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Abstract: Interstrand DNA cross-links (ICLs) are cytotoxic because they block the
strand separation required for read-out and replication of the genetic information in
duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to
aging, neurodegeneration, and cancer. Here we describe the formation and properties of
a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one
of the most common endogenous lesions in cellular DNA. The results characterize a
cross-link arising from aza-Michael addition of the N?>-amino group of a guanine residue
to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an
AP site in duplex DNA. An o,B-unsaturated iminium ion is the critical intermediate
involved in ICL formation. Studies employing the bacteriophage ¢$29 polymerase
provided evidence that this ICL can block critical DNA transactions that require strand
separation. The results of biochemical studies suggest that this complex strand break/ICL
might be repaired by a simple mechanism in which the 3’-exonuclease action of the
enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate

repair via the single-strand break repair pathway.



INTRODUCTION

The sequence of nucleobases in DNA provides the genetic code that is critical for
all living organisms.! From a chemical perspective, DNA displays impressive stability.
For example, it has been possible to recover sequence information from DNA samples
that are more than 1,000,000 years old.>* Indeed, intrinsic chemical stability is one of
the properties that makes DNA a candidate for next-generation digital information
storage.*> Spontaneous DNA degradation reactions such as phosphodiester hydrolysis,
cytosine deamination, and hydrolysis of the N-glycosidic bonds that hold purine residues
to the DNA backbone are very slow, with half-lives of 3 x 107y, 3 x 10° y, and 7.5 x 10?
y, respectively.®® Nonetheless, in the context of a diploid human cell containing 12.6
billion nucleotides, ! some of these reactions can produce potentially harmful numbers of
DNA lesions. For example, the spontaneous loss of purine residues introduces 10,000
apurinic (AP) sites per day into the DNA of each cell.>*-!! Enzymatic reactions further
increase the cellular load of AP sites and other DNA lesions. !4

Unavoidable, endogenous DNA damage has important biological
consequences.!'>1® Replication of a damaged DNA template can lead to mutations and

other types of genetic instability.!> 17

Such genetic changes drive the evolution of
species!® but, in the context of individual organisms, are generally detrimental.!” The
requirement for genetic stability in living organisms led to the evolution of proteins that
repair the unavoidable damage sustained by cellular DNA.2°

Interstrand cross-links (ICLs) are a particularly problematic form of DNA

damage. Covalent connection of the two strands in duplex DNA blocks readout and

replication of genetic information.?!?> Complex and resource-intensive pathways exist



for the removal of ICLs from cellular DNA?3-2° but the identity of the endogenous cross-
links that serve as the natural substrates for these repair pathways remains uncertain.?’-?
Defects in ICL repair proteins are associated with cancer, neurodegeneration, and
accelerated aging.!%-2%:3931 Deeper understanding of the formation, consequences, and
repair of endogenous cellular ICLs may provide insights regarding the fundamental
processes that drive disease and determine healthspan in humans.

Our work describes the formation and properties of a potential endogenous cross-
link derived from a ubiquitous endogenous lesion found in the DNA of all organisms.
Specifically, we find that amine-catalyzed cleavage of abasic sites in duplex DNA can
give rise to an interstrand cross-link adjacent to a strand break. The results indicate that
cross-link formation involves conjugate addition of the N?-amino group of a guanine
residue to the electrophilic a,B-unsaturated iminium ion intermediate generated during
spermine-catalyzed B-elimination at an AP site in duplex DNA. Our biochemical studies
provide evidence that the ICL can block critical DNA transactions such as replication and
transcription, but also offer the possibility that this complex lesion may be repaired by a
remarkably simple pathway in which the 3’-exonuclease action of the enzyme
apurinic/apyrimidinic endonuclease (APE1) unhooks the ICL. This unprecedented
activity of APE1 may enable repair to proceed through a variant of the single-strand
break repair pathway’? rather than the more arduous routes offered by classical ICL

repair pathways.?3-24



BACKGROUND

Secondary Lesions Generated from Abasic (AP) Sites in Duplex DNA. AP sites are
among the most common endogenous lesions in cellular DNA.8 33-35 In duplex DNA,
AP sites exist as an equilibrating mixture of the ring-closed hemiacetal alongside small
amounts of the ring-opened aldehyde (~1%, Scheme 1).>¢ Reactivity associated with the

ring-opened aldehyde form of the AP residue leads to the generation of secondary lesions

37-41 42-43

including ICLs and DNA-protein cross-links.

Of special relevance to the present work, the reaction of the AP aldehyde residue
with the N?>-amino group of a guanine residue on the opposing strand can generate an
imine-derived DNA-DNA ICL (dG-AP, Schemes 2 and 3).%% 4 When this cross-
linking reaction is carried out in the presence of the reducing agent NaBH3CN, higher
yields of an N?-alkylguanine ICL are generated via a reductive amination process (dG-
APred, Scheme 2).%% 445 This type of “full-size” cross-linked duplex (containing both
unbroken, full-length strands of the starting duplex) was employed as a size-marker in
some of the gel electrophoretic experiments reported below.

The acidic nature of the o-protons*® in the ring-opened aldehyde enables the
conversion of AP sites into DNA strand breaks via B-elimination of the 3’-phosphoryl
group (Scheme 1).47-% Spontaneous strand cleavage at AP sites in neutral aqueous buffer
is slow, taking place with a half-life of 8-40 d in pH 7 buffer at 37 °C.*®>° The rate of
this reaction is increased at high temperature.’! Biological amines can also catalyze
strand cleavage at AP sites in DNA via obligate iminium ion intermediates (Scheme 1).4%

50,5259 Importantly, strand cleavage involving B-elimination at an AP site in DNA

generates an electrophilic trans-a,B-unsaturated aldehyde sugar remnant on the 3’-



terminus of the strand break (Scheme 1).5>7 This trans-o.,B-unsaturated aldehyde sugar
remnant residue has been detected in the DNA of cultured human cells*” and is one of the
few examples of an o,p-unsaturated aldehyde generated by endogenous cellular
processes.

Various names and abbreviations have been used when referring to the trans-a.,3-
unsaturated aldehyde sugar remnant generated by B-elimination at an AP site in DNA.
These include: frans-4-hydroxypent-2-enal 5-phosphate, BE (B-elimination product),*’
3’dRP (3’deoxyribose phosphate),®! 3’ddR5P (2,3-didehydro-2,3-dideoxy-ribose-5-
phosphate),>* 2 and 3’PUA (phospho-a.,B-unsaturated aldehyde).*> % Here we will use
the 3’PUA nomenclature.

In subsequent sections, we present evidence for generation of an ICL by reaction
of a guanine residue with the electrophilic 3’a,B-unsaturated iminium ion intermediate

produced by amine-catalyzed cleavage of an AP in duplex DNA.

RESULTS AND DISCUSSION

Generation of DNA Duplexes Containing AP-derived Strand Breaks at Defined
Locations. DNA duplexes containing AP sites at defined locations were generated by
treatment of the corresponding 2’-deoxyuridine (dU)-containing duplexes with the
enzyme uracil DNA glycosylase (UDG).!% 3% 6465 This is a biomimetic process mirroring
a major pathway for the formation of AP sites in eukaryotic cells.!3-14 66

In these studies, strand cleavage at AP sites was induced by a variety of

established methods.” Heating at 95 °C for 1 h in HEPES buffer (50 mM, pH 7.4)

containing NaCl (100 mM) was used to generate a mixture of the 3’PUA and 3’phosphate



cleavage products in 66+20% yield, alongside the intact AP-containing duplex.®!
Treatment of AP-containing DNA duplexes with NaOH (165 mM, 37 °C, 30 min)
similarly was used to convert the AP site into a mixture of the 3’PUA and 3’phosphate
cleavage products.” Likewise, treatment with piperidine (1 M, 95 °C, 25 min) induced
conversion of the AP oligonucleotide to a mixture of the 3’PUA and 3’phosphate
cleavage products.>* 63-69

In some experiments, the base excision repair enzyme endonuclease III (Endo III
or Nth) was used to induce cleavage of AP sites in duplex DNA. While it is widely
reported that Endo III generates the 3’PUA cleavage product,’” 7% several studies have
provided evidence that the combined glycosylase-lyase action of this enzyme, in fact,
generates the 3’deoxyribose cleavage product (3’dR, Scheme 1) generated by formal

conjugate addition of water to the 3’PUA group.%% 7!-72

We employed gel electrophoretic
and mass spectrometric analyses to provide evidence that the lyase action of Endo III on
AP-containing DNA duplexes generates the 3’dR cleavage product (Figure S2).

Finally, in the experiments that are the focus of this work, strand cleavage (and
accompanying ICL formation) was induced by physiologically-relevant concentrations (1
mM) of the biogenic amine spermine.*34% 3234  Spermine has a variety of functions in

mammalian cells including DNA compaction in the nucleus.> 73-76

Gel Electrophoretic Evidence That Amine-catalyzed Strand Cleavage of the AP Site
in DNA Duplex A Generates an ICL. The AP-containing strand in duplex A was
labeled with a 5°-3*P-phosphoryl group to enable monitoring of strand-cleavage and ICL

formation. The products arising from this AP-containing duplex under various conditions



were resolved by electrophoresis on 20% denaturing polyacrylamide gels and the
radioactivity in each band quantitatively measured by storage phosphor
autoradiography.”” In denaturing gel electrophoretic analyses, ICLs appear as slow-
migrating bands, located above the uncross-linked AP-containing oligodeoxynucleotide
in the gel images shown here.’**%-7® The smaller DNA fragments arising from cleavage
of the oligodeoxynucleotide at the AP site appear as fast-migrating bands near the bottom
of the gel images.

Successful generation of the AP site in duplex A was confirmed by NaOH
workup to induce cleavage of the AP-containing strand into smaller, fast-migrating
products (Figure 1, lane 2). Incubation of the AP-containing duplex A in pH 7.4 buffer
led to a low yield (approximately 1%) of a slow-migrating product consistent with the
“full-size” dG-AP ICL described previously (Figure 1, lane 5 and Figure S3).° As
expected, incubation of the AP-containing duplex in sodium acetate buffer (750 mM, pH
5.2) containing NaBH3CN (250 mM) produced a larger yield of slow-migrating product
(7£1%, Figure 1, lane 6) consistent with the full-size dG-APr.q ICL derived from
reductive amination (duplex B, Figure 1 and Scheme 3).3° The full-size cross-linked
duplex B served as a useful size-marker in our characterization of the ICL induced by
spermine-mediated strand cleavage of the AP site in duplex A described below.

Incubation of duplex A with spermine (1 mM) in HEPES buffer (50 mM, pH 7.4
containing 100 mM NaCl) for 24 h at 37 °C generated a substantial yield of a slow-
migrating band in the gel (31£3%, lane 7 of Figure 1) accompanied by complete
disappearance of the intact AP-containing strand and the generation of fast-migrating

cleavage products. The slow-migrating product appeared on the gel between the uncross-



linked AP-containing duplex A and the “full-size” dG-APrq ICL (duplex B). This
intermediate gel mobility is consistent with a lower molecular weight cross-link arising
from spermine-mediated cleavage of the AP site in duplex A (duplex C in Figure 1 and
Scheme 3).%4 79-80

Significantly, no slow-migrating ICL band was generated when the enzyme Endo
IIT was used to induce cleavage of the AP site in duplex A. As noted above, the AP lyase
activity of Endo III generates the 3’dR cleavage product rather than the o,-unsaturated
3’PUA product (Scheme 1). Together, the results suggested that cross-link formation
arises from an o,pB-unsaturated elimination product generated by amine-catalyzed

cleavage at the AP site in duplex A.

Evidence That the 3’PUA-Iminium Ion Is the Key Intermediate Involved in ICL
Formation. Amines catalyze strand cleavage at AP sites via a covalent mechanism
involving initial conversion of the AP aldehyde to an iminium ion (Scheme 1).4% 343 81
The increased acidity of the a-protons in this AP-iminium ion intermediate facilitates [3-
elimination of the 3’-phosphoryl group.®>** The 3’a,B-unsaturated iminium ion (3’PUA-
iminium, Scheme 1) is an obligate intermediate in the amine-catalyzed strand cleavage at
AP sites in DNA. Importantly, the reactivity of o,B-unsaturated iminium ions is greater
than that of the corresponding o,-unsaturated aldehydes, with respect to the conjugate
addition of nucleophiles.34-3¢

With these facts in mind, we examined whether ICL formation induced by

spermine-catalyzed cleavage of the AP site in duplex A was driven by the 3’PUA-

iminium ion, the 3’PUA group, or both. To address this question, we generated the



authentic 3’PUA cleavage product using an established protocol’' involving heat
treatment of the AP-containing duplex. Heating duplex A at 95 °C for 30 min generated
the desired 3’PUA cleavage product in 21% yield, alongside a mixture of the 3’phosphate
(24%) cleavage product and the intact AP-containing oligomer (45%, Figure 2, lane 3).
Incubation of the duplex containing the 3’PUA cleavage product for 24 h in pH 7.4 buffer
at 37 °C produced only a trace amount of the slow-migrating ICL band (Figure 2, lane 4).
On the other hand, when the AP-containing duplex A was heated at 95 °C for 30 min,
followed by addition of spermine (1 mM) and incubation for 24 h at 37 °C, a substantial
yield of the slow-migrating ICL band was observed (27%=3, Figure 2, lane 6). Taken
together, the results shown in Figures 1 and 2 provided evidence that the 3’PUA group is
ineffective at cross-link formation and implicate the 3’PUA-iminium ion as the critical

intermediate involved in the spermine-catalyzed generation of an ICL in duplex A.

Iron-EDTA-H;0: Footprinting Reveals That the ICL Attachment Is to Opposing
Guanine Residues. We employed iron-EDTA footprinting to pinpoint the site(s) of
cross-link attachment in the slow-migrating DNA generated by spermine-mediated strand
cleavage of the AP-containing duplex A. The cross-linked DNA was isolated from a
denaturing polyacrylamide gel and subjected to cleavage by an iron-EDTA-H20O; system
(Figure S4). In this experiment, the location where the “ladder” of labeled cleavage
fragments is interrupted reveals the site of cross-link attachment.’®- 8% 87 The results
indicated that the cross-link is attached predominantly (60%) to the guanine residue offset
one nucleotide to the 3’-side of the AP site on the opposing strand (the Schemes and

Figures illustrate this predominant site of cross-link attachment, see: duplex C in Figure 1
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and Scheme 3). A significant amount of cross-link (approximately 40%) was attached to
the guanine residue directly opposing the AP site.

The footprinting data indicate that the slow-migrating band (lane 7, Figure 1)
arising from spermine-mediated cleavage of the AP site in duplex A is a mixture of two
different cross-link attachments. Collectively, the evidence described to this point is
consistent with a cross-linking process involving addition of an opposing guanine residue
to the a,3-unsaturated iminium ion generated by spermine-mediated strand cleavage at an

AP site in duplex DNA (Schemes 3 and 4).

Mass Spectrometric Analysis Is Consistent with Cross-link Formation Involving
Conjugate Addition of a Guanine Residue to the 3°’PUA-iminium Cleavage Product.
The cross-linked DNA generated by spermine-catalyzed strand cleavage of the AP site in
duplex A was characterized using ESI-QTOF mass spectrometry. The major signal in the
deconvoluted mass spectrum corresponded to an m/z value of 16081.28 (Figure S5). This
value was consistent with a cross-link structure arising from conjugate (aza-Michael-
type) addition of an opposing guanine residue to the a,-unsaturated 3’PUA-iminium ion
(caled m/z 16,081.53). We describe this structure as a (3-(2’-deoxyguanosyl)-2,3-
dideoxyribose interstrand cross-linkage and use the abbreviation dG-ddR ICL (Schemes 3

and 4).

The dG-ddR ICL Forms Rapidly and Is Chemically Stable Under Physiological

Conditions. A formation time-course showed that the cross-linked DNA generated by

spermine-mediated cleavage of the AP site in duplex A can be detected within minutes
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and reaches its half-maximal yield in about 8 h (1 mM spermine, 50 mM HEPES buffer,
pH 7.4 containing 100 mM NaCl at 37 °C, Figure 3). Formation of this cross-link is
substantially faster than other reactions considered to be good candidates for the
generation of endogenous ICLs, such as cross-link formation by formaldehyde, acrolein,
and 4-hydroxynonenal.?’-2% 8839 At a longer incubation time (72 h, in the presence of
spermine) there is some disappearance of the ICL (Figure 3B). In a separate experiment,
cross-linked DNA was isolated by gel electrophoresis and its stability examined in pH 7.4
buffer at 37 °C, in the absence of spermine. Under this condition, the cross-link was
quite stable, undergoing only about 4% decomposition over the course of 168 h (Figure
S6).

The ICL can be decomposed under more vigorous conditions. For example,
heating at 95 °C in HEPES buffer (50 mM pH 7.4, containing 100 mM NaCl) for 24 h
caused disappearance of the cross-linked DNA (Figure S7). Interestingly, treatment of
the cross-linked DNA with NaBH4 prior to heating at 95 °C dramatically stabilized the
material against degradation (Figure S7). Similarly, treatment of the cross-linked DNA
with NaBH4 imparted resistance to piperidine-induced disappearance of the cross-linked
DNA (1 M, 95 °C, 25 min, Figure S7).

The stabilizing effect of NaBH4 is consistent with the structure of the dG-ddR
cross-link shown in Scheme 4. Base-mediated decomposition of the ICL is expected to
involve B-elimination of the nucleobase initiated by removal of an acidic a-proton from
the ring-opened aldehyde form of the cross-link. Reduction of the aldehyde to the

corresponding alcohol by NaBH4 will suppress this 3-elimination reaction.
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A Model Cross-linking Reaction Identifies a Fundamental Preference for Aza-
Michael-type Addition of the N*-Amino Group of 2’-Deoxyguanosine to the o,p-
Unsaturated Sugar Remnant. The results described above provided evidence for a
previously unknown type of cross-link arising from conjugate addition of a guanine
residue to the frans-o,B-unsaturated iminium ion produced by amine-catalyzed strand
cleavage of the AP site in duplex DNA. However, these results do not rigorously define
the exact chemical structure of the cross-link. For example, ICL formation could proceed
via addition of the N?, N1, or O° atoms of the guanine residue to the 3’PUA-iminium ion
intermediate. In addition, reactions with the o,B-unsaturated sugar remnant with the
nucleobase can, in principle, proceed via 1,2 (carbonyl) addition, 1,4 (conjugate,
Michael-type) addition, or lead to pyrrole formation.”*-!

To shed light on the chemical structure of the dG-ddR ICL, we designed and
characterized a reaction that models this DNA cross-linking process. The model reaction
employed (S,E)-4,5-dihydroxypent-2-enal (3) as a mimic of the 3’-frans-o,-unsaturated
sugar remnant generated by cleavage of an AP site in DNA.>7 This material was
prepared by a new route involving periodate oxidation of commercially available 1,2:5,6-
di-O-isopropylidene-D-mannitol to give the aldehyde 1, followed by a Wittig
condensation with (formylmethylene)triphenylphosphorane to provide the unsaturated
aldehyde 2 (Scheme 5, Figure S8). Removal of the acetonide protecting group under
acidic conditions gave the desired a,B-unsaturated aldehyde 3 (Scheme 5, Figure S9).

The model cross-linking reaction between the nucleoside 2’-deoxyguanosine and

3 was carried out in a solvent mixture composed of 1:5 DMSO and HEPES buffer (50
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mM, pH 7.4) containing arginine as a catalyst.”>®> Chemical precedents provided by the
reactions of 2’-deoxyguanosine with low molecular weight o,B-unsaturated aldehydes
enabled us to suspect that this reaction would proceed via aza-Michael-type addition of
the exocyclic N?-amino group of the guanine residue to the o,B-unsaturated sugar
residue.?- %49 LC-MS analysis of the reaction revealed a mixture of isomeric products
displaying the [M+H]" ion (at m/z 384 amu) anticipated for the nucleosidic ICL model 4
(Scheme 5). NMR analyses of this mixture revealed signals consistent with 4, but
detailed assignment of the resonances was not possible due to the complexity of the
spectra (up to fourteen equilibrating isomers are possible for this product, four
diastereomers of the O-cyclized pyranose form, four diastereomers of the O-cyclized
furanose form, four diastereomers of the N-cyclized form, and two enantiomers of the
ring-opened form). Treatment of the reaction with NaBHs (5 equiv) generated a new
product mixture 5 that gave dramatically simplified NMR spectra (by removing the
possibility for twelve ring-closed isomers). The ID-NMR, 2D-NMR, and high-resolution
mass spectra of this product were consistent with a diastereomeric mixture of the reduced
model cross-link 5 (Scheme 5). Key resonances in the 2D-NMR spectra consistent with
the connectivity shown for dG-ddRyeq (5) included a correlation between the N>-H of the
guanine residue and the H3” of the 2-deoxyribose adduct in the homonuclear correlation
(COSY) spectrum and a correlation between H3” with C2 of the guanine residue and C2”
and C1” of the 2-deoxyribose adduct in the heteronuclear multiple bond correlation
(HMBC) spectrum (Figure 4 and S10-12).

The results of this model reaction defined a fundamental chemical preference for

aza-Michael-type addition of the N?*-amino group of 2’-deoxyguanosine to the o,f3-
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unsaturated sugar remnant generated by strand cleavage at an AP site in DNA. In
addition, the products obtained in this model cross-linking reaction (4 and 5, Scheme 5)
provided us with structurally-defined standards for use in the LC-MS analyses described

in the next section.

LC-MS/MS/MS Analyses Define the Structure of the dG-ddR ICL Generated in
Duplex DNA. The cross-linked DNA generated by spermine-mediated cleavage of the
AP-containing duplex A was isolated and digested using a four-enzyme cocktail
consisting of nuclease P1, alkaline phosphatase, and phosphodiesterases I and I1I. We
analyzed cross-linked DNA both with and without NaBH4 treatment. Selected-ion
chromatograms from the LC-MS/MS analysis of the digests were obtained using
previously reported conditions.”¢-%

Analysis of the cross-linked DNA that was treated with NaBH4 revealed two
peaks eluting at 16.9 and 18.2 min displaying the m/z 386->270 transition anticipated for
the neutral loss of 2-deoxyribose from the dG-ddRyeq cross-link remnant (Figure 5A).
Further cleavage of the m/z 270 ion produced a fragment ion at m/z 152 in MS/MS/MS,
corresponding to the [M+H]" ion of the free guanine base (Figure S13).

The chemical model reaction described in the previous section provided a
structurally-defined standard for comparison against the actual ICL remnant obtained by
digestion of cross-linked DNA. We found that the LC-MS properties of the synthetic
standard 5 (Figure 5B) mirrored those of the actual cross-link remnant obtained by

enzymatic digestion of the cross-linked, NaBHy-treated DNA (Figure 5A). The multiple

peaks displaying the m/z 386>270 transition in the LC-MS/MS ion chromatograms
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presumably reflect diastereomers generated in the conjugate addition reaction (in both the
model reaction and the actual DNA cross-linking reaction). Additional LC-MS/MS/MS
analyses (Figure S13) of the unreduced cross-link were consistent with the dG-ddR cross-
link structures depicted in Schemes 3, 4, and 5.

Overall, the LC-MS analyses utilizing structurally-characterized synthetic
standards enabled us to establish the chemical structure of the ICL formed by spermine-
mediated strand cleavage in duplex A (dG-ddR, Scheme 4). In addition, the LC-MS
workflow described here provides a platform that may be used for the detection of this

novel ICL in cellular DNA.

The dG-ddR Cross-Link Blocks DNA Replication by the Highly Processive,
Strand-Displacing ¢29 Polymerase. The dG-ddR cross-link is nominally reversible via
a retro-aza-Michael reaction.”® Nonetheless, the results shown above indicate that the
dG-ddR ICL possesses substantial chemical stability in duplex DNA (Figures 3 and S6).
However, from a biological perspective, it may be most important to determine whether
the cross-link can block the action of proteins that actively induce strand separation

during DNA replication and transcription.!%

To explore this issue, we examined the
ability of the bacteriophage ¢29 DNA polymerase to carry out strand-displacement
synthesis on templates containing the dG-ddR ICL. This enzyme has been described as a
hybrid polymerase-helicase that actively unwinds duplex DNA while simultaneously
carrying out highly processive DNA synthesis.!%!

First, we confirmed that the $29 polymerase fully extended a primer on a single-

stranded template or on templates containing regions of duplex DNA in the path of the
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polymerase (Figure S14). In contrast, conjugation of a complementary strand to the
template via the dG-ddR ICL blocked primer extension by the polymerase (Figure 6 and
S14). Primer extension stalled at the last unmodified nucleotides prior to the site of
cross-link attachment (Figure 6). A template containing the “full-sized” dG-APreq cross-
link previously shown to block primer extension by $29 was employed as a comparison
(Figure 6).10

A group of previous studies showed that the ability to block primer extension by
$29 polymerase in vitro is predictive of ICL properties in biological systems.
Specifically, the ability of the dA-AP ICL to stall primer extension by ¢$29 accurately
forecasted the ability of this ICL to block DNA replication in a eukaryotic cell extract.?®
102103 Accordingly, the results reported here suggest that the dG-ddR ICL has the

capacity to block critical cellular DNA transactions that require strand separation.

Unhooking of the dG-ddR ICL by Human Apurinic/apyrimidinic Endonuclease 1
(hAPE1). We next considered whether this structurally-novel ICL might be subject to
repair by a novel mechanism. Specifically, we explored whether the enzyme apurinic
endonuclease 1 (APEI) has the potential to initiate repair of the dG-ddR ICL. APEI
plays a central role in the base excision repair (BER) pathway.!% 1In this capacity, the
endonuclease activity of APE1 hydrolyzes the phosphodiester linkage on the 5’-side of
AP sites that are generated when damaged or mispaired bases are removed by BER
glycosylases.!>  This reaction generates a one-nucleotide gap with 3’OH and

5’deoxyribose phosphate termini.
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APEL1 also has a distinct 3’-exonuclease activity that enables the removal of
mismatched nucleotides and sugar remnants from the 3’-terminus of strand breaks. This
activity is important in BER and single-strand break repair (SSBR) pathways.>%: 63 104-107
Recent structural studies revealed that the 3’-exonuclease activity of hAPE1 does not
require extrusion (“flipping”) of the mispaired nucleotide from a gapped duplex.!%% 106, 108
This structural data suggested to us that the dG-ddR ICL might be a competent substrate
for the 3’-exonuclease activity of APE1. Importantly, 3’-exonuclease activity of APEI
on the dG-ddR ICL would serve to “unhook” the cross-link, perhaps initiating repair
through a variant of the single-strand break repair (SSBR) pathway (Schemes 3 and 6).3

We found that the dG-ddR ICL in DNA was, indeed, unhooked by APE1 (Figure
7). A time course of this reaction showed that unhooking occurs with a half-time of 10-
15 min. The gel mobility of the initial unhooked product was consistent with the 3’OH
end group expected for the 3’-exonuclease activity of the enzyme. At longer incubation
times, smaller oligodeoxynucleotide products arising from further 3’-exonuclease activity
of APE1 on the initial unhooking product were observed (Figure 7).!%

APE1 was more effective at unhooking the dG-ddR ICL in a “gapped” substrate
(Figure 7) than in a resected (3’-recessed) substrate lacking the oligonucleotide fragment
on the 3’-side of the strand break (Figure S15). This mirrors the preference reported for
the 3’-exonuclease activity of APE1 on mispaired 3’-nucleotides.!”” 1In addition,
unhooking of the dG-ddR ICL by APE1 was more effective when carried out in a buffer
optimized'!? for the 3’-exonuclease activity of the enzyme rather than the typical buffer

optimized for endonuclease activity (Figure S16). The unhooking reactions do not

proceed to completion. Likely this reflects product inhibition of the enzyme (Figure
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S16). APEI is inhibited by the 5’-incised product generated by the endonuclease action
on an AP site in duplex DNA and binds a variety of incised, gapped, nicked and 3’-
recessed duplexes (Figure S16).

For comparison, we characterized the ability of APE1 to trim the 3’dR end group
generated by the action of E. coli Endo III on the AP site in duplex A. Sugar remnants
derived from the AP-lyase activity of BER glycosylases are known substrates for the 3’-

1.59 61,63, 104107 Removal of the 3°dR end group from a

exonuclease activity of APE
gapped substrate by APE1 (1 unit/uL) took place with a half-time of approximately 5-10
min (Figure S17). The unhooking of the dG-ddR ICL by APEI described above was
somewhat less effective than the trimming of the 3’dR end group, requiring 2-fold greater
enzyme concentration to proceed at a comparable rate.

Finally, we examined whether the lyase activity associated with BER
glycosylases can unhook the dG-ddR ICL. In principle, unhooking of the dG-ddR ICL
via a retro aza-Michael mechanism might be catalyzed by enzymes with amine-
dependent AP-lyase activity. However, we found that the base excision repair

glycosylase FPG, an enzyme with very effective lyase activity,!!! did not unhook the dG-

ddR ICL (Figure S18).

Scope and Generality of the Cross-Linking Reaction: Formation of the dG-ddR
ICL In Various Sequences and Under Varied Conditions. To examine the scope and
generality of this new DNA cross-linking process we measured spermine-induced ICL
formation in a series of AP-containing duplex sequences containing single guanine

residues located on the opposing strand near the strand cleavage site (Figure 8). We
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found that spermine-induced cleavage of the AP site in all these duplexes led to the
generation of slow-migrating ICL bands (Figure 8). Among the three “single-G”
sequences, the highest ICL yield was obtained in the duplex containing a guanine residue
offset one nucleotide to the 3’-side of the AP site on the opposing strand. The major
signal observed in the mass spectrometric analysis of the cross-linked DNA generated in
this sequence was consistent with that expected for the dG-ddR ICL attachment (Figure
S19). The trends in the ICL yields observed for the single-G duplexes mirrored the
preferred cross-link locations in the triple-G sequence of duplex A.

We examined spermine-mediated ICL formation in the AP-containing duplexes D
and G each containing the same triple-G core cross-linking site found in duplex A, but
with differing numbers of base pairs on the 3’-side of the AP site (7, 17, and 27 bp,
Figure S20). There are significant differences in the architecture of the products
generated by strand cleavage of the AP site in these duplexes. Specifically, following
cleavage at the AP site in duplex D, the 7 nt fragment will “melt off” to yield a 3’-
recessed (resected) cleavage site. On the other hand, the 17 and 27 nt fragments
generated by cleavage at the AP site in duplexes A and G will remain hybridized to give
gapped cleavage sites. We observed substantial yields of cross-link in all of these
duplexes, with the ICL yields following the trend of D > A > G. The results suggest that
the dG-ddR ICL can form at both gapped and resected (3’-recessed) strand cleavage sites
(Figure S20).

We examined the DNA cross-linking reaction in different buffers. Our standard
cross-linking conditions involved incubation of the AP-containing duplex A with

spermine (1 mM) in HEPES buffer (50 mM, pH 7.4) containing NaCl (100 mM) for 24 h
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at 37 °C to give a 314+3% yield of the ICL (Figure 1). We observed significant amounts
of ICL generated by spermine-induced cleavage of the AP site in duplex A in Tris-HCI
(50 mM, pH 7.4, containing 100 mM NacCl, 19+2% yield) and sodium phosphate (50
mM, pH 7.4, containing 100 mM NacCl, 38+2% yield, Figure S21) after incubation for 24
h at 37 °C. Spermine-induced strand cleavage of duplex A in sodium acetate (750 mM,
pH 5.2) at 37 °C for 24 h gave a low yield of the slow-migrating ICL band (3+1%). No
significant yields of ICL were observed under any of these conditions in the absence of
spermine.

Finally, we examined the ability of amines other than spermine to induce ICL
formation in HEPES buffer (50 mM, pH 7.4 containing 100 mM NacCl at 37 °C, for 24 h).
We found that N,N’-dimethylethylenediamine (1 mM),> the Lys-Trp-Lys tripeptide (100
uM)3: 37 112 and putrescine (1 mM)> induced ICL formation in yields of, 4%, 3%, and
1%, respectively. The ICL yields induced by these amines were substantially less than
that generated by spermine. Arginine and lysine (1 mM) did not induce significant
amounts of the ICL.

It is interesting to consider the mechanistic reasons for these results. Arginine,
lysine, and putrescine do not induce induce ICL formation because they do not significant
amounts of strand cleavage at the AP site (Figure S21). Strand cleavage by N,N’-
dimethylethylenediamine is slow relative to spermine, with significant amounts of
uncleaved AP site still present after 24 h (Figure S21). Lys-Trp-Lys effectively induces
strand cleavage but forms a stable adduct with the cleavage product that evidently
inhibits ICL formation (Figure S21). Spermine is particularly effective at catalyzing

cleavage of AP sites because, in neutral aqueous solution, one of its four amine residues
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(unlike most amines) presents substantial amounts of the nucleophilic free base required
for reaction with the AP aldehyde in the first step of iminium ion formation.>

Overall, the results indicate that formation of the dG-ddR ICL arising from spermine-
catalyzed cleavage of AP sites in duplex DNA can be formed in a wide variety of buffers

and in diverse sequence environments.

CONCLUSIONS

Amine-catalyzed B-elimination of the 3’-phosphoryl group from an AP site
unmasks a latent electrophile in the midst of a nicked DNA duplex. We characterized a
structurally novel ICL lesion arising from aza-Michael-type addition of the exocyclic N?-
amino group of a guanine residue to the o,B-unsaturated sugar remnant generated by
amine catalyzed strand cleavage at an AP site in duplex DNA. Our evidence suggests
that the a,-unsaturated iminium ion intermediate is directly involved in the cross-linking
reaction (3’PUA-iminium ion, Schemes 1 and 4). In contrast, the o,B-unsaturated
aldehyde (3°’PUA, Scheme 1) was ineffective at cross-link generation under our reaction
conditions. This process yields a complex clustered lesion consisting of a cross-link
coupled to a single-strand break.

AP sites that serve as the precursor to the dG-ddR ICL are common in cellular
DNA 3335 Likewise, spermine and related polyamines are abundant in cells.> 737
Accordingly, this ICL can be added to the list of potential endogenous ICLs in cellular
DNA 2" To date, there is little information regarding the identity and levels of ICLs in
the DNA of living cells.?’” The detection of endogenous ICLs in living systems inevitably

presents significant challenges because cells are not likely to tolerate more than low
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levels of these replication- and transcription-blocking lesions. Nonetheless, the LC-MS
experiments described here provide a platform for future studies aimed at detection of
this ICL in cellular DNA.

Endogenous ICLs that block replication and transcription have the potential to

16,28, 3031 Our results show that the

contribute to cancer, neurodegeneration, and aging.
dG-ddR ICL blocks DNA replication by the highly processive, strand-separating ¢29
DNA polymerase, even under forcing conditions employing high dNTP concentrations
and long incubation times. This suggests that, owing to their ability to block critical
cellular DNA transactions that require strand separation, unrepaired dG-ddR cross-links
have the potential to have significant biological consequences stemming from their
ability to induce cell death, senescence, and dysfunction.

It is interesting to speculate on processes by which this novel ICL might be
removed from cellular DNA. The DNA repair protein PARP1 recognizes single-strand
breaks in DNA.3% 113 Accordingly, recognition of the dG-ddR strand break/ICL by
PARP1 may recruit XPC, ultimately leading to unhooking of the ICL via a 5’-incision
carried out by the nucleotide excision repair (NER) proteins XPF-ERCC1.!'* With
respect to NER, it is important to recognize that previous studies with architecturally
similar ICLs% derived from strand cleavage at oxidized AP sites suggest that
dysregulated generation of incisions has the potential to convert strand-break/ICLs into
toxic double-strand breaks.!'>!1¢  Based on this precedent, the possibility for

dysfunctional NER presumably exists for the dG-ddR strand-break-ICL described here.

However, our biochemical experiments offer an alternative possibility that this type of
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structurally complex ICL might be repaired by a surprisingly simple mechanism in which
the cross-link is unhooked by the enzyme APE].

The enzyme APE1 is best known for its ability to incise duplex DNA on the 5’-
side of AP sites generated spontaneously or by DNA glycosylases during BER.!%+105 In
addition, APE1 has a 3’-exonuclease activity that may play an important role in removing
sugar remnants from the 3’-terminus of strand breaks generated by oxidative DNA
damage, BER, or spontaneous cleavage at AP sites, 32 63 104-107. 109-110. 117 Qther enzymes
including tyrosyl phosphodiesterases (TDP) and APE2 similarly participate in 3’end-
cleaning.!'812% The removal of 3’-blocking groups from strand breaks is critical to reveal
the 3°’OH group required for completion of DNA repair and replication. 8-> 120

We find that the 3’-exonuclease activity of APE1 unhooks the dG-ddR ICL. This
unprecedented ICL unhooking activity of APE1 has the capacity to initiate repair of the
cross-link through a variant of the single-strand break repair pathway (SSBR). The
canonical SSBR pathway can be viewed as a sub-pathway of base excision repair (BER)
involving recognition of the single-strand break, enzymatic trimming of 2-deoxyribose
sugar remnants (“dirty ends”) from the 5’ or 3’ termini of the break, gap-filling by
polymerase B, and sealing of the nicked duplex by a DNA ligase.*> 195117 The protein
PARPI may be involved in sensing the strand break®* !'* and the protein XRCC1 acts as
a scaffold to organize this multi-protein complex on DNA 32 105 117, 121

The gapped duplex generated by the 3’-exonuclease action of APE1 on the dG-
ddR ICL closely resembles a typical SSBR substrate, with the exception that a guanine

residue on the template strand opposing the break bears an N*-deoxyribosyl-5-phosphate

(dRP) adduct (Scheme 6). The residual N>-dRP adduct may be subject to error-prone or
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error-free replication involving translesion bypass polymerases such as pol «, 1, and £.!?
Alternatively, the N*-dRP adduct could be removed during SSBR by an atypical dRP
lyase activity of pol B!2* or excised after SSBR by NER.!?*

In summary, we characterized a previously unknown, structurally complex cross-
link arising from a common endogenous lesion in DNA. Our biochemical studies suggest
that this ICL has the potential to block critical DNA transactions such as replication and
transcription, but also offer the possibility that this complex lesion may be removed from
genomic DNA by a remarkably simple process in which unhooking of the cross-link by
APEI1 channels repair through a variant of the SSBR pathway, thereby evading complex

classical ICL repair pathways and the potential for dysfunctional NER repair.
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5’ -32P-ATACCACATAGATGAACXCAGATATATATAGAGAT
3’ -TATGGTGTATCTACTTGGGTCTATATATATCTCTA

Duplex A (X=AP)

Figure 1. Gel electrophoretic evidence for an interstrand cross-link generated by
spermine-catalyzed strand cleavage at the AP site in duplex A. Lane 1: 5°-3P-
labeled-AP-containing duplex A. Lane 2: The AP-containing duplex A treated with
NaOH (165 mM, 37 °C, 30 min) to induce strand cleavage at the AP site, generating 3P
and 3’PUA cleavage products. Lane 3: AP-containing duplex A treated with Endo III (1
unit/pL) in a buffer composed of Tris-HCI (20 mM, pH 8), EDTA (I mM), and DTT (1
mM) for 2 h at 37 °C to induce strand cleavage at the AP site, with corresponding
generation of the 3’dR product. Lane 4: Duplex A treated with Endo III (1 unit/uL) in a
buffer composed of Tris-HCI (20 mM, pH 8), EDTA (1 mM), and DTT (1 mM) for 2 h at
37 C followed by ethanol precipitation of the DNA and incubation in HEPES (50 mM,
pH 7.4) and NaCl (100 mM) at 37 °C for 24 h. Lane 5: The AP-containing duplex A
incubated in HEPES (50 mM, pH 7.4) and NaCl (100 mM) at 37 °C. Lane 6: Duplex A
incubated in sodium acetate buffer (pH 5.2, 750 mM) containing NaBH3CN (250 mM) at
37 °C for 24 h. Lane 7: Duplex A + spermine (Sp, | mM) in HEPES buffer (50 mM, pH
7, containing 100 mM NaCl) at 37 °C for 24 h. The ¥2P-labeled oligodeoxynucleotides in
the reactions were resolved by electrophoresis on a 0.4 mm thick 20% denaturing
polyacrylamide gel and the radioactivity in each band quantitatively measured by
storage-phosphor autoradiography. X = AP site, G-X = the dG-AP ICL, and G-Y = the
G-ddR ICL (see Schemes 3 and 4 for chemical structures).
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Figure 2. Evidence that the 3’PUA-iminium ion is the key intermediate involved in
the spermine-catalyzed cross-link formation in duplex A. For structures of the 3’PUA
iminium ion and 3’PUA cleavage products, see Scheme 1. Lane 1: 5°-*?P-labeled-AP-
containing duplex A. Lane 2: The AP-containing duplex A treated with NaOH (165 mM,
37 °C, 30 min) to generate the 3’P and 3’PUA cleavage products. Lane 3: AP-containing
duplex A heated at 95 °C for 30 min in HEPES buffer (50 mM, pH 7.4, containing 100
mM NaCl) to generate a mixture of intact AP site (45 %) alongside the 3’PUA (21 %)
and 3’phosphate (24 %) cleavage products and then incubated for 1 h at 37 °C. Lane 4:
Duplex A heated at 95 °C and then incubated at 37 °C for 24 h. Lane 5: size marker
showing the “full-size” dG-APq ICL generated by incubation of duplex A in pH 5.2
sodium acetate buffer (750 mM) containing NaBH3CN (250 mM) for 24 h at 37 °C. Lane
6: Duplex A heated at 95 °C for 30 min, followed by addition of spermine (Sp, 1 mM)
and incubation in HEPES buffer (50 mM, pH 7.4, containing 100 mM NacCl) at 37 °C for
24 h. The 3?P-labeled oligodeoxynucleotides in the reactions were resolved by
electrophoresis on a 0.4 mm thick 20% denaturing polyacrylamide gel and the
radioactivity in each band quantitatively measured by storage-phosphor autoradiography.
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Figure 3. Time course for the formation of cross-linked DNA generated by amine-
catalyzed cleavage of the AP site in duplex A. Panel A: Gel electrophoretic analysis of
amine-catalyzed cross-link formation in duplex A. Lane 1: AP-containing duplex A.
Lane 2: The AP-containing duplex A treated with NaOH (165 mM, 37°C, 30 min) to
induce strand cleavage at the AP site, with generation of 3’P and 3’PUA cleavage
products. Lanes 3-10: AP-containing duplex A was incubated with spermine (Sp, 1 mM)
in HEPES buffer (50 mM, pH 7.4, containing 100 mM NaCl) at 37 °C. At prescribed
time points aliquots were removed and frozen for subsequent gel electrophoretic analysis.
The *?P-labeled oligodeoxynucleotides in the reactions were resolved by electrophoresis
on a 0.4 mm thick 20% denaturing polyacrylamide gel and the radioactivity in each band
quantitatively measured by storage-phosphor autoradiography. Panel B: A plot of ICL
yield versus time. The error bars reflect the standard deviation from three separate
measurements.
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Figure 4. The structure of the model dG-ddR cross-link 5 was elucidated by 2D-
NMR. Correlations between: (a) H3” and C2”, (b) H3” and C1” and (c) H3” and C2 in
the 'H-13C HMBC spectra of the reduced model ICL 5 in DMSO-ds acquired at 600 MHz
('H) and 151 MHz (3C) were consistent with the model cross-link structure shown,
arising from conjugate addition of the exocyclic N*-amino group of dG with the o,f-
unsaturated sugar remnant. Additional NMR spectral data are provided in Figures S9-
S11.
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Figure 5
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Figure 5. LC-MS/MS analyses establish the structure of the cross-link generated by
amine-catalyzed strand cleavage in DNA duplex A. Panel A: Selected-ion
chromatogram for monitoring the m/z 386>270 transition of the digest of cross-linked
DNA generated by spermine-mediated strand cleavage of duplex A. Panel B: Selected-
ion chromatogram for monitoring the m/z 386->270 transition which corresponds to the
neutral loss of 2-deoxyribose of the synthetic standard of the reduced dG-ddR cross-link.
The retention times and fragmentation patterns of the synthetic standard mirror that of the
actual cross-link remnant obtained from digestion of NaBHs-treated, cross-linked DNA.
This provided evidence that the ICL in NaBHas-treated DNA corresponds to the structure
dG-ddReq shown in Schemes 3 and 4. Additional results of LC-MS/MS/MS analyses for
the reduced and unreduced cross-link are presented in Figure S13.
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Figure 6
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Figure 6. The dG-ddR ICL blocks DNA replication by the $29 DNA polymerase. A
15 nt 5°-3?P-labeled primer was incubated with templates containing an ICL along with
the polymerase enzyme (1 unit/uL), and the four dNTPs (1 mM in each) in Tris-HCI (50
mM, pH 7.5), MgCl> (10 mM), (NH4)2SO4 (10 mM), DTT (4 mM), and bovine serum
albumin (0.1 mg/mL) for 30 min at 24 °C. After reaction work-up, the primer extension
products were analyzed on a 20% denaturing polyacrylamide gel. The gel image shows
the locations where primer extension by the polymerase stalled on templates containing
the dG-ddR and dG-AP.q ICLs. Complete sequences of the primer and templates are
shown in Figure S1 and the complete gel electrophoretic analysis of primer extension
reactions are shown in Figure S14. G-X is the dG-AP ICL and G-Y is the dG-ddR ICL
(chemical structures are shown in Schemes 2-4).
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Figure 7. Unhooking of the dG-ddR ICL by the DNA repair enzyme apurinic
endonuclease (APE1). The cross-linked DNA generated by amine-catalyzed cleavage of
the AP site in duplex G was isolated by gel electrophoresis and annealed with a
complementary 5’-phosphorylated oligonucleotide to generate the gapped substrate I (the
complete sequences for these duplexes are shown in Figure S1). The gapped ICL was
incubated with APE1 (2 units/uL) in Tris buffer (20 mM, pH 7.4) containing MgCl> (0.1
mM) and NaCl (20 mM) at 37 °C. At prescribed times aliquots were removed and frozen
for subsequent gel electrophoretic analysis. The 5°-32P-labeled oligodeoxynucleotides in
the reactions were resolved by electrophoresis on a 0.4 mm thick 20% denaturing
polyacrylamide gel and the radioactivity in each band quantitatively measured by
storage-phosphor autoradiography. The initial unhooking product has gel mobility
consistent with the 3°’OH product. The smaller, faster-migrating products that become
more prominent over time arise from further 3’-exonuclease activity of APE1 on the
initial 3’OH product. Panel A shows the gel electrophoretic analysis of the enzymatic
unhooking reaction and Panel B shows a plot of the unhooking of cross-linked DNA as a
function of time. The error bars reflect the standard deviation from three separate
experiments.
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Figure 8
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Figure 8. Yield of ICL resulting from amine-catalyzed strand cleavage of an AP site in
various sequence contexts. The trinucleotide sequences shown were located in a
sequence analogous to duplex A.
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