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Abstract—Future wearable and portable devices with multiple
transmit antennas operating below 6 GHz are constrained by
regulatory limitations on the level of electromagnetic radiation a
user can be exposed to, measured using the specific absorption
rate (SAR). Signaling designs that are optimized to include SAR
constraints can improve the performance of uplink transmission.
These signaling schemes could include closed-loop beamforming,
closed-loop precoding, and space-time coding, which have all
been shown to achieve increased rates when optimized as a
function of SAR. Previous research addressed SAR constrained
optimization only within a single coherence time block. In this
paper, we present transmit policies that dynamically allocate
user electromagnetic radiation exposure over time. We propose
three exposure allocation methods — optimal, uniform, and
asymptotic — in the practical case with causal channel state
information (CSI), and an on-off transmission approach for the
low SAR-to-noise ratio regime. Our results demonstrate that the
performance of SAR-aware transmission can be further improved
by exploiting frequency and time diversity.

Index Terms—Multiple antenna array, specific absorption rate,
convex optimization, dynamic programming

I. INTRODUCTION

Wearable and portable wireless devices, such as smart-
bands, smart-watches, smartphones, tablets, and laptops are
prolific in modern society. In the coming fifth-generation (5G)
era, large numbers of sensors and wirelessly connected devices
will form the “internet-of-things” (IoT). A large portion of
these IoT devices will be used in close proximity to the human
body, including implanted sensors, health monitors, smart-
classes, and virtual/augmented reality (VR/AR) devices, etc.,
forming wireless body area networks (WBAN). These wireless
devices and their associated applications hold the potential to
greatly improve the life and well being of users.

Wireless devices, however, emit electromagnetic radiation,
and devices must satisfy constraints on this radiation. Specific
absorption rate (SAR) is the most widely accepted user ex-
posure metric and is used worldwide by government agencies
to regulate portable devices operating below 6 GHz. SAR is
measured using the amount of power absorbed by the human
body per unit mass, with units of Watt/kilogram (W/kg). In
the US [1], the peak SAR limitation for partial body exposure,
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including the human head, is 1.6 W/kg averaged over 1 gram
of tissue. Most, if not all, of today’s commercially available
portable devices are regulated as single transmit antenna
devices, and SAR mitigation is accomplished using advanced
hardware designs [2], including applying auxiliary antenna
elements, ferrite loading, special high impedance surfaces, and
metamaterials. Currently, if a device does not pass the SAR
testing, the transmit power is decreased until compliance is
achieved.

The difficulty of attaining SAR compliance will increase in
the future as commercial transceivers will be equipped with
multiple transmit antennas and each additional antenna will
increase the maximum potential exposure for a given transmit
power [3]–[5]. To allow for higher uplink transmission rates,
Long-Term Evolution Advanced (LTE-Advanced) and LTE-
Advanced Pro. already support up to eight transmit antenna
ports at the user device. Recent research suggests that the near-
field SAR limitation will have significant impact on the far-
field performance of a wireless communication system with
multiple transmit antennas [3]–[6]. Multiple transmit antennas
cause large SAR variations as the gain and phase combinations
change across the antennas, and regulatory agencies usually
test for compliance with the worst-case SAR. A signaling
technique that does not consider SAR must reduce the transmit
power until the worst-case SAR reading satisfies the constraint,
which can significantly degrade the communication link qual-
ity. Therefore, it is critical for 5G and beyond systems to
employ uplink signals that are optimized with respect to the
SAR constraint. Note that with millions of low-cost connected
devices in 5G IoT, the usage of SAR-aware techniques will
not be limited to cellular uplink transmission. As the exposure
from all types of mobile device transmissions are regulated,
side-link transmissions, i.e., device-to-device, will also benefit
from the proposed SAR-aware techniques.

Two key problems in the development of SAR-aware trans-
mission schemes are: 1) modeling SAR in terms of the transmit
signal, and 2) applying these models to incorporate a signal-
level SAR constraint into system analysis and design. In the
context of SAR modeling, various works have analyzed the
dependence of SAR on the transmitted signal via simulations
and experiments. In [7], the SAR value is demonstrated to be
a sinusoidal function of the phase difference when the second
antenna transmits a phase shifted version of the signal sent
on the first antenna. Based on the results of [7], a quadratic
model of SAR as a function of the transmit signal was first
introduced in [3], and further analyzed and validated in [4],
[5]. Methods for efficiently determining the parameters needed
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for the quadratic exposure model were proposed in [8]–[10].
Recent research has shown success in developing SAR-

aware signaling techniques by applying the SAR model in
[3] to directly limit the amount of SAR induced during
transmission. In [4], SAR-aware codes designed to mitigate
SAR levels are developed and shown to provide a 2.5 dB
improvement in probability of error over the well-known
Alamouti code in a SAR-constrained channel. In [11] and
[12], the optimal beamformer and precoder are formulated for
multiple-input multiple-output (MIMO) systems with one SAR
constraint, and general SAR-aware precoding optimization is
presented in [6]. Work in [13] further extends these results
to a multi-user scenario with limited channel information at
the transmitter. The results in these works demonstrate that
SAR-aware transmission schemes are able to achieve much
higher rates than the traditional power back-off techniques
while maintaining compliance with exposure constraints.

Previous SAR-aware analyses [3], [5], [6], [11]–[13] only
designed the SAR-aware covariance matrix for a single coher-
ence time block. However, regulatory standards allow SAR
measurements to be averaged over a relatively long time
period before being compared to the enforced limitation
for compliance. For example, the Federal Communications
Commission (FCC) allows a time period of up to 6 minutes
[14]. If the coherence time interval is 100 ms, then there
are 3600 coherence time blocks within a maximum test time.
Therefore, it is possible and desirable to vary the exposure
level per coherence time block to exploit the time diversity
available in fading channels. Previous analyses also only focus
on designing capacity achieving transmit covariance matrices
with SAR limitations for a narrow-band system. With an
orthogonal frequency-division multiplexing (OFDM) system, a
SAR-aware optimization is required for every subcarrier, and it
may be beneficial to consider a joint SAR-aware optimization
over multiple subcarriers.

In this paper, we address the problem of dynamically
allocating SAR limits over time/frequency to exploit the
time/frequency diversity available in MIMO channels. We
follow the framework used in [5] to model the SAR value
as a quadratic function of the transmitted signal. Much like
previous research [15]–[17] focused on optimizing power
control subject to a long-term power constraint, we distribute
exposure levels over time to maximize the achievable sum
rate over multiple coherence time blocks. The proposed SAR
allocation method can also be applied in a multi-user broad-
band OFDM system experiencing frequency-selective fading.
Similar to power control on individual subcarriers, we perform
SAR management to dynamically share the total user exposure
limitation among subcarriers to improve the sum rate. In this
work we introduce a metric, named the SAR-to-noise ratio,
and show that it is important in characterizing single-user
achievable sum rate.

Since SAR is a time-averaged measure of exposure [14],
past systems such as the Global System for Mobile Com-
munications (GSM) have used a simple on-off time-slotted
technique to reduce SAR. In this time-slotted approach, a
device transmits with a large power intermittently and trans-
mits nothing otherwise. We show how a simple on-off method

can be extended to encompass multiple channel coherence
blocks in time and achieve good, but suboptimal, sum rate
performance in a low SAR-to-noise regime. We apply dynamic
programming (DP) algorithms to develop an exposure mini-
mizing on-off method. Dynamic programming [18], [19] has
been used in past research to develop optimal online policies
for resource allocation and scheduling problems in wireless
systems. It is also shown that the proposed on-off method
converges to the optimal solution as the SAR-to-noise ratio
approaches zero.

For medium-to-high SAR-to-noise ratio scenarios, i.e., when
the SAR limit is larger than the noise power, we demonstrate
that a uniformly distributed SAR limitation over time has close
sum rate performance compared to the optimal SAR distribu-
tion strategy with non-causal channel state information (CSI).
Furthermore, the uniformly distributed exposure allocation
gives the highest sum rate among all blind allocation schemes,
due to the concavity of the sum rate objective function. In this
paper, we also propose an asymptotic waterfilling algorithm
to reduce complexity when optimizing for a large number
of coherent time blocks. Simulation results show that our
asymptotic waterfilling method achieves a higher sum rate than
a uniform SAR allocation.

The remainder of the paper is organized as follows. In
Section II, we introduce the quadratic SAR model and the
notion of SAR-to-noise ratio. In Section III, we derive the
optimal exposure allocation solution with multiple channel
uses assuming perfect knowledge of CSI. We reveal that the
optimal solution is a modified waterfilling result. In Section
IV-A, we show that a uniform exposure allocation is the
optimal blind SAR allocation algorithm. In Section IV-B, we
propose an asymptotic waterfilling algorithm. A DP-based on-
off transmission strategy optimized for a low SAR-to-noise
ratio regime is proposed in Section IV-C. In Section V, we
present simulation results for the proposed SAR allocation
methods. In Section VI, we summarize our work on dynamic
exposure allocation.

Notation: In the rest of this paper, all boldface letters
indicate matrices (upper case) or vectors (lower case). The no-
tations tr(A), |A|, AH , and rank{A} are the trace, determi-
nant, conjugate transpose, and rank of matrix A, respectively.
A = diag{a} denotes the diagonal matrix A with diagonal
entries specified by the vector a.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a point-to-point multiple antenna
transmission over T Rayleigh fading channels in time domain.
We assume there are M > 1 transmit antennas on the portable
device and N ≥ 1 receive antennas at the receiver, e.g., a base
station or an associated side-link device. We assume that the
input-output relationship of the i-th coherent time block is
described by

yi[k] = Hixi[k] + ni[k], k = 1, 2, . . . ,Ki, (1)

for i = 1, 2, . . . , T , where k is the channel use index. xi[k] ∈
CM×1 is the transmit signal in the i-th channel with zero mean
and covariance matrix E{xi[k]xi[k]H} = Si. yi[k] ∈ CN×1
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is the receive signal. The channel matrix Hi ∈ CN×M is
assumed to be constant within Ki channel uses, and coherent
channels are assumed to be independent across coherent bands
or blocks. We assume that the entries of all channel matrices
Hi, i = 1, 2, . . . , T , follow the same distribution of CN (0, 1).
The additive white Gaussian noise vectors ni[k] ∈ CN×1,
where k = 1, 2, . . . ,Ki and i = 1, 2, . . . , T , are i.i.d. across
channel uses, and each noise vector follows the distribution
CN (0, σ2I). The noise power σ2 at the receiver is assumed
to be a constant.

As we discussed, regulatory agencies require SAR testing
and compliance on portable devices sold in most countries.
We consider the scenario shown in Fig. 1, where a portable
device operates near the body and the user is exposed to
electromagnetic radiation. The SAR induced by the device
in this operating condition is measured and averaged over
volumes of tissue, typically 1 gram or 10 grams. In order
to formulate a constraint on the maximum allowable SAR
in terms of the transmit covariance, we adopt the quadratic
SAR model introduced in [3], [5]. Experimental results in
these studies demonstrate that the time-averaged SAR value
in a volume V in the human body with one channel use can
be modeled as the expectation of a quadratic function of the
transmit signal as

SARV = E{x[k]HRV x[k]} = tr(RV S), (2)

where S = E{x[k]x[k]H} is the transmit covariance matrix
and RV is the SAR matrix which fully describes the SAR
value’s dependence on the transmit signal at the volume V .
In this paper, we focus on the optimization of the transmit
covariance matrices, and we omit the channel use index k in
the rest of the paper.

device

body

V

Fig. 1: Schematic of the considered exposure scenario in which a portable
device operates in close proximity to the body and exposes the user to
electromagnetic radiation. The SAR model in [3]–[5] is adopted to calculate
SAR in a volume V inside the body as a function of the transmit signal.

A SAR-aware transmission incorporates the SAR constraint
into transmit signaling design. For a given relative position
between a device and the testing area of the body, the SAR
constraint is captured by limiting the maximum SAR measure-
ment over multiple volumes, yielding the maximum channel
capacity analysis problem under both SAR and transmit power

constraints as

(PB) max
S�0

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣
s.t. tr(S) ≤ P,

max
j=1,2,...,J

{tr(RVj
S)} ≤ Q,

where P is the transmit power constraint, V1, V2, . . . , VJ are
the testing volumes, and Q is the SAR threshold. Various SAR
limitations are set for different body areas, such as whole body,
partial body, hands, wrists, feet, and ankles, etc., therefore,
multiple SAR matrices are often required to characterize all
constraints imposed on a device. We note that the analysis
performed in this paper only depends on the quadratic structure
of the SAR constraints and not on the values of the SAR
matrices nor on the specific exposure scenario. Therefore,
we omit the dependence of the SAR matrix on the testing
volume Vj and denote the j-th SAR matrix as Rj . The SAR-
aware transmit covariance matrix maximizes the rate of a
SAR-constrained wireless channel, and it can be found as the
optimal solution of the optimization problem

(PC) max
S�0

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣
s.t. tr(S) ≤ P,

tr(RjS) ≤ Qj , j = 1, 2, . . . , G.

We consider a transmit power constraint P and G SAR
constraints {Qj}j=1,2,...,G on a portable device. In [6], results
show that the above problem can be solved with a modified
waterfilling process.

In [6], it is shown that the effect of each quadratic SAR
constraint in the optimization problem can be modeled as an
effective channel correlation at the transmitter. Therefore, the
tightness of the SAR limitation is dependent not only on the
constraint value Qj , but also on the norm of Rj . For example,
a portable device with a SAR matrix of 10R faces a much
tighter SAR constraint than another portable device with a
SAR matrix of R assuming both have the same SAR limit Q.
Hence, we define the normalized SAR constraint as

tr(R̃jS) ≤ Q̃j =
M

tr(Rj)
Qj , (3)

where R̃j = M
tr(Rj)

Rj is the normalized SAR matrix with
tr(R̃j) = M . The transmit power constraint can be regarded
as a special normalized SAR constraint. We also introduce the
normalized SAR-to-noise ratio (NSarNR) as

NSarNRj =
Q̃j
σ2

=
MQj

σ2 tr(Rj)
(4)

to characterize the tightness of a SAR constraint on a device
with the SAR matrix Rj . We discuss how the low, medium,
and high NSarNR regimes correspond to the relative perfor-
mance of the proposed transmission schemes in Section V.
The NSarNR is a generalization of the power-to-noise ratio if
R̃j = I, however, the normalized SAR matrix R̃j is not an
identity matrix in general [3], [5].

In the next section, we first address the joint SAR-aware
optimization with perfect CSI, and we demonstrate that the
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SAR-aware transmission can achieve much higher sum rate
compared to the conventional power optimization method
without SAR consideration. The proposed optimal SAR al-
location method can be used in user exposure management
over subcarriers in an OFDM system. It also provides an upper
bound on the performance of the SAR allocation methods with
only causal CSI. In Section IV, we then focus on the dynamic
SAR allocation over coherence time blocks with causal CSI.

III. EXPOSURE ALLOCATION WITH PERFECT CSI

The main idea of exposure allocation is to design covariance
matrices {Si}i=1,2,...,T which maximize the sum rate while
complying with total power and total SAR constraints over
the T channels, rather than power and SAR constraints placed
on each time block. By considering the former constraints,
we are able to allocate larger portions of the power and SAR
budgets when the channel is “good” and smaller portions when
the channel is “bad.” As previously mentioned, constraints
placed over the T channels are realistic because SAR readings
are time-averaged when determining device compliance. In
this section, we formulate and study the exposure allocation
problem when the system has perfect CSI. The device may or
may not have access to the SAR matrices required to formulate
the SAR constraint, so we address both of these scenarios.

If a device has no knowledge of the SAR matrices, it needs
to first perform transmit power control over T channels by
solving the problem

(PF− 1) max
Si�0

T∑
i=1

log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣
s.t.

T∑
i=1

tr(Si) ≤ PT,

where P is the average power constraint over T channels, and
it is assumed all channel matrices {Hi}i=1,2,...,T are perfectly
known at the transmit device. Using the transmit covariance
matrices {Si}, the transmit power allocation on each band is
then

Pi = tr(Si), i = 1, 2, . . . , T. (5)

Because the device does not have access to the SAR matrices,
it has to satisfy the worst-case compliance limitation, i.e.,

T∑
i=1

max
tr(Si)=Pi

tr(RjSi) =
T∑
i=1

rj,1 tr(Si)

≤ QjT, j = 1, 2, . . . , G, (6)

where Qj is the average SAR constraint for T channels and
rj,1 is the maximum eigenvalue of the SAR matrix Rj . If
the SAR constraint is not met, the transmit power must be
reduced. Hence, the SAR constraints are equivalently power
constraints dictating that

T∑
i=1

tr(Si) ≤
QjT

rj,1
. (7)

Therefore, the resulting transmit covariance matrices after
power back-off are the solutions for the problem

(PF− 2) max
Si�0

T∑
i=1

log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣
s.t.

T∑
i=1

tr(Si) ≤ min

(
PT,

Q1T

r1,1
, . . . ,

QGT

rG,1

)
.

The optimal solution for (PF-2) is a typical waterfilling
result over all T channels. Suppose the i-th channel matrix,
Hi, has a singular value decomposition (SVD) given by

Hi = UiΓ
1/2
i VH

i , i = 1, 2, . . . , T, (8)

where Γi = diag {gi,1, gi,2, . . . , gi,m} with gt,1 ≥ gt,2 ≥
. . . ≥ gt,M ≥ 0 and m = min(M,N). The optimal transmit
covariance matrices are obtained by waterfilling as

Si = ViΛiV
H
i , i = 1, 2, . . . , T, (9)

where Λi = diag {pi,1, pi,2, . . . , pi,m} with pi,j =(
1/λ− σ2/gi,j

)+
for all i = 1, 2, . . . , T . The quantity 1/λ

is the global water-level satisfying

T∑
i=1

m∑
j=1

(
1

λ
− σ2

gi,j

)+

= min

(
PT,

Q1T

r1,1
, . . . ,

QGT

rG,1

)
. (10)

If the transmit device has SAR information, it can per-
form the SAR-aware optimization over channels with SAR
constraints, i.e.,

(PF− 3) max
Si�0

T∑
i=1

log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣
s.t.

T∑
i=1

tr(Si) ≤ PT,

T∑
i=1

tr(RjSi) ≤ QjT, j = 1, 2, . . . , G.

The optimal solution for T = 1 is presented in [6]. However,
the optimal transmit covariance matrices in the case T > 1
can be found in a similar manner. To provide a closed-form
solution for the transmit covariance matrix, define

K = µI +
G∑
j=1

λjRj. (11)

where λj , j = 1, 2, . . . , G, and µ are optimal dual variables
for (PF-3). Assume that matrix HiK

−1/2, referred to as an
effective channel for the i-th channel, has an SVD

HiK
−1/2 = UiΓ

1/2
i VH

i , (12)

where Γi = diag {gi,1, gi,2, . . . , gi,m} with gi,1 ≥ gi,2 ≥
. . . ≥ gi,m ≥ 0. The optimal transmit covariance matrix Si is
formulated as

Si = K−1/2ViΛiV
H
i K−1/2, (13)
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where Λi = diag {pi,1, pi,2, . . . , pi,m} with pi,j =(
1− σ2/gi,j

)+
for i = 1, 2, . . . , T and j = 1, 2, . . . ,m. The

optimization problem (PF-3) is convex, so it can be effectively
solved using optimization toolboxes [20], [21]. The proposed
optimal SAR allocation method with perfect CSI can also be
applied for SAR management over subcarriers in OFDM sys-
tems by modifying the algorithm to distribute SAR limitations
over subcarriers instead of coherence time blocks. Compared
to individually optimizing each subcarrier, the proposed joint
optimization over subcarriers provides better performance and
also reduces complexity in OFDM systems.

IV. EXPOSURE ALLOCATION WITH CAUSAL CSI

Assumption of perfect CSI implies non-causal CSI for SAR
allocation over time. Therefore, a realistic online dynamic
SAR allocation method which only relies on the past and
current channel matrices {Hj}j≤i at the i-th coherence time
block is required. Since we assume that there is no temporal
correlation among the channel matrices of different blocks,
only the current channel Hi is relevant to the decision making
at the i-th time block. The allocation method must also
track the power and SAR budget in the previous i − 1 time
blocks to find the optimal allocation for the i-th time block.
Consequently, a practical dynamic SAR allocation policy φ
is defined as a mapping from the current CSI Hi, the past
covariance matrices {Sj}j<i, and the collection of constraint
values q to the transmit covariance matrix Si, i.e.,

φ : (Hi, {Sj}j<i,q) 7→ Si, i = 1, 2, . . . , T, (14)

where q = [Q0, Q1, . . . , QG]. We denote Q0 = P .
If the device does not know the SAR matrices, similar to

problem (PF-2), the transmitted signal must be designed to
simultaneously satisfy all exposure requirements, meaning that
the results from mapping φ should satisfy

T∑
i=1

tr(Si) ≤ min

(
PT,

Q1T

r1,1
, . . . ,

QGT

rG,1

)
. (15)

A practical allocation policy without SAR information is said
to be optimal if it maximizes the expected sum rate of all T
time blocks, i.e., φ is the optimal solution among all possible
mappings for the problem

(PT− 1) max
φ

E{H1,...,HT }

{
T∑
i=1

log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣
}

s.t.
T∑
i=1

tr(Si) ≤ min

(
PT,

Q1T

r1,1
, . . . ,

QGT

rG,1

)
,

Si = φ(Hi, {Sj}j<i,q), i = 1, 2, . . . , T.

Similarly, an optimal online allocation policy with access

to the SAR matrices can be found by solving

(PT− 2) max
φ

E{H1,...,HT }

{
T∑
i=1

log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣
}

s.t.
T∑
i=1

tr(Si) ≤ PT,

T∑
i=1

tr(RjSi) ≤ QjT, j = 1, 2, . . . , G,

Si = φ(Hi, {Sj}j<i,q), i = 1, 2, . . . , T.

Optimal online policies for both (PT-1) and (PT-2) are dif-
ficult to find. The expectation in (PT-1) and (PT-2)’s objective
functions cannot be decomposed because the sum power and
SAR constraints make the rate function of each time block
correlated with others. However, the sum-rate performance of
the optimal policy can be upper bounded by the sum rate of
the optimal off-line solution with non-causal CSI and lower
bounded by the sum rate from uniform SAR allocation. Our
simulation results show that the upper and lower bound for
dynamic SAR allocation over time are close to each other for
medium-to-high NSarNR regime.

In the following subsections, we consider three exposure
allocation strategies for systems with causal CSI. The uni-
form allocation algorithm serves as a close lower bound to
the optimal solution at medium-to-high NSarNR. It simply
distributes the SAR limitation evenly across time, and solves
the SAR-constrained MIMO transmission problem for each
time slot. The asymptotic waterfilling algorithm reduces the
computational complexity by taking a large portion of the
optimization offline. It also provides better performance in
low-to-medium NSarNR region than uniform allocation. The
on-off SAR allocation has the lowest complexity, however, it
serves as a good approximation only in very low NSarNR
region.

A. Optimal Blind Algorithm: Uniform Allocation

We first consider a blind allocation policy in which the
amount exposure allowed per coherence time block is deter-
mined without CSI. A blind SAR allocation algorithm first
assigns instantaneous SAR constraint values {Qi,j}j=0,1,...,G

to time block i without considering the current channel matrix
Hi, then it finds the optimal transmit covariance matrices in
each time block based on Qi,j’s. Therefore, a blind map-
ping φ is a cascade of two mappings: φ(Hi, {Sj}j<i,q) =
φ2(Hi, φ1({Sj}j<i,q)) with

φ1 : ({Sj}j<i,q) 7→ qi, i = 1, 2, . . . , T, (16)

where qi = [Pi, Qi,1, . . . , Qi,G] are the collection of instanta-
neous constraint values and

φ2 : (Hi,qi) 7→ Si. (17)

The optimal φ2 with and without SAR information is already
analysed and presented in [6]. Therefore, optimizing over a
blind allocation φ is equivalent to optimizing over φ1, which
allocates the SAR budget for each time block.
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With a blind allocation method, the objective functions in
(PT-1) and (PT-2) are greatly simplified by decomposing the
expectation as

(PT− b) max
φ1

T∑
i=1

EHi

{
log

∣∣∣∣I +
1

σ2
HiSiH

H
i

∣∣∣∣}
s.t. qi = φ1(i,q), i = 1, 2, . . . , T,

T∑
i=1

qi,j ≤ Qj , j = 0, 1, . . . , G,

Si = φ2(Hi,qi), i = 1, 2, . . . , T.

We show that among all blind allocation algorithms φ1,
the uniform exposure allocation over time is optimal with or
without SAR information due to the concavity of the sum-rate
function. Under uniform exposure allocation, the limitation
values are given by Qi,j = Qj for i = 1, 2, . . . , T and
j = 0, 1, . . . , G. By definition, we have

S = φ2(H,q) = max
S�0

tr(RjS)≤Qj ∀j

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣ (18)

with or without the SAR-awareness at portable devices.
Denote

B(q) = EH

{
log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣
S=φ2(H,q)

}

= EH

 max
S�0

tr(RjS)≤Qj ∀j

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣
 . (19)

Function B(q) is a concave function of the constraint variables
P and Qj , j = 0, 1, . . . , G. The proof can be found in the
Appendix. In addition, the following lemma gives an upper
bound for the objective function of a blind allocation.

Lemma 4.1. For a blind allocation problem, the objective
function B(q) is bounded above by

1

T

T∑
i=1

B(qi) ≤ B

(
1

T

T∑
i=1

qi

)
. (20)

Moreover, the upper bound is achieved when Pi = P and
Qi,j = Qj for all i = 1, 2, . . . , T and j = 0, 1, . . . , G.

As a result of Lemma 4.1, the uniform exposure allocation
over coherence time blocks is the optimal blind allocation
policy. The uniform allocation is a temporal counterpart of
the spatial isotropic transmission for MIMO systems [22].
It is well-known that if no CSI at the transmitter (CSIT) is
available, the optimal transmit covariance matrix is a scaled
identity matrix, which evenly divides the radiation power
in all orthogonal directions. Hence, if the temporal SAR
allocation does not consider CSI at each time block, the
uniform limitation distribution over time should be optimal.
Our simulations show that uniform allocation gives almost the
same performance as the optimal allocation in a medium-to-
high NSarNR regime.

With uniform SAR and power allocation, the rate perfor-
mance difference with and without knowledge of the SAR

matrices comes from the φ2 mapping. From [6], the SAR-
aware transmission gives considerable rate increase over the
conventional method without SAR knowledge. The uniform
SAR allocation method has a simple decision on placing power
or SAR limitations on each time block, but it still requires
finding the optimal SAR-aware transmit covariance matrix for
every block based on the allocated limitation values. In the
next section, we introduce a SAR allocation method based on
asymptotic analysis by solving the allocation problem with
T → ∞. The benefit of the proposed asymptotic allocation
is that a large portion of optimization can be taken offline.
Furthermore, our simulation results demonstrate that it has the
same sum-rate performance as the optimal allocation method
in the medium-to-high NSarNR range, and it outperforms
uniform allocation in the low NSarNR regime. Moreover, the
asymptotic method also works well with a small number of
coherence time blocks.

B. Asymptotic waterfilling algorithm

The optimal allocation result of (PF-2) is a form of
waterfilling. Hence, if we know the optimal dual variables
µ and {λj}j=1,2,...,G, then the optimal covariance matrices
{Si}i=1,2,...,T are easily found. The optimal dual variables,
however, are dependent not only on the power and SAR con-
traint values, but also on the channel matrices {Hi}i=1,2,...,T .
In this section, we show that the optimal dual variables
converge to their asymptotic approximations as T →∞.

As T → ∞, the allocation policy φ should only depend
on the current CSI Hi, so we drop the dependence on
the time index i. Since there are infinitely many channel
realizations, the sum rate maximization problem under sum-
power and sum-SAR constraints in (PF-3) should be rewritten
as a maximization of the expected rate under expected power
and SAR constraints, i.e.,

(PA) max
φ

EH

{
log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣}
s.t. EH{tr(S)} ≤ P,

EH{tr(RjS)} ≤ Qj , j = 1, 2, . . . , G,

S = φ(H).

The Lagrangian of (PA) is formulated as

L(S,λ, µ) = EH

{
log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣− µ(tr(S)− P )

−
G∑
j=1

λj(tr(RjS)−Qj)

 . (21)

The optimal dual variable of (PA) is the solution of the dual
problem, expressed as

(PA−D) min
λi≥0
µ≥0

max
S=φ(H)

L(S,λ, µ). (22)

Given any positive dual variables {λj}j=1,2,...,G, and µ, we
can find the optimal transmit covariance matrix based on
the channel matrix by waterfilling on the effective channel
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HK−1/2 with K = µI +
G∑
j=1

λjRj . Suppose HK−1/2 has an

SVD given by

HK−1/2 = UΓ1/2VH , (23)

where Γ = diag {g1, g2, . . . , gm} with g1 ≥ g2 ≥ . . . ≥
gm ≥ 0. The transmit covariance matrix that maximizes the
Lagrangian is given by

S = φ(H) = K−1/2VΛVHK−1/2, (24)

where Λ = diag {p1, p2, . . . , pm} with pi =
(
1− σ2/gi

)+
.

Therefore, the maximum of the Lagrangian is computed as

max
S=φ(H)

L(S,λ, µ) =

µP +
G∑
j=1

λjQj


+

∫ ∞
0

(
log
( x
σ2

)+
−
(

1− σ2

x

)+
)
fg(x)dx. (25)

where fg(x) is the marginal PDF of the unordered singular
values of HK−1/2 which is expressed as [23]

fg(x) =
|K|N

M

M∑
i=1

M∑
j=1

D(i, j)xN−M+j−1e(−xkM−i+1)

×

(
M∏
`=1

(N − `)!
M∏
t<`

(kM−`+1 − kM−t+1)

)−1
(26)

where k1 ≥ k2 ≥ . . . ≥ kM are the eigenvalues of K. D(i, j)
is the (i, j)-th cofactor of the following matrix D with entries

D`,t =
(N −M + t− 1)!

(kM−`+1)N−M+t
. (27)

Minimizing over the maximum Lagrangian gives the optimal
dual variables, and the optimal transmit covariance matrix
follows the mapping S = φ(H).

When the asymptotic allocation is applied over a finite time
block of length T , the remaining power and SAR budget
must be carefully tracked to maintain compliance. Define the
remaining budget value as Qri,j for the i-th time block and j-th
SAR constraint, where Qr1,j = QjT and Qri+1,j = Qri,j−Qi,j .
We denote Qi,j as the actual constraint value set for the i-th
time block and j-th SAR constraint. At the i-th time block,
if each of the resulting SAR allocation Q′i,j = tr(RjS) from
(PA-D) is smaller than the remaining SAR budget Qri,j , then
we keep the allocation result S and Qi,j = Q′i,j . If any of
the resulting Q′i,j from (PA-D) is larger than the remaining
SAR budget Qri,j , then we set the constraint limitations for
the i-th time block as Qri,j . The transmit covariance matrix is
recalculated based on the new constraint values. Moreover, for
the last coherence block T , we should always set QT,j = QrT,j .

One special case is when there is only one SAR constraint
as the active constraint on the portable device. In this case the
optimal dual variable λ is given by the following lemma.

Lemma 4.2. Given only one active SAR constraint Q, the
optimal dual variable λ is the solution of the equation∫ ∞

0

(
1

λ
− σ2

x

)+

fg(x)dx = Q. (28)

The previous result is obtained by considering the water-
filling solution of (27) in the case that µ = 0. Although it
requires a significant effort to find the optimal dual variables,
these calculations can be kept offline. A table of optimal dual
variables and constraint values can be pre-computed and stored
in the device. In each coherence time block, the device only
needs to find the optimal transmit covariance matrix based
on the channel matrix. Our simulation results demonstrate
that the asymptotic waterfilling algorithm can achieve good
performance in exposure allocation even with small T , and it
outperforms the uniform allocation in the low-SAR, low-power
regime.

C. Low NSarNR with On-Off SAR allocation

Many future WBAN systems may operate commercially in
the low NSarNR regime. For example, wireless earphones and
VR/AR headsets have transceivers right next to the user’s head.
Moreover, devices that are commonly used by children may
be designed (or regulated in the future) to expose the users
to minimal radiation. Although no regulatory metric has been
announced for the above-6 GHz bandwidth yet, millimeter-
wave systems (mmWave) are expected to induce large peak
SAR values [24], [25].

In [24], the peak SAR measurement of a mmWave system is
shown to be much larger than those in microwave frequencies
because the penetration depth at a high frequency band is very
shallow. A peak SAR value of 22 W/kg is measured at 60
GHz, while the same system operating at 2 GHz would only
give a peak SAR value of 0.4 W/kg. This means that there is a
roughly 17dB (55 times higher) gain in the SAR measurement
for a mmWave system over a sub-6 GHz system. As a result,
if mmWave systems are regulated by SAR measurements, then
these systems may face very tight SAR constraints. Moreover,
outdoor mmWave channel measurements show that mmWave
channels are highly directional with few propagation paths.
Diverting the beam alignment for lower SAR may lead to
disastrous loss in rate performance. It might be desirable
to manage mmWave SAR readings by exploiting temporal
diversity.

The approach considered in this paper can also be applied to
mitigate exposure in mmWave systems. From [24], [26], [27],
it can be shown that both power density and SAR constraints
can be expressed in the form tr(RS) for an appropriate
exposure matrix R. Assuming a far-field model, the exposure
matrix for power density is given by

RPD =
aTaHT
4πD2

, (29)

where aT denotes the transmitter array steering vector and
D is the distance from the transmitter array to the point of
contact of interest. Limited penetration of millimeter wave
signals in human tissue yields a simple relationship between
power density and SAR at the tissue surface, and it is simple
to show that the exposure matrix Rsurf for surface SAR is
given by Rsurf = kRPD for some scalar k ∈ R. Relatively
large exposure measurements in the mmWave induce tight
constraints on portable devices, thus we focus on the low SAR-
to-noise regime in this paper.
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In a low NSarNR regime, the waterfilling results can be
well approximated as “temporal beamforming,” meaning the
device should transmit with the maximum allowable exposure
constraint values in a single coherence time block, e.g., an
“on-off” SAR allocation method. The remaining question is
when to turn on the transmission in the given time period. If
the device does not know its SAR matrices, then it should pick
the best channel with the largest beamforming gain. Suppose,
gi,1 is the largest singular value of the i-th channel Hi, and
gi0,1 is the largest among all gi,1, i.e.,

gi0,1 = max
0≤i≤T

gi,1. (30)

Then the optimal allocation policy without SAR knowledge
should transmit at the i0-th time block with all available
constraint value PT , and QjT , j = 1, 2, . . . , G. The transmit
covariance matrix is then formulated as

S = min

(
PT,

Q1T

r1,1
, . . . ,

QGT

r1,G

)
v1v

H
1 , (31)

where v1 is the maximum right singular vector of the channel
matrix Hi0 .

If SAR matrices are also available, then a portable device
can calculate the i-th effective channel matrix as HiK

−1/2
i

for time slot i, i = 1, 2, . . . , T . Since Ki = µiI +
G∑
j=1

λi,jRj ,

where µi and λi,j are the optimal dual variables given the
channel matrix Hi, we have that Ki is a function of the
channel matrix Hi. In the low NSarNR regime, the optimal
covariance matrix obtained from waterfilling for time slot i is
in fact a beamforming solution,

Si = K
−1/2
i vi,1

(
1− σ2

gi,1

)
vHi,1K

−1/2
i , (32)

where gi,1 is the largest singular value of the matrix HiK
−1/2
i ,

and vi,1 is the corresponding dominate right singular vector.
Assume gi0,1 = max

i
gi,1 is the largest beamforming gain

among all effective channel, then the optimal SAR-aware “on-
off” algorithm in the low NSarNR regime has its covariance
matrix expressed as

S = K
−1/2
i0

vi0,1

(
1− σ2

gi0,1

)
vHi0,1K

−1/2
i0

. (33)

The problem is to decide when the transmission should be
“on” when the transmitter only has knowledge of the current
CSI. In this paper, we use dynamic programming (DP) to
optimize the decision on the best “on” time block to transmit
in the low NSarNR regime. As in a typical DP problem, the
payoff functions for each time block are formulated through
backward induction and Bellman’s equation [18]. For the last
coherence block T , it is clear that the device should just
transmit if there is any SAR budget left. Therefore the payoff
function is expressed as

JT (q,H) = s(q,H), (34)

where s(q,H) is the maximum receive signal-to-noise ratio
(SNR), given channel matrix H and constraint values q. In the
low NSarNR regime, the receive SNR is a better performance

metric than the rate, since practical modulation and coding
schemes usually require the receive SNR to be higher than
certain a threshold. If a device has no SAR information, then

s(q,H) =
g1
σ2

min

(
PT,

Q1T

r1,1
, . . . ,

QjT

rj,1

)
, (35)

while if the device has access to the SAR matrices, then

s(q,H) =
g1
σ2
− 1. (36)

For the i-th block, the DP algorithm compares two possible
decisions: transmit now or wait. If the device transmits in
the current time block, the receive SNR is s(q,H). If the
device waits and saves the transmission opportunity for future
time blocks, the expected future payoff is EH{Ji+1(q,H)}.
Obviously, the algorithm should choose the one with highest
payoff, i.e., Bellman’s equation is formulated as

Ji(q,H) = max{s(q,H),EH{Ji+1(q,H)}}. (37)

Note that the payoff function Ji(·) also depends on
{Rj}j=1,2,...,G. We hide the dependence on these variables,
since they are assumed to be constant during all T time blocks.

We first find the DP solution for devices without information
on the SAR matrices. For the last coherence time block T

JT (q,H) = s(q,H)

=
g1
σ2

min

(
PT,

Q1T

r1,1
, . . . ,

QjT

rj,1

)
. (38)

For block t = T − 1, we have

JT−1(q,H)= max {s(q, g1),EH {JT (q,H)}}

= max

{
g1
σ2
Q̃,

EH{g1}
σ2

Q̃

}

=


EH{g1}Q̃

σ2
, g1 ≤ EH{g1}

g1Q̃

σ2
, g1 > EH{g1}.

(39)

where Q̃ = min
(
PT, Q1T

r1,1
, . . . ,

QjT
rj,1

)
. Therefore, at time

block i = T −1, if the current channel matrix has a maximum
singular value g1 larger than the expected largest singular value
for time block T , given as EH{g1} = γT−1, then transmit in
the current time block. Otherwise, the device should wait and
transmit in the T -th time block. The resulting channel gain for
the T − 1-th time block in DP problem is

g̃T−1 =

{
γT−1, g1 ≤ γT−1
g1, g1 > γT−1.

(40)

Let γT = 0, then the payoff function for the i-th block,
i = 1, 2, . . . , T , is

Ji(g,H) =


Q̃γi
σ2

, g1 ≤ γi
Q̃g1
σ2

, g1 > γi

(41)

where the threshold γi = EH{g̃i+1}. Therefore, at the i-th
time block, if the current channel gain g1 is larger than the
threshold γi, then the device should turn on and transmit.
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Otherwise, it should stay silent. The effective channel gain
is

g̃i =

{
γi, g1 ≤ γi
g1, g1 > γi.

(42)

Furthermore, the thresholds can be calculated recursively as

γi =

∫ γi+1

0

γi+1fgmax
(x)dx+

∫ ∞
γi+1

xfgmax
(x)dx

= γi+1Fgmax
(γi+1) +

∫ ∞
γi+1

xfgmax
(x)dx, (43)

where fgmax
(x) denotes the probability density function (PDF)

of the maximum singular value of the channel matrix H,
and Fgmax(x) is the cumulative density function (CDF). If
the entries of H are distributed as i.i.d. zero-mean Gaussian
random variables CN (0, 1), the maximum singular value has
the CDF [28]

Fgmax(g ≤ x) =
CΓM (M)

CΓM (N +M)

xMN

Mn 1

× F1(N,N +M,−xI), (44)

where 1F1 is the hypergeometric function with a matrix input
and CΓm(n) is the complex multivariate Gamma function,
given as

CΓm(n) = πm(m−1)/2
m∏
k=1

Γ(n− k + 1), n > m− 1. (45)

Clearly, the thresholds are in a decreasing order, γ1 ≥ γ2 ≥
. . . ≥ γT−1 ≥ γT = 0.

If the device has access to the SAR matrices, then DP “on-
off” policy works in a very similar way. For the i-th time
block, we have

Ji(q,H)= max {s(q, g1),EH {JT (q,H)}}

= max

{
g1
σ2
− 1,

EH{g1}
σ2

− 1

}

=


EH{g1}Q̃

σ2
, g1 ≤ γi

g1Q̃

σ2
, g1 > γi.

(46)

The device compares the current beamforming gain g1 of
the effective channel HiK

1/2
i with a threshold, and it only

turns on and transmits if the gain is higher than the threshold.
Thresholds are also recursively defined as in (43). However,
unlike the case without SAR information, there is no closed
form expression for the PDF and CDF of the largest singular
values of the effective channel HK1/2. Empirical CDF and
PDF functions can be used to find proper threshold values for
the SAR-aware “on-off” algorithm.

One special case is when there is only one active SAR
constraint for the device. Then the DP algorithm compares
the largest singular value of HR−1/2 to the threshold, and in
(43) the CDF is given by [28]

Fgmax
(g ≤ x) =

CΓM (M)

CΓM (N +M)

xMN

|R−1|n 1

× F1(N,N +M,−xR). (47)

V. SIMULATION RESULTS

In this section, we present Monte-Carlo simulation results
for the proposed user exposure allocation algorithms. We
assume that the device is constrained by a power constraint
and by SAR limitations characterized by the matrices obtained
from [6]

R1 =

[
8 −6j
6j 8

]
, (48)

R2 =

[
3.94 −2.65− 2.53j

−2.65 + 2.53j 4.57

]
, (49)

where both SAR matrices are subject to a single constraint Q.
All simulations use M = 2 transmit antennas, N = 4 receive
antennas, and i.i.d Rayleigh fading channel realizations.

Simulation results show that in most cases, uniform allo-
cation and asymptotic allocation perform almost optimally,
and there is almost no advantage to performing asymptotic
allocation over uniform allocation. In this section, we show-
case two practical settings in which the asymptotic allocation
scheme performs significantly better than the uniform alloca-
tion scheme. In the first scenario, we assume that both the
power constraint P and SAR constraint Q are small. This
case models body-area devices which may have strict limits
on power consumption and tight exposure limits due to their
close proximity to users. In the second scenario, we assume
the SAR constraint Q is small and the noise variance is large,
which models devices in noisy environments with relatively
small SAR thresholds. The final simulations demonstrate the
effectiveness of the DP allocation method.
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Fig. 2: Average rate comparison with T = 15 and P = 0.05 W. The
SAR-aware allocation methods (uniform and asymptotic) have substantial
performance improvement over the power back-off approach.

In Fig. 2, we demonstrate that the SAR information sub-
stantially helps in the exposure allocation decision, improving
the average rate over 15 coherence time blocks. The power
constraint and noise variance are fixed at P = 0.05 W and
σ2 = 1, respectively. Both uniform and asymptotic exposure
allocation perform close to optimal performance and greatly
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Fig. 3: Average rate CDF with T = 15, P = 0.05 W and Q = −4 dB. The
asymptotic algorithm has higher 50-percentile rate and lower 10-percentile
rate compared to the uniform allocation.

outperform the allocation algorithm without knowledge of the
SAR matrices. For large values of Q, the average rate of all
methods reaches a ceiling since the power constraint becomes
the only active constraint. The asymptotic allocation achieves
better performance than the uniform allocation due to the
relatively small SAR and power budgets.

In Fig. 3, we plot the rate CDF with the SAR constraint
Q = −4 dB, and power constraint P = 0.05 W over 15 time
blocks. The asymptotic algorithm has a higher 95-percentile
and 50-percentile rate than the uniform allocation, but it also
exhibits a slightly lower 10-percentile rate. Therefore, in most
cases, the asymptotic SAR allocation outperforms the uniform
SAR allocation method.
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Fig. 4: Average rate comparison with T = 15, P = 0.2 W and Q = −4 dB.
In the low SNR regime, the asymptotic allocation algorithm has close
performance compared to the optimal solution.

In Fig. 4, the average rate of the proposed methods in the
low SNR regime is plotted. It is common for a single SAR
constraint to dominate system performance, so from here on
we assume that the device has a single SAR limitation, which
is characterized by R1. The power and SAR constraints are
fixed at P = 0.2 W and Q = −4 dB, respectively. As
above, the proposed SAR-aware methods show higher average
rates than the back-off approach, with substantial gains as the
transmit SNR increases. The asymptotic algorithm performs
close to the optimal allocation.
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Fig. 5: Average rate CDF with T = 15, P = 0.2 W and Q = −4 dB.
The asymptotic algorithm has significantly higher 50-percentile rate and
95-percentile rate compared to uniform allocation.
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Fig. 6: Average rate CDF with T = 15, P = 0.2 W and Q = −4 dB.
The asymptotic algorithm performs better than the uniform allocation in the
50-percentile and 95-percentile.

In Fig. 5, we present the rate CDF with SNR = −30 dB,
SAR constraint Q = −4 dB, and power constraint P = 0.2 W
over 15 time blocks. The asymptotic allocation approach per-
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forms worse than uniform allocation up to the 20-percentile,
but also has a significantly higher 95-percentile and 50-
percentile rate. In Fig. 6, we present the rate CDF with
SNR = −16 dB and the same SAR and power constraints
as in Fig. 5. Similarly to Fig. 3, the asymptotic algorithm
outperforms uniform allocation in the 95-percentile and 50-
percentile. These results demonstrate that while the advantage
of the asymptotic allocation scheme is more pronounced at
extremely low SNR, fewer users will reap the full benefits
of asymptotic allocation in this regime compared to the
moderately low SNR regime.

For the following two simulations, we assume that the
device is limited by a single SAR constraint and has no power
limitation since the SAR constraint governs performance in
the low SAR constraint regime. In Fig. 7, we demonstrate the
performance of the DP allocation method with and without
access to the SAR matrices. We assume the random selection
algorithm arbitrarily selects one out of 5 time blocks to
transmit. The DP algorithm provides around 0.8dB gain over
random selection in terms of receive SNR. The receive SNR
of SAR-aware method is almost 7 times higher than the SNR
without SAR knowledge. In Fig. 8, the receive SNR CDF
with Q = −10 dB is presented. The DP algorithm has 0.8 dB
higher in 50-percentile SNR than the random selection. The
benefits of applying a SAR-aware solution are clear.
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Fig. 7: Receive SNR comparison with Q = 0.1 W/kg. The DP algorithm gives
0.8 dB gain over random selection with and without the SAR matrices. The
SAR-aware method has 7 dB improvement over algorithms without access to
the SAR matrices.

We end this section with a brief comparison of the proposed
SAR allocation alogorithms with other SAR-aware transmis-
sion approaches in the literature, as seen in Table I. Note
that the SAR-aware precoding technique proposed in [6] is
identical to the proposed uniform allocation method when
T = 1. Power back-off approaches provide the worst rate
performance but are the simplest solutions for complying
with SAR regulations. The SAR code in [4], [5] achieves
good performance but is restricted to the case with a single
SAR constraint and two transmit antennas. The precoding
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Fig. 8: Receive SNR CDF with T = 5 and Q = 0.1 W/kg. The 50-percentile
rate of DP algorithm has 0.8 dB higher than the random selection.

method in [13] extends the results of [6] to the multi-user
MIMO (MU-MIMO) case when the transmitters only have
statistical CSI. The distinctive feature of this work is that
we address communication over multiple time blocks. As
shown in the simulations in this section, the proposed SAR
allocation methods can exploit the channel diversity over time
to adaptively adjust SAR levels during each time block and
achieve higher rates than power back-off approaches.

VI. CONCLUSION

In this paper, we investigated user exposure allocation algo-
rithms over coherent time blocks. The optimal user exposure
allocation method with perfect CSI is a modified waterfilling
result. We showed that the uniform SAR allocation over
time has performance close to the optimal solution in the
medium-to-high NSarNR range, and we proposed an asymp-
totic method to reduce the complexity for temporal allocation.
In the low NSarNR range, the receive SNR matters more
than rate. We developed an “on-off” method using dynamic
programming. In all cases, our simulation results demonstrated
that joint SAR-aware optimization has substantial performance
improvement over conventional multi-antenna transmission
without SAR knowledge.

APPENDIX

Proof of B(q)’s concavity: First, the rate-function
log
∣∣I + 1

σ2 HSHH
∣∣ is a concave function of the transmit co-

variance matrix S. Second, the maximum of the rate-function
over the constraints, given as

r(q,H) = max
S�0,

tr(RjS)≤Qj ,∀j

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣ , (50)

is also a concave function of the collection constraint values
q = [PT,Q1T, . . . , QGT ]. This can be easily shown using
the definition of concave function.
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TABLE I: Comparison of SAR-Aware Transmission Schemes

Method Complexity Achievable Rate SAR Diversity Use Case
Worst case back-off [3] very low low none no SAR knowledge
Adaptive back-off [3] low fair spatial low complexity

SAR Code [4], [5] medium medium spatial MIMO, M = 2, G = 1
SAR-Aware Precoding [13] medium high spatial MU-MIMO, statistical CSI

Proposed Uniform Allocation medium medium spatial MIMO, T ≥ 1 blocks
Proposed Asymptotic Allocation medium medium spatial and temporal MIMO, T > 1 blocks

For any two sets of constraints q1 and q2, we assume S1 is
the maximizer of the rate-function constrained by q1 and S2

is the maximizer constrained by q2, then for any 0 ≤ γ ≤ 1,
we denote Sγ as the rate maximizer constrained by limitation
set qγ = γq1 + (1 − γ)q2. Note that γS1 + (1 − γ)S2 is a
feasible solution under the constraint set qγ .

Then,

γr(q1,H) + (1− γ)r(q2,H)

= γ log

∣∣∣∣I +
1

σ2
HS1H

H

∣∣∣∣+ (1− γ) log

∣∣∣∣I +
1

σ2
HS2H

H

∣∣∣∣
≤ log

∣∣∣∣I +
1

σ2
H(γS1 + (1− γ)S2)HH

∣∣∣∣
≤ log

∣∣∣∣I +
1

σ2
HSγH

H

∣∣∣∣
= r(γq1 + (1− γ)q2,H). (51)

Finally, B(q) is an expectation of r(q,H) over the channel
H, and it is also a concave function:

B(q) = EH {r(q,H)}

= EH

 max
S�0

tr(RjS)≤Qj ∀j

log

∣∣∣∣I +
1

σ2
HSHH

∣∣∣∣
 . (52)

Therefore , B(q) is a concave function over the constraints q.
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