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Abstract 
Comparative hydrology has been hampered by limited availability of geographically extensive, 
intercompatible monitoring data on comprehensive water balance stores and fluxes. These 
limitations have, for example, restricted comprehensive assessment of multiple dimensions of 
wetting and drying related to climate change and hampered understanding of why widespread 
changes in precipitation extremes are uncorrelated with changes in streamflow extremes. Here 
we address this knowledge gap and underlying data gap by developing a new data synthesis 
product and using that product to detect trends in the frequencies and magnitudes of a 
comprehensive set of hydroclimatic and hydrologic extremes. CHOSEN (Comprehensive 
Hydrologic Observatory Sensor Network) is a database of streamflow, soil moisture, and other 
hydroclimatic and hydrologic variables from 30 study areas across the United States. An 
accompanying data pipeline provides a reproducible, semi-automated approach for assimilating 
data from multiple sources, performing quality assurance and control, gap-filling, and writing to 
a standard format. Based on the analysis of extreme events in the CHOSEN dataset, we detected 
hotspots, characterized by unusually large proportions of monitored variables exhibiting trends, 
in the Pacific Northwest, New England, Florida, and Alaska. Extreme streamflow wetting and 
drying trends exhibited regional coherence. Drying trends in the Pacific Northwest and Southeast 
were often associated with trends in soil moisture and precipitation (Pacific Northwest) and 
evapotranspiration-related variables (Southeast). In contrast, wetting trends in the upper Midwest 
and the Rocky Mountains showed few univariate associations with other hydroclimatic extremes, 
but their latitudes and elevations suggested the importance of changing snowmelt characteristics. 
On the whole, observed trends are incompatible with a “drying-in-dry, wetting-in-wet” paradigm 
for climate-induced hydrologic changes over land. Our analysis underscores the need for more 
extensive, longer-term observational data for soil moisture, snow, and evapotranspiration.  
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1. Introduction 
Climatic and hydrologic extremes pose severe risks to human society and infrastructures and 
trigger irreversible transitions in ecosystems (AghaKouchak et al., 2020; Ainsworth et al., 2020; 
Hughes et al., 2019; McClymont et al., 2020). The magnitude and frequency of these extremes 
are increasing as a result of climate change (e.g., Ahn & Palmer, 2016; Pagán et al., 2016; Swain 
et al., 2018; Wentz et al., 2007), which results from basic physical principles. In accordance with 
Clausius-Clapeyron scaling, warmer air holds more moisture, which is associated with projected 
increases in rainfall intensity (Sillmann et al., 2013), the intensity and frequency of tropical 
cyclones (Marsooli et al., 2019), and the amount of water conveyed in atmospheric rivers (Gao et 
al., 2015; Payne et al., 2020). Warmer temperatures also increase potential evapotranspiration 
and are linked to increasing drought severity (Cook et al., 2015; Diffenbaugh et al., 2015). The 
balance between processes that promote catchment drying (e.g., enhanced evapotranspiration) 
and those that promote wetting (e.g., increased precipitation extremes) varies among catchments. 
Therefore, it can be difficult to generalize outcomes of increasing precipitation and temperature 
extremes for hydrological processes.  
 
The difficulty in predicting how increased climatic extremes will impact hydrologic extremes is 
particularly apparent in the discrepancy between the projected and observed association between 
precipitation and discharge extremes. While climate models predict a strong correlation between 
extreme precipitation and extreme flood magnitude (e.g., Pall et al., 2011), observations show 
low correlation spatially and temporally (e.g., Archfield et al., 2016; Berghuijs et al., 2016; 
Blöschl et al., 2017; Do et al., 2020), except for rare floods with recurrence intervals longer than 
10 years (Wasko & Nathan, 2019). Specifically, flood trends are not changing in accordance 
with climate model predictions (Sharma et al., 2018). The need to understand the link between 
changing precipitation and changing flooding has been argued to be one of the grand challenges 
in hydrology (Sharma et al., 2018).  
 
Measurements of soil moisture and other variables indicative of water balance stores and fluxes 
may provide clues critical to reconciling Sharma et al. 's (2018) grand challenge, and, more 
broadly, understanding how shifting climate translates into a range of hydrological outcomes. 
Results of modeling and observational studies that derive (Berghuijs et al., 2016; Byun et al., 
2019; Heidari et al., 2020; Ivancic & Shaw, 2015) or account for measured soil moisture (Wasko 
& Nathan, 2019) or changes in subsurface storage (Slater & Villarini, 2016) suggest that changes 
in hydrologic extremes are attributable to simultaneous shifts in several hydrologic variables, 
with soil moisture or subsurface storage of critical importance. One gap in these analyses is that, 
with the exception of Wasko and Nathan’s (2019) study of Australian catchments, they rely on 
simple models or proxies for soil moisture rather than actual measurements. Meanwhile, the role 
of soil moisture, snow storage, and actual evapotranspiration in governing low-flow extremes 
remains underexplored. Exploration of causes of hydrologic extremes requires hydrologic 
databases that synthesize variables beyond the precipitation, temperature, and streamflow 
measurements that are more typically available. 
 
Long-term observational records play an important role in understanding and projecting the 
impact of climate change on hydrological systems. They provide important ground truth for 
hydroclimatic models, highlighting uncertainties in their representation of certain processes (e.g., 
rainfall-runoff processes). Trends detected in the observational record are also commonly 



reliable indicators of future hydroclimatic change (Batibeniz et al., 2020). Despite their potential 
importance, long-term and spatially extensive databases that contain a range of hydrologic 
variables relevant to water-balance partitioning (e.g., soil moisture, snow data, vapor pressure 
deficit) are virtually nonexistent. One reason for limited spatial coverage is that extensive 
measurements of soil moisture and snow-water content are impractical to measure with gauging 
stations and uncertain when inferred from current remote sensing techniques, with estimates 
characterized by limited volumetric representativeness and high uncertainty (Ford & Quiring, 
2019). Further, hydrologically comprehensive datasets are available at only a limited, albeit 
growing, number of catchments, often referred to as hydrologic observatories. Synthesis across 
these observatories has been hindered by a lack of standardization in variable naming 
conventions, file formats, time steps, metadata, and data processing procedures, which in turn 
has slowed the development of the subfield of comparative hydrology (Gupta et al., 2014). 
 
Here we respond to the dearth of long-term, regionally extensive, hydrologically comprehensive 
databases by presenting CHOSEN (DOI: 10.5281/zenodo.4060384), the Comprehensive 
Hydrologic Observatory SEnsor Network database, a compilation of publicly available 
hydrometeorological and hydrological measurements from 30 LTER (Long-Term Ecological 
Research observatories; Servilla & Brunt, 2011), CZO (Critical Zone Observatories; Zaslavsky 
et al., 2011), and university field stations in the United State (Kakalia et al., 2021; McNamara, 
2017; R. S. Petersky & Harpold, 2018). We developed CHOSEN using a novel operational 
pipeline that overcomes the challenges associated with a lack of standardization across 
observatories. The data pipeline ensures accessibility and reproducibility of the data cleaning 
procedures including quality control, gap-filling, and file formatting, thereby facilitating the 
expansion of CHOSEN to additional times and catchments. An open-source Jupyter Notebook 
tutorial with a user interface facilitates the modification of this pipeline to suit the needs of other 
investigators. Reproducible data analysis pipelines such as this one are an essential part of a 
modern practice of environmental science that requires rapid data assimilation capabilities to 
enable rapid response (Fer et al., 2021). 
 
Although CHOSEN was developed to facilitate a range of comparative hydrology studies, we 
demonstrate another application here in evaluating associations between observed trends in 
streamflow extremes (both wet and dry) and a wide range of climatic and other hydrologic 
extremes from a water-balance perspective. Given the limited number of hydrologic 
observatories and the well-known difficulty in performing attribution analysis on trends in the 
observational record (Sillmann et al., 2013), this phenomenological analysis represents early 
progress toward resolving the challenge of understanding the relationship between hydrological 
and climatic extremes. The primary contributions of this work are to establish a baseline trend 
assessment for extreme values (high and low, for both magnitude and frequency of the extreme 
events) and to provide ground-truthing for extreme event detection and attribution analyses that 
rely on modeled/derived water-balance quantities.  
 
We use CHOSEN to ground-truth four main predictions. First, both low extremes and high 
extremes in discharge and associated hydroclimatic variables are increasing in magnitude and 
frequency over a broad spectrum of study areas, with significant trends in frequency more 
common than trends in magnitude, as has been observed in streamflow records (e.g., Archfield et 
al., 2016; Hirsch & Archfield, 2015; Mallakpour & Villarini, 2015).  

https://gitlab.com/esdl/chosen
https://zenodo.org/record/4060384#.YQZM8JNKhpI
https://zenodo.org/record/4060384#.YQZM8JNKhpI
https://gitlab.com/esdl/chosen/-/tree/master/PipelineTutorial


 
Second, with respect to “hotspots” of hydrologic and hydroclimatic extremes, we expect that 
northern latitudes and high-elevation study areas will exhibit the largest proportion of monitored 
variables with trends in magnitude, given the expectation that climatic forcing at these locations 
will exceed the envelope of historical variability earlier (Batibeniz et al., 2020). Extreme event 
frequency trends will reflect climate model projections and previously reported hydrologic 
observations, with many significant trends concentrated within the eastern, southern, and upper-
Midwest portions of the US (Archfield et al., 2016; Batibeniz et al., 2020; Mallakpour & 
Villarini, 2015). Because climate change forcing may alter water-balance partitioning in 
competing directions (e.g., enhancing rainfall while also enhancing evapotranspiration), regional 
hotspots for trends in discharge extremes will not necessarily coincide with regional hotspots for 
trends in other hydroclimatic extremes.  
 
Third, trends toward wetter conditions will predominantly occur in humid locations, whereas 
trends toward drier conditions will predominantly occur in more arid locations. This prediction 
originates from the “drier-in-dry, wetter-in-wet” (DIDWIW) hypothesis from climate models 
(Feng & Zhang, 2015), which replaces the wet-gets-wetter, dry-gets-drier paradigm (Held & 
Soden, 2006; Knutson & Manabe, 1995; Wentz et al., 2007) commonly applied to oceans but 
now thought inapplicable to the terrestrial setting (Byrne & O’Gorman, 2015; Hu et al., 2018).  
 
Fourth, based on findings that discharge extremes result from interactive processes (Byun et al., 
2019), changes in the magnitude and frequency of discharge extremes will be associated with 
changes in the magnitude and frequency of extremes in other hydroclimatic variables in a 
regionally coherent manner that reflects their contribution to water-balance processes (Table 1). 
Given that climate-induced changes in water balance stores and fluxes may have opposing 
effects, associations among trends that accord with the signs in Table 1 will be indicative of 
dominant water-balance processes triggering changes in discharge extremes. We expect that 
extremes in antecedent moisture, as represented through soil moisture or snow variables, will 
exhibit associations with both high and low discharge extremes at many study areas.  
 
Table 1. Hypothesized sign* of correlation between trends in extreme discharge frequency and 
magnitude and trends in extremes of associated hydroclimatic variables, based on analysis of 
seasonal anomalies. 

2. Data pipeline 
The data synthesis followed the workflow (Figure 1) of data cleaning (downloading, quality 
control, data aggregation, naming standardization), gap-filling (section 2.2), and compilation 
(section 2.3). We implemented this workflow by using a set of Jupyter Notebooks as a pipeline 
on data from each study area (e.g., Harris et al., 2020). To make the pipeline reproducible, we 
provided an interactive Jupyter Notebook as a tutorial for data gap-filling which allows users to 
interactively tune parameters in the gap-filling functions and graphically view the result. The 
data products and Jupyter Notebooks are available on the Zenodo (DOI: 
10.5281/zenodo.4060384) and GitLab platforms. 

https://zenodo.org/record/4060384#.YVPvPdNKhhF
https://gitlab.com/esdl/chosen/-/tree/master


2.1 Data cleaning 
First, any available time series of streamflow, precipitation, air temperature, solar radiation, 
relative humidity, wind direction, wind speed, SWE, snow depth, vapor pressure, soil moisture, 
soil temperature, and water isotopes were downloaded for each study area. Subsequent quality 
control consisted of exclusion of erroneous values (i.e., unrealistic values such as negative 
precipitation or relative humidity greater than 100%, obvious typos or errors due to equipment 
malfunction), and cross-checking with pre-flagged entries in the downloaded product. Next, we 
aggregated time series data to daily time steps if the original time series were on a sub-daily 
scale: cumulative variables were summed for the day, and rate variables were averaged for the 
day. Finally, variable names were standardized using the format suggested by Addor et al. (2020) 
for large sample hydrology datasets.  

2.2 Gap-filling methods 
Gaps in the cleaned and aggregated daily data (excluding isotope data) were filled using one of 
three techniques, depending on the length of the gap and availability of complementary data. We 
applied the three techniques sequentially, meaning gaps not filled by the first technique would 
undergo the second method, etc (Figure 1). First, for gaps of less than seven days, linear 
interpolation was applied. Though using linear interpolation may be improper for variables like 
precipitation, we made this operational decision for reasons of internal consistency, noting that 
our data processing pipeline gives researchers the necessary information to implement alternative 
processing conventions. 
 
To fill gaps longer than seven days, we applied spatial regression for study areas that have 
multiple adjacent stations, and then applied temporal regressions for study areas that have long 
records (Pappas et al., 2014). To implement spatial regression, we first evaluated the correlation 
coefficients between the station with missing values and all the other stations in the same study 
area. We then used the data from the station with the highest correlation coefficient to estimate 
the linear regression parameters. If the highest correlation coefficient was less than 0.7, or if no 
data were available from other stations contemporarily, the missing values were reconstructed by 
the climate catalog technique. In the climate catalog (i.e., temporal regression) method, we filled 
gaps using data from the most highly correlated year at the same site, selected from among years 
with at least 9 months of data and a correlation coefficient greater than 0.7 to the missing-data 
year. Gaussian random noise was added to the resulting regression-based estimate, scaled by the 
standard deviation of the record of each date in the gap across all years, in order to maintain the 
variation statistics of the original time series. However, this technique may not be useful for 
reconstructing non-random variations in time series that are large-scale (i.e. wet and dry years) or 
small-scale (i.e. before and after a storm). 
 
To assure the quality of the gap-filled data, we deleted any values that exceeded the maximum or 
fell below the minimum of the original time series. Finally, flags were generated to differentiate 
between raw, missing, and filled data, indicating the technique used to create each reconstructed 
data point. 
 



Figure 1 Data pipeline and visualizations of cleaning methods: a) interpolation, b) spatial 
regression and c) climate catalog (i.e., temporal regression). 

2.3 NetCDF data product 
We stored and published the processed data in NetCDF (Network Common Data Form) format. 
NetCDF data have hierarchical structures and are self-explanatory, which means the descriptions 
of the attributes of the data tables are accessible from the file by different programming 
interfaces, for example, C++, Java, Python, and MATLAB. NetCDF is emerging as the data 
standard for large-sample hydrology, as well as for other large-sample products across the 
geosciences, particularly climate science and remote sensing (Liu et al., 2016; Signell et al., 
2008). The NetCDF library is designed to read and write multi-dimensional scientific data in a 
well-structured manner. The library enables writing data in several coordinate dimensions, 
accommodating multiple measurement stations.  
  
We stored the data and metadata from each study area in one NetCDF file. In the NetCDF files, 
the hydrometeorological variable data and associated data flags are two-dimensional arrays (i.e., 
by time and location). There is a timestamp variable for conveniently checking the first starting 
date and last ending date for data in this study area. The grid variable contains information about 
monitoring stations, providing the names, latitudes, and longitudes and elevations if available. 

3. Dataset description 
We synthesized data from 30 intensively monitored study areas across the United States (Figure 
2). Sixteen of the 30 study areas are from the LTER network (Servilla & Brunt, 2011), 11 from 
the CZO network (Zaslavsky et al., 2011), and the remaining three are East River, Dry Creek, 
and Sagehen Creek (Kakalia et al., 2021; McNamara, 2017; Petersky & Harpold, 2018). Table 
S1 includes additional information about the study areas in the CHOSEN dataset such as data 
source links, geographical information, and climate conditions. 
 
Figure 2 Geographical distribution of the study areas. “CZO” represents Critical Zone 
Observatories; “LTER” represents Long-term Ecological Research Stations; “Other” represents 
observatories managed by other entities. 

 
The availability of different variables in CHOSEN varies by site. The H.J. Andrews and Bonanza 
LTER datasets contain all 13 variables, with most other datasets having around 10 variables. 
Discharge record lengths range from three years at Calhoun to 78 years at the San Diego River 
(California Current Ecosystem LTER), with a median of 19 years.  

 
Figure 3 The span of time series availability and duration across study areas 
  
Discharge and precipitation time series are available in all CHOSEN study areas, and seven 
catchments have soil moisture and snow measurements with records exceeding five years. 
Although publicly available water isotope data are limited, we identified six study areas with 
water isotope time series longer than one year (Figure 4). The measured isotopes include 18O and 



deuterium in streamflow, precipitation, and snowpack. Note that, unlike other variables, the 
resolution of isotope data is sparse, usually weekly or biweekly. 
 
Figure 4 Distributions of record spans for a selection of variables in CHOSEN 

4. Extreme events analysis with CHOSEN data 

4.1 Methods 
Extreme events are occurrences above or below certain thresholds of exceedance over a period of 
time. In this paper, we evaluated extreme events based on seasonal anomalies, in which we first 
removed the seasonality calculated by a moving average of 30 days (Figure S1). Then we picked 
out local minima/maxima in the time series as independent events and identified the high or low 
extremes as the independent events above the value at the percentile ranking of 95% or below the 
value at the percentile ranking of 5%. We studied the extreme events of each hydro-
meteorological variable with a record longer than 10 years for each study area in CHOSEN, with 
the exception of water isotopes. If the study area had multiple measurement records for a single 
variable, we chose the longest. 
 
We used the Mann-Kendall trend test (M-K test) to identify the significance (with a p-value less 
than 0.05) and sign (increasing or decreasing) of monotonic trends in extreme event magnitudes 
and frequencies over time (Kendall, 1975; Mann, 1945). For convenience, we refer to significant 
test results as trends, though we recognize that the M-K test is specific only to the monotonicity, 
rather than to the magnitude of the trend. The M-K tests were performed on two kinds of 
statistics: annual counts and the annual median of the extreme event magnitudes, to detect trends 
in frequency and magnitude, respectively. The analyses were conducted for both high and low 
extremes and implemented using the python package scikit-learn (Pedregosa et al., 2021). It is 
worth noting that autocorrelated time series remain a challenge in the M-K test. Autocorrelated 
time series may artificially inflate test statistics, resulting in false positives in the trend detection 
(Storch & Navarra, 1999; Yue et al., 2002). Our usage of the annual interval for the statistics 
decreases the likelihood of within-water-year autocorrelation that would arise from using shorter 
intervals. 
 
Following the M-K trend analyses, the percentage of extreme-value time series available at each 
study area (for all variables, excluding isotopes, with record length longer than 10 years) with 
significant trends was computed as a first step in identifying locations that are “hotspots” for 
change across multiple hydrologic and hydroclimatic variables. For example, this value would be 
25% for a study area with sufficient precipitation and discharge record lengths that exhibited a 
trend only in high-flow extremes (because one of the four possible extremes -- high flow, low 
flow, high precipitation, and low precipitation -- exhibited a trend). Hotspots were operationally 
defined as study areas that exhibited trends in over two-thirds (66.67%) of the available extreme-
value time series. 
 
Next, based on significant trends in the magnitude and frequency of extreme discharge, study 
areas were classified as “wetting” or “drying” with respect to discharge. Specifically, increases 



in the magnitude of extreme high or low-discharge, decreases in the frequency of extreme low-
discharge, and increases in the frequency of extreme high-discharge were all classified as 
“wetting” trends, and vice-versa. We caution readers that these labels are not intended to apply to 
total water availability within the study area and that they are not necessarily representative of 
water availability outside of extreme flow events.  
 
Last, we evaluated whether wetting or drying trends with respect to discharge were associated 
with trends indicative of wetting or drying in other water-balance stores and fluxes in a manner 
consistent with a simple water-balance explanation (i.e., Table 1). Namely, we evaluated 
correlations between significant trends in extreme discharge and significant trends in other 
monitored hydroclimatic variables. A positive correlation means that both variables trended in 
the same direction; a negative correlation means they trended in opposite directions. We 
compared these correlations with our predictions in Table 1 and counted how many correlations 
matched the predictions. Meanwhile, we identified counterfactuals to the predictions. Here, a 
counterfactual is an observed trend in the extremes of an associated hydroclimatic variable that 
has a sign opposite that predicted in Table 1 and, for sites where a trend in high or low-discharge 
extremes was also detected, is likewise inconsistent with the high or low-flow predictions. This 
complex definition accounts for the fact that trends in extremes contain no information about 
within-year timing, and that high-discharge and low-discharge extremes may be sensitive to 
different hydroclimatic extremes that occur at different times of the year. For example, 
increasing frequency of low-SWE events associated with an increasing frequency of high-
discharge events is a counterfactual if there is no significant trend in low-discharge. However, it 
is not a counterfactual if that same catchment also shows an increasing frequency of low-
discharge events; indeed, low flows may be most sensitive to wintertime delivery of snow, 
whereas high-flow events may be most sensitive to warm-season rainfall. 

4.2 Results  
Among 26 study areas with records longer than 10 years, trends in the magnitude and frequency 
of extreme hydro-climatological and hydrological events were common. All variables in 
CHOSEN exhibited significant trends in magnitude and in frequency for at least one study area. 
These trends were distributed among 23 unique sites, with 22 sites exhibiting trends in frequency 
and 22 sites exhibiting trends in magnitude (Figure 5). On the whole, 81 trends in frequency and 
101 trends in magnitude were observed. 
 
Observed trends were indicative of changes to the full suite of water-balance stores and fluxes 
considered (evapotranspiration, snow storage, soil moisture storage, precipitation, discharge), 
with “hotspots” of change (defined here as areas with significant trends in over two-thirds of the 
observed variables) in the southeast (Florida Coastal Everglades), northeast (Hubbard Brook), 
Pacific Northwest (H.J. Andrews), and Alaska (Bonanza; Figure 5). These hotspots were 
geographically consistent across magnitude and frequency trends, except for Bonanza, which fell 
just short of the hotspot threshold for magnitude.  
 
Within sites, trends in frequency and magnitude of extremes generally provided similar 
information about changes in water balance processes (i.e., Figure 5A compared to Figure 5B). 
Across sites, trends indicating changes in evapotranspiration were most common (19 study 



areas), followed by changes in precipitation (15 study areas), discharge (11 study areas), snow 
storage (two study areas), and soil moisture storage (two study areas). Most trends commonly 
associated with controls on evapotranspiration suggested increases, though at many sites, 
increasing high-relative-humidity events that accompanied increasing high-temperature events 
(Figure S2a) exerted competing influences. Trends indicative of changes in extreme runoff, snow 
storage, and soil moisture storage showed more geographic and temporal heterogeneity (e.g., 
increases in “high” extremes coupled with decreases in “low” extremes) in the direction of the 
change compared with trends related to the evapotranspiration. We have repeated this 
experiment excluding the climate-catalog data and found consistent results (Figure S2b). 

 
Figure 5 Distribution of significant magnitude (A) and frequency (B) trends among study sites 
and related hydrological stores and fluxes. The size of the bubbles indicates the percentage of the 
extreme-value time series available at a study area (for variables, excluding isotopes, with record 
lengths longer than 10 years) that exhibit significant trends in frequency or magnitude. Variables 
were classified as relevant to evapotranspiration (soil and air temperature, relative humidity, 
solar radiation), snow (SWE, snow depth), soil moisture, precipitation, or discharge, and those 
stores and fluxes exhibiting significant trends are indicated by color; note that size of the colored 
regions within each bubble has no relation to the proportion of trends relevant to that process. 
Arrows denote whether the trends suggest an increase or decrease in the time-averaged behavior 
of the associated store or flux (e.g., more frequent low-precipitation extremes would suggest a 
decrease in precipitation and be denoted with a down arrow in B). When multiple variables 
associated with the store or flux (e.g., temperature and relative humidity for evapotranspiration) 
or trends in high and low extremes for the same variable suggest opposing behavior (e.g., 
increasing low-precipitation and high-precipitation extremes), both arrows are depicted, though a 
larger arrow indicates the direction implied by a majority of trends.  
 
Similar to the whole suite of variables (Figure 5), extreme discharge exhibited more trends in 
magnitude (17) than frequency (14), though more study areas (10) exhibited trends in frequency 
than in magnitude (nine; Figure S2a). Study areas often exhibited significant trends in both low 
and high discharge events that indicated either consistent wetting or drying (e.g., increasing 
magnitude of both low- and high-discharge events, or increasing frequency of high-discharge 
events coupled with decreasing frequency of low-discharge events), with the exception of 
Hubbard Brook, which exhibited increasing frequency of both high- and low-discharge extremes. 
Similarly, for study areas showing trends in both frequency and magnitude, the trends pointed 
consistently toward wetting or drying (Figure 6). Namely, study areas that had trends toward 
drier conditions with respect to discharge were clustered in the Southeast (Georgia and Florida) 
and Northwest (Oregon, Idaho, and central California). Meanwhile, study areas that exhibited 
trends toward wetter or predominantly wetter conditions in terms of discharge were located in 
the high-elevation West (Colorado, New Mexico), coastal Southwest (southern California), 
upper Midwest (Michigan), and Northeast (New Hampshire). With respect to the drying 
observed in the southeast and wetting observed in the montane west, this geographic pattern 
diverged from the DIDWIW prediction. 
 
Figure 6 Trends in low-flow (A) and high-flow (B) extremes and associated trends in 
hydroclimatic stores and fluxes consistent with water-balance explanations of how those stores 
and fluxes impact streamflow (Table 1). Shades of blue suggest wetting trends (with respect to 



the particular discharge extreme plotted, based on trends in frequency and/or magnitude), while 
shades of red suggest drying trends. Purple represents a combination of a wetting trend (i.e., 
increased low-flow magnitude) and drying trend (i.e., increased low-flow frequency). Colored 
outlines show one or more associated significant trends in other hydroclimatic extremes that are 
consistent with a simple water-balance explanation (i.e., Table 1). Circles without outlines imply 
that the study area has no univariate associations between extreme discharge and other 
hydroclimatic extremes consistent with a simple water-balance explanation.  
 
Five out of nine study areas exhibiting significant trends in low-flow events and three of the 10 
study areas exhibiting trends in high-flow events showed associated trends in other hydroclimatic 
variables consistent with the predictions in Table 1. In the Southeast, drying trends in discharge 
extremes were associated with trends indicative of increased evapotranspiration, while the drying 
trends in discharge extremes observed in the northwest had more diverse associations: decreased 
precipitation, decreased soil moisture, and increased evapotranspiration (Figure 6; Tables 2 and 
3). In the northeast, more frequent low-discharge extremes were associated with trends indicative 
of increased evapotranspiration and more frequent low-precipitation extremes. Meanwhile, 
wetter discharge extremes had almost no associations with trends in hydroclimatic variables, 
with the exception of Hubbard Brook, where wetter high-flow extremes were associated with 
more frequent and higher-magnitude precipitation extremes.  
 
Overall, observed associations between discharge extremes and extremes in other hydroclimatic 
variables partially upheld our fourth prediction. Specifically, in many locations, trending 
extremes in discharge could be associated with trending extremes in one or more water balance 
processes. As expected, interactions among these processes were complex and often 
confounding; study areas with associations consistent with changing hydroclimatic inputs also 
commonly exhibited counterfactuals (Tables 2 and 3). Just two study areas exhibited associations 
that were only counterfactual to the water-balance expectations; both California Current 
Ecosystem and Jemez exhibited wetter low- and high-flow extremes based on trends in discharge 
frequency and magnitude (Figure 6), despite trends indicative of higher evapotranspiration. The 
remainder of the study areas with significant trends in discharge extremes exhibited no other 
trends in hydroclimatic variables. In contrast to our third prediction, widespread associations 
between variables indicative of antecedent moisture (i.e., soil moisture, snow depth, SWE) and 
discharge extremes were not observed. Only at H.J. Andrews was an association between soil 
moisture and discharge extremes observed. 
 
Table 2. Hypothesis testing of correlation between trends in extreme discharge frequency and 
trends in the frequency of extremes of associated hydroclimatic variables. Only study areas with 
significant trends in discharge are included. Counterfactuals are compiled across the low-flow 
and high-flow analyses and represent correlations between significant trends in discharge and 
significant trends in other monitored variables that have signs opposite those depicted in Table 1. 
 
Table 3. Hypothesis testing of correlation between trends in extreme discharge magnitude and 
trends in the magnitude of extremes of associated hydroclimatic variables. Only study areas with 
significant trends in discharge are included. Counterfactuals are compiled across the low-flow 
and high-flow analyses and represent correlations between significant trends in discharge and 
significant trends in other monitored variables that have signs opposite those depicted in Table 1. 
 



4.3 Discussion 
CHOSEN contains an uncommon breadth of variables that allows for analysis of trends in 
multiple extremes, which is typically beyond the scope of observational extreme events studies. 
One advantage of analyzing multiple types of extremes simultaneously is the potential to 
evaluate multiple types of wetting or drying processes that affect different hydrological stores 
and fluxes. Such an analysis addresses the critique that the pronouncement of “wetting” or 
“drying” based on trends in a single variable (e.g., discharge, soil moisture, evapotranspiration 
flux) may be misleading (Roth et al., 2021). Indeed, our overall portrait of trends in hydrologic 
and hydroclimatic extremes (Figure 5) confirms that processes typically assigned the label 
“drying” or “wetting” may coexist within single locations (e.g., co-occurrences of “up” arrows 
for precipitation and “down” arrows for discharge or soil moisture). Further, with respect to 
single variables within single locations, trends in extremes often indicated both “wetting” and 
“drying” by exhibiting an increase in the magnitude of high extremes coupled to a decrease in 
the magnitude of low extremes. With respect to discharge, however, trends in low and high 
extremes tended to point toward consistent wetting or drying within individual study areas (i.e., 
Figure 6A compared to 6B), evidencing a shift in the whole distribution of streamflow, as has 
also been overwhelmingly observed at the global scale (Gudmundsson et al., 2019). 
 
Though most observational studies have been limited to one type of extreme, climate modelers 
have used a multivariate Climate Extremes Index (Gleason et al., 2008) to identify likely 
“hotspots” of combined wet, dry, hot, and cold extremes from downscaled global climate models 
(Batibeniz et al., 2020), which our observations largely corroborate. Consistent with our finding 
of multivariate extreme “hotspots” in south Florida, Oregon, and New Hampshire, study 
indicated that by 2050, Florida, New England, and the Pacific Northwest are likely to develop 
the most extreme conditions across a suite of variables (Batibeniz et al., 2020; Figure S3). Note 
that they did not consider Alaska, our fourth hotspot, but they did find that the extreme 
conditions would extend into the Rocky Mountain west, where our observations indicated a less 
comprehensive set of trends to date. Furthermore, the study found that these patterns were 
primarily driven by warming and drying conditions, as the majority of areas did not exceed the 
historical envelope of variability for intense precipitation events until 2050. Namely, the Florida 
hotspot primarily arose from extreme warm conditions, consistent with the decreased 
discharge/increased evapotranspiration associations that we observed. Meanwhile, the Pacific 
Northwest and New England hotspots predominantly arose from extremely dry conditions, 
consistent with our observed decreased soil moisture and increased evapotranspiration trends at 
H.J. Andrews and increased evapotranspiration trend at Hubbard Brook, together with an 
increased frequency of low-discharge extremes. 
 
Although our observations generally upheld climate model-based projections of extreme event 
hotspots, they deviated from projections and previous observations in a few ways. First, our 
analysis resolved no trends in extremes for any of the five sites in the Mid-Atlantic region 
(Figure 5), in contrast to projected drying trends in streamflow extremes (Naz et al., 2016), 
observed wetting trends in high-streamflow extremes (Archfield et al., 2016), projected increases 
in hurricane-related flood hazards (Marsooli et al., 2019), and observed increasing trends in the 
climate extremes index for the 1981-2005 period, encompassing both drought and intense wet 
events (Batibeniz et al., 2020). Our lack of trends in the Mid-Atlantic region was likely strongly 



driven by the limited data record length (among the shortest of all sites for variables other than 
discharge) for most of the Mid-Atlantic observatories (Figure 3). To test whether short record 
length had impeded our ability to detect trends, we carried out two-sample t-tests. Results 
showed that the time series with identified trends for both frequency and magnitude of extreme 
events were significantly longer (p<0.01) than those with no trends. For most of the study areas, 
the record lengths for discharge, precipitation, and air temperature were sufficient, whereas, for 
other hydroclimatic variables, the scarcity of long records substantially restricted the trend 
analysis.  
 
In addition to insufficient record lengths for some variables and study areas, geographic 
undersampling may also explain discrepancies between our findings and the literature. In the 
Mid-Atlantic region, both high-flow (Archfield et al., 2016) and low-flow (Kam & Sheffield, 
2016) trends exhibit strong variability in sign and significance, making it likely that observations 
from just a few sites would not be representative of the regional mean. Undersampling of the 
Midwest in CHOSEN might also explain why we observed just one study area with a significant 
change in the frequency of high flows in this region (i.e., Kellogg), despite the prevalence of 
increased flood frequency observed for the region in other observational studies (Ahn & Palmer, 
2016; Hirsch & Archfield, 2015; Mallakpour & Villarini, 2015). 
 
The geographic undersampling inherent in CHOSEN may additionally provide an explanation 
for why our second prediction--that we would observe more trends in extreme event frequency 
than magnitude, as observed in geographically extensive discharge records (Hirsch & Archfield, 
2015)--was not upheld. In contrast to this prediction, we observed a comparable number in trends 
in magnitude as in frequency (Figure 5). Small-sample bias may have been exacerbated in 
CHOSEN by the preferential siting of many of the observatories in areas where rapid climate-
driven change is expected. Furthermore, given that observed trends in extreme discharge are 
highly variable in sign and significance throughout the US (Ahn & Palmer, 2016; Archfield et 
al., 2016), it is not unexpected that the slight dominance of magnitude trends among our subset 
of sites would emerge from chance. A second potential explanation for the surprisingly large 
number of trends in magnitude is that many of these trends involved temperature or variables 
thought to be directly driven by temperature (Figure 5), and recent climate models (Batibeniz et 
al., 2020) suggest near-term (median: by 2025) emergence from the envelope of historic 
variability for temperature for most of the US. 
 
Though undersampling provides a partial explanation for why aspects of our first and second 
predictions were not upheld, discrepancies from the DIDWIW prediction are likely not 
attributable to random sampling artifacts. Consistently across sites and variables, study areas in 
the arid Southwest showed trends toward wetter extremes, reflected in precipitation and 
discharge magnitude and frequency trends, while those in the humid Southeast showed trends 
toward drier extremes, reflected in discharge and evapotranspiration-related trends (Figure 5). 
This discrepancy underscores the importance of considering multiple variables in assessing 
wetting and drying trends (sensu Roth et al., 2021); the DIDWIW hypothesis was developed 
based on analysis of long-term, remotely sensed soil moisture changes between 1979 and 2013 
(Feng & Zhang, 2015), whereas the increase in intense precipitation events forecasted for the 
Southwest (Batibeniz et al., 2020) may trigger high-flow extremes through Hortonian overland 
flow without a long-term increase in soil moisture, which would be consistent with our limited 



observations. Meanwhile, in humid environments like the Southeast, evapotranspiration may 
impact peak flow volumes while soils remain moist. Further, the soil moisture observations from 
1979 to 2013 in Feng and Zhang (2015) may not have captured more recent changes in the 
Southwest present in CHOSEN. In fact, it is likely that the trends detected in this analysis are 
recent, as a 1981-2005 observational study of historical trends in intense precipitation events also 
shows no significant trends for the region (Batibeniz et al., 2020). Our results, taken together 
with model projections (e.g., Batibeniz et al., 2020), suggest that the DIDWIW paradigm will 
become less applicable as climate change advances.  
 
Our ability to attribute observed trends in discharge to changes in dominant water balance 
processes was limited by the logical incongruity of correlative associations and causality and by 
a lack of long-term records of soil moisture and/or snow storage in most study areas. 
Nonetheless, the associations depicted in Figure 6 are generally consistent with previous studies 
that attribute changes in extreme discharge to underlying hydrological processes. In a statistical 
study based on precipitation and temperature measurements and modeled soil moisture and 
snowmelt, Berghuijs et al. (2016) found that increasing soil moisture storage is a strong predictor 
of extreme high-discharge throughout the Pacific Northwest, consistent with the soil 
moisture/high-flow association we found at H.J. Andrews (Figure 6B). Further, the association 
between precipitation extremes and high-flow extremes that we found at Hubbard Brook and 
Reynolds Creek (where snow data records were too short for trend analysis) may be indicative of 
the importance of extreme precipitation for the rain-on-snow events found to be the dominant 
factor explaining trends in high flow for these regions (Berghuijs et al., 2016). Meanwhile, 
climate-model based attribution of decreasing magnitude of low flows in the Southeast to 
warmer temperatures (Hayhoe et al., 2007) is consistent with our observations (Figure 6A), as is 
a statistically based attribution of decreased low flows in Idaho to decreased precipitation inputs 
(Kormos et al., 2016). However, in contrast to the Kormos et al. study, we found no association 
between precipitation and low-flow extremes in Oregon (H.J. Andrews). Instead, we found 
associations to soil moisture and evapotranspiration extremes, the former of which was not 
considered in their study. 
 
Attributional studies in the literature suggest mechanisms that may explain observed trends in 
discharge extremes that were not associated with other trends in our study (Figure 6). Increasing 
frequency and/or magnitude of high-flow extremes observed at the Kellogg (Michigan), Boulder 
Creek (Colorado), and Jemez (high-elevation New Mexico) observatories may be attributable to 
increasingly rapid snowmelt events triggered by warmer temperatures or rain on snow 
(Mallakpour & Villarini, 2015). These mechanisms would not be captured by our data, which 
lacked long-term snow records for these sites, or our analysis, which did not consider 
multivariate interactions between temperature or precipitation and snow storage. Meanwhile, less 
snow storage over time as a result of precipitation falling increasingly as rain instead of snow 
may explain drying trends in both high- and low-flow extremes at the Providence observatory 
(McCabe & Wolock, 2009; Miller et al., 2003). Lastly, climate models suggest that the wetting 
trends projected for the Southwest (e.g., California Current Ecosystem) are attributable to 
increased total precipitation delivery (Heidari et al., 2020), which might not be reflected in 
precipitation extremes.    
 



Attributional studies typically assume that evapotranspiration plays no role in high-discharge 
extremes (e.g., Berghuijs et al., 2016 and Table 1 of this study). However, this assumption may 
not be valid for coastal and low-gradient parts of the Southeast, where watershed areas are large, 
flows are slow-moving, and the highest flows occur during the warmest part of the year and are 
not associated with snowmelt or frontal systems. At both the Georgia Coastal Ecosystem and 
Florida Coastal Everglades observatories, decreasing trends in the magnitude and/or frequency of 
high flow extremes are observed despite increasing (Florida) or no significant (Georgia) trends in 
high-precipitation extremes (Figure 5). Both of these areas, however, have exhibited increasing 
temperature trends (Figure S2a) that are among the strongest in the US (Batibeniz et al., 2020).  
 
In summary, though our study was not attributional, it supports other attributional studies in 
suggesting that drying shifts in extreme streamflow in the Pacific Northwest and Southeast are 
likely linked to decreased precipitation inputs, decreased soil moisture, and increased 
evapotranspiration due primarily to warming. Wetting shifts in streamflow extremes are more 
challenging to explain via simple statistical analyses, as evidenced by a prevailing lack of 
associations to other hydroclimatic variables (Figure 6). Though our findings fall short of 
reconciling Sharma et al.’s grand challenge (2018) to attribute changing streamflow extremes to 
changes in hydroclimatic forcing, they suggest three hypotheses that are potentially addressable 
through more sophisticated statistical analyses or longer periods of record as CHOSEN continues 
to grow. First, the preferential location of wetting high-flow extremes in regions with snowpack 
suggests that these trends may be linked to increasingly rapid snowmelt, due to interactions 
between temperature or precipitation and snow storage. Second, higher rates of 
evapotranspiration may decrease high-flow extremes in locations without a snowmelt peak or 
dominantly frontal mechanisms of precipitation delivery. And finally, given the modeling results 
of Berghuijs et al. (2016) and the observed association at H.J. Andrews, changes in soil storage 
(Dymond et al., 2014) likely also drive changes in streamflow extremes in many regions.  

5. Conclusions 
To the best of our knowledge, the CHOSEN database is the largest open-source collection of 
comprehensive data from hydrological observatories, containing variables important to 
understanding water-balance partitioning that are not typically present in existing large-sample 
databases. It thus fulfills critical data needs for comparative hydrology. In particular, it lays a 
foundation for studies that establish hydrologic baselines, synthesize information on multiple 
aspects of “wetting” and “drying,” ground-truth model projections of highly uncertain, derived 
hydrological quantities, and attempt to attribute observed changes to underlying hydrological 
processes.   
 
Our simple synthesis of trends in hydroclimatic extremes generated generally consistent results 
with model projections and statistical studies that use derived quantities for soil moisture, 
instilling confidence in model projections. Consistency was strong in the identification of 
geographic hotspots for multivariate change in extremes and in the hydrologic stores and fluxes 
dominantly associated with those extremes. However, observations were less consistent with 
projections of discharge trends (Naz et al., 2016). Namely, many areas where we resolved drying 
trends in high-flow extremes (i.e., red points in Figure 6B) were projected to exhibit wetting 
trends by 2050, with the exception of south Florida, where both model projections and observed 



trends indicated drying. We propose that this inconsistency may reflect late emergence (i.e., 
around or after 2050) from the historic envelope of variability for wet extremes in most regions 
of the US (Batibeniz et al., 2020) rather than fundamental flaws of the model.  
 
Impending emergence from the envelope of historical variability for both wet and dry extremes 
underscores the need for synthesis products from hydrologic observatories that can document 
baselines for wetting or drying across different components of the water balance. Our analysis, 
for example, suggests that in the Southwest, which is projected to show wetter extremes by 2050 
(Batibeniz et al., 2020; Naz et al., 2016), a signature of wetting extremes in both precipitation 
and streamflow (Figure 5) is emerging. It further suggests that this emergence is recent, as these 
trends were absent in 1981-2005 observations (Batibeniz et al., 2020). The emergence of this 
wetting trend, together with drying in the Southeast with respect to discharge and 
evapotranspiration extremes, suggest that the WIWDID paradigm may be inadequate to describe 
ongoing climate-induced hydrological change across a suite of variables. 
 
Lastly, though simple associations between hydroclimatic and hydrologic extremes were often 
consistent with a water-balance framework (Table 1) and prior attributional studies (Section 4.3), 
they were not sufficient to attribute most wetting trends in streamflow extremes to underlying 
mechanisms. These shortcomings underscore the need for analyses based on longer-term 
(i.e., >10 years), comprehensive, and openly available records of soil moisture and snow 
variables. The data record lengths in CHOSEN will continue to grow, and calls for more soil 
moisture data nationally are increasingly being heard (e.g., Sungmin & Orth, 2021; Petersky & 
Harpold, 2018; Wasko & Nathan, 2019). We echo that call and build upon it, highlighting that 
comprehensive observations related to changes in evapotranspiration (e.g., relative humidity, 
solar radiation, soil and air temperature, wind speed, and/or direct moisture flux data) may be 
relevant to explaining a wider range of hydrologic extremes than previously thought. 
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Table 1. Hypothesized sign* of correlation between trends in extreme discharge frequency and 
magnitude and trends in extremes of associated hydroclimatic variables, based on analysis of 
seasonal anomalies. 
Correlated extreme Sign of 

correlation, 
frequency 
comparison 

Sign of 
correlation, 
magnitude 
comparison 

Associated 
hydrological 
process 

Expected correlates to low-flow extremes 
Low precipitation (unseasonably dry) + + Precipitation 
Low solar radiation (unseasonably cloudy) - - Evapotranspiration 
Low relative humidity (unseasonably dry 
air) 

+ + Evapotranspiration 

Low SWE (low snow water content) + + Snow storage 
Low snow depth (low snowpack) + + Snow storage 
Low soil moisture (unseasonably dry soils) + + Soil storage 
High air temperature (unseasonably hot) + - Evapotranspiration 
High solar radiation (unseasonably sunny) + - Evapotranspiration 
High relative humidity (unseasonably 
humid) 

- + Evapotranspiration 

High SWE (high snow water content) - + Snow storage 
High snow depth (high snowpack) - + Snow storage 
High soil temperature (unseasonably hot 
soils) 

+ - Evapotranspiration 

High soil moisture (unseasonably wet soils) - + Soil storage 
Expected correlates to high-flow extremes 

Low precipitation (unseasonably dry) - + Precipitation 
Low SWE (low snow water content) - + Snow storage 
Low snow depth (low snowpack) - + Snow storage 
Low soil moisture (unseasonably dry soils) - + Soil storage 
High precipitation (unseasonably wet) + + Precipitation 
High SWE (high snow water content) + + Snow storage 
High snow depth (high snowpack) + + Snow storage 
High soil moisture (unseasonably wet soils) + + Soil storage 

* The “+” sign of correlation for frequency comparison represents the same direction (both 
positive or negative) of significant trends (p-value≤0.05) in frequencies of two extremes. The 
“+” sign of correlation for magnitude comparison represents the positive Pearson correlation 
coefficient (>0.7) with significance (p-values≤0.05) of trends in magnitudes of two extremes. 

 
 



Table 2. Hypothesis testing of correlation between trends in extreme discharge frequency and trends in the 
frequency of extremes of associated hydroclimatic variables. Only study areas with significant trends in 
discharge are included. Counterfactuals are compiled across the low-flow and high-flow analyses and represent 
correlations between significant trends in discharge and significant trends in other monitored variables that have 
signs opposite those depicted in Table 1. 

Study Areas Discharge 
record 
(yrs) 

# Total 
trends 

Low-flow 
extremes 
frequency 

# Consistent 
with low-flow 

hypotheses 
Low-flow 

related 
processes 

High-flow 
extremes 
frequency 

# Consistent 
with high-

flow 
hypotheses 

High-flow 
related 

processes 
# 

Counterfactuals 
Counterfactuals 
related processes 

H.J.  
Andrews 

62 13 increasing 4 ET, Soil 
Storage 

decreasing 1 Soil Storage 4 P, ET, 
Soil Storage 

California 
Current 

Ecosystem 
78 4 decreasing 0  

increasing   
1 ET 

Florida 
Coastal 

Everglades 
68 7 increasing 1 ET decreasing 0   3 P, ET 

Georgia 
Coastal 

Ecosystems 
61 2 increasing 1 ET        

  

Hubbard 
Brook 

59 7 increasing 2 P, ET increasing 1 P 1 ET 

Kellogg 55 5    
increasing 0  

0  

Reynolds 
Creek 

52 3 increasing 1 P    
0  

Boulder 
Creek 

19 1    
increasing 0  

0  

Jemez 12 1    
increasing 0  

0  

Providence 12 1 increasing 0     
0  

 
 



Table 3. Hypothesis testing of correlation between trends in extreme discharge magnitude and trends in the 
magnitude of extremes of associated hydroclimatic variables. Only study areas with significant trends in 
discharge are included. Counterfactuals are compiled across the low-flow and high-flow analyses and represent 
correlations between significant trends in discharge and significant trends in other monitored variables that have 
signs opposite those depicted in Table 1. 

Study Area Discharge 
record 
(yrs) 

# Total 
trends 

Low-flow 
extremes 

magnitude 
# Consistent 

with low-flow 
hypotheses 

Low-flow 
related 

processes 
High-flow 
extremes 

magnitude 
# Consistent 
with high-

flow 
hypotheses 

High-flow 
related 

processes 
# 

Counterfactuals 
Counterfactuals 
related processes 

H.J.  
Andrews  

62 13 decreasing 5 ET, Soil 
Storage 

decreasing 2 Soil Storage 3 P, ET 

California 
Current 

Ecosystem 
78 4 increasing 0  

increasing 0   1 ET 

Florida 
Coastal 

Everglades 
68 7 decreasing 1 ET decreasing 0   3 P, ET 

Georgia 
Coastal 

Ecosystems 
61 4 decreasing 1 ET decreasing 0   0   

Hubbard 
Brook 

59 8 increasing 2 ET increasing 1 P 2 P, ET 

Jemez 12 3 increasing 0   increasing 0   1 ET 

Luquillo 23 2 increasing 0     
  0  

Reynolds 52 4 decreasing 1 P decreasing 1 P 1 P 

Providence 12 2 decreasing 0  
decreasing 0  

0  
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