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Abstract—In this paper, a method for joint source-channel
coding (JSCC) based on concatenated spatially coupled low-
density parity-check (SC-LDPC) codes is investigated. A con-
struction consisting of two SC-LDPC codes is proposed: one
for source coding and the other for channel coding, with a
joint belief propagation-based decoder. Also, a novel windowed
decoding (WD) scheme is presented with significantly reduced
latency and complexity requirements. The asymptotic behavior
for various graph node degrees is analyzed using a protograph-
based Extrinsic Information Transfer (EXIT) chart analysis for
both LDPC block codes with block decoding and for SC-LDPC
codes with the WD scheme, showing robust performance for
concatenated SC-LDPC codes. Simulation results show a notable
performance improvement compared to existing state-of-the-art
JSCC schemes based on LDPC codes with comparable latency
and complexity constraints.

Index Terms—Low-density parity-check (LDPC) codes, spa-
tially coupled codes, joint source-channel coding, window decod-
ing

I. INTRODUCTION

For infinite source and channel code block lengths, it
is known that arbitrarily high reliability can be attained if
the source entropy is less than the channel capacity by the
separation principle, where source and channel coding are per-
formed separately [1]. On the other hand, in a non-asymptotic
regime with delay constraints, a joint source-channel design
can be more attractive [2], where the residual redundancy
of the source sequence can be used by the channel decoder
to improve channel decoding [3], [4]. Block error-correcting
codes can be directly applied for source coding where the
decoder is used to compress the source data and the encoder
is used to reconstruct it [5], [6]. This method was shown
to be efficient for memoryless symmetric sources under the
Hamming distortion measure, where the average distortion is
measured as the average fraction of source bits that are not
correctly reconstructed [6]. However, for many sources, the
source sequence is asymmetric (e.g., sequences with a small
number of ones), for which syndrome source coding [7] can
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be an efficient method. In syndrome source coding, the source
sequence s is considered as a channel output and the source
encoder generates the syndrome u = sHT as the compressed
data, where H is the parity-check matrix of the linear error-
correcting code. At the receiver, the source decoder tries to
produce an estimate ŝ consistent with u [7]. Low-density
parity-check (LDPC) codes [8] with a belief propagation (BP)
algorithm were proposed for syndrome source coding in [9]
and then further investigated with a noisy channel in [10].

Three methods of joint source-channel coding (JSCC) were
proposed in [10], specifically 1) two LDPC codes, 2) a single
LDPC code, and 3) Lotus codes. This paper is focused on
the first method, i.e., two LDPC codes, where LDPC based
syndrome source coding is then concatenated with an LDPC
channel encoder. Therefore, at the transmitter, there are two
concatenated LDPC codes that are applied sequentially. At
the receiver, the concatenated codes can be represented as a
single bipartite graph and jointly decoded by a BP algorithm.
Related JSCC schemes have been successfully employed using
turbo codes [11], [12], rate-compatible punctured convolu-
tional codes [13], [14], and two concatenated LDPC block
codes [15]. In [15], [16], [17], a joint protograph extrinsic
information transfer (EXIT) analysis was proposed to calcu-
late the decoding threshold concatenated protograph-based for
LDPC codes and the source and channel code were jointly
optimized to achieve a good bit error rate performance in [18].
Punctured protograph LDPC codes were investigated for a
binary Hidden Markov Model (HMM) source in [19].

Spatially coupled LDPC (SC-LDPC) codes can be obtained
by coupling together (connecting) a series of L disjoint LDPC
block codes to make a larger connected graph, and have been
shown to have capacity approaching channel coding perfor-
mance as a result of the threshold saturation phenomenon [20],
[21], [22], [23]. Closely related spatially coupled low-density
generator matrix (SC-LDGM) code ensembles, where sparse
generator matrices are coupled together to create a connected
graph, were subsequently shown to have rate-distortion bound
approaching performance for lossy source compression, dis-
playing an analogous distortion saturation behavior [24], [25].
SC-LDPC codes were also shown to perform well for the
problem of transmission of two possibly correlated sources
to a common destination with the help of a relay over binary
erasure channels (BECs) with a JSCC coding scheme [26].

In this paper, we extend our preliminary results in [27] and
present a construction of practically interesting protograph-
based concatenated (J,K)-regular SC-LDPC codes for JSCC.
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We show that they can be realized efficiently via sequential
source and channel convolutional encoders and can be decoded
with a joint BP decoder. Furthermore, we propose a novel
low-latency windowed decoding (WD) scheme for the con-
catenated SC-LDPC-based system with significantly reduced
latency and complexity requirements. The main contributions
beyond [27] include:
• We present an EXIT chart analysis, extending the ap-

proaches of [15], [17], [18] to consider the concatenated
convolutional protographs and window structure of the
decoder. The results show that while the asymptotic
performance (thresholds) of regular, uncoupled LDPC
codes for JSCC worsen by increasing the graph density
for a fixed coding rate, the thresholds improve with SC-
LDPC code ensembles. Furthermore, it is shown that
by increasing the decoder window size, the threshold
improves up to a certain value, after which negligible
gains are observed;

• A comprehensive study of the design parameters is
performed, showing that concatenated SC-LDPC codes
display good performance for a variety of sources under
various latency constraints. Considerations for the proto-
graph design are presented to ensure that the resulting
code is amenable to low-complexity partial syndrome
former encoding and good window decoding thresh-
olds/performance;

• Simulation results for a binary memoryless source and
a binary input additive white Gaussian noise (AWGN)
channel confirm the improved BER performance ver-
sus comparable concatenated LDPC block codes on an
equal latency basis. Moreover, we demonstrate superior
threshold and finite-length performance when compared
to optimized irregular LDPC codes taken from [16], [18];

• The transmission of binary sources generated by an HMM
is considered where it is shown that the behavior of
concatenated SC-LDPC codes is similar to a memo-
ryless Bernoulli source. Concatenated SC-LDPC codes
are again shown to have competitive performance versus
state-of-the-art optimized irregular LDPC codes from
[19];

• Finally, rate-compatible concatenated SC-LDPC codes
for JSCC are presented and shown to have robust per-
formance over a variety of coding rates by puncturing.

II. LDPC-BASED JSCC

In this section, we provide the necessary background and
notation as well as summarizing the LDPC-based JSCC ap-
proach proposed in [10].

A. Notation and background

Throughout the paper, unless otherwise stated, we assume
a memoryless Bernoulli source, such that pv = P(sv = 1)
for source bit sv , and a binary-input additive white Gaussian
noise (AWGN) channel where rv is the received binary phase
shifting keying (BPSK) value for a symbol transmitted on a
channel with noise variance σ2

n. An LDPC code is described
as the null space of a parity-check matrix H to which we

Fig. 1. Concatenated LDPC Tanner graphs for JSCC.

associate a Tanner graph in the usual way [28]. We use the
shorthand notation [a : b] to represent the set {a, a+1, . . . , b}
for integers b > a. Matrices and vectors will be represented
by bold fonts and we introduce “sc” or “cc” superscripts to
the parameters to indicate their association to the source and
channel code, respectively. Table VI in the Appendix displays
a table of the commonly used code parameters for reference.

B. Encoding and decoding

A first LDPC code with parity-check matrix Hsc is used to
calculate the syndrome u corresponding to the source input s,
and then a second LDPC code with parity-check matrix Hcc

and generator matrix Gcc is used to encode the compressed
sequence for transmission through a noisy channel. For this
system, a codeword v is obtained as

v = uGcc =
(
sHscT

)
Gcc, (1)

where Hsc is an l× n sparse binary parity-check matrix with
compression rate Rsc = l/n < 1, s is the length n binary
source input, u is the length l binary compressed source word,
and Gcc is the l ×m binary systematic LDPC channel code
generator matrix with code rate Rcc = l/m. Fig. 1 shows
the concatenated Tanner graphs used at the decoder, where
the subgraphs associated with Hsc and Hcc are referred to as
the source graph and channel graph, respectively, and each
variable node in the systematic part of the channel graph is
connected to a check node in the source graph. The overall
code rate is R = Rcc

Rsc = n
m .

Let Lsc
v and Lcc

v denote the incoming log-likelihood ratios
(LLRs) for the variable nodes v ∈ [1 : n] of the source decoder
and variable nodes v ∈ [n+1 : n+m] of the channel decoder,
respectively. Then, for a memoryless Bernoulli source such
that pv = P(sv = 1), Lsc

v = log
(

1−pv
pv

)
, and for binary-

input AWGN channel, Lcc
v = 2rv

σ2
n

, where rv is the received
BPSK value for a symbol transmitted on a channel with noise
variance σ2

n. As in [15], we apply BP to the concatenated
graph as follows1: variable nodes send their message to check
nodes at iteration ` as

msc,(`)
v→c = Lsc

v +
∑
c′ 6=c

m
sc,(`−1)
c′→v , (2)

1In [29], the two LDPC matrices (Hsc and Hcc) are combined as one
LDPC matrix and standard message passing applied between variable nodes
and check nodes; however, we choose to follow separated BP updates as
applied in [15] for convenience.
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mcc,(`)
v→c = Lcc

v +msc→cc,(`−1)
c→v +

∑
c′ 6=c

m
cc,(`−1)
c′→v , (3)

mcc→sc,(`)
v→c = Lcc

v +
∑
c′ 6=c

m
cc,(`−1)
c′→v , (4)

mcc,(`)
v→c = Lcc

v +
∑
c′ 6=c

m
cc,(`−1)
c′→v , (5)

where m
sc,(`)
v→c , mcc,(`)

v→c , and m
cc→sc,(`)
v→c are the messages at

iteration ` passed from the vth variable node to the cth check
node within the source graph, within the channel graph, and
between the channel and the source graphs, respectively. We
employ the above BP update rules such that (2) applies
for variable node indices v ∈ [1 : n], (3) and (4) for
v ∈ [n+ 1 : n+ l], and (5) for v ∈ [n+ l + 1 : n+m].

For check to variable messages, m
sc,(`)
c→v , m

cc,(`)
c→v , and

m
sc→cc,(`)
c→v represent the messages passed from the cth check

node to the vth variable node within the source graph, within
the channel graph, and between the source and channel
graphs, respectively, given as

msc,(`)
c→v =

2 tanh−1

 tanh

(
m

cc→sc,(`)
v→c

2

) ∏
v′ 6=v

tanh

(
m

sc,(`)
v′→c
2

) ,

(6)

msc→cc,(`)
c→v = 2 tanh−1

∏
v′ 6=v

tanh

(
m

sc,(`)
v′→c
2

), (7)

mcc,(`)
c→v = 2 tanh−1

∏
v′ 6=v

tanh

(
m

cc,(`)
v′→c
2

). (8)

Note that msc,(0)
c→v = m

cc,(0)
c→v = m

sc→cc,(0)
c→v = 0. Equations

(6) and (7) apply for check node indices c ∈ [1 : l] and (8)
for c ∈ [l + 1 : m]. After I iterations of decoding, BP is
terminated by computing the LLR of each source bit sv , i.e.,
LLR(sv) = Lsc

v +
∑
cm

sc,(I)
c→v , whereby the vth source bit is

estimated as ŝv = 0 if LLR(sv) ≥ 0, and ŝv = 1 otherwise.

III. CONCATENATED SC-LDPC CODES FOR JSCC

In this section, we present our concatenated construction of
SC-LDPC codes, design considerations, and the encoding and
decoding procedures.

A. SC-LDPC protographs

A protograph [30] is a small bipartite graph that connects
a set of nv variable nodes to a set of nc check nodes by a set
of edges, and it can be represented by a parity-check or base
biadjacency matrix B = [Bx,y], where Bx,y is taken to be the
number of edges connecting variable node vy to check node cx.
The parity-check matrix H of a protograph-based LDPC block
code can be created by expanding B using a lifting factor M ,
where each non-zero entry in B is replaced by a sum of Bx,y
non-overlapping permutation matrices of size M × M and

each zero entry is replaced by the M ×M all-zero matrix. An
important property of constructing codes from a protograph is
that each lifted code inherits the graph neighborhood structure
and degree distribution of the protograph.

1) Unterminated convolutional protographs: An untermi-
nated SC-LDPC code ensemble code can be represented by
means of a convolutional protograph [20] with base matrix

B[0,∞] =



. . . . . .
Bms Bms−1 · · · B0

. . . . . .
Bms Bms−1 · · · B0

. . . . . .


,

(9)
where ms is the syndrome former memory of the code and the
bc × bv component base matrices Bi, i ∈ [0 : ms], determine
the edge connections from the bv variable nodes at time t
to the bc check nodes at time t + i. Starting from a bc × bv
block base matrix B, an “edge-spreading” procedure [20] can
be applied to obtain the component base matrices Bi, where
B0 + B1 + · · · + Bms = B. An ensemble of time-varying
SC-LDPC codes can then be formed from B[0,∞] using the
protograph construction method described above. For example,
a (3, 6)-regular SC-LDPC code ensemble with ms = 2 can be
constructed from the block base matrix B = [3 3] by defining
the component base matrices B0 = [1 1] = B1 = B2.

2) Terminated SC-LDPC code ensembles: Suppose that we
start the convolutional code with parity-check matrix defined
in (9) at time t = 0 and terminate it after t = L time instants,
the resulting finite-length base matrix is then given by

B[0,L−1] =


B0

...
. . .

Bms B0

. . .
...

Bms


(L+ms)bc×Lbv

. (10)

The matrix B[0,L−1] can be considered as the base matrix
of a terminated protograph-based SC-LDPC code ensemble,
where L is called the coupling length. Termination results
in a rate loss: the design compression rate for syndrome
source coding with B[0,L−1] is Rsc

L =
(
L+ms
L

)
bc
bv

whereas
for channel coding the design rate Rcc

L of the terminated code
ensemble is equal to Rcc

L = 1 −
(
L+ms
L

)
bc
bv

. As L increases,
the rate loss diminishes monotonically so that, as L → ∞,
Rsc
L → Rsc = bc/bv and Rcc

L → Rcc = 1− bc/bv (the rates of
the unterminated convolutional code ensembles).

B. Concatenating SC-LDPC graphs

Our proposed concatenated SC-LDPC construction for
JSCC involves two SC-LDPC parity-check matrices, one for
source compression, Hsc, and another for channel coding,
Hcc, with base matrices given in (9) or (10). Notationally, we
continue the convention to add “sc” or “cc” superscripts to
the parameters to indicate their use in the source and channel
codes, respectively, i.e., we add superscripts to Bi, bc, bv ,
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ms, M , and L. We note that, in order for the parameters to
match, we must select bscc M

sc = (bccv − bccc )M cc. We therefore
restrict our constructions to have M sc = M cc = M in this
paper, implying bscc = bccv − bccc . We also choose to equate
the memories so that msc

s = mcc
s = ms; thus, if the codes

are terminated (using base matrices in (10)), we must further
have Lsc+ms = Lcc−ms and we denote the overall coupling
length of the concatenated scheme as L = Lsc. The overall
coding rate for the terminated scheme is RL =

Rcc
L

Rsc
L

and, as

L → ∞, the overall coding rate approaches R = Rcc

Rsc =
bscv
bccv

,
the rate of the unterminated JSCC scheme.

Example construction: We now provide a working exam-
ple for use in this paper, but it can be easily generalized. In
our example, both channel and source encoder have memory
ms = 2 and M sc = M cc. We require Lcc = Lsc + 4 and
use the notation L = Lsc for the concatenated design as
discussed above. We use component matrices Bsc

0 = Bsc
1 =

Bsc
2 = [1 1 1 1] to construct Hsc

[0,L−1], with compression

rate Rsc
L =

(
L+ms
L

) bscc
bscv
−−−−→
L→∞

bscc
bscv

= 1
4 and component

matrices Bcc
0 = Bcc

1 = Bcc
2 = [1 1] with channel code rate

Rcc
L = 1−

(
L+4+ms
L+4

)
bccc
bccv
−−−−→
L→∞

1− bccc /bccv = 1
2 . The overall

coding rate RL =
Rcc
L

Rsc
L
−−−−→
L→∞

2.
The protograph of the proposed construction is shown in

Fig. 2. We note that the source and channel graphs are
connected periodically block-by-block such that, at each time
instant, the left entry of Bcc

0 (shown as the top variable node
of the channel graph in Fig. 2) connects to the corresponding
check node of Bsc at that time - this connects the systematic
bits of the channel code to the syndrome of the source. This
periodic connectivity will allow efficient realization of the
window decoder (see Section III-D), but generalizations are
possible. The connection between source and channel parts
is an important part of the code design. For example, in
order to be able to use Hcc directly for systematic encoding
of the syndrome u, we must also restrict the permutation
matrix associated with the right most entry of Bcc

0 (the M
edges connected to the nodes that contain the parity bits of
the codeword v) to be replaced with the M × M identity
matrix. This is required for syndrome former encoding (see
Section III-C). We note that the identity matrix restriction
could be achieved by simple column permutations of the Hcc

matrix after an arbitrary lifting.

C. Encoding concatenated SC-LDPC codes

We begin this section by defining the notation required
to describe the encoding process. Equation (11) shows the
transposed parity check matrix obtained after graph lifting (9),
called the syndrome former matrix

Hᵀ
[0,∞] =



. . . . . .
Hᵀ

0(0) · · · Hᵀ
ms(ms)

. . . . . .
Hᵀ

0(T ) · · · Hᵀ
ms(T +ms)

. . . . . .


,

(11)

where the submatrices Hi, i ∈ [0 : ms], are defined as

Hi(T ) =


h
(1,1)
i (T ) · · · h

(1,bvM)
i (T )

...
...

h
(bcM,1)
i (T ) · · · h

(bcM,bvM)
i (T )


bcM×bvM

.

(12)
1) Step 1: syndrome source coding: Suppose an infor-

mation sequence s[0,∞] is defined as s[0,∞] = [s0, s1, . . .],
where si is a source block of length bscvM . We obtain the
compressed syndrome u[0,∞] = [u0,u1, . . .] = s[0,∞]H

scᵀ

[0,∞],
where ui = siH

scᵀ

0 (i) + si−1H
scᵀ

1 (i) + · · · + si−msH
scᵀ

ms(i)

= (u
(1)
i , u

(2)
i , . . . , u

(bsccM)
i ). Note that syndrome source coding

can be performed block-by-block in a streaming fashion with
memory provided for the previous ms blocks.

2) Step 2: syndrome former-based channel encoding:
The channel encoder then encodes the compressed binary
information sequence u[0,∞] into the binary code sequence
v[0,∞] = [v0,v1, . . .], where vi = (v

(1)
i , v

(2)
i , . . . , v

(bccvM)
i ).

The resulting code sequence v[0,∞] satisfies v[0,∞]H
ccᵀ

[0,∞] = 0.
By design, our Hcc

[0,∞] defines a systematic convolutional code
of rate R = 1−bccv /bccc . We follow the partial syndrome former
realization of [31].

Suppose information symbol sequence u[0,t−1] (the com-
pressed syndrome) is systematically encoded to v such that
for any t > 0, this codeword satisfies

v[0,t−1]H
cc
[0,t−1] =

[
0[0,t−1]|Pt

]
, (13)

where 0[0,t−1] is the zero vector of length bccc Mt and

Pt = [Pt,1,Pt,2, . . .Pt,ms ] , (14)

Pt,i =
(
P

(1)
t,i , P

(2)
t,i , . . . , P

(Mbccc )
t,i

)
, i ∈ [1 : ms]. Pt is called

the partial syndrome, corresponding to the state of a partial
syndrome former encoder at time t. The partial syndrome Pt
can be calculated recursively as a function of Pt−1 and vt−1
using

Pt,i =


Pt−1,i+1 + vt−1H

ccᵀ

i (t+ i− 1), i = 1, 2,

. . . ,ms − 1,

vt−1H
ccᵀ

ms (t+ms − 1), i = ms.
(15)

By considering Hcc
0 (t) =

[
Hcc(0)

0 (t),Hcc(1)

0 (t)
]
, where

Hcc(0)

0 (t) is bccc M × (bccv − bccc )M and Hcc(1)

0 (t) is a bccc M ×
bccc M identity matrix (as described in the graph lifting discus-
sion of Section III-B), we have

v
(1)
t = v

(0)
t

[
Hcc(0)

0 (t)
]ᵀ

+Pt,1, (16)

where we assume that encoder is systematic and will therefore
use the notation vt = [v

(0)
t ,v

(1)
t ] with v

(0)
t = ut of length

(bccv −bccc )M and v
(1)
t is a parity-check vector of length bccc M.

For termination of an SC-LDPC encoder, the information
sequences need to be terminated with a sequence of symbols
that causes the encoder to reset to the zero state at the
end of encoding. While conventional feedforward polynomial
convolutional encoders use sequences of zeros as the termi-
nating tail, SC-LDPC encoders use non-zero sequences for
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W=3

target

symbols

(time T)

target

symbols

(time T+1)

channel

H
cc

source

H
sc

SC-LDPC

SC-LDPC

Fig. 2. Concatenated protographs of SC-LDPC codes for JSCC. Also illustrated is the WD procedure with window size W = 3.

the terminating tail; such sequences depend on the encoded
information symbols and are needed to solve a system of
linear equations. Interested readers can refer to [31] for a full
description of the partial syndrome former realization method
to terminate the encoder.

3) Complexity: The syndrome former matrix of a
(ms, J,K)-regular SC-LDPC code, Hᵀ

[0,∞], has exactly J
ones in every row and K ones in every column starting from
the (msb

cc
v M + 1)-th column. A syndrome former encoder

realization requires bccv Mms + (bccv − bccc )M memory units.
For this scheme, the encoding complexity is independent of
the codeword length and the syndrome former memory ms and
it is proportional to K − 1 [31]. While the partial syndrome
former encoder realization encoding complexity is the same
as syndrome former, it needs only bccc Mms memory units,
which is less than that of syndrome former scheme [31]. On
the other hand, a straightforward encoder for a length N LDPC
block code that multiplies the information bits by the generator
matrix has complexity proportional to N per bit.

D. Windowed Decoding (WD) Scheme

For practical implementation of concatenated SC-LDPC
codes for JSCC with large coupling length L, it is essential
to reduce the decoding latency. To this end, we propose a
joint sliding window decoder, where a window of size W
(containing W sections of the concatenated graph) slides over
the concatenated graph from left to right. This is a similar
concept to the sliding window decoder for channel coding
with SC-LDPC codes [32], but here the windowed scheme is
applied simultaneously to the source and channel SC-LDPC
graphs. At each window position, the BP algorithm described
in Section II is applied to the variable and check nodes
within the window (also using necessary information from
past variable/check nodes) in order to decode one block of
source symbols, called target symbols. After decoding the set
of target symbols (i.e., when they are all assigned 0 or 1),
the window slides one section to the right and again executes
the BP algorithm to decode the next set of target symbols,

using both the nodes in the window and some previously
decoded target symbols. Fig. 2 illustrates WD at time T and
T + 1 with window size W = 3 (covering 3 graph sections,
or 6M channel code symbols and 12M source symbols) on
the concatenated SC-LDPC codes. Here 2M channel code and
4M source symbols enter the window at each window position
and 4M reconstructed source symbols leave (are decoded). In
this paper, we refer to the latency of the WD scheme as the
number of channel code symbols in the window, i.e., how
many channel symbols we need to process before we can
decode a set of target source symbols.

IV. EXIT CHART ANALYSIS OF PROTOGRAPH-BASED
JSCC SCHEMES

To analyze the asymptotic behavior of the proposed
schemes, we employ an EXIT chart analysis. In this sec-
tion, we present an extension of the EXIT chart approach
to codes defined by protographs, following [28]. We begin
in Section IV-A by describing the protograph-based EXIT
chart analysis for JSCC and establishing notation. We then
perform an EXIT chart analysis of the LDPC block code
ensembles in Section IV-B and for WD of SC-LDPC code
ensembles for JSCC in Section IV-C. Finally, we compare
the resulting window decoding thresholds versus those of
optimized irregular LDPC codes in Section IV-D.

A. EXIT chart analysis

Concatenated LDPC and SC-LDPC code ensembles for
JSCC can be represented by a joint base matrix (see, e.g., [16],
[17]) as follows

BJ =

[
Bsc L1

L2 Bcc

]
= [bij ], (17)

where the sizes of source protograph matrix Bsc, channel
protograph matrix Bcc, zero matrix L2, and linking matrix
L1, that represents the connectivity from check nodes of the
source code to variable nodes of the channel code, are bscc ×bscv ,
bccc × bccv , bccc × bscv , and bscc × bccv , respectively. The following
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notation is used to denote three types of mutual information
(MI) between variable nodes (VNs) and check nodes (CNs) in
the rest of the section:

• IvcE (i, j) denotes the extrinsic MI from the jth VN to the
ith CN;

• IcvE (i, j) denotes the extrinsic MI from the ith CN to the
jth VN; and

• IvcCMI(j) denotes the cumulative MI for the variable node
Vj .

Also, the function J(σch) is defined to represent the MI
between a binary bit and its corresponding LLR value Lch ∼
N(σ2

ch/2, σ
2
ch), given as [28]

J(σch) = 1−
∫ +∞

−∞

1√
2πσ2

ch

e
− (

ξ−σ2ch/2)
2

2σ2
ch log2(1 + e−ξ)dξ.

(18)
The proposed EXIT chart algorithm for protograph-based

JSCC with a fixed pv is given as follows:

1) Select signal-to-noise ratio (SNR)
Set a vector σch = (σch,0, σch,1, . . . , σch,bccv ) such that

σ2
ch,j = 8Rcc

(
Eb

N0

) ∣∣∣∣
Vj

,

where Rcc is the channel code design rate and Eb/N0

∣∣
Vj

represents the SNR associated with the channel input to
the jth variable node Vj .2

2) MI update from VNs to CNs
We define δab = 1 when a = b, δab = 0 when a 6= b,
and IvcE (i, j) = 0 if bij = 0. Then
• For i ∈ [1 : bscc + bccc ] and j ∈ [1 : bscv ],

IvcE (i, j) =

JBSC

bscc+b
cc
c∑

c=1

(bcj − δci)
(
J−1(IcvE (c, j))

)2
, pv

 .

(19)
The function JBSC(·) is a manipulation of the J(·)
function, defined as [15]

JBSC(µ, pv) =

(1− pv)I(V ;χ(1−pv)) + (pv)I(V ;χ(pv)),

where I(V ;χ) = 1 − E[log2(1 + eχ)] is the MI
between the VN of the source and LLR value χ,
χ(1−pv) ∼ N(µ+Lsc

v , 2µ), χ
(pv) ∼ N(µ−Lsc

v , 2µ),
and Lsc

v is as defined in Section II.
• For i ∈ [1 : bscc + bccc ] and j ∈ [bscv + 1 : bscv + bccv ],

IvcE (i, j) =

J


√√√√bscc+b

cc
c∑

c=1

(bcj − δci) (J−1(IcvE (c, j)))
2
+ σ2

ch(j)

 .

(20)

2Note that Eb/N0

∣∣
Vj

= 0 if Vj is punctured.

3) MI update from CNs to VNs
For i ∈ [1 : bscc + bccc ] and j ∈ [1 : bscv + bccv ]

IcvE (i, j) =

1− J


√√√√bscv+b

cc
v∑

v=1

(biv − δiv) (J−1(1− IvcE (i, v)))
2

 .

(21)
4) Cumulative MI

For j ∈ [1 : bscv ],

ICMI(j) = JBSC


√√√√ bscc∑

i=1

bij (J−1(IcvE (i, j)))
2
, pv

 .

(22)
5) Stopping criterion

If ICMI(j) = 1 (up to the desired precision) for all j, then
stop; otherwise, go to Step 2.

Note that the inverse J(·) function can be approximated as [33]

J−1(I) =

{
a1I

2 + b1I + c1
√
I, 0 ≤ I ≤ 0.3646,

−a2 log(b2(1− I))− c2I, 0.3646 ≤ I ≤ 1,
(23)

where a1 = 1.09542, b1 = 0.214217, c1 = 2.33727,
a2 = 0.70692, b2 = 0.386013, and c2 = −1.75017. We define
the minimum SNR for which ICMI(j) = 1, j ∈ [1 : bscv ] (or for
j ∈ position of the target source symbols in the case of the WD
scheme for SC-LDPC code ensemble) as the joint threshold
for the concatenated JSCC code ensemble. We remark that the
algorithm can also be run for a fixed SNR (dB) to determine
the maximum source probability pSNRv that allows convergence.
We define the maximum probability p∗v for which (22) is
satisfied for the (disconnected) source code protograph as the
source threshold. This is obtained in the above algorithm by
setting the matrix L1 to zero. As conventionally done, we
also define the minimum SNR for which the cumulative MI
information converges to 1 in the (disconnected) channel code
protograph as the channel threshold [28], [34]. This can be
obtained from the above algorithm by setting the matrix L1

to zero and replacing Step 4 with

ICMI(j) = J


√√√√√ bscc+b

cc
c∑

c=bscc+1

bcj (J−1(IcvE (c, j)))
2
+ σ2

ch(j)

 ,

(24)
for j ∈ [bscv + 1 : bscv + bccv ].

B. Analysis of concatenated LDPC block codes for JSCC

In this subsection, we present an EXIT chart analysis for
JSCC with the protograph-based concatenated LDPC block
code ensemble shown in Fig. 1. Fig. 3 shows the results
for several pairs of (3, 12)-regular source and (r, 2r)-regular
channel LDPC block code ensembles, with source and channel
design rates of Rsc = 0.25 and Rcc = 0.5, respectively, giving
an overall design code rate of R = 2. Here, the joint base
matrix BJ , i.e., equation (17), is constructed as

BJ =

[
3 3 3 3 1 0
0 0 0 0 r r

]
. (25)
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Fig. 3. Thresholds of concatenated (3, 12)-regular source and (r, 2r)-regular
LDPC block code for a given source bit probability pv .

We compute the source threshold for this Rsc = 0.25
(3, 12)-regular ensemble as p∗v = 0.027, where the source en-
tropy is 0.1791. It is well-known the threshold value increases
(worsens) by increasing the density of regular channel block
code ensembles for a fixed code, and this phenomena similarly
effects the performance of JSCC ensembles. This is seen in
Fig. 3, where the source code graph density is fixed but the
channel code graph density increases with r. This behavior
is due to suboptimality of BP, since increasing r improves
the channel code distance properties and has improving ML
decoding performance. As we will see in Section IV-C, this
drawback for LDPC code ensembles for increasing channel
density r is avoided by using SC-LDPC codes, for which
threshold saturation effect ensures improving threshold for
increasing r, thereby allowing much more flexibility in the
JSCC design.

Finally, Fig. 4 shows the results obtained for the case
where the source and channel graph densities are increased
simultaneously with joint base matrix

BJ =

[
r r r r 1 0
0 0 0 0 r r

]
. (26)

As expected, similar behavior is observed, with degrading
thresholds for increasing r, although the increasing source
graph density is seen to reduce the gaps between the curves.

C. Analysis of concatenated SC-LDPC codes with WD for
JSCC

In this section, the protograph EXIT chart analysis is
applied to concatenated SC-LDPC codes for JSCC with the
WD scheme described in Section III-D for codes with rates
Rsc = 0.25 and Rcc = 0.5 (source and channel parts
respectively). The joint base matrix BJ is constructed from the
convolutional source/channel protographs Bsc

[0,L] and Bcc
[0,L] of

0.005 0.01 0.015 0.02 0.025
-5

-4

-3

-2

-1

0

1

Fig. 4. Joint threshold of concatenated block LDPC code ensembles with
respect to source bit probability pv . Labels correspond to source and block
degrees, respectively.

appropriate lengths given in Section III-B with the linking
matrix

L1 =


C

C
. . .

C

 , (27)

where C1×2 = [0 1] and all other elements are zeros.3

Although it is possible to view a terminated SC-LDPC code as
a block protograph and apply conventional JSCC EXIT chart
techniques, it is more appropriate to modify the approach to
consider the window, both from a numerical implementation
point-of-view as well as to obtain practically relevant results.
In order to do this, it is sufficient to examine the EXIT chart
for a single window. For example, (28) shows the joint base
matrix for a window with W = 3 for the joint convolutional
protograph shown in Fig. 2

We note that this base graph includes variable nodes with
reduced degree corresponding to nodes with edge connections
that go outside the window (connecting to future nodes), and
as such the protograph must be designed to ensure that a
threshold exists for a window. The stopping criterion of the
EXIT chart algorithm must also be adapted so that it is used
only for the target bits of the first window (e.g., the first
four columns of (28)) and the algorithm is terminated when
the EXIT values of the target bits reach the value 1. After
obtaining a threshold for a given window size, an inductive
argument similar to that presented for the channel coding
problem in [23] can be applied for future window shifts. This
holds since the decoded target bits met the stopping criterion
and imply the target bits in the next window position will also
converge under the same conditions.

Fig. 5 shows the decoding threshold values for the (3, 12)-
and (3, 6)-regular SC-LDPC code construction discussed

3This linking matrix corresponds to the periodic connections between
source and channel parts in our specific examples where bccc = 1 and bccv = 2,
as described in Section III-B, generalizations are possible.
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BJ =


1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

 . (28)

TABLE I
DECODING THRESHOLD VALUES OF CONCATENATED LDPC BLOCK

CODES FOR JSCC.

pv Threshold (dB)
0.01 -1.61
0.02 -0.10
0.03 2.49
0.04 3.39

5 10 15 20 25 30 35 40
-4

-2

0

2

4

6

8

Fig. 5. Decoding threshold values for joint WD of concatenated (3, 12)- and
(3, 6)-regular SC-LDPC Tanner graphs for JSCC.

above with different source probability pv = 0.01, 0.02, 0.03,
and 0.04 for various window sizes W . It is observed that the
threshold decreases by increasing W until roughly W = 15,
where the threshold saturates and does not improve further
with W . It is also observed that the threshold value is
lower for smaller source probability pv = P(sv = 1) and
the threshold increases (worsens) by increasing the source
probability. We also remark that the thresholds obtained are
significantly improved when compared to the underlying block
code ensembles from Section IV-B, summarized in Table I. For
example, the joint threshold for concatenated SC-LDPC codes
with sufficiently large W is −1.56 dB, but for block LDPC
codes, it is −0.10 dB for pv = 0.02.

We also consider higher density graphs with component
matrices Bcc

0 = Bcc
1 = Bcc

2 = Bcc
3 = [1 1] and Bcc

0 =
Bcc

1 = Bcc
2 = Bcc

3 = Bcc
4 = [1 1] used to construct (4, 8)-

and (5, 10)-regular SC-LDPC code ensembles, respectively,
with rate Rcc = 0.5 as well as (4, 16)- and (5, 20)-regular
source code ensembles constructed from component matrices
Bsc

0 = Bsc
1 = Bsc

2 = Bsc
3 = [1 1 1 1] and Bsc

0 = Bsc
1 =

Bsc
2 = Bsc

3 = Bsc
4 = [1 1 1 1], respectively, with rate Rsc =

0.25 (codes are constructed from these component matrices
as described in Section III-A). Tables II and III show the
obtained thresholds for the three JSCC code ensembles with
varying densities and different window sizes W . These tables
show that (1) by increasing code density the channel/source
threshold improves for a sufficiently large, fixed window size
W and (2) the thresholds improve up to a certain value with
increasing W , after which no further advantage is seen by
increasing W.

D. Comparison with optimized irregular LDPC codes

Table IV compares the EXIT chart WD thresholds of
(3, 12)- and (3, 6)-regular concatenated SC-LDPC codes with
W = 20 versus code ensembles given in [16] with the same
rates Rsc = 0.25 and Rcc = 0.5 for pv = 0.01, 0.015,
and 0.02. We observe a significant threshold improvement
for the concatenated SC-LDPC code ensemble, which could
be further improved by increasing the graph density for a
fixed rate. Simulation results comparing these ensembles are
provided in Section V-B, confirming the expected finite-length
performance improvement. In Table V, we compare the EXIT
chart thresholds of WD with W = 20 for some concatenated
SC-LDPC code ensembles versus optimized irregular code
ensembles with rates Rsc = 0.5 and Rcc = 0.5 taken from
[18]. Again, SC-LDPC code ensembles are shown to have
improved thresholds, indicating superior performance in the
large code length regime.

V. FINITE-LENGTH PERFORMANCE OF SC-LDPC CODES
FOR JSCC

In this section, the numerical results of various computer
experiments of a C++-based implementation of joint decoding
of SC-LDPC codes are reported.

A. Performance of concatenated SC-LDPC codes with WD

In this section, we consider WD of unterminated concate-
nated (3, 12)- and (3, 6)-regular SC-LDPC codes for JSCC
and demonstrate their behavior for various parameter sets
of practical interest. Simulation results were obtained for a
binary input AWGN channel and where the source symbols
are assumed to be i.i.d. with P(sv = 1) = pv = 0.02 and a
fixed number of I = 30 iterations per window position.4 The
coupling lengths are Lsc = 26 and Lcc = 30 unless stated
otherwise.

4Stopping rules could be included to reduce the number of iterations
performed in many cases. I = 30 was chosen to be representative of general
WD performance. Slight improvements can be observed by increasing I .
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TABLE II
CHANNEL EXIT THRESHOLDS (DB) FOR DIFFERENT SC-LDPC CODE ENSEMBLES WITH Rcc = 0.5 USING WD WITH VARIOUS WINDOW SIZES W .

Code W = 4 W = 5 W = 6 W = 10 W = 15 W = 30
(3, 6) 4.18 2.91 1.98 0.58 0.46 0.46
(4, 8) 3.82 2.41 1.41 0.28 0.24 0.24
(5, 10) 3.82 2.28 1.27 0.22 0.19 0.19

TABLE III
SOURCE EXIT THRESHOLD (p∗v ) FOR DIFFERENT SC-LDPC CODE ENSEMBLES WITH Rsc = 0.25 USING WD WITH VARIOUS WINDOW SIZES W .

Code W = 4 W = 5 W = 6 W = 10 W = 15 W = 30
(3, 12) 0.002 0.006 0.013 0.028 0.031 0.031
(4, 16) 0.002 0.008 0.017 0.033 0.035 0.035
(5, 20) 0.002 0.008 0.018 0.034 0.036 0.036

TABLE IV
EXIT THRESHOLDS FOR DIFFERENT CODE ENSEMBLES WITH Rsc = 0.25 AND Rcc = 0.5.

Code Ensemble pv = 0.01 pv = 0.015 pv = 0.02

BAR4JA [16] -2.524 dB -1.450 dB -0.632 dB
BM1 [16] -3.015 dB -1.797 dB -0.931 dB

BM2(BIARA−1) [16] -3.145 dB -1.984 dB -1.155 dB
BAR3A [16] -3.248 dB -1.910 dB -0.965 dB
BIARA−2 [16] -3.438 dB -2.254 dB -1.379 dB

(3,12)- and (3,6)-regular
SC-LDPC -3.645 dB -2.463 dB -1.569 dB

TABLE V
EXIT THRESHOLDS FOR DIFFERENT CODE ENSEMBLES WITH Rsc = 0.50 AND RCC = 0.50.

Code Ensemble pv = 0.04 pv = 0.06

(R4JA, AR4JA) [18] -0.60 dB -0.05 dB
(R4JA, AR3A) [18] -0.80 dB -0.15 dB

(Regular LDPC, Regular LDPC) [18] -0.84 dB 0.02 dB

Optimized code pairs and threshold [18] (Bs1,Bc1)
-2.10 dB

(Bs2,Bc1)
-0.80 dB

(3,6)- and (3,6)-regular SC-LDPC -2.54 dB -1.34 dB
(4,8)- and (3,6)-regular SC-LDPC -2.86 dB -1.62 dB

(5,10)- and (3,6)-regular SC-LDPC -3.05 dB -1.75 dB
Shannon limit [18] -4.02 dB -2.36 dB

1) Effect of increasing the lifting factor M : Fig. 6(a) shows
the effect of increasing the lifting factor M (improving code
strength) with a fixed window size W = 15.5 The resulting
latency is 2MW = 30M . We observe improving performance
as M is increased through M = 80, 120, 160, 200, and 240, as
expected. The flat error floors occur due to the residual BER
of the source, as described in [15]. Indeed, no such floor is
observed in BER plots for the channel coding part only.

2) Effect of the window size W : Fig. 6(b) shows the JSCC
performance with increasing window size W = 4, 6, 8, 10, and
12 (improving decoder strength) but fixed M = 200; recall that
the decoding latency is equal to 2MW = 400W . For a fixed
code strength, we observe again that the BER improves with
increasing latency since the decoder performance is improving;
however, we see that after a certain point, the improvement
diminishes as W is further increased. Our results indicate that,
for a fixed latency, one has to carefully consider the trade-off

5A similar figure showing results for W = 10 can be found in [27].

between M and W .6

3) Effect of check node degree: Here, we consider a fixed
(3, 6)-regular SC-LDPC channel code with Rcc = 0.5 and
mc = 2 with three source codes of rate Rsc = 0.25 and
increasing check node degrees: (3, 12)-regular with ms = 2,
(4, 16)-regular with ms = 3 and (5, 20)-regular with ms = 4.
The BER of WD for different window lengths is shown in
Fig. 7. The figure shows that, as expected from the asymp-
totic analysis in Section IV-C, the performance significantly
improves in both the waterfall and error floor regions.

4) Other considerations: There are several features of the
scheme that can be improved, such as including stopping rules
for BP to reduce complexity and designing good convolutional
protographs that permit shorter window size. These features,
along with comparisons to other decoding algorithms, are the
subject of further work.

6We note that the performance is shown to continue to improve beyond
W = 10, up to about W = 16, whereas the EXIT chart results from
Section IV-C did not indicate such an improvement. We conjecture that this
discrepancy is related to the sub-optimality of the finite length code realization
and would resolve for larger M (see also Fig.6(b)).
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Fig. 6. JSCC performance of SC-LDPC codes with (a) increasing M and
fixed W = 15, and (b) increasing W and fixed M = 200.

B. Comparison with concatenated LDPC block codes

In this section, we present WD results with code and
decoder parameters chosen such that we obtain latencies equal
to 1600 and 3200 bits.7 We then compare with the concate-
nated block LDPC code designs for JSCC given in [15]. To
model the codes from [15], we used a regular protograph
construction with Bsc = 13×12 and Bcc = 13×6, connected
as described in Section II. The overall coding rate is R = 2,
the same as our unterminated construction, and the regularity
(edge complexity) of parity-check matrices is the same. We
considered block decoders with both I = 30 and I = 100
iterations.

Fig. 8(a) shows the results obtained for latency 1600 bits.
We observe that for window size W = 4 and M = 200,

7We note that, although we equate latency in the sense that both the block
and window decoders need to receive the same number of bits to begin
decoding (a block and a complete window, respectively), after initialization,
the window decoder will produce partial outputs corresponding to each block
of 2M bits at each time unit whereas the block decoder will produce estimates
less often but in larger increments according to the block length.

-2 -1 0 1 2
10-10

10-8

10-6

10-4

10-2

Fig. 7. WD with source code check node degree of 12, 16, and 20 for a
concatenated LDPC codes with I = 30 and M = 200.

the block code scheme outperforms the WD scheme due
to the window size limiting the performance. For W = 6,
the performance is similar to the LDPC block code in the
waterfall, but the small window results in a higher error floor.
As W increases to 10, the SC-LDPC code outperforms the
LDPC block code for all Eb/N0. Fig. 8(b) compares results
of the LDPC block code scheme of length 3200 bits with
WD results with latency 3200 bits. In this case, each of the
parameter sets chosen for the SC-LDPC codes outperform the
LDPC block codes in the waterfall, with similar error floor
performance.8 We remark that for larger latencies, where W
can be chosen sufficiently large to not limit the performance,
SC-LDPC codes hold significant promise for JSCC.

In Fig. 9, we compare the simulated performance of regular
SC-LDPC codes versus optimized IARA-1 and IARA-2 codes
with block length 3200 bits taken from [16]. Our SC-LDPC
code results are obtained using W = 8, I = 30, and M = 200,
giving a latency of 3200. For these codes with source rate
Rsc = 0.25 and channel rate Rcc = 0.5, we fix the channel
code to be (3, 6)-regular and compare three different source
graphs that are (3, 12)-, (4, 16)-, and (5, 20)-regular for a
source probability pv = 0.02. We observe that, although the
waterfall is competitive with the IARA codes in all cases, the
smaller lifting factor in conjunction with the (3,12)-regular
source graph results in an error floor for the (3, 12)- and (3, 6)-
regular pair. This is eliminated in the simulated range, for
example, by increasing the density of the concatenated SC-
LDPC codes.

8In this section, we have compared on the basis of equal latency. The
complexity, measured as number of node updates, is not equal. For the window
decoder, the first block will receive I iterations, the next 2I , and so on up until
blocks W and beyond which will receive WI iterations in total. On the other
hand, we note that simulation results performed for the LDPC block codes
in Fig. 8 where I was increased in order to equate both complexity as well
as latency (omitted for figure clarity) do not show significant improvement
beyond those shown for I = 100.
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Fig. 8. Equal latency comparison of concatenated SC-LDPC codes vs. LDPC
block codes: (a) 1600 bits and (b) 3200 bits.

C. Comparison with cascade decoding

Fig. 10 compares the joint WD scheme versus a separate
“cascade” decoder for the source (3, 12)-regular and (3, 6)-
regular channel codes constructed in Section V-A. Assuming
that the compressed bits are equally likely and i.i.d., the
cascade decoder first decodes the channel code, then decodes
the source bits using information obtained by the channel
decoder. Results are shown for two different window lengths
W = 8 and 18. Both the joint decoder (solid curves) and the
channel cascade decoder (dashed lines) were allowed I = 30
iterations. We observe that the joint decoder offers significant
improvement in waterfall region with approximately equal
error floors.

D. Increasing source entropy

Fig. 11 shows the BER of WD of terminated concatenated
(3, 12)- and (3, 6)-regular concatenated SC-LDPC codes with
respective, coupling lengths Lsc = 26 and Lcc = 30, code
rates Rsc = 0.2692 and Rcc = 0.4665, window size W = 18,

-2 -1.5 -1 -0.5 0 0.5 1 1.5
10-7
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10-4
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10-2
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0
10-5

Fig. 9. Simulated decoding performance of concatenated SC-LDPC codes
with W = 8 and M = 200 versus two optimized irregular LDPC codes
IARA-1 and IARA-2 from [16].
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10-4

10-2

Fig. 10. BER versus Eb/N0 for the joint and cascade WD scheme of the
concatenated SC-LDPC codes.

lifting factor M = 200, and I = 30 iterations of the joint BP
decoder. Results are obtained for three different i.i.d. sources
with pv = 0.01, 0.02, and 0.03, and corresponding source
entropy H(s) = 0.0808, 0.1414, and 0.1944. All of these
source entropies satisfy Shannon’s source coding condition
R > H(s), but we observe significant BER degradation from
10−8 to 10−2 with increasing source entropy. This can be
alleviated by either increasing the code length (lifting factor)
or by increasing the source coding rate, as seen below.

1) Increasing lifting factor: Fig. 12 plots the BER for the
(3, 12)- and (3, 6)-regular concatenated SC-LDPC codes for
different lifting factor M = 200, 1000, and 2000. Source
symbols are assumed to be i.i.d. with pv = 0.03 and the code
decoded with a WD scheme with size W = 18 and I = 30
iterations of BP. As expected, by increasing the lifting factor
M from 200 to 2000, the performance improves significantly
in the waterfall and error floor region at the cost of increased
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Fig. 11. JSCC performance of concatenated (3, 12)- and (3, 6)-regular SC-
LDPC codes with increasing entropy.
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Fig. 12. BER of concatenated (3, 12)- and (3, 6)-regular SC-LDPC codes
with different lifting factors and a fixed source with pv = 0.03.

latency.
2) Increasing source coding rate: Here, we fixed the lifting

factor to be relatively small, M = 200, and obtained two new
source code with higher rates with respect to previous code,
i.e., (3, 12)-regular source SC-LDPC code by constructing
(3, 9)- and (3, 6)-regular source SC-LDPC code ensembles
with ms = 2 using the protograph construction method
described III-A from the block base matrix B = [3 3 3]
and B = [3 3] by defining the component base matrices
B0 = [1 1 1] = B1 = B2, and B0 = [1 1] = B1 = B2,
respectively. Fig. 13 compares the obtained WD results with
W = 18 and I = 30 for i.i.d. source symbols with entropy
H(psv = 0.03) = 0.1944. Note that all these three codes
use the same channel code with rate Rcc = 0.4705 and
coupling lengths Lcc = 30. The constructed source codes
for (3, 12)-, (3, 9)-, and (3, 6)-regular SC-LDPC code have
rates Rsc = 0.2692, 0.3590, and 0.5385, respectively. Again,
as expected, the performance improves significantly in the
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Fig. 13. Performance of concatenated SC-LDPC codes with WD of size
W = 18, M = 200 and I = 30. Results shown for (3, 6)-regular channel
codes and (3, 12)-, (3, 9)- and (3, 6)-regular source codes (top to bottom).
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Fig. 14. Two-state Markovian source.

waterfall and error floor regions by fixing the lifting factor and
channel code rate at the cost of increasing the source rate.

E. Hidden Markov Model (HMM) source

Following [19], we also consider concatenated SC-LDPC
codes for JSCC with a two-state Markovian source, referred to
as the Hidden Markov Model (HMM) source. Fig. 14 shows
the source diagram, where states s0 and s1 have transition
probabilities tij from state i to state j, i.e., tij = P (sj |si),
where i ∈ {0, 1}. Also, we denote the probability of getting
binary output v in the state sj as pjv = P (v|sj). Fig. 15
shows the results of the HMM source with parameters [t00 =
0.02, t11 = 0.02, p00 = 0.098, p11 = 0.02] decoded with WD
of concatenated (3, 12)- and (3, 6)-regular SC-LDPC codes
with different window lengths W = 8, 9, 10, 11, and 12, but
fixed M = 200. Similar behavior to the memoryless Bernoulli
source is observed where we see that the BER improves with
increasing latency.

In Fig. 16, we plot the simulated decoding results of con-
catenated SC-LDPC codes with (3, 12)-, (4, 16)-, and (5, 20)-
regular source graphs with Rsc = 0.25 and a fixed (3, 6)-
regular channel graph with Rcc = 0.5, giving an overall
rate R = 2. We selected M = 200 and W = 8, giving
a latency of 3200 bits and set I = 30. We also show the
result of the irregular LDPC code with length 3200 bits
and source “Src1” from [19], where the accumulate-repeat-
by-3-accumulate (AR3A) channel code with Rcc = 0.5 is

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on November 30,2021 at 17:59:29 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3126750, IEEE
Transactions on Communications

13

-2 -1 0 1 2 3
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Fig. 15. JSCC performance of concatenated (3, 6)- and (3, 12)-regular SC-
LDPC codes with increasing W for a HMM source.
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Fig. 16. Simulated decoding performance of concatenated SC-LDPC codes
with W = 8 and M = 200 and a HMM source versus “Src1” from [19].

concatenated with a repeat-by-4-jagged-accumulate (R4JA)
source code with Rsc = 0.25. We observe that the SC-LDPC
codes show improved performance in the waterfall and similar
or better performance in the error floor for all of the considered
parameter sets.

F. Punctured channel codes
In a rate-compatible puncturing scheme [35], the transmitter

punctures coded symbols by removing a set of q columns
from n columns of its generator matrix which reduces the
codeword length from n to n − q and, as a result of having
fewer transmitted code symbols, the code rate is increased with
puncturing factor α = q/n [36]. The resulting transmission
rate is

Rcc(α) =
Rcc

1− α
, α ∈ [0, 1). (29)

The rate Rcc(α) is achievable if distinct codewords differ in
unpunctured symbols [36] for example, by restricting punc-
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Fig. 17. Random puncturing of rate-compatible concatenated SC-LDPC codes
for JSCC with different numbers of punctured bits.

tured symbols to the parity-check symbols of a systematic
code. Puncturing can be done randomly or according to a
particular pattern and it is assumed that the receiver knows
the positions of the punctured symbols, so that both the
punctured and transmitted symbols can be estimated during
decoding. Since the decoder for the mother code is used
to decode the punctured codes, a variety of code rates can
be achieved using the same decoding architecture by punc-
turing different numbers of symbols and randomly. For the
given (3, 6)-regular channel code in Section V-D, we consider
punctured concatenated SC-LDPC codes, where we punctured
punctured 1200, 2000, 3000, 5000, and 6000 bits of the
channel code (which are selected randomly and uniformly
over non-systematic bits). This puncturing causes the rate of
channel part changes from non-punctured code Rcc = 0.4665
to Rcc = 0.5184, 0.5599, 0.6221, 0.7999, and 0.9333, respec-
tively.

The BER performance of randomly punctured concatenated
SC-LDPC codes transmitted over the BI-AWGNC was also
investigated via computer simulation and the results are shown
in Fig. 17. As we see, by increasing the number of punctured
bits, we see robust performance for moderate puncturing,
but the performance degrades rapidly as puncturing increases
further (as seen in [36] for non-concatenated SC-LDPC codes).

VI. CONCLUSION

In this paper, we introduced a new construction of concate-
nated SC-LDPC codes based on protographs for JSCC over an
AWGN channel and showed that such codes can be efficiently
realized with sequential source and channel convolutional
encoders and jointly decoded via a sliding window BP decoder.
The obtained EXIT chart results show that, unlike LDPC
block codes, concatenated SC-LDPC codes have improving
thresholds for increasing graph density in both the source
and channel code parts, with significant improvement over
the underlying block code ensembles. Simulation results show
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the source reconstruction performance to be superior to state-
of-the-art LDPC block codes for comparable latency and
complexity constraints.

APPENDIX

TABLE VI
COMMONLY USED CODE PARAMETERS. SUPERSCRIPTS “sc” AND “cc”

DENOTE THAT THE PARAMETER CORRESPONDS TO THE SOURCE AND
CHANNEL CODE, RESPECTIVELY.

Parameter Definition
s = [s0, s1, . . . , sn] Source sequence
u = [u0, u1, . . . , ul] Syndrome sequence (compressed source)
v = [v0, v1, . . . , vm] Channel codeword

H, Hsc , Hcc Parity-check matrix
G, Gsc , Gcc Generator matrix

Rsc Source code rate
Rcc Channel code rate
R Overall code rate
B Protograph base (biadjacency) matrix

bc × bv Dimensions of B
Bi, Bsc

i , Bcc
i Component base matrix, i ∈ [0 : ms]

bscc × bscv , bccc × bccv Dimensions of the component base matrices
B[0,L−1] SC-LDPC Base matrix for a given L
L, Lsc, Lcc Coupling length of SC-LDPC protograph

M , M sc, M cc Lifting factor
ms, msc

s , mcc
s Syndrome former memory of a SC-LDPC code

t Time
Rsc

L, Rcc
L , RL SC-LDPC code rates for coupling length L

s[0,∞] = [s0, s1, . . .] Source sequence and blocks per unit time
u[0,∞] = [u0,u1, . . .] Syndrome sequence and blocks per unit time
v[0,∞] = [v0,v1, . . .] Code sequence and blocks per unit time

Hsc
[0,∞]

, Hcc
[0,∞]

Syndrome former matrices lifted from B[0,∞]

Pt The partial syndrome at time t
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