
Data Poisoning Attack against Recommender System Using
Incomplete and Perturbed Data

Hengtong Zhang1,5†, Changxin Tian2,4†, Yaliang Li6, Lu Su1, Nan Yang2,
Wayne Xin Zhao3,4♠, Jing Gao1♠

1School of Electrical and Computer Engineering, Purdue University, USA
2School of Information, Renmin University of China, China

3Gaoling School of Artificial Intelligence, Renmin University of China
4Beijing Key Laboratory of Big Data Management and Analysis Methods, China

5Department of Computer Science and Engineering, State University of New York at Buffalo, USA
6Alibaba Group

htzhang.work@gmail.com,{tianchangxin,yangnan}@ruc.edu.cn,
yaliang.li@alibaba-inc.com,{lusu,jinggao}@purdue.edu,batmanfly@gmail.com

ABSTRACT

Recent studies reveal that recommender systems are vulnerable

to data poisoning attack due to their openness nature. In data poi-

soning attack, the attacker typically recruits a group of controlled

users to inject well-crafted user-item interaction data into the rec-

ommendation model’s training set to modify the model parameters

as desired. Thus, existing attack approaches usually require full

access to the training data to infer items’ characteristics and craft

the fake interactions for controlled users. However, such attack

approaches may not be feasible in practice due to the attacker’s

limited data collection capability and the restricted access to the

training data, which sometimes are even perturbed by the privacy

preserving mechanism of the service providers. Such design-reality

gap may cause failure of attacks. In this paper, we fill the gap by

proposing two novel adversarial attack approaches to handle the in-

completeness and perturbations in user-item interaction data. First,

we propose a bi-level optimization framework that incorporates a

probabilistic generative model to find the users and items whose in-

teraction data is sufficient and has not been significantly perturbed,

and leverage these users and items’ data to craft fake user-item

interactions. Moreover, we reverse the learning process of recom-

mendation models and develop a simple yet effective approach

that can incorporate context-specific heuristic rules to handle data

incompleteness and perturbations. Extensive experiments on two

datasets against three representative recommendation models show

that the proposed approaches can achieve better attack performance

than existing approaches.

† The first two authors contributed equally to this work.
♠ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467233

CCS CONCEPTS

• Information systems→ Personalization; • Security and pri-

vacy → Web application security.

KEYWORDS

Adversarial learning, Recommender system, Data poisoning

ACM Reference Format:

Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne

Xin Zhao, Jing Gao. 2021. Data Poisoning Attack against Recommender

System Using Incomplete and Perturbed Data. In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3447548.3467233

1 INTRODUCTION

In the era of information explosion, how to precisely locate the

needed information becomes a challenging task for online service

users. To tackle such a challenge, service providers (e.g., YouTube,

Amazon, and eBay) deploy recommender systems, which suggest

items (e.g., products, movies, etc.) to specific users based on their

profiles and historical behaviors. These systems play an important

role in helping users to make their decisions and choices.

In normal scenarios, the results from online recommender sys-

tems are generally considered to be reasonable and unbiased. How-

ever, recommender systems’ openness (i.e., recommendation mod-

els are learned based on user data which is usually publicly accessi-

ble) and the great influence on online users offer both opportunities

and incentives for adversarial attackers. Particularly, attackers can

inject fake data into the training set of the recommendation model

to make the model behave abnormally (e.g., to promote some tar-

get items to users). This kind of attacks is named data poisoning

attacks [6, 14–16, 22, 26–28]. Specifically, the attacker utilizes con-

trolled users to inject well-crafted fake user-item interaction data

into the training set. The objective is to manipulate the representa-

tions inferred for the target items so that they are similar to that of

the target users.

Though yielding reasonably good performance, almost all these

works assume an attacker can obtain the entire training data of

the target recommendation model. However, such assumption is

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2154

often impractical in the real world. First, online service providers

may restrict one’s access to the full user-item interaction data or

even perturb these data [20, 21] to enforce user privacy. Second,

the attacker’s capability of collecting massive user-item interaction

data may be limited by his/her resources and/or the platform’s data

volume restriction. These practical issues may make the existing

attack approaches suffer performance decrease. In data poisoning

attacks, the attacker employs controlled users to interact with tar-

get items and some selected items (referred to as proxy items). In

essence, such a process shapes these controlled users’ represen-

tations to further influence the representations of target items to

accomplish the attack goals. Hence, the attacker needs complete and

accurate user-item interaction data to select proper proxy items for

controlled users. When part of the training data is removed or mod-

ified, the attack approaches cannot correctly find the appropriate

proxy items.

In this paper, we conduct a pioneer study on practical attack

approaches against recommendation models, based on incomplete

and perturbed user behavior data. Since recommender systems

are generally blackbox for the public, we utilize a local surrogate

model to craft fake user-item interactions. Our first approach RAPU-

G (RecommendationAttack forPartial and PertUrbedData -Global

View) formulates the attack as a bi-level optimization problem. The

upper-level problem defines the overall attack objective, and the

lower-level problem specifies the recommendation model’s learn-

ing objective using both original and injected data. Since solving

for the optimal fake data in the bi-level optimization framework in-

volves the optimization over the entire original data set, we regard

this approach as a global-view approach. As mentioned above, the

incomplete and perturbed user data may hinder the attack frame-

work from capturing certain users’ and items’ characteristics. To

handle such issue, we incorporate a probabilistic model into the

bi-level optimization framework to: (1) find the users and items

whose interaction data are sufficient and have not been significantly

perturbed; and (2) leverage these users’ and items’ data to craft the

fake user-item interactions.

To improve the efficiency of the attack, we further backtrack

the optimization process of recommendation models in depth and

propose a much simpler yet effective greedy approach named

RAPU-R (Recommendation Attack for Partial and PertUrbed Data

- Reverse). The RAPU-R method starts from the attack goal and re-

verse the optimization process to obtain the proper proxy items for

controlled users. In essence, to promote a target item to a specific

user, the attacker needs to inject well-crafted user-item interac-

tions into the recommendation model’s training set so that the

representation of the target item moves towards that of the user.

Thus, RAPU-R should first infer the optimal modification of the

target item’s representation that can accomplish the attack goal.

Then from the optimization’s point of view, to let the target item’s

representation move along the optimal modification instead of stay-

ing at the original place, the controlled user has to use their own

representations to influence that of the target item. Based on such

a principle, we can further determine the desired representation

of the controlled users. Finally, with the controlled user’s desired

representation, we can search for appropriate items based on their

representations and heuristic rules. Moreover, since the amount of

fake data injected by controlled users is very small compared with

the entire dataset’s size, the representation of an overwhelming

majority of users and items is not influenced. Hence, the proposed

reversing approach does not have to repeatedly update the rec-

ommendation models’ parameters as the global-view approach.

Therefore, the reversing method is much more efficient.

In the experiments, we use three representative recommendation

models as target models and conduct attacks on two real-world

datasets to evaluate the proposed poisoning attack approaches.

Experimental results show that the proposed RAPU-G and RAPU-

R outperform baseline attack approaches and can effectively pro-

mote target items, especially when the training data is incomplete

or perturbed. We also conduct extra studies on the characteristics

of the proposed approaches.

2 THREAT MODEL

In this paper, we study top-K recommendation via implicit feedback,

one of the most widely adopted recommendation settings. Its formal

definition is given below:

Definition 2.1 (Top-K Recommendation via Implicit Feedback).

Consider a user-item interaction dataset, in which data records

associate a user 𝑢 and an item 𝑖 . Under the implicit setting, there

are only positive feedback signals, which indicate users’ positive

interactions (e.g., clicks or purchase) with items. The recommen-

dation system’s task is to provide the users with a personalized

ranking of size 𝐾 .

With the recommendation task defined above, now let us detail

the threat model of the proposed attack.

Attack Goal: An attacker’s goal is to promote a set of target

items to as many target users as possible. Specifically, suppose the

system recommends 𝐾 items to each user, the attacker’s goal is to

maximize averaged display rate, which denotes the fraction of target

users whose top-K recommendations results include the target items.

The Knowledge and Capability of the Attacker: In this pa-

per, we assume that the attacker has the following knowledge and

capability:

(1) The attacker can access only part of the training set of the

target recommendation model. In the data collected by the

attacker, part of each user’s (or item’s) historical interactions

are removed or perturbed.

(2) The attacker has limited resources, i.e., he/she can control a

limited number of users.

(3) Since normal users often interact with a small number of

items, we also limit the maximum number of items each

controlled user can interact with. Such a restriction is im-

posed to prevent the controlled users from being detected

by simple anomaly detectors.

(4) The attacker does not know the details about the target

recommendation system. For instance, the parameters and

the architecture of the recommendation model.

Attack Approach: To achieve the attack goal, we consider the

most general scenario inwhich the attacker recruits controlled users

who can visit or rate the target and the selected proxy items. Besides,

the set of user-item interactions before and after controlled users

inject fake data are referred to as original data and manipulated

data, respectively.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2155

Moreover, since the attacker does not know the exact architec-

ture or parameters of the target model, we leverage a local surrogate

recommendation model to craft the fake user-item interactions and

directly use them to poison the target system. The intuition behind

such design is that: if two recommendation models can both pro-

duce satisfactory recommendation results on a given dataset, then

the poisoning samples generated for one of the recommendation

models can be used to attack the other. Specifically, we choose

to use Weighted Regularized Matrix Factorization (WRMF) [12],

a fundamental and representative factorization-based model for

recommendations with implicit interaction, as the surrogate model.

Due to space limitation, please refer to Appendix A.4 for the detailed

formulation. We will discuss the transferability of the poisoning

samples in our experiment section in detail.

3 RAPU-G: THE GLOBAL VIEWMETHOD

In this section, we first formalize the attack approach via a bi-level

optimization problem and then propose a probabilistic generative

model (PGM) integrated with the bi-level optimization framework

to handle the issues caused by the incomplete and perturbed data.

3.1 Attack as an Optimization Problem

In RAPU-G, we directly learn fake user-item interactions for con-

trolled users by solving a bi-level optimization problem that is

similar to [5, 15, 22]. On one hand, the lower-level problem solves

for the optimal parameters of the recommendation model given

both the original data and the fake data injected by the controlled

users. On the other hand, the upper-level problem solves for the

optimal fake data to accomplish the attack goal given current model

parameters obtained via solving the lower-level problem.

Formally, let I denote the set of items,U andU′ denote the set

of normal users and controlled users respectively, andR ∈ R |U |×|I |

and R∗ ∈ R |U
′ |×|I | denote the original data and the fake data. We

formulate the bi-level optimization problem in Eq. (1).

min
R∗

L(R̂𝜃 ∗),

s.t. 𝜃∗ = argmin
𝜃

(
L𝑡𝑟𝑎𝑖𝑛 (R, R̂𝜃) + L𝑡𝑟𝑎𝑖𝑛 (R

∗, R̂∗𝜃)
)
,

(1)

where 𝜃 denotes the model parameters, R̂𝜃 and R̂∗
𝜃
denote the rec-

ommendation predictions from the models trained on original data

and fake data with parameter 𝜃 respectively, L𝑡𝑟𝑎𝑖𝑛 denotes the

training loss of the recommendation model, and L is the adversar-

ial attack objective, which can be adjusted for different malicious

goals. Since solving for the optimal fake data involves the optimiza-

tion over the entire original dataset, we regard the approach as a

global-view approach.

In this paper, we aim to promote target items to as many normal

users as possible. Thus, the adversarial attack objective function can

be defined as:L = −
∑
𝑡 ∈T

(∑
𝑢∈U

∑
𝑣∈I∗

𝑢
𝑔(𝑟𝑢𝑡 −𝑟𝑢𝑣)

)
, where 𝑟𝑢𝑖

is the predicted score that the user 𝑢 gives to the item 𝑖 , T denotes

the set of target items, I∗
𝑢 is the set of top-𝐾 recommended items

for a user 𝑢 according to the predicted interaction, and 𝑔(𝑥) =
1

1+exp(−𝑥/𝑏) denote the Wilcoxon-Mann-Whitney loss [1], where 𝑏

is a parameter called width.

Algorithm 1:Generative Process of User-Item Interactions

1 for each user 𝑢 do

2 Draw a keeping ratio: 𝜅 (𝑈)
𝑢 ∼ 𝑈 (0, 1) ;

3 Draw a decent ratio: 𝛾 (𝑈)
𝑢 ∼ 𝑈 (0, 1) ;

4 end

5 for each item 𝑖 do

6 Draw a keeping ratio: 𝜅 (𝐼)
𝑖 ∼ 𝑈 (0, 1) ;

7 Draw a decent ratio: 𝛾 (𝐼)
𝑖 ∼ 𝑈 (0, 1) ;

8 end

9 for each possible user-item pair (u, i) do

10 Draw a keeping indicator 𝛿 (1)𝑢𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝜅
(𝑈)
𝑢 +𝜅

(𝐼)
𝑖

2) ;

11 if 𝛿 (1)𝑢𝑖 = 0 then

12 Sample the observation as: 𝑃 (𝑟𝑢𝑖 = 0;𝛿𝑢𝑖 = 0) = 1 ;

13 else if 𝛿 (1)𝑢𝑖 = 1 then

14 Draw a decent indicator 𝛿 (2)𝑢𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝛾
(𝑈)
𝑢 +𝛾

(𝐼)
𝑖

2) ;

15 if 𝛿 (2)𝑢𝑖 = 0 then

16 Sample the observation from: 𝑟𝑢𝑖 ∼ N(𝑟, 𝜎2
𝑟) ;

17 else if 𝛿 (2)𝑢𝑖 = 1 then

18 Sample the observation from: 𝑟𝑢𝑖 ∼ N(𝑟𝑢𝑖 , 𝜎
2
𝑟) ;

19 end

3.2 Handling Incomplete and Perturbed Data
via Probabilistic Generative Model

As one can see, in Eq. (1), the lower-level optimization problem

mainly relies on the original data collected by the attacker, i.e., R, to

learn the parameters of the local surrogate recommendation model,

i.e., 𝜃 . Existing works generally assume that the attacker can access

to the full training set. However, as discussed in the introduction,

this assumption does always hold in real world. When part of the

original data R is perturbed or removed, the local recommendation

model cannot estimate the normal users’ and items’ characteristics

precisely. In this case, the attack framework might be unable to find

the proper proxy items for the controlled users to interact with. To

tackle this challenge and estimate users’ and items’ characteristics

more accurately, we propose to integrate the bi-optimization frame-

work with a PGM to handle the incompleteness and perturbations.

3.2.1 Overview. In a benign recommendation dataset, observed

records indicate positive user-item interactions (e.g., a user clicks

on an item), and the user-item pairs that do not exist in the observed

records are treated as negative user-item interactions (e.g., a user

does not click on an item). Both positive and negative user-item

interactions contribute to inferring the characteristics of users and

items. In the proposed PGM, we do not assume that all the user-

item interactions (both positive and negative) are genuine. Instead,

we consider all the possibilities that may result in the observed

positive or negative interactions. An positive user-item interaction

may be a real positive interaction, or otherwise, the outcome of

possible perturbations. Similarly, a negative user-item interaction

may be a real negative interaction, or otherwise, the outcome of

the online service provider’s removals (e.g., removing a positive

interaction) or perturbations. To model these phenomena, in the

PGM, we introduce parameters to model the chance of a user’s (or

an item’s) historical interactions being removed or modified. For

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2156

each possible user-item interaction, the PGM infers the possibility

that an interaction is real or the outcome of a modification.

3.2.2 Detailed Description of PGM. The proposed PGM is detailed

in Algorithm 1. For each user 𝑢 and each item 𝑖 , we define variable
𝜅 (𝑈)
𝑢 and 𝜅 (𝐼)

𝑖 , respectively, to estimate the ratio of its interaction

records that are not removed (line 2 and 6). Similarly, we use variable

𝛾 (𝑈)
𝑢 and 𝛾 (𝐼)

𝑖 , respectively, to define the ratio of its interaction

records that are not modified (line 3 and 7). All these four variables

are drawn from a uniform distribution between 0 and 1, i.e.,𝑈 (0, 1),
since we do not assume any prior knowledge of them.

Then we exhaust all the possible user-item pairs regardless of

whether there is an observed positive interaction between them.

For each possible user-item interaction pair, we first sample a bi-

nary indicator 𝛿
(1)
𝑢𝑖 from a Bernoulli distribution to infer whether

the potential interaction is included in the attacker’s data (line 10)

or not, i.e.,: 𝛿
(1)
𝑢𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (

𝜅 (𝑈)
𝑢 +𝜅 (𝐼)

𝑖
2). Here the parameter of

Bernoulli distribution is calculated by taking the average of 𝜅 (𝑈)
𝑢

and𝜅 (𝐼)

𝑖 , since both the user and the item involved in the interaction

determine whether a potential positive interaction is kept or re-

moved.When 𝛿
(1)
𝑢𝑖 = 0, the observation is determined to be negative

(line 11-12). Otherwise, we sample another binary indicator 𝛿
(2)
𝑢𝑖

from a Bernoulli distribution, i.e., 𝛿
(2)
𝑢𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (

𝛾 (𝑈)
𝑢 +𝛾 (𝐼)

𝑖
2), to

infer whether the observed interaction comes from an intentional

modification (𝛿
(2)
𝑢𝑖 = 0, line 15-16) or otherwise, comes from the

characteristics of the user/item (𝛿
(2)
𝑢𝑖 = 1, line 17-18). Formally, if

𝛿
(2)
𝑢𝑖 = 0, we draw the observed interaction from a Gaussian distri-

bution centered at 𝑟 , which is the averaged interaction. Otherwise,

if 𝛿
(2)
𝑢𝑖 = 1, we draw the observed interaction from a Gaussian

distribution centered at 𝑟𝑢𝑖 , which is the prediction of the arbitrary

surrogate recommendation model.

The PGM specifies a negative log-likelihood of observations,

latent variables, and parameters given (1) the hyper-parameters

and (2) predictions from the recommendation model:

L𝑝𝑔𝑚

= −
∑
(𝑢,𝑖)

log𝑝 (𝛿 (1)𝑢𝑖 , 𝛿
(2)
𝑢𝑖 , 𝑟𝑢𝑖 | 𝜅 (𝑈)

𝑢 , 𝜅 (𝐼)
𝑖 , 𝛾 (𝑈)

𝑢 , 𝛾 (𝐼)
𝑖 , 𝑟𝑢𝑖 , 𝜎𝑟)

= −
∑
(𝑢,𝑖)

log Bernoulli(𝛿 (1)𝑢𝑖 | 𝜅 (𝑈)
𝑢 , 𝜅 (𝐼)

𝑖) − log Bernoulli(𝛿 (2)𝑢𝑖 | 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖)

− 𝛿 (1)𝑢𝑖 𝛿
(2)
𝑢𝑖 logN(𝑟𝑢𝑖 | 𝑟𝑢𝑖 , 𝜎

2
𝑟) − 𝛿

(1)
𝑢𝑖 (1 − 𝛿 (2)𝑢𝑖) logN(𝑟𝑢𝑖 | 𝑟, 𝜎2

𝑟)

− (1 − 𝛿 (1)𝑢𝑖) log I[𝛿
(1)
𝑢𝑖 = 0],

where I[𝑥] is the indicator function that evaluates to 1 when 𝑥 is

true, and 0 otherwise.

The proposed PGM can be viewed as an extension upon an

arbitrary model-based recommendation method. To incorporate the

PGM into the bi-level optimization framework, we simply replace

the training loss on original data, i.e., L𝑡𝑟𝑎𝑖𝑛 (R, R̂𝜃) in the lower-

level of Eq. (1), with the joint negative log likelihood specified by

the PGM, i.e.,L𝑝𝑔𝑚 (R, R̂𝜃). By plugging the negative log-likelihood
above into the lower-level, the optimization problem becomes:

min
R∗

L (R̂𝜃∗),

s.t. 𝜃 ∗ = argmin
𝜃

(
L𝑝𝑔𝑚 (R, R̂𝜃) + L𝑡𝑟𝑎𝑖𝑛 (R

∗, R̂∗
𝜃)

)
.

(2)

Remarks: If we look into the formulation of the negative log-

likelihood, we can find only the user-item interactions that are

inferred as real data (in contrast to the outcomes of removals and

perturbations) are used to infer the characteristics/representations

of users and items (term: 𝛿
(1)
𝑢𝑖 𝛿

(2)
𝑢𝑖 logN(𝑟𝑢𝑖 | 𝑟𝑢𝑖 , 𝜎

2
𝑟)). Thus, the

attack framework can leverage accurately estimated user/item rep-

resentations to find proper proxy items for controlled users to

launch the attacks.

Algorithm 2: Learning fake user data with EM and Gradi-

ent Descent
Input: max iteration for inner and outer objective: L and T;

learning rate for inner and outer objective: 𝛼 and 𝜂;
1 for t = 1 to T do

2 for m=1 to M do

3 Surrogate model forward:

R̂𝜃 (𝑙−1) , R̂∗
𝜃 (𝑙−1) = 𝑀𝑜𝑑𝑒𝑙𝑠𝑢𝑟 (U, I,U′;𝜃 (𝑙−1)) ;

4 Use EM to compute the PGM latent variables and

parameters for each user-item pair.;

5 Optimize inner objective with SGD: 𝜃 (𝑚) ← 𝜃 (𝑚−1) − 𝛼 ·

∇𝜃

(
L𝑝𝑔𝑚

(
R, R̂𝜃 (𝑚−1)

)
+ L𝑡𝑟𝑎𝑖𝑛

(
R∗, R̂∗

𝜃 (𝑚−1)

))
. ;

6 end

7 𝜃 ∗ ← 𝜃 (𝑀) ;

8 R̃ = R∗ − 𝜂 · ∇R∗ L (R̂𝜃∗) ;

9 Update fake data: R∗ ← 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (R̃ + 𝛽R𝑝) ;

10 end

3.3 Learning Method of RAPU-G

The overall learning algorithm is summarized in Algorithm 2. In

each outer iteration 𝑡 ∈ {1...𝑇 }, we first re-train the surrogatemodel

by performing parameter updates for 𝐿 iterations (inner iterations,

line 2-6), and then use PGD and projection operator to update fake

data R∗ (line 8-9).

Specifically, in each inner iteration, we first perform the forward

process to get the current recommendation predictions on original

data R̂𝜃 (𝑚−1) (line 3), and then solve for the PGM latent variables

and parameters via EM algorithm [4] (line 4) :

E-step: In E-step, we compute expectation of the latent variables

for all the possible user and item combinations (𝑢, 𝑖). Obviously, a
specific pair is surely not removed by the service provider if we

observe 𝑟𝑢𝑖 = 1, i.e., E[𝛿
(1)
𝑢𝑖 | 𝑟𝑢𝑖 = 1] = 1, and 𝛿

(2)
𝑢𝑖 does not exist

if 𝛿
(1)
𝑢𝑖 = 0. Thus, we need to derive the expectation of 𝛿

(1)
𝑢𝑖 when

𝑟𝑢𝑖 = 0 and the expectation of 𝛿
(2)
𝑢𝑖 when 𝛿

(1)
𝑢𝑖 = 0 :

E[𝛿 (1)𝑢𝑖 | 𝜅 (𝑈)
𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 , 𝑟𝑢𝑖 , 𝑟𝑢𝑖 = 0]

=
𝐾𝑢𝑖 · (Γ𝑢𝑖N(0 | 𝑟𝑢𝑖 , 𝜎

2
𝑟) + (1 − Γ𝑢𝑖)N(0 | 𝑟, 𝜎2

𝑟))

𝐾𝑢𝑖 · ((Γ𝑢𝑖N(0 | 𝑟𝑢𝑖 , 𝜎2
𝑟) + (1 − Γ𝑢𝑖)N(0 | 𝑟, 𝜎2

𝑟)) + (1 −𝐾𝑢𝑖)
,

E[𝛿 (2)𝑢𝑖 | 𝜅 (𝑈)
𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 , 𝑟𝑢𝑖 , 𝑟𝑢𝑖 , 𝛿
(1)
𝑢𝑖 = 1]

=
Γ𝑢𝑖N(𝑟𝑢𝑖 | 𝑟𝑢𝑖 , 𝜎

2
𝑟)

Γ𝑢𝑖N(𝑟𝑢𝑖 | 𝑟𝑢𝑖 , 𝜎2
𝑟) + (1 − Γ𝑢𝑖)N(𝑟𝑢𝑖 | 𝑟, 𝜎2

𝑟)

(3)

where 𝐾𝑢𝑖 =
𝜅 (𝑈)
𝑢 +𝜅 (𝐼)

𝑖
2 , Γ𝑢𝑖 =

𝛾 (𝑈)
𝑢 +𝛾 (𝐼)

𝑖
2 , N(𝑟𝑢𝑖 | 𝑟𝑢𝑖 , 𝜎

2
𝑟) stand

for the values of N(𝑟𝑢𝑖 , 𝜎
2
𝑟)’s probability density function (PDF)

evaluated at 𝑟𝑢𝑖 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2157

M-step: We define E
(1)
𝑢𝑖 = E[𝛿 (1)𝑢𝑖 | 𝜅 (𝑈)

𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 , 𝑟𝑢𝑖 , 𝑟𝑢𝑖] and

E
(2)
𝑢𝑖 = E[𝛿 (2)𝑢𝑖 | 𝜅 (𝑈)

𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 , 𝑟𝑢𝑖 , 𝑟𝑢𝑖] for simplicity, which

are computed from the E-step. To update the parameters of the gen-

erative model, i.e., 𝜅 (𝑈)
𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 , we directly take the deriva-

tive of the negative log likelihoodwith respect to𝜅 (𝑈)
𝑢 , 𝜅 (𝐼)

𝑖 , 𝛾 (𝑈)
𝑢 , 𝛾 (𝐼)

𝑖 :

𝜅 (𝑈)
𝑢 =

∑
𝑖∈I E

(1)
𝑢𝑖

|I |
, 𝜅 (𝐼)

𝑖 =

∑
𝑢∈U E

(1)
𝑢𝑖

|U |
,

𝛾 (𝑈)
𝑢 =

∑
𝑖∈I E

(2)
𝑢𝑖 · I(𝛿 (1)𝑢𝑖)∑

𝑖∈I I(𝛿
(1)
𝑢𝑖)

, 𝛾 (𝐼)
𝑖 =

∑
𝑢∈U E

(2)
𝑢𝑖 · I(𝛿 (1)𝑢𝑖)∑

𝑢∈U I(𝛿
(1)
𝑢𝑖)

.

(4)

On getting the PGM latent variables and parameters via EM, we

use stochastic gradient descend (SGD) to solve the bi-level opti-

mization problem defined in Eq. (2). The optimization approach we

used here is identical to [22]. Note that in line 9, we smooth the fake

data via the popularity of each item to obtain the final fake data.

The intuition of this operation is that the popularity is a significant

prior knowledge for attacks. Specifically, the popularity matrix can

be estimated as: R𝑝 [𝑢, 𝑖] =
𝑐𝑖

𝑐𝑚𝑎𝑥
, where 𝑐𝑖 is the total number of

interactions related to item 𝑖 and 𝑐𝑚𝑎𝑥 is the maximum interaction

number among all items. We normalize the fake data into feasible

region (i.e., 𝑟𝑢𝑖 ∈ {0, 1}).

4 RAPU-R: THE REVERSING ATTACK
APPROACH

In this section, we reverse the optimization process of a recom-

mendation model from a reverse review to propose an efficient yet

effective attack approach.

4.1 Attack via Reversing the Optimization
Process

For simplicity of discussion, we use the aforementioned WRMF [12,

18], to conduct our analysis. While, our discussion on WRMF can

be easily extended to other recommendation models.

Consider a simple case in which the attacker wants to promote

the target item 𝑖 to a user 𝑢. We denote the representations of user

𝑢 and item 𝑖 as 𝒑𝑢 and 𝒒𝑖 , respectively. Promoting the target item 𝑖
to a user 𝑢 means that we want to maximize their inner product, i.e.:

𝑟𝑢𝑖 = 𝒑𝑢 ·𝒒𝑖 . Since the attacker cannot modify observed interactions

of normal users in the training set, we focus on leveraging the

controlled users to manipulate the representation of the target item

𝑖 and further accomplish the promotion goal. Formally, let 𝝐 be the

perturbation on 𝒒𝑖 , the optimal 𝝐 , i.e., 𝝐∗ should satisfy:

𝝐∗ = argmax
𝝐

𝒑𝑢 · (𝒒𝑖 + 𝝐).

Obviously, the optimal 𝝐∗ = 𝒑𝑢 in our case.

Thus, we have transformed the problem of promoting target

item 𝑖 into the problem of shifting 𝒒𝑖 by 𝝐∗. To achieve this goal,we
need to make the sum of terms involving item 𝑖 in the training loss

decrease after 𝒒𝑖 is shifted by 𝝐∗. Formally, we have to let controlled

users (e.g., user𝑚) inject fake data to make:

∑
𝑚∈U∪U′

𝐿 (𝒑𝑢 , 𝒒𝑖 + 𝝐∗; 𝑟𝑚𝑖) <
∑

𝑚∈U∪U′

𝐿 (𝒑𝑚, 𝒒𝑖 ; 𝑟𝑚𝑖), (5)

Target item i
embedding

1) Find the optimal
perturbation for target item i

Optimal
Perturbation

2) Let training loss favor
rather than

Target Item

fake
interaction

3) Determine proxy items for
controlled users to move to

Proxy Item

User u
embedding

Figure 1: Overview of RAPU-R

Algorithm 3: Workflow of RAPU-R.

Input: normal user representations P, item representations Q, set

of target item T, number of controlled users𝑀 ;

1 for m = 1 to M do

2 Find the optimal direction of perturbation for target items T:

𝝐∗ =
∑

𝑖∈T argmax𝝐 𝒑𝑢 · (𝒒𝑖 + 𝝐) ;

3 Get the optimal representations for the controlled user𝑚:

𝒑∗𝑚 = argmin𝒑𝑚 𝐿 (𝒑𝑚, 𝒒𝑖 + 𝝐∗; 𝑟𝑚𝑖) ;

4 Find the best proxy item set I
 that should be interacted with,

based on the similarity between the item representation and

𝒒∗, where: 𝒒∗ = argmin𝒒 (𝒑∗𝑚 · 𝒒 − 1) ;

5 Controlled user𝑚 clicks the best proxy item set I
 .

6 end

where 𝐿 is the loss function of a single user-item interaction pair1.

As one can see from Eq. (5), both normal users and controlled

users interact with the target item 𝑖 . However, the attacker can

only control the interaction data generated by the controlled users.

Hence, the practical surrogate goal is to only consider that the

controlled users inject fake data:∑
𝑚∈U′

𝐿 (𝒑𝑢 , 𝒒𝑖 + 𝝐∗; 𝑟𝑚𝑖) <
∑

𝑚∈U′

𝐿 (𝒑𝑢 , 𝒒𝑖 ; 𝑟𝑚𝑖) . (6)

Towards the attack goal, the next step is to determine the proxy

items for controlled users. From the view of optimization, the opti-

mal representation for a controlled user𝑚, i.e., 𝒑∗
𝑚 , should satisfy:

𝒑∗
𝑚 = argmin

𝒑𝑚
𝐿(𝒑𝑚, 𝒒𝑖 + 𝝐∗; 𝑟𝑚𝑖),

which provides the largest chance to make Eq. (6) hold.

Now, we know the optimal representations for the controlled

users. Ideally, the controlled users should have all their represen-

tations close to 𝒑∗
𝑚 . By looking into the update of 𝒑𝑚 during the

training process, we find that the ideal item representation to shape

a controlled user’s representation as 𝒑∗
𝑚 should satisfy:

𝒒∗ = argmin
𝒒

(𝒑∗
𝑚 · 𝒒 − 1) . (7)

With the ideal representation, we may simply exhaust the items

in the item set I to search for top items whose representations are

close to 𝒒∗ as proxy items. Since the injected fake user-item inter-

actions do not significantly influence the representations of most

non-target items, we do not explicitly include the model parameter

updates like Eq. (2) in RAPU-R. Such an approximation strategy

makes the proposed RAPU-R much more efficient than existing

1For the recommendation model WRMF specified in Eq. (10) (in Appendix A.4)
, 𝐿 (𝑟𝑚𝑖 , 𝒑𝑢 , 𝒒𝑖 + 𝝐∗) is a quadratic loss defined as 𝐿 (𝑟𝑚𝑖 , 𝒑𝑢 , 𝒒𝑖 + 𝝐∗) =
𝑤𝑚𝑖 (𝑟𝑚𝑖 − 𝒑𝑢 · (𝒒𝑖 + 𝝐))2 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2158

Table 1: Comparison between the Proposed RAPU-G, RAPU-R and the State-of-the-art Approach RevAdv. Here, the maxi-

mum numbers of iterations for the outer objective and EM algorithm are 𝑇 and 𝐸, respectively. 𝜏 is the unroll steps constant

introduced in [22]. |𝜃 | is the number of parameters.U,I andU′ stand for the set of real users, items and controlled users.

Time Complexity Type of Technique Handle Incompleteness and Perturbations Performance

RAPU-G 𝑂
(
𝑇 · (𝜏 |𝜃 | +𝐸 · |U | |I |)

)
Bi-level optimization Yes (PGM to identify perturbations or removals) Best

RAPU-R 𝑂 (|U′ | |I |) Greedy search algorithm

with heuristic rules

Yes (Focus on effective and popular proxy items) Similar to RevAdv

RevAdv 𝑂
(
𝑇 · 𝜏 |𝜃 |

)
Bi-level optimization N/A Similar to RAPU-R

methods based on bi-level optimization frameworks. Finally, we

summarize the workflow of the attack approach in Algorithm 3.

Handling Data Incompleteness and Perturbations: There

are two mechanisms in RAPU-R that handle the data incomplete-

ness and perturbations issue. First, given a specific target item,

RAPU-R greedily forces all the controlled users to interact with the

most useful proxy items in terms of reshaping the characteristics

of the target item. Such a design can naturally decrease the impact

of perturbations and removals since the controlled users can still

launch successful attacks with only a small part of uninfluenced

useful proxy items. Second, we incorporate context-specific heuris-

tic rules to flexibly reduce the proxy item candidates to find the

items that are not influenced by the removals and perturbations.

For instance, in this paper, we search the proxy items only within

the items with the highest popularity (top 10%). When user-item in-

teraction data suffers removals or perturbations, the popular items

have a larger chance of maintaining enough data records so that

their representations can be more accurately estimated.

4.2 Comparison of Approaches RAPU-G,
RAPU-R and the State-of-the-art Attack

This section presents a comparison of the two proposed approaches

and the state-of-the-art attack approach RevAdv [22]. Here, we

summarize the key differences between the proposed approaches

and RevAdv to highlight our insights and advantages in Table 1.

In a nutshell, the proposed RAPU-G can empirically achieve the

best attack performance, since it is with a more elaborately designed

probabilistic modeling process. In contrast, the proposed RAPU-

R is a simple yet efficient approach, which can achieve comparable

performance with RevAdv with a far less time complexity. Thus,

it is particularly suitable to launch large scale attacks or conduct

vulnerable tests to evaluate the robustness of recommendation mod-

els. In terms of handling data incompleteness and perturbations,

RAPU-G directly utilizes the proposed PGM to identify the possible

perturbations and removals. Only the user-item interactions that

are inferred as real data are used to estimate items’ characteris-

tics and discover proper proxy items. In contrast, RAPU-R finds

proper proxy items by reversing the learning process. It explicitly

focuses on using the popular proxy items with the highest chances

to accomplish the attack goal. These proxy items are not severely

impacted by data removals and perturbations, empirically.

5 EXPERIMENTS

In this section, we conduct the experiments to verify the effective-

ness of the proposed two approaches.

5.1 Experiment Settings

5.1.1 Datasets. In this paper, we evaluate our approaches onwidely-

used two real-world datasets MovieLens-100k (MovieLens) [8] and

Amazon Instant Video (Amazon-Video) [9]. The detailed descriptions

of these two dataset are in Appendix A.5.

5.1.2 Baseline Attack Methods. We compare our proposed method

to several baseline methods. The parameters of these approaches

are set as the original papers suggest.

• None: The circumstance when no attack is conducted.

• Random: In this attack, controlled users click the target items

and some other randomly chosen items.

• Popular: Following [6, 16], each controlled user selects 10%

popular items and 90% other random items as the proxy items.

•Projected gradient ascent attack (PGA) [15]: This approach

focuses on attacking matrix factorization based recommendation

models. PGA aims to assign high rating scores to the target items

and randomly generate filler items for the fake users to rate.

• Co-visitation attack (CoVis.) [26]: This baseline attack is

designed for association-rule-based recommendation models. In

this approach, the attacker finds the proxy items to inject fake

co-visitations by solving a standard linear programming problem.

• Supervised random walks attack (SRWA) [6]: SRWA also

formulates the poisoning attack as an optimization problem and

assumes target is a graph-based recommendation model.

• Revisit Adv.(RevAdv.) [22]: It also formulates poisoning at-

tack problem as a bi-level optimization problem solved via gradient-

based approaches. This is the state-of-the-art attack approach.

5.1.3 Targeted Recommendation Methods. In this section, we con-

sider the following victim methods to attack. These methods are

implemented via RecBole [29] library. The parameters of these

target methods are shown in Appendix A.7.

•WRMF [12]: It is a fundamental and representative factorization-

based model for recommendations with implicit feedback (see Sec-

tion 2 for more details).

• Neural Collaborative Filtering (NCF) [11]: It is a popular

framework that explores non-linearities in modeling complex user-

item interactions.We adopt GeneralizedMatrix Factorization (GMF)

as the instantiation of NCF.

• LightGCN [10]: It is the state-of-the-art GNN-based method,

which discards the feature transformation and the nonlinear acti-

vation functions in the GCN aggregator.

5.1.4 Target Items. Following [22], we uniformly sample 5 items

together from the whole item set as a target item set and measure

the hit ratio at 50 (HR@50) on the target item set, where it is

considered as a hit if one of these items appears in the ranked list.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2159

Table 2:HR@50 of different attacks against different victimmodelswith 90% training data + 10%perturbed data on two datasets.

We use bold and underline fonts to denote the best performance and second best performance method, respectively.

Dataset Method

Percentage of Controlled Users

WRMF NCF LightGCN

0.5% 1% 3% 5% 0.5% 1% 3% 5% 0.5% 1% 3% 5%

MovieLens

None .0541 .0541 .0541 .0541 .0814 .0814 .0814 .0814 .0679 .0679 .0679 .0679

Random .0593 .0604 .0666 .0682 .0917 .1108 .1527 .1386 .0656 .0727 .0709 .0809

Popular .0600 .0641 .0725 .0755 .0944 .1132 .1612 .1463 .0648 .0736 .0823 .0960

PGA .0612 .0619 .0678 .0737 .0967 .1062 .1222 .1417 .0612 .0703 .0785 .0861

SRWA .0594 .0634 .0725 .0722 .0958 .1099 .1209 .1433 .0664 .0715 .0768 .0801

CoVis. .0622 .0655 .0732 .0801 .0996 .1124 .1537 .1656 .0653 .0736 .0823 .0960

RevAdv. .0642 .0719 .0783 .0856 .1109 .1353 .1841 .1958 .0651 .0775 .0990 .1176

RAPU-G .0715 .0779 .0950 .1116 .1190 .1431 .1859 .2129 .0764 .0856 .1139 .1597

RAPU-R .0734 .0843 .0945 .0959 .1165 .1413 .1715 .1952 .0721 .0793 .0906 .1082

Amazon-Video

None .0074 .0074 .0074 .0074 .0369 .0369 .0369 .0369 .0228 .0228 .0228 .0228

Random .0571 .0709 .0913 .0998 .0793 .0839 .0935 .0852 .0522 .0674 .1186 .1493

Popular .0554 .0769 .0954 .0936 .0807 .0899 .0995 .1198 .0565 .0756 .1518 .2116

PGA .0556 .0779 .0927 .0993 .0725 .0879 .0921 .0952 .0480 .0633 .1112 .1504

SRWA .0521 .0730 .0971 .1020 .0746 .0849 .0919 .0955 .0532 .0662 .1181 .1609

CoVis. .0607 .0789 .0955 .0946 .0866 .0998 .1066 .1164 .0575 .0766 .1523 .2216

RevAdv. .0734 .0913 .1297 .1488 .0902 .1169 .1496 .1734 .1066 .1541 .2717 .3386

RAPU-G .0777 .1087 .1482 .1709 .0945 .1471 .1742 .2186 .1088 .1808 .3929 .4976

RAPU-R .0770 .1045 .1212 .1065 .1010 .1112 .1358 .1475 .0977 .1333 .2639 .3242

5.1.5 General Attack Settings. Unless otherwise stated, we use the

following settings for all the attack approaches: The number of

proxy items selected by each controlled user are set to 100 and 10

for the MovieLens and the Amazon-Video dataset respectively. The

percentage of controlled users is fixed to 3%; the width of Wilcoxon-

Mann-Whitney loss, 𝑏, is set to 0.1, the initial value of keeping ratio
and decent ratio (in the PGM) is set to 0.8, the prior of the prediction

feedback’s standard deviation 𝜎𝑟 is set to 0.3, 𝛽 is set to 1.

To simulate the incompleteness and perturbations in real-world

data, we build synthetic datasets based on the two evaluation

datasets. Specifically, for each dataset, we randomly down-sample

the user-item interaction records to 90% of the original data size and

add 10% (w.r.t. the original data size) randomly perturbed data. The

detailed data synthesis protocol is summarized in Appendix A.6.

5.2 Results Analysis

In this section, we present the major comparison results for evalu-

ating our proposed approachs.

5.2.1 Results under Default Setting. Table 2 summarizes the overall

results of different attack approaches against three representative

target recommendation models.

As shown in Table 2, the proposed global-view approach RAPU-

G achieves the best performances in 21 out of 24 scenarios and out-

performs the state-of-the-art method RevAdv by a significant mar-

gin in all scenarios. The proposed reversing based approach RAPU-

R, despite its great efficiency (over 10x faster than RevAdv2), still out-

performs the state-of-the-art method RevAdv in 11 out of 24 cases.

For instance, compared with RevAdv, RAPU-G achieves over 15%

performance improvement on the MovieLens dataset facing WRMF.

Moreover, when the percentage of controlled users increases, the

2This is estimated by running both approaches for 10 times and taking the average on
the Movielens dataset.

performance gap between the proposed RAPU-G becomes more

significant. For instance, compared with RevAdv, RAPU-G achieves

5.4% and 14.7% performance increases on the Amazon-Video dataset

facing WRMF, when the percentage of controlled users rises from

0.5% to 5%. We also observe that the fake data generated by RAPU-

G and RAPU-R for WRMF can also be used to attack NCF and

LightGCN effectively. This phenomenon demonstrates the strong

transfer-ability of the fake data.

5.2.2 Analysis. Among the baselinemethods,𝑅𝑎𝑛𝑑𝑜𝑚 and 𝑃𝑜𝑝𝑢𝑙𝑎𝑟
attacks are heuristics-driven approaches, which are mostly agnostic

to recommendation models. Thus, they suffer from poor perfor-

mance. 𝑃𝐺𝐴, 𝑆𝑅𝑊𝐴, 𝐶𝑜𝑉𝑖𝑠 and 𝑅𝑒𝑣𝐴𝑑𝑣 all formulate the attack as

a bi-level or integer optimization problems over the data collected

by attacker and directly solve for the optimal fake user-item inter-

actions for controlled users. Since there are no strategies to handle

the negative effect caused by the incomplete and perturbed dataset,

these methods cannot accurately estimate the items’ characteristics

and select proper proxy items for controlled users. Consequently,

these methods all suffer from performance drop.

In contrast, the proposed RAPU-G integrates a probabilistic

model with a bi-level optimization attack framework to inferwhether

a positive (or negative) user-item interaction is from the original

training data or the outcome of removals or perturbations. The

interactions inferred as real user-item interactions play a more im-

portant role than other data records in learning the model. Such

a “denoising" process enhances the robustness of RAPU-G when

facing the partial and perturbed data.

It is somehow surprising that RAPU-R has very good perfor-

mance and even outperforms the sophisticated RAPU-G in 3 out

of 24 scenarios, especially when the percentage of controlled user

is below 1%. The reason for RAPU-R’s good performance is that

it greedily forces all the controlled users to interact with the most

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2160

influential proxy items in terms of reshaping the representation of

the target items. It can also leverage heuristic rules such as item pop-

ularity to further narrow down the search scope of finding proper

proxy items. Hence, though not directly pursuing a “global opti-

mal” solution, it empirically achieves good performances, especially

when controlled user’s percentage is low.

5.3 Impact of the Percentage of Data Removal
and Perturbations

Apart from Table 2, we also conduct extensive experiments to eval-

uate the robustness of attack methods with different ratios of data

removal and perturbations.

First, we evaluate the attack performances when different ra-

tios of user-item interaction records are removed from the dataset

(Figure 2). Due to space limit, we only show the results on the

Movielens dataset. From Figure 2, we can find that the performance

of RAPU-G (pink line) is consistently better than the state-of-the-

art baseline method RevAdv (brown line). The proposed reversing

based approach RAPU-R (grey line) can achieve comparable or even

better performance compared with RevAdv. Moreover, its time com-

plexity is far lower. In scenarios like attacking NCF and LightGCN

on the Movielens dataset, the performance of RAPU-G is almost

unchanged while RevAdv suffers performance decrease.

Next, we evaluate the attack performances in more challenging

scenarios when different ratios of perturbed user-item interaction

records are added into the dataset (Figure 3). Here we focus on

the results of attacking WRMF on the Movielens dataset. From

Figure 3, we can find that the performance of RAPU-G (pink line) is

also much better than the state-of-the-art method RevAdv (brown

line) in both scenarios. For instance, when the percentage of per-

turbed data is 20%, the performance of RevAdv is similar to other

less sophisticated attack approaches, but RAPU-G can maintain a

significantly superior performance. The proposed efficient revers-

ing based approach RAPU-R also performs well, especially for the

ratios of 15-20%.

(a) Attack WRMF (b) Attack NCF

Figure 2: Impact of TrainingData onMovieLens. (The results

of attacking LightGCN is placed in the Appendix).

5.4 Impact of the Number of Proxy Items per
Controlled User

Given a specific percentage of controlled users, the number of

proxy items each controlled user interacts with is another important

influence factor in these attack methods. In this part, we fix the

percentage of training data and controlled users to 90% and 3%,

respectively, and vary the number of proxy items. On the Movielens

Figure 3: Impact of the Per-

centage of Data Perturba-

tions on Movielens against

WRMF.

Figure 4: Impact of the Num-

ber of Proxy Items per Con-

trolled User on Movielens

against WRMF.

dataset, we vary the number of proxy items per controlled user in

a range of 0 to 100. The tuning results are shown in Figure 4.

From Figure 4, we can see that the performance of attack base-

lines decrease as the number of proxy items increases when the

number exceeds a certain threshold. This finding is somehow coun-

terintuitive. We note that previous works [6, 16] also have similar

observations for the attacks against recommendation models with

explicit feedback. A possible reason is that “good” proxy items are

limited, and using too many proxy items might introduce extra

noise. Instead, compared with baseline attacks, our attacks are very

stable and can effectively promote the target items with different

numbers of proxy items.

5.5 The Detectability of the Proposed Attacks

In real-world online platforms, anomaly detectors are usually de-

ployed to detect potential malicious users. In this section, we study

the detectability of our attack, i.e., whether the controlled users can

be detected as anomalies in the representation space. We extract

representations of normal users and controlled users learned by

WRMF on manipulated data, and using t-SNE [23] to visualize them.

(a) Popular Attack (b) RAPU-G (c) RAPU-R

Figure 5: Controlled Users in the Representation Space.

In Figure 5, we plot the controlled users and 512 (randomly

sampled) normal users in the representation space to compare the

proposed attack approaches with the heuristic-based 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 at-
tack. From Figure 5(a), it can be observed that the controlled users

guided by 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 attack tend to form clusters in the representation

space. Instead, as shown in Figure 5(b) and Figure 5(c), the repre-

sentations of controlled users guided by RAPU-G and RAPU-R are

scattered evenly in the representation space. This means that these

controlled users are actually more similar to normal users, so it is

difficult to identify the controlled users via distribution discrepancy.

Thus, the controlled users guided by our approaches can be well

camouflaged as normal users.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2161

6 RELATEDWORK

General Data Poisoning Attacks. Data poisoning attacks, in

which attackers pollute the training data by injecting well-crafted

adversarial samples to force the target model to behave abnormally,

have been studied against a wide range of machine learning models,

such as SVM [3, 25], neural networks [7, 17], regression methods

[13, 24]. However, the majority of the prior work assumes that the

attacker observes the whole training set and all the observed data

samples are real and unchanged. In contrast, our paper studies a

more practical setting, where the attacker has to handle incomplete

and even perturbed training data to accomplish the attack goal.

Data Poisoning Attacks against RecommendationModels.

The impact of data poisoning attacks has also been recognized in

recommendation systems [5, 15]. Earlier work on data poisoning

attacks against recommendation models are mostly agnostic to the

target methods, e.g., random attack and average attack [14], and

thus can not achieve satisfactory performance. Recently, data poi-

soning attacks [6, 15, 26] are proposed to generate fake behaviors

that are optimized according to a particular type of recommenda-

tion system. For example, Li et al. [15] proposes data poisoning

attacks for matrix-factorization-based recommendation systems.

The authors model the attack as an optimization problem to decide

the rating scores for the fake users. [26] proposes data poison-

ing attacks for association-rule-based recommendation systems,

where each user injects fake co-visitations between items instead

of fake rating scores of items. [6] proposes data poisoning attacks

to graph-based recommendation systems. [27] proposes practical

poisoning attacks against sequential recommendation models. Tang

et al. [22] provides a more precise solution for the general bi-level

optimization-based attack framework and relaxes the assumption

that the attacker should have full knowledge about the victimmodel.

To the best of our knowledge, there is no existing attack approache

that can handle the incompleteness and perturbations in user-item

interaction data.

7 CONCLUSIONS

In this work, we identify and address the challenges of data poi-

soning attack against recommendation systems with incomplete

or even perturbed user-item interaction data. We propose two so-

phisticated data poisoning attack approaches to overcome this is-

sue. The first approach RAPU-G formulate the attack as a bi-level

optimization problem. To handle incomplete and untrustworthy

user-item interaction data, we propose to incorporate the bi-level

optimization problem with a PGM, which considers the possible re-

movals and modifications in the observations. Moreover, we reverse

the recommendation model’s optimization process and propose an

efficient yet effective second approach RAPU-R to conduct the poi-

soning attack. Experimental results in multiple scenarios clearly

demonstrates the effectiveness of the proposed approaches.

ACKNOWLEDGMENTS

The work was supported in part by the National Science Foundation

of China under Grant No. 61872369, Beijing Academy of Artificial

Intelligence (BAAI), and the National Science Foundation of the

United States of America under Grant No. IIS-1747614.

REFERENCES
[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting

and recommending links in social networks. In Proc. of WSDM 2011.
[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. 2018. Automatic differentiation in machine learning: a
survey. Journal of machine learning research 18 (2018).

[3] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[4] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977).

[5] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. 2020. Influence function
based data poisoning attacks to top-n recommender systems. In Proc. of WWW
2020.

[6] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
attacks to graph-based recommender systems. In Proc. of ACSAC 2018.

[7] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[8] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TiiS 5, 4 (2015).

[9] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In Proc. of
WWW 2016.

[10] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proc. of SIGIR 2020.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proc. of WWW 2017.

[12] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Proc. of ICDM 2008.

[13] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and counter-
measures for regression learning. In Proc. of S&P 2018.

[14] Shyong K Lam and John Riedl. 2004. Shilling recommender systems for fun and
profit. In Proc. of WWW 2004.

[15] Bo Li, YiningWang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poisoning
attacks on factorization-based collaborative filtering. In Proc. of NIPS 2016.

[16] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. 2007.
Toward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. TOIT 7, 4 (2007).

[17] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security.

[18] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In Proc. of ICDM 2008.

[19] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proc. of UAI
2009.

[20] Yilin Shen and Hongxia Jin. 2014. Privacy-preserving personalized recommen-
dation: An instance-based approach via differential privacy. In Proc. of ICDM
2014.

[21] Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy
enhanced matrix factorization for recommendation with local differential privacy.
TKDE 30, 9 (2018).

[22] Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting Adversarially Learned
Injection Attacks Against Recommender Systems. In Proc. of RecSys 2020.

[23] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[24] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
Proc. of ICML 2015. PMLR.

[25] Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial Label Flips Attack
on Support Vector Machines.. In ECAI 2012.

[26] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems.. In NDSS 2017.

[27] Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. 2020. Practical Data
Poisoning Attack against Next-Item Recommendation. In Proc. of WWW 2020.

[28] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li,
and Kui Ren. 2019. Data Poisoning Attack against Knowledge Graph Embedding.
In IJCAI 2019.

[29] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen,
Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yingqian Min, Zhichao Feng,
Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and
Ji-Rong Wen. 2020. RecBole: Towards a Unified, Comprehensive and Efficient
Framework for Recommendation Algorithms. arXiv preprint arXiv:2011.01731.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2162

A APPENDIX

A.1 Time Complexity Analysis of RAPU-G

We first analyze the time complexity of the Algorithm 2. If we

want to compute the gradient ∇R∗L in Eq.9, we need extra time

to compute 𝜕L
𝜕𝜃 (𝑚+1) ·

𝜕𝜃 (𝑚+1)

𝜕𝜃 (𝑚) for each𝑚 ∈ {1, ..., 𝑀}. According to

the reverse-mode algorithmic differentiation [2], the time complex-

ity of computing ∇R∗L is proportional to the parameters 𝜃 . Thus,
𝑂 (𝑀 |𝜃 |) time is needed to have all the gradients accumulated for a

single update of fake data. To improve computational efficacy, we

can adopt approximated technique [22] to unrolling fewer steps

when accumulating 𝜕L
𝜕𝜃 (𝑚+1) ·

𝜕𝜃 (𝑚+1)

𝜕𝜃 (𝑚) . Unrolling 𝜏 steps means back-

propagating gradients only within last 𝜏 steps. Therefore, the time

complexity of computing ∇R∗L can be reduced to𝑂 (𝜏 |𝜃 |). Besides,
we need extra time to perform the EM algorithm. Before iterating,

we can cache N(0 | 𝑟𝑢𝑖 , 𝜎
2
𝑟) for each user-item pair to reduce du-

plicate operations. On this basis, 𝑂 (|U||I|) time is needed in each

E-step and M-step. As a result, if max iterations for outer objective

and EM algorithm are 𝑇 and 𝐸 respectively, the time complexity of

the Algorithm 2 is 𝑂
(
𝑇 · (𝜏 |𝜃 | + 𝐸 · |U||I|)

)
.

A.2 Time Complexity Analysis of RAPU-R

As a contrast, we subsequently analyze the time complexity of the

Algorithm 3. If we adopt algorithm 3 to handle partially observed

data, the optimal representations for controlled users 𝝐 (𝑣) can be

obtained directly according to the derivative rules for vector. Be-

cause 𝒖𝑐𝑡𝑟𝑙𝑚 is only special to target items and target users, we can

cache 𝒖𝑐𝑡𝑟𝑙𝑚 for speed up. Then we can traversal search ’best’ items

in the candidate items set, which is constructed according to the

popularity of items in the implementation. Thus, the time complex-

ity of the Algorithm 3 is𝑂 (|U′| |Ĩ |), where Ĩ is the set of candidate

items.

A.3 Details of Gradient Descend

By applying chain rule, the adversarial gradient can be written as:

∇𝑅∗L =
𝜕L

𝜕R∗
+

𝜕L

𝜕𝜃∗
·
𝜕𝜃∗

R∗
(8)

Without loss of generality, we assume the inner objective is

optimized for 𝐿 times, then 𝜃 (𝑀) is the final parameter used in

adversarial objective. under the context of Stochastic Gradient De-

scent (SGD), ∇𝑅∗L will become

∇R∗ L =
𝜕L

𝜕R∗
+

∑
𝑚∈[1,𝑀]

𝜕L

𝜕𝜃 (𝑚)
·
𝜕𝜃 (𝑚)

R∗
, where

𝜕L

𝜕𝜃 (𝑚)
=

𝜕L

𝜕𝜃 (𝑚+1)
·
𝜕𝜃 (𝑚+1)

𝜕𝜃 (𝑚)
=

𝜕L

𝜕𝜃 (𝑚+1)
· (1 − 𝛼∇𝜃 ∇𝜃 L𝑡𝑟𝑎𝑖𝑛)

𝜕𝜃 (𝑚)

R∗
= −𝛼∇R∗ ∇𝜃

(
L𝑡𝑟𝑎𝑖𝑛 (R, R̂𝜃 (𝑚−1)) + L𝑡𝑟𝑎𝑖𝑛 (R

∗, R̂∗

𝜃 (𝑚−1))
)

(9)

According to Eq.(9), we can discover that partial data 𝑅 will

significantly influence the poisoning samples injected by controlled

users.

A.4 Detailed Formulation of the Surrogate
Model Used in this Paper

In WRMF, the user representation matrix P ∈ R |U |×𝑑 and the item

representation matrix Q ∈ R |I |×𝑑 are used to make predictions

R̂ = PQ� on user-item interaction data R ∈ R |U |×|I | , where 𝑑 is

the dimension of latent factor. The loss function of WRMF is:

L𝑡𝑟𝑎𝑖𝑛 =
∑
𝑢,𝑖

𝑤𝑢𝑖
(
𝑟𝑢𝑖 − P𝑢Q

�
𝑖

)2
+ 𝜆

(
‖P‖2 + ‖Q‖2

)
, (10)

where𝑤𝑢𝑖 is instance weight to differentiate observed and missing

interactions. In this section, let us suppose we have trained the

model on original data to get the matrices P and Q.

A.5 Dataset Descriptions

In this paper, we adopt two real-world recommendation datasets to

evaluate the effectiveness of the proposed attack approaches.

•MovieLens-100k (MovieLens) [8] is a widely usedmovie rec-

ommendation dataset. Following [19], we convert numerical ratings

into implicit feedback (1 for positive interaction, 0 for negative).

•Amazon Instant Video (Amazon-Video) [9] is one category

of the Amazon dataset. In this paper, we transform numerical rat-

ings into implicit feedback and remove cold-start users and items

with less than 10 activities.

The statistics of datasets are shown in Table 3.

Table 3: Statistics of the datasets

Datasets #users #items #actions Avg. Sparsity

MovieLens 943 1,682 100,000 106.04 93.69%

Amazon-Video 8,049 7,076 58,194 7.23 99.89%

A.6 The Data Synthesis Strategy

To simulate the process of the attacker collecting data, we use a

random walk strategy to construct partial and perturbed training

data. For simplicity, we describe the details from a user’s perspective

subsequently.

Suppose we want to get a synthetic dataset with 90% of the

original data size real data and add 10% of the original data size

randomly perturbed data. With user 𝑢 and the percentage of the

partial data 𝜌 , we will generate a random number 𝜄 from 0 to 1, if

𝜄 < 𝜌 , we will sample an item 𝑖 that user 𝑢 has clicked and add

the user-item pair (𝑢, 𝑖) to the training dataset. Otherwise, we will

jump to a randomly selected item 𝑗 that user 𝑢 has not clicked and

add the fake user-item pair (𝑢, 𝑗) to the training dataset. We will

repeat the process until we have collected 90% of the original data

size realistic data and 10% of the original data size perturbed data.

A.7 The Configuration of Surrogate Model and
Target Models

To raise reproducibility, in Table 4 we report the configuration of

each model used in our experiments. Note that we did not tune

each model exhaustively but roughly grid search for the hyper-

parameters until a reasonable recommendation performance is

reached because comparing recommendation performance is not

our main focus.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2163

Table 4: The Configuration of Surrogate Model and Target

Models.

Dataset Model Configuration

MovieLens

Surrogate-WRMF Latent dimension: 64; Learning rate: 1e-2; Weights for posi-
tive feedback: 20; 𝐿2 regularization coefficient: 1e-5; Train-
ing epochs: 200;

WRMF Latent dimension: 64; Learning rate: 1e-2; Weights for posi-
tive feedback: 20; 𝐿2 regularization coefficient: 1e-5; Train-
ing epochs: 100;

NCF Latent dimension: 64; Learning rate: 1e-2;𝐿2 regularization
coefficient: 1e-5; Training epochs: 100;

LightGCN Latent dimension: 64; Learning rate: 1e-2; Number of lay-
ers: 3; 𝐿2 regularization coefficient: 1e-5; Training epochs:
100;

Amazon-Video

Surrogate-WRMF Latent dimension: 32; Learning rate: 1e-2; Weights of posi-
tive feedback: 20; Weights of L2 regularization: 1e-5; Train-
ing epochs: 200;

WRMF Latent dimension: 32; Learning rate: 2e-2; Weights of posi-
tive feedback: 20; Weights of L2 regularization: 1e-5; Train-
ing epochs: 100;

NCF Latent dimension: 64; Learning rate: 1e-2;𝐿2 regularization
coefficient: 1e-5; Training epochs: 200;

LightGCN Latent dimension: 64; Learning rate: 1e-2; Number of lay-
ers: 3; 𝐿2 regularization coefficient: 1e-5; Training epochs:
100;

A.8 Extra Experimental Results

Analysis on the Vulnerable Items. Note that in the previous

subsection, we showed the attack effectiveness only on a set of ran-

domly sampled popular items. In order to analyze the vulnerability

of items, the target item sets are sampled to have different popular-

ities in this section. Here we define "Most Pop." items as the items

with total clicks (#clicks) above 80 percentile. Similar definitions

also apply for "Popular" (60 percentile < #clicks < 80 percentile),

"Ordinary" (40 percentile < #clicks < 60 percentile) , "Unpopular"

(20 percentile < #clicks < 40 percentile) and "Most Unp." (#clicks <

20 percentile). The result on MovieLens dataset is shown in Table

5. From the table, we can see our attacks, though still successfully

promote the target item sets, are less effective for the target items

with less popularity. In other words, the cold items are much harder

to get promoted. Perhaps this is because cold items are farther away

from normal users on the latent space, thus brings more difficulties

for the attack.

Table 5: Attack performance on WRMF for target item set

with different popularity

Attack
Target Item Popularity

Most Pop. Popular Ordinary Unpopular Most Unp.

None .5681 .0767 .0456 .0013 .0000

Random .5737 .0888 .0467 .0074 .0029

Popular .5996 .0924 .0549 .0070 .0024

PGA .5737 .0880 .0521 .0052 .0012

SRWA .5784 .0846 .0512 .0056 .0013

CoVis. .5871 .0996 .0550 .0072 .0030

RevAdv. .5880 .1051 .0591 .0069 .0015

RAPU-G .6080 .1422 .0815 .0154 .0042

RAPU-R .6101 .1212 .0716 .0094 .0020

Impact of theNumber ofRecommended Items. Fig. 6 shows

the hit ratios for different numbers of recommended items (i.e., 𝐾)
when different attacks against WRMF. From the figure, we observe

that the proposed attacks aremore effective than the existing attacks

for different values of 𝐾 . Moreover, when 𝐾 is smaller, the hit ratio

gains of our attacks over existing attacks are more significant. For

instance, when 𝐾 = 10 and 𝐾 = 100, the hit ratios of the proposed

RAPU-Gimprove upon the best baseline by twice and by 1.5 times,

respectively. It is indicated that our attack ranks the target item

higher in the recommendation lists than existing attacks.

Figure 6: Impact of the Number of Recommended Items.

Impact of the Percentage of the Training Data. Fig. 7 shows

the attack performances of different attacks against LightGCNwhen

different ratios of user-item interactions records are removed from

the dataset.

Figure 7: Impact of the Percentage of the Training Data

against LightGCN on MovieLens.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2164

