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%Automatic speech recognition (ASR) using deep learning is essential for user interfaces
Son loT devices. However, previously published ASR chips [4-7] do not consider realistic
80perating conditions, which are typically noisy and may include more than one speaker.
gFunhermore, several of these works have implemented only small-vocabulary tasks,
gsuch as keyword-spotting (KWS), where context-blind deep neural network (DNN)
—algorithms are adequate. However, for large-vocabulary tasks (e.g., >100k words), the
Smore complex bidirectional RNNs with an attention mechanism [1] provide context
~learning in long sequences, which improve ASR accuracy by up to 62% on the 200k-
gwords LibriSpeech dataset, compared to a simpler unidirectional RNN (Fig. 9.8.1).
i Attention-based networks emphasize the most relevant parts of the source sequence
/R during each decoding time step. In doing so, the encoder sequence is treated as a soft-
—addressable memory whose positions are weighted based on the state of the decoder
SRNN. Bidirectional RNNs learn past and future temporal information by concatenating

©forward and backward time steps.
(=)

ZThis paper presents a 16nm SoC that executes a full speech-enhancing ASR pipeline in
%hardware, with the following key contributions: 1) unsupervised speech denoising using
&a Markov Source Separation Engine (MSSE) and 2) a reconfigurable accelerator
g(FlexASR) that demonstrates large-vocabulary sequence-to-sequence (seq2seq) ASR
T using bidirectional RNNs with attention. The full ASR pipeline (Fig. 9.8.1) pre-processes
< the incoming speech using an Arm Cortex-A53, then denoises the signal (up to 7.3dB
% SDR) in the MSSE accelerator, and finally accelerates a bidirectional attention-based
T speech-to-text model in the FlexASR accelerator. The 16nm test chip consumes 2.24mJ
g?of energy per frame while achieving end-to-end latency of 18ms — enabling real-time
@throughput

uln the proposed speech-enhancing ASR pipeline, shown in Fig. 9.8.1, an always-on Arm
mMO interfaces with an off-chip ADC to detect acoustic activity. The MO autonomously
omomtors incoming audio amplitudes and subsequently boots the A53, MSSE, and
%FIexASR when the signal magnitude exceeds a threshold in order to reduce power. The
Sdual-issue pipeline and SIMD datapath of the A53 efficiently compute the feature
oextractlon tasks required to synthesize the spectrograms with overlapping 32ms frames.
Then the MSSE performs unsupervised real-time speech denoising by constructing and
:solvmg from the input spectrograms, a 2D-grid probabilistic graphical model called a
ZMarkov Random Field (MRF) [2]. The MRF is solved using a Markov chain Monte Carlo
omethod called Gibbs Sampling. The Bayesian algorithm particularly excels in a more
gdynamic environment, such as when sources are moving with respect to the
- microphones [3], which can potentially create underperforming corner cases for
Zsupervised methods where it is necessary to cover all scenarios with training data. MSSE
‘f_:ultimately produces a binary label corresponding to noise or speech. The A53 then
gconvolves the speech label mask with the original spectrogram in order to extract the
'S clean speech, which is subsequently accelerated in FlexASR using a bidirectional
=] .
gattention-based seq2seq DNN.

=

EFigure 9.8.2 shows the overall SoC architecture comprising FlexASR, MSSE, an Arm

ECortex MO microcontroller, and a dual-core Arm Cortex-A53 CPU cluster with 2MB L2$
(common in high performance embedded and mobile SoCs) connected together via AHB

Oand AXI buses. MSSE utilizes 12 parallel Gibbs samplers to solve the spectrogram MRF.
It is highly optimized for sound source separation and only supports binary label
workloads, resulting in a shorter, faster (2x) pipeline and a more energy-efficient (2x)
datapath compared to [2], which is a general-purpose Bayesian inference accelerator
that supports 64 labels. FlexASR comprises four processing elements (PEs) and a multi-
function global buffer (GB) unit, connected via broadcast and arbitrated crossbar
channels.

Figure 9.8.3 describes the FlexASR PE, which contains a 1MB 16-bank weight buffer
and a 4KB input activation buffer, feeding sixteen 8b floating-point vector MACs. Inputs
and weights are stored in 8b floating-point format, with additional support for weight

clustering via 4b indexes (2x compression). An activation unit performs vector
operations on the accumulated results, composing LSTM, GRU, or vanilla RNN layers.
Fig. 9.8.3 also depicts the custom tiling strategy wherein 16-by-16 weight blocks are
rearranged and interleaved in the weight buffer for hazard-free computation in the
activation unit.

Figure 9.8.4 shows the architecture of the FlexASR GB. It collects and unifies partial
activated output states from the PEs across time steps in a 1MB 16-bank buffer. It also
computes the attention mechanism, mean/max pooling, and normalization, all of which
are operations in modern seq2seq networks. A 16KB auxiliary buffer stores seq2seq
decoder RNN outputs, attention intermediate states, and weights of the normalization
layer. Fig. 9.8.4 also details the computation of the attention mechanism. The encoder
and decoder states are read from the GB’s unified and auxiliary buffers, respectively,
before a MAC generates scores processed by a softmax unit to produce the attention
weights. To avoid numerical instability, the softmax is computed by subtracting the max
score from its numerator and denominator. While computing attention, FlexASR saves
energy and cycles by gating and skipping MAC operations whenever decoder states are
null. Concat, sum, and average merge modes, required for bidirectional RNN operations,
are supported by striping forward and backward time steps across alternate banks in
the 1MB buffer. This enables seamless concatenation of the bidirectional activations.

Figure 9.8.5 demonstrates the accuracy and performance benefits of the proposed
speech-enhancing ASR pipeline by comparing four inference scenarios using the
LibriSpeech dataset: (A) with noiseless audio of the speaker, (B) with noise mixed with
the speaker’s voice in a simulated room environment at a signal-to-noise ratio (SNR) of
0.90dB, (C) with a much larger ASR model (22MB) trained with a noise-corrupted
LibriSpeech dataset in order to accommodate noisy inputs, and (D) with the proposed
pipeline using Bayesian speech enhancement to separate the noise from the speaker’s
voice. By denoising incoming signals prior to speech recognition, MSSE allows FlexASR
to store a much smaller ASR model (1/6x, i.e., 3.5MB), which obviates the very
inefficient strategy of scaling up the DNN model (C) in order to achieve noise robustness.
Notably, the proposed pipeline achieves 4.3x lower latency, and 7x energy improvement
compared to the similarly-accurate “Noisy+Big” case (C), which requires significant off-
chip data movements because the upsized ASR model cannot fit on-chip. Furthermore,
the proposed ASR pipeline delivers 3x accuracy improvement over the unseparated
noise case (B) and is within 1% of the clean-input-baseline case (A). Fig. 9.8.5 also
shows that commercial edge platforms fail to provide real-time performance as their
per-frame latencies exceed the 32ms frame length, despite substantial energy
expenditures.

Figure 9.8.6 shows that voltage scaling on FlexASR and MSSE produces efficiency
ranges of 2.6-7.8TFLOPs/W and 4.33-17.6GS/s/W, respectively. The per-frame, end-to-
end latency varies from 45ms to 15ms as the SoC voltage scales from 0.55-1.0V, while
consuming 19-227mW. Compared to other speech processing chips (Fig. 9.8.6), this is
the first work to demonstrate on-chip support for denoised, large-vocabulary ASR using
state-of-the-art bidirectional attention-based speech recognition that enables substantial
WER benefits — all together, while demonstrating competitive 18ms per-frame end-to-
end latency. The annotated die and physical layout photos along with the chip summary
are shown in Fig 9.8.7.
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Figure 9.8.1: Cuntex( blind ASR vs. attention-based bidirectional ASR producing = Figure 9.8.2: 16nm SoC architecture, highlighting a dual-core Arm Cortex-A53, the
significant WER improvements. Noise-isolating ASR is accelerated on-chip using always-on Arm MO, the MRF source separation engine (MSSE), and attention-

Bayesian Gibbs Sampling for denoising and attention-hased DNNs. based ASR accelerator (FlexASR).
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Figure 9.8.3: FlexASR PE with floating-point datapath. RNN weight tiles (I¥/;;) are ~ Figure 9.8.4: FlexASR multi-function global buffer (GB) with attention datapath.
rearranged and interleaved in the weight buffer for hazard-free computation in the ~FlexASR GB computes the attention mechanism with a 4-to-604x speedup over

activation unit. commercial platforms, including CPU, GPU and FPGA.
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Dual-Core
A53 CPU

Figure 9.8.7: Annotated die photo, physical layout, chip summary, and breakdown

Dual-A53 MSSE FlexASR
g e : e
Technology TSMC 16nm FFC Logic Field lsenZseq models
Die Area 25mm? Data Type FPB4 FxP32 FP8
Arga B.21mm 1.31mm' B8.84mm
Total SRAM 9.8MB SRAM 2.41MB 0.103MB 5.03MB
Gate Count 1M Voltage 0.55- 1V 0.55-1v 0.55- 1V
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S | S kb : 43-176 | 26-78
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of the key components that implement the full speech-enhancing ASR pipeline via

a combination of software and custom hardware.
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