
158  •  2021 IEEE International Solid-State Circuits Conference

ISSCC 2021 / SESSION 9 / ML PROCESSORS FROM CLOUD TO EDGE / 9.8

9.8      A 25mm2 SoC for IoT Devices with 18ms Noise-Robust  

          Speech-to-Text Latency via Bayesian Speech Denoising and  

          Attention-Based Sequence-to-Sequence DNN Speech  

          Recognition in 16nm FinFET 

 
Thierry Tambe1, En-Yu Yang1, Glenn G. Ko1, Yuji Chai1, Coleman Hooper1,  
Marco Donato2, Paul N. Whatmough1,3, Alexander M. Rush4, David Brooks1,  
Gu-Yeon Wei1 
 
1Harvard University, Cambridge, MA 
2Tufts University, Medford, MA 
3ARM, Boston, MA 
4Cornell University, New York, NY 
 
Automatic speech recognition (ASR) using deep learning is essential for user interfaces 
on IoT devices. However, previously published ASR chips [4-7] do not consider realistic 
operating conditions, which are typically noisy and may include more than one speaker. 
Furthermore, several of these works have implemented only small-vocabulary tasks, 
such as keyword-spotting (KWS), where context-blind deep neural network (DNN) 
algorithms are adequate. However, for large-vocabulary tasks (e.g., >100k words), the 
more complex bidirectional RNNs with an attention mechanism [1] provide context 
learning in long sequences, which improve ASR accuracy by up to 62% on the 200k-
words LibriSpeech dataset, compared to a simpler unidirectional RNN (Fig. 9.8.1). 
Attention-based networks emphasize the most relevant parts of the source sequence 
during each decoding time step. In doing so, the encoder sequence is treated as a soft-
addressable memory whose positions are weighted based on the state of the decoder 
RNN. Bidirectional RNNs learn past and future temporal information by concatenating 
forward and backward time steps.  
 
This paper presents a 16nm SoC that executes a full speech-enhancing ASR pipeline in 
hardware, with the following key contributions: 1) unsupervised speech denoising using 
a Markov Source Separation Engine (MSSE) and 2) a reconfigurable accelerator 
(FlexASR) that demonstrates large-vocabulary sequence-to-sequence (seq2seq) ASR 
using bidirectional RNNs with attention. The full ASR pipeline (Fig. 9.8.1) pre-processes 
the incoming speech using an Arm Cortex-A53, then denoises the signal (up to 7.3dB 
SDR) in the MSSE accelerator, and finally accelerates a bidirectional attention-based 
speech-to-text model in the FlexASR accelerator. The 16nm test chip consumes 2.24mJ 
of energy per frame while achieving end-to-end latency of 18ms − enabling real-time 
throughput.  
 
In the proposed speech-enhancing ASR pipeline, shown in Fig. 9.8.1, an always-on Arm 
M0 interfaces with an off-chip ADC to detect acoustic activity. The M0 autonomously 
monitors incoming audio amplitudes and subsequently boots the A53, MSSE, and 
FlexASR when the signal magnitude exceeds a threshold in order to reduce power. The 
dual-issue pipeline and SIMD datapath of the A53 efficiently compute the feature 
extraction tasks required to synthesize the spectrograms with overlapping 32ms frames. 
Then, the MSSE performs unsupervised real-time speech denoising by constructing and 
solving, from the input spectrograms, a 2D-grid probabilistic graphical model called a 
Markov Random Field (MRF) [2]. The MRF is solved using a Markov chain Monte Carlo 
method called Gibbs Sampling. The Bayesian algorithm particularly excels in a more 
dynamic environment, such as when sources are moving with respect to the 
microphones [3], which can potentially create underperforming corner cases for 
supervised methods where it is necessary to cover all scenarios with training data. MSSE 
ultimately produces a binary label corresponding to noise or speech. The A53 then 
convolves the speech label mask with the original spectrogram in order to extract the 
clean speech, which is subsequently accelerated in FlexASR using a bidirectional 
attention-based seq2seq DNN.  
 
Figure 9.8.2 shows the overall SoC architecture comprising FlexASR, MSSE, an Arm 
Cortex-M0 microcontroller, and a dual-core Arm Cortex-A53 CPU cluster with 2MB L2$ 
(common in high performance embedded and mobile SoCs) connected together via AHB 
and AXI buses. MSSE utilizes 12 parallel Gibbs samplers to solve the spectrogram MRF. 
It is highly optimized for sound source separation and only supports binary label 
workloads, resulting in a shorter, faster (2×) pipeline and a more energy-efficient (2×) 
datapath compared to [2], which is a general-purpose Bayesian inference accelerator 
that supports 64 labels. FlexASR comprises four processing elements (PEs) and a multi-
function global buffer (GB) unit, connected via broadcast and arbitrated crossbar 
channels. 
 
Figure 9.8.3 describes the FlexASR PE, which contains a 1MB 16-bank weight buffer 
and a 4KB input activation buffer, feeding sixteen 8b floating-point vector MACs. Inputs 
and weights are stored in 8b floating-point format, with additional support for weight 

clustering via 4b indexes (2× compression). An activation unit performs vector 
operations on the accumulated results, composing LSTM, GRU, or vanilla RNN layers. 
Fig. 9.8.3 also depicts the custom tiling strategy wherein 16-by-16 weight blocks are 
rearranged and interleaved in the weight buffer for hazard-free computation in the 
activation unit.  
 
Figure 9.8.4 shows the architecture of the FlexASR GB. It collects and unifies partial 
activated output states from the PEs across time steps in a 1MB 16-bank buffer. It also 
computes the attention mechanism, mean/max pooling, and normalization, all of which 
are operations in modern seq2seq networks. A 16KB auxiliary buffer stores seq2seq 
decoder RNN outputs, attention intermediate states, and weights of the normalization 
layer. Fig. 9.8.4 also details the computation of the attention mechanism. The encoder 
and decoder states are read from the GB’s unified and auxiliary buffers, respectively, 
before a MAC generates scores processed by a softmax unit to produce the attention 
weights. To avoid numerical instability, the softmax is computed by subtracting the max 
score from its numerator and denominator. While computing attention, FlexASR saves 
energy and cycles by gating and skipping MAC operations whenever decoder states are 
null. Concat, sum, and average merge modes, required for bidirectional RNN operations, 
are supported by striping forward and backward time steps across alternate banks in 
the 1MB buffer. This enables seamless concatenation of the bidirectional activations.  
 
Figure 9.8.5 demonstrates the accuracy and performance benefits of the proposed 
speech-enhancing ASR pipeline by comparing four inference scenarios using the 
LibriSpeech dataset: (A) with noiseless audio of the speaker, (B) with noise mixed with 
the speaker’s voice in a simulated room environment at a signal-to-noise ratio (SNR) of 
0.90dB, (C) with a much larger ASR model (22MB) trained with a noise-corrupted 
LibriSpeech dataset in order to accommodate noisy inputs, and (D) with the proposed 
pipeline using Bayesian speech enhancement to separate the noise from the speaker’s 
voice. By denoising incoming signals prior to speech recognition, MSSE allows FlexASR 
to store a much smaller ASR model (1/6×, i.e., 3.5MB), which obviates the very 
inefficient strategy of scaling up the DNN model (C) in order to achieve noise robustness. 
Notably, the proposed pipeline achieves 4.3× lower latency, and 7× energy improvement 
compared to the similarly-accurate “Noisy+Big” case (C), which requires significant off-
chip data movements because the upsized ASR model cannot fit on-chip. Furthermore, 
the proposed ASR pipeline delivers 3× accuracy improvement over the unseparated 
noise case (B) and is within 1% of the clean-input-baseline case (A). Fig. 9.8.5 also 
shows that commercial edge platforms fail to provide real-time performance as their 
per-frame latencies exceed the 32ms frame length, despite substantial energy 
expenditures. 
 
Figure 9.8.6 shows that voltage scaling on FlexASR and MSSE produces efficiency 
ranges of 2.6-7.8TFLOPs/W and 4.33-17.6GS/s/W, respectively. The per-frame, end-to-
end latency varies from 45ms to 15ms as the SoC voltage scales from 0.55-1.0V, while 
consuming 19-227mW. Compared to other speech processing chips (Fig. 9.8.6), this is 
the first work to demonstrate on-chip support for denoised, large-vocabulary ASR using 
state-of-the-art bidirectional attention-based speech recognition that enables substantial 
WER benefits – all together, while demonstrating competitive 18ms per-frame end-to-
end latency. The annotated die and physical layout photos along with the chip summary 
are shown in Fig 9.8.7.   
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Figure 9.8.1: Context-blind ASR vs. attention-based bidirectional ASR producing 

significant WER improvements. Noise-isolating ASR is accelerated on-chip using 

Bayesian Gibbs Sampling for denoising and attention-based DNNs.

Figure 9.8.2: 16nm SoC architecture, highlighting a dual-core Arm Cortex-A53, the 

always-on Arm M0, the MRF source separation engine (MSSE), and attention-

based ASR accelerator (FlexASR).

Figure 9.8.3: FlexASR PE with floating-point datapath. RNN weight tiles (Wi/h) are 

rearranged and interleaved in the weight buffer for hazard-free computation in the 

activation unit.

Figure 9.8.5: Summary of measurement results for ASR inference with (A) clean 

input audio, (B) noisy input audio, (C) noisy input audio using a 6× larger ASR 

model, and (D) this work - noisy input audio with Bayesian denoising.

Figure 9.8.6: Accelerator performance and end-to-end ASR latency vs. scaled 

voltage, and comparison table.

Figure 9.8.4: FlexASR multi-function global buffer (GB) with attention datapath. 

FlexASR GB computes the attention mechanism with a 4-to-604× speedup over 

commercial platforms, including CPU, GPU and FPGA.
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Figure 9.8.7: Annotated die photo, physical layout, chip summary, and breakdown 

of the key components that implement the full speech-enhancing ASR pipeline via 

a combination of software and custom hardware.
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