on data poisoning
attacks against recommendation models are mostly agnostic to the
target methods, e.g., random attack and average attack [14], and
thus can not achieve satisfactory performance. Recently, data poi-
soning attacks [6, 15, 26] are proposed to generate fake behaviors
that are optimized according to a particular type of recommenda-
tion system. For example, Li et al. [15] proposes data poisoning
attacks for matrix-factorization-based recommendation systems.
The authors model the attack as an optimization problem to decide
the rating scores for the fake users. [26] proposes data poison-
ing attacks for association-rule-based recommendation systems,
where each user injects fake co-visitations between items instead
of fake rating scores of items. [6] proposes data poisoning attacks
to graph-based recommendation systems. [27] proposes practical
poisoning attacks against sequential recommendation models. Tang
et al. [22] provides a more precise solution for the general bi-level
optimization-based attack framework and relaxes the assumption
that the attacker should have full knowledge about the victim model.
To the best of our knowledge, there is no existing attack approache
that can handle the incompleteness and perturbations in user-item
interaction data.

7 CONCLUSIONS

In this work, we identify and address the challenges of data poi-
soning attack against recommendation systems with incomplete
or even perturbed user-item interaction data. We propose two so-
phisticated data poisoning attack approaches to overcome this is-
sue. The first approach RAPU-G formulate the attack as a bi-level
optimization problem. To handle incomplete and untrustworthy
user-item interaction data, we propose to incorporate the bi-level
optimization problem with a PGM, which considers the possible re-
movals and modifications in the observations. Moreover, we reverse
the recommendation model’s optimization process and propose an
efficient yet effective second approach RAPU-R to conduct the poi-
soning attack. Experimental results in multiple scenarios clearly
demonstrates the effectiveness of the proposed approaches.

ACKNOWLEDGMENTS

The work was supported in part by the National Science Foundation
of China under Grant No. 61872369, Beijing Academy of Artificial
Intelligence (BAAI), and the National Science Foundation of the
United States of America under Grant No. IIS-1747614.

2162

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

REFERENCES

[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. In Proc. of WSDM 2011.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2018. Automatic differentiation in machine learning: a
survey. Journal of machine learning research 18 (2018).

Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977).

Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. 2020. Influence function
based data poisoning attacks to top-n recommender systems. In Proc. of WWW
2020.

Minghong Fang, Guolei Yang, Neil Zhenqgiang Gong, and Jia Liu. 2018. Poisoning
attacks to graph-based recommender systems. In Proc. of ACSAC 2018.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TiiS 5, 4 (2015).

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In Proc. of
WWW 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proc. of SIGIR 2020.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proc. of WWW 2017.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Proc. of ICDM 2008.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and counter-
measures for regression learning. In Proc. of S&P 2018.

Shyong K Lam and John Riedl. 2004. Shilling recommender systems for fun and
profit. In Proc. of WWW 2004.

Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poisoning
attacks on factorization-based collaborative filtering. In Proc. of NIPS 2016.
Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. 2007.
Toward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. TOIT 7, 4 (2007).

Luis Muiioz-Gonzalez, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In Proc. of ICDM 2008.
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proc. of UAT
2009.

Yilin Shen and Hongxia Jin. 2014. Privacy-preserving personalized recommen-
dation: An instance-based approach via differential privacy. In Proc. of ICDM
2014

Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy
enhanced matrix factorization for recommendation with local differential privacy.
TKDE 30, 9 (2018).

Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting Adversarially Learned
Injection Attacks Against Recommender Systems. In Proc. of RecSys 2020.
Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
Proc. of ICML 2015. PMLR.

Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial Label Flips Attack
on Support Vector Machines.. In ECAI 2012.

Guolei Yang, Neil Zhengiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems.. In NDSS 2017.

Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. 2020. Practical Data
Poisoning Attack against Next-Item Recommendation. In Proc. of WWW 2020.
Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li,
and Kui Ren. 2019. Data Poisoning Attack against Knowledge Graph Embedding.
In IJCAI 2019.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen,
Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yinggian Min, Zhichao Feng,
Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and
Ji-Rong Wen. 2020. RecBole: Towards a Unified, Comprehensive and Efficient
Framework for Recommendation Algorithms. arXiv preprint arXiv:2011.01731.

- =
N

=
&

=
it

(18

[19

[20

[21

[22

~
&

[24]

[25

[26

[27

[28

™
20,

Research Track Paper

A APPENDIX

A.1 Time Complexity Analysis of RAPU-G

We first analyze the time complexity of the Algorithm 2. If we
want to compute the gradient Vg« £ in Eq.9, we need extra time

to compute ae?—,fﬂ) . % for each m € {1, ..., M}. According to
the reverse-mode algorithmic differentiation [2], the time complex-
ity of computing Vg« L is proportional to the parameters 6. Thus,
O(M]|0]) time is needed to have all the gradients accumulated for a
single update of fake data. To improve computational efficacy, we

can adopt approximated technique [22] to unrolling fewer steps

ae(mﬂ)
20(m)
propagating gradients only within last 7 steps. Therefore, the time

complexity of computing Vg £ can be reduced to O(z|0|). Besides,
we need extra time to perform the EM algorithm. Before iterating,
we can cache N (0 | #;, 02) for each user-item pair to reduce du-
plicate operations. On this basis, O(|U||Z|) time is needed in each
E-step and M-step. As a result, if max iterations for outer objective
and EM algorithm are T and E respectively, the time complexity of
the Algorithm 2is O(T - (7]6] + E - |{U||T])).

when accumulating 89?—’5"1) . . Unrolling 7 steps means back-

A.2 Time Complexity Analysis of RAPU-R

As a contrast, we subsequently analyze the time complexity of the
Algorithm 3. If we adopt algorithm 3 to handle partially observed
data, the optimal representations for controlled users € can be
obtained directly according to the derivative rules for vector. Be-

ctrl
cause uy,

cache ugt" ! for speed up. Then we can traversal search "best” items
in the candidate items set, which is constructed according to the
popularity of items in the implementation. Thus, the time complex-
ity of the Algorithm 3 is O(|U’| |j |), where 7 is the set of candidate

items.

is only special to target items and target users, we can

A.3 Details of Gradient Descend

By applying chain rule, the adversarial gradient can be written as:

oL 96"

Ve f = 2= 2= 2
rL +89* R*

8
oR* ®

Without loss of generality, we assume the inner objective is
optimized for L times, then 6M) s the final parameter used in
adversarial objective. under the context of Stochastic Gradient De-
scent (SGD), Vg+.L will become

(m)
Ve L = % + Z oL . &, where
IR* 20(m TR
me[1L,M]

oL oL 99mtD oL ©)
20m) — p(m+) ’ 200m) 9p(m+D) “(1-aVeVg Lirain)
20'™) - .

= VR Vo (Lerain (R Ryim-y) + Lerain (R Ry,)

According to Eq.(9), we can discover that partial data R will
significantly influence the poisoning samples injected by controlled
users.

2163

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

A.4 Detailed Formulation of the Surrogate
Model Used in this Paper

In WRMEF, the user representation matrix P € RI*? and the item
representation matrix Q € RIZ X4 are used to make predictions
R = PQT on user-item interaction data R € RVHMI‘, where d is

the dimension of latent factor. The loss function of WRMF is:

2
Lirain = Y, wai (rui = PuQ])* + 2 (IPIZ+1QIF). (1)
u,i
where wy,; is instance weight to differentiate observed and missing
interactions. In this section, let us suppose we have trained the
model on original data to get the matrices P and Q.

A.5 Dataset Descriptions

In this paper, we adopt two real-world recommendation datasets to
evaluate the effectiveness of the proposed attack approaches.

e MovieLens-100k (MovieLens) [8] is a widely used movie rec-
ommendation dataset. Following [19], we convert numerical ratings
into implicit feedback (1 for positive interaction, 0 for negative).

e Amazon Instant Video (Amazon-Video) [9] is one category
of the Amazon dataset. In this paper, we transform numerical rat-
ings into implicit feedback and remove cold-start users and items
with less than 10 activities.

The statistics of datasets are shown in Table 3.

Table 3: Statistics of the datasets

Datasets #users #items #actions Avg. Sparsity
MovieLens 943 1,682 100,000 106.04 93.69%
Amazon-Video 8,049 7,076 58,194 7.23 99.89%

A.6 The Data Synthesis Strategy

To simulate the process of the attacker collecting data, we use a
random walk strategy to construct partial and perturbed training
data. For simplicity, we describe the details from a user’s perspective
subsequently.

Suppose we want to get a synthetic dataset with 90% of the
original data size real data and add 10% of the original data size
randomly perturbed data. With user u and the percentage of the
partial data p, we will generate a random number from 0 to 1, if
1 < p, we will sample an item i that user u has clicked and add
the user-item pair (u, i) to the training dataset. Otherwise, we will
jump to a randomly selected item j that user u has not clicked and
add the fake user-item pair (u, j) to the training dataset. We will
repeat the process until we have collected 90% of the original data
size realistic data and 10% of the original data size perturbed data.

A.7 The Configuration of Surrogate Model and

Target Models

To raise reproducibility, in Table 4 we report the configuration of
each model used in our experiments. Note that we did not tune
each model exhaustively but roughly grid search for the hyper-
parameters until a reasonable recommendation performance is
reached because comparing recommendation performance is not
our main focus.

Research Track Paper

Table 4: The Configuration of Surrogate Model and Target
Models.

Dataset Model Configuration
Surrogate-WRMF | Latent dimension: 64; Learning rate: 1e-2; Weights for posi-
. tive feedback: 20; Ly regularization coefficient: 1e-5; Train-
MovieLens .
ing epochs: 200;
WRMF Latent dimension: 64; Learning rate: 1e-2; Weights for posi-

ing epochs: 100;

tive feedback: 20; Ly regularization coefficient: 1e-5; Train-

NCF Latent dimension: 64; Learning rate: 1e-2; Ly regularization
coefficient: 1le-5; Training epochs: 100;

LightGCN
ers: 3; Ly regularization coefficient: 1e-5; Training epochs:
100;

Latent dimension: 64; Learning rate: le-2; Number of ay-

Surrogate-WRMF

Amazon-Video ing epochs: 200;

Latent dimension: 32; Learning rate: 1le-2; Weights of posi-
tive feedback: 20; Weights of L2 regularization: 1e-5; Train-

ing epochs: 100;

WRMF Latent dimension: 32; Learning rate: 2e-2; Weights of posi-
tive feedback: 20; Weights of L2 regularization: le-5; Train-

NCF Latent dimension: 64; Learning rate: le-2; Ly regularization
coefficient: 1e-5; Training epochs: 200;

TightGCN

100;

Latent dimension: 64; Learning rate: 1e-2; Number of lay-
ers: 3; Ly regularization coefficient: 1e-5; Training epochs:

A.8 Extra Experimental Results

Analysis on the Vulnerable Items. Note that in the previous
subsection, we showed the attack effectiveness only on a set of ran-
domly sampled popular items. In order to analyze the vulnerability
of items, the target item sets are sampled to have different popular-
ities in this section. Here we define "Most Pop." items as the items
with total clicks (#clicks) above 80 percentile. Similar definitions
also apply for "Popular” (60 percentile < #clicks < 80 percentile),
"Ordinary" (40 percentile < #clicks < 60 percentile) , "Unpopular”
(20 percentile < #clicks < 40 percentile) and "Most Unp." (#clicks <
20 percentile). The result on MovieLens dataset is shown in Table
5. From the table, we can see our attacks, though still successfully
promote the target item sets, are less effective for the target items
with less popularity. In other words, the cold items are much harder
to get promoted. Perhaps this is because cold items are farther away
from normal users on the latent space, thus brings more difficulties
for the attack.

Table 5: Attack performance on WRMF for target item set
with different popularity

Attack Target Item Popularity
Most Pop. | Popular | Ordinary | Unpopular | Most Unp.

None 5681 .0767 .0456 .0013 .0000
Random 5737 .0888 .0467 .0074 .0029
Popular .5996 .0924 .0549 .0070 .0024
PGA 5737 .0880 .0521 .0052 .0012
SRWA 5784 .0846 .0512 .0056 .0013
CoVis. 5871 .0996 .0550 .0072 .0030
RevAdv. .5880 1051 .0591 .0069 .0015
RAPU-G .6080 1422 .0815 0154 .0042
RAPU-R .6101 1212 .0716 .0094 .0020

Impact of the Number of Recommended Items. Fig. 6 shows
the hit ratios for different numbers of recommended items (i.e., K)
when different attacks against WRMF. From the figure, we observe
that the proposed attacks are more effective than the existing attacks

2164

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

for different values of K. Moreover, when K is smaller, the hit ratio
gains of our attacks over existing attacks are more significant. For
instance, when K = 10 and K = 100, the hit ratios of the proposed
RAPU-Gimprove upon the best baseline by twice and by 1.5 times,
respectively. It is indicated that our attack ranks the target item
higher in the recommendation lists than existing attacks.

None
Random
Popular
PGA
SRWA
CoVis.
oz RevAdyv.
= 0.10 RAPU-G
RAPU-R

0.05
0.00 <—-“l" II““ IIIIII

Number of Rccommended ltems -

0.20

i 0.15
®

100

Figure 6: Impact of the Number of Recommended Items.

Impact of the Percentage of the Training Data. Fig. 7 shows
the attack performances of different attacks against Light GCN when
different ratios of user-item interactions records are removed from
the dataset.

@ Random—l- PGA —@- CoVis. —f— RAPU-G
-3¢ Popular -~ SRWA—4— RevAdv.—3~ RAPU-R

0.12 / \ / \

(=3
w)
<)
Soo \\ ‘/\‘
T 009 / \l\l Minave

20
0.08 a p —
100% 90% 80% 70% 60% 50%
Percentage of the Training Data

Figure 7: Impact of the Percentage of the Training Data
against LightGCN on MovieLens.

