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Abstract—Deep neural networks (DNN) have become ubiqui-
tous and dominant in various application domains due to its state-
of-the-art learning capabilities. To run compute and memory in-
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diverse set of DNN models, including CNN, LSTM, Transformer,
and GCN to demonstrate the challenges of generalizing DNN
acceleration. Next, we present a high-programmable accelerator,
referred as FlexACC, with a novel application-specific ISA for
flexible DNN inference. To increase the programmability, the
general-purpose RISC-V instructions are tightly coupled with
DNN instructions in FlexACC ISA. Compared with standalone
fixed-datapath CNN and LSTM engines, FlexACC only has
small latency and area overhead, while it provides much higher
programmability and flexibility.
Index Terms—DNN inference, ISA, Programmability

I. INTRODUCTION

Deep neural networks (DNN) have become ubiquitous in
various application domains, such as image classification,
speech recognition, natural language processing (NLP), and
autonomous driving, for its state-of-the-art learning capabili-
ties. Different types of DNN models have been proposed over
the years for different tasks, and some representative ones
are shown in Figure 1. In early 2000s, researchers focused
on data and image classification problems using multilayer
perceptron (MLP) and convolutional neural networks (CNNs)
[1]. Around the same time, recurrent neural networks (e.g.
GRU, LSTM) have also been explored for time-series analysis
[2], [3]. More recently, novel neural network models like
Transformer with self-attention mechanism achieve record-
breaking accuracy on natural language processing tasks [4].
Emerging DNN models are also published in a rapid rate,
such as the generative adversarial network (GAN) for image
generation and graph convolutional networks (GCN) for graph
data structure analysis [5].

Even though DNN models have shown significant accuracy
benefits, they normally consist of millions of MAC computa-
tions, which are both compute and memory intensive. There-
fore, designing specialized hardware accelerators has become a
common choice to accelerate the DNN computation. A variety
of DNN accelerators have been developed to achieve orders of

Fig. 1: The diverse types of DNN models.

magnitude energy efficiency improvement. For example, Min-
erva [6], Eyeriss [7] are the first few works improving MLP
and CNN performance by optimized computation dataflows,
quantization, etc. SIMBA [8] is a recent scalable CNN in-
ference accelerator with multi-chip-module chiplet solution.
Beyond single DNN model acceleration, reconfigurable DNN
accelerators (e.g. DNPU [9] and Thinker [10]) have been
studied to support the acceleration of both recurrent neural
networks and CNNs. In addition, there are a few accelerators
that have been developed to accelerate emerging DNN models,
such as GAN [11], NLP [12], [13], GCN [14], [15], and 3D
CNN [16]. Although these accelerators achieve state-of-the-art
energy efficiency, they mostly have limited programmability
with the support of only one or two DNN types, leading to
challenges of adapting to the rapid DNN evolution.

To provide a flexible and programmable DNN inference
solution, in this work, we first analyze the workload break-
down of a diverse set of DNN models, including CNN,
LSTM, Transformer, and GCN. Next, we present a high-
programmable accelerator, referred as FlexACC, with a novel
application-specific ISA for flexible DNN inference. The de-
veloped application-specific ISA tightly couples the general-
purpose RISC-V with customized instructions for flexible
DNN acceleration. Therefore, FlexACC is able to perform
flexible memory access and computation patterns with its high
programmability. Flex ACC is compared with two standalone
fixed-datapath (also called hardwired-datapath or ASIC) CNN
and LSTM engines. The experimental results show FlexACC
only has small latency and area overhead, while it provides
much higher programmability and flexibility.

The contributions of our work are as follows:

« A comprehensive workload analysis is conducted on a di-

verse set of DNN models (i.e., CNN, LSTM, Transformer,
and GCN). Different hardware acceleration requirements
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for different DNN types are observed.

A high-programmable accelerator, i.e. Flex ACC, is devel-
oped with its application-specific ISA, in which RISC-V
instructions and customized DNN acceleration instruc-
tions are tightly coupled.

A head-to-head comparison between FlexACC and fixed-
datapath designs is conducted to show the small overhead
of improving programmability in FlexACC. In addition,
a quantitative analysis on the tradeoffs between design
spaces and hardware customization choices is provided.

II. BACKGROUND & RELATED WORKS
A. DNN Acceleration Basics

The most dominant computation in DNNs is the multiply-
accumulate (MAC). The massive amount of matrix (or matrix-
vector) multiply makes DNN suitable for leveraging data
parallelism on MAC array-based microarchitecture. However,
there is also a variety of model-dependent non-MAC compu-
tations in DNNs. For example, in attention-based Transformer
model, Softmax is essential and requires complex arithmetic
computations, leading to significant software overhead [17].
Other examples of widely used non-MAC computations are
Pooling in CNN and Sigmoid/Tanh in GRU and LSTM.
To accelerate the non-MAC computations, the SIMD-typed
parallelization is often required. Besides computations, DNN
models also differ in terms of memory access patterns,
complicating the implementation of controllers and address
generators in existing works. This essentially shows the need
of generalizing controller design in DNN accelerators.

The commonly used compute units for DNNs are shown
in Figure 2, ranging from ALU to 3D Tensor Core [18].
The conventional scalar ALU is capable of executing general-
purpose scalar operations, providing the highest flexibility but
the lowest performance. To parallelize ALU operations, a
SIMD unit of vector size N can be utilized to achieve Nx
speedup. Apart from generic compute units, 2D MAC Array
and 3D Tensor Core are dedicated for MAC operations. The
2D MAC Array is commonly used to perform matrix-vector
multiply to achieve a speedup of N 2 18], [19]. As for 3D
Tensor Core, although benefiting from more data reuse and
N3 speedup, it poses more limitations on the shape of tensors,
i.e., a minimum batch size of 4 or 8. Thus, we deploy Scalar
ALU, 1D SIMD, and 2D MAC Array but not 3D Tensor Core
in our FlexACC design.

In the past, most DNN accelerators were designed with a
fixed-datapath architecture with limited programmability. A
fixed-datapath hardware is normally controlled by a set of
configuration registers, which determines the behavior of DNN
workloads, memory access patterns, execution cycles, etc.
Although fixed-datapath accelerator achieves higher efficiency,
tremendous engineering effort to design a complex control
interface and underlying architecture is necessary to make it
flexible (e.g., NVDLA [19]). In addition, as the accelerator is
not directly programmable (with ISA and compiler toolchain),
a separated host CPU is needed to control accelerators [8], re-
sulting in complex heterogeneous integration. On the contrary,
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Fig. 2: Different choices of compute units.

TABLE I: Fixed-datapath vs Programmable Designs.

Fixed-datapath  Programmable
Interface Config Registers Instructions
Host CPU Yes No
Customization Higher Lower
Flexibility Lower Higher
SoC Types Heterogeneous Homogeneous
Examples NVDLA, SIMBA Cambricon

to improve programmability of accelerators, incorporating a
customized ISA is more straightforward. With a customized
ISA, the tedious configuration interface in the fixed-datapath
approach is replaced by application-specific instruction set
with a general-purpose controller. Since both general-purpose
and specialized instructions are merged into a single design,
the accelerator itself is programmable and a host CPU is no
longer necessary. Table I summarizes the differences between
the two accelerator types.

B. Related Works

One of the earliest works investigating application-specific
ISA is the H.264 processor design [20]. The work analyzes
the inefficiency of general-purpose processors by comparing
several hardware designs for H.264 algorithms with different
degrees of specialization. With the help of application-specific
instructions, the specialized processor achieves significant
speedup over conventional CPUs. However, this work only
focuses on the acceleration of classic H.264 algorithms.

In the era of deep learning, Cambricon [21] has a specialized
ISA design for DNNs. Despite the promising performance
compared to CPU/GPU, the multicycle approach suffers from
additional overhead of workload scheduling on an instruc-
tion queue unit. Brainwave NPU [22] is another example
of specialized ISA for DNN inference focusing more on
LSTM/GRU models, but emerging models like Transformer
and GCN are not evaluated. A more recent work, NCPU [23],
is a programmable accelerator with a shared datapath for both
general-purpose RISC-V and binary neural network (BNN).
It addresses the overhead of workload offioading between the
host CPU and accelerator to improve end-to-end performance,
but the solution is limited to BNN inference.

In this work, we propose a high-programmable DNN ac-
celeration solution with a microarchitecture design including
RISC-V, ALU, SIMD, and MAC Array to cover a diverse
range of DNN inference tasks. With the developed application-
specific RISC-V ISA as well as fine-grained single cycle
instructions instead of the multicycle approach used in Cam-
bricon ISA [21] and H.264 processor [20], the proposed
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FlexACC achieves the same level of performance as fixed-
datapath designs. To our best knowledge, there are only a
limited number of accelerators designed with application-
specific ISA. None of them are able to support a wide range
of DNNs as demonstrated by FlexACC.

ITI. DNN WORKLOAD ANALYSIS

To understand the DNN computation requirements, we ana-
lyze key computation kernels in various DNN models, includ-
ing MLP, CNN, GRU/LSTM, Transformer, and GCN. Table
I summarizes the DNN workloads profiled and evaluated
throughout the paper. Note that unless mentioned specifically,
single batch size and output stationary flow are assumed. As
DNN computations are dominated by MAC operations, we
simply categorize the operations into MAC and non-MAC
operations in the profiling. The operational breakdowns of
CNN, LSTM, Transformer, and GCN are shown in Figure 3.
It is interesting to observe the MAC percentage differences
among DNN kernels, ranging from 99% MAC in Conv2D to
86% MAC in GCN. In addition, the detailed requirements on
non-MAC computations are quite different. We further explain
each workload in the following paragraphs.

MLP and CNN are the most MAC-centric DNN mod-
els. Although there are nonlinear operations like ReLU and
batch normalization, they are removable during inference
[24]. Therefore, in addition to MAC computations, MLP and
CNN only require SIMD ALU to perform re-quantization
on accumulation values. The convolution operation (Conv2D)
can be carried out with loops of matrix-vector multiply as
demonstrated in [8], [19].

GRU and LSTM involve matrix-vector multiply similar to
MLP with more complex activation functions (e.g. Sigmoid,
Tanh) and vector operations. In addition, the re-quantization of
accumulation values must be performed before each nonlinear
function. Therefore, the breakdown of LSTM shows lower
MAC percentage comparing to CNN. To compute GRU and
LSTM, acceleration of Sigmoid is necessary (tanh(z) =
20(2x) — 1). Furthermore, the recurrent data dependency also
complicates memory address generation.

Transformers mainly involves two types of DNN kernels,
MLP and Self-Attention. While MLP is MAC-centric, the
profiling of Self-Attention shows a larger portion of Softmax-
related non-MAC computations. Softmax requires complicated
exponential-sum and scalar division operations, which are both
computation costly and challenging for hardware implemen-
tation [17]. Furthermore, Self-Attention requires accelerator
to support matrix multiply between two activations, posing
another difficulty to datapath and memory access design.

GCN and other graph-based DNNs are designed to process
graph-based data structure with edges and vertices (nodes).
The basic computation of a GCN layer involves two steps,
(1) matrix multiply between weights and each (input) vertex
vector and (2) aggregation of neighboring vertices (weighted
sum of activation vectors) according to the graph topology
[15]. The aggregation step needs to be carried out by SIMD,
leading to a large amount of non-MAC operations. Moreover,
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TABLE II: Summary of DNN software test cases.

Workloads Input Weight Qutput Sizes
MatMul X[T][Cin] WI(Cout][Cin] Y[T][Cout] T=320
(MLP) Cin=Cout=320
Conv2D X[Hin][Win][Cin] | W[Cout][HI[W][Cin]| Y[Hout][Wout][Cin] H=W=3
(CNN) Hin=Win=28

Hout=Wout=28
Cin=128, Cout=64
GRU X[T][Cin] Wx[3* Cout][Cin] Hidden[T][Cout] T=160
Whi[3*Cout][Cout] Cin=Cout=160
LSTM X[T][Cin] Wix[4* Cout][Cin] Hidden[T][Cout] T=160
‘Wh[4*Cout][Cout] Cell[T][Cout] Cin=Cout=160
Attention Q[Head][T][Cin] N/fA O[Head][T][Cin] Head=12
(Transformer) | K[Head][T][Cin] T=64
V[Head][T][Cin] Cin=64
GCN X[Node][Cin] W[Cout][Cin] ¥[Node][Cin] Node=800
Cin=Cout=64
#Edge=3200
0.2% 3.0% 7.2% 13.5%
MAC
non=-MAC
99.8% 97.0% 92,8% 86.5%
Conv2D LST™M Attention GCN
(CNN) (Transformer)

Fig. 3: Percentage of MAC and Non-MAC operations.

as the neighboring vertex is determined at runtime with a
highly sparse adjacency matrix, the aggregation step results
in a costly calculation of irregular memory addresses.

Based on the DNN workload study, it is obvious that
different DNN models have different non-MAC operations.
Although the non-MAC operations only account for a small
portion of the entire workload, they require sufficient pro-
grammability and flexibility. For MLP and CNN, the data are
mostly accessed regularly based on incremental addresses in
weight stationary or output stationary dataflows. However, in
regard to Transformer and GCN, the memory access shows
some irregularity that raises challenges for the accelerator de-
sign. It can be anticipated that the memory access will become
more sophisticated in future models. Therefore, development
of highly flexible DNN accelerators is important to make
hardware adaptable to software changes.

IV. FLEXACC ACCELERATOR DESIGN
A. Architecture Overview

To develop a highly programmable accelerator for support-
ing a diverse set of DNN models as well as avoiding the
“one-time” design problem in prior fixed-datapath designs,
we propose FlexACC with application-specific RISC-V ISA.
Figure 4 gives the overview of FlexACC architecture. In the
design, a general-purpose RISC-V pipeline is tightly coupled
to a variety of DNN acceleration units, and a low-power 3-
stage pipeline (IF, ID, EX) is used to implement all 32b RISC-
V Base ISA [25] and application-specific instructions.

During computation, the processor control unit (PCU)
fetches 64b instructions from the program memory (PM) to
issue control signals for both scalar ALU and DNN accel-
eration units (SIMD and MAC Array). Control signals are
issued in fine granularity (i.e. cycle-level) to manage DNN
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Fig. 4: Overview of FlexACC architecture.

operations, providing higher flexibility than the prior works
with multicycle instructions [21].

Scalar data is loaded from the 32b data memory (DM) into
general purpose registers (X-Regs) for scalar operations in
scalar ALU. As for accelerating DNN inference, two identical
N-bank vector memories (VMO, VM1) are used to store
vectorized DNN weights and activations, which can be loaded
into vector registers (Vec-Regs), matrix registers (Mat-Regs),
or activation vector registers (Act-Regs) for MAC or other
vector operations using MAC Array or SIMD units.

B. Application-specific RISC-V ISA

We design an application-specific ISA in a very long in-
struction word (VLIW) format combining the general-purpose
RISC-V ISA with the DNN acceleration instructions, as illus-
trated in Figure 5. In addition to the RISC-V slot, there are
3 slots (ie., Vector, VM1, VMO) specifically implemented for
computations or memory accesses in DNNs.

Several techniques are leveraged to improve the overall per-
formance. First, instruction level parallelism (ILP) (Figure 6)
enables simultaneous DNN acceleration and memory accesses.
With ILP, RISC-V instructions are issued in parallel with
accelerator instructions, so the overhead of the scalar or control
operation can be hidden. Load/store instructions with address
postmodify (hardware-based address increment) is another
technique used to achieve zero delay during sequential data
accesses from DM, VMO, or VMI. Finally, to avoid branch
latency, branch instructions are replaced by zero overhead loop
(ZLP) for the innermost software loops. The combination of
ILP, address postmodify, and ZLP ensures continuous dataflow
and zero delay during sequential MAC operations.

The instructions in the Vector slot can be grouped into three
subcategories based on their functionality: Vector Move, MAC,
and SIMD. Each instruction has two or three operands with 2
or 3 bits of encoding for an operand.

« Vector Move instructions are for data movements between
different register instances.

MAC instructions take an entry of Vec-Reg and Mat-Reg
to perform tiled matrix-vector multiply in a cycle. The
result is accumulated or stored in an entry of Act-Reg.
SIMD instructions contain vector-vector and scalar-vector
operations. For the later case, the scalar variable is
accessed directly from X-Regs.
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63 3231 2019 1009 0o
RISC-V Slot Vector Slot 1 0
ALU, DIV 0110011 Vector Move Load Vec | Load Vec
ALU immd. 0010011 X & Act Load Mat | Load Mat
Load 0000011 Vec & Vec Load Act Load Act
Store 0100011 Mat < Mat Store Vec | Store Vec
Branch 1100011 Act < Act Store Mat | Store Mat
Jump 1101111 Act < Vec Store Act | Store Act
Jump & link register | 1100111|| ...

Load upper immd. [0110111 || MAC Instructions

RISC-V Extensions MatVecMuladd
Load w/ pm 0001011 MatVechMul
Store w/ pm 0101011 || SIMD Instructions
Zero overhead loops | 1111011 Vector PWL
Boolean {min/max) Vector ALU

Fig. 5: Developed FlexACC ISA with 4 slots in 64b VLIW.

RISC-V Vector

NOP | Mat).‘fecMuIAdd |

MAC instr. that takes Mat-Reg, Vec-Reg
and accumulates results to Act-Reg

VM1 VMO
Load Mat | Load Vec
v\ o

e
Load matrix/vector from VM1/VMO to
Mat-Reg/Vec-Reg for next MAC instr.
Fig. 6: Simultaneous MAC and VM accesses via ILP.

Lastly, for VM1 and VMO slots, the Vector Memory instruc-
tions give the flexibility to load/store N28b matrices, N8b
vectors or N32b activation vectors from N banks, 1 bank or
4 banks of memory respectively. Since VMO0 and VM1 are
identical, software programmers have the flexibility to adjust
the storage locations for different weights, activations, or other
software parameters.

C. 2D MAC Array and SIMD Unit

In FlexACC, an N-lane MAC Array, with N MACs in each
lane, is deployed to accelerate DNN workloads by an order
of N2, as shown in Figure 7. During MAC computation, each
column of a tiled matrix is mapped onto each lane while a
tiled vector is broadcasted to every lane of the MAC Array.
MAC performs 8b multiplication, 32b addition and writes the
results to Act-Reg in 32b.

For N-lane SIMD, scalar arithmetic is carried out in each
lane in parallel so that computations are accelerated by
an order of N. The SIMD is able to perform most basic
ALU operations, such as multiply (Mul), rational operation,
MIN/MAX values, etc. All vector SIMD computations are
performed in 32b wide except the vector 24b Mul for reducing
hardware area.

Furthermore, to accelerate Sigmoid in LSTM and Softmax
in Transformer, a piecewise linear (PWL) SIMD unit is
deployed to support the approximation of complex maths via
lookup tables (LUT). In the LUT-based implementation, the
function output is derived from the base and fractional bit
segments of the input, as explained by the following equations
where LUT4q,. is the base output and LUT .., refers to the

slope.
idr =in[11:10] frac=in[9:0]
out =LUTy,sc[idz] + (LUT froclidz] * frac >> 10)

(D
@
Take Sigmoid as an example, the input range of [0,5) is

partitioned into 10 segments with negative input values com-
puted as o(z) = 1 — o(—=x) in the hardware. The PWL-based
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Fig. 8: PWL Sigmoid.

Fig. 7: MAC Array (N=4).

and full-precision Sigmoid is compared in Figure 8, showing
an indistinguishable difference between two approaches.

It is worth to mention that although it is possible to imple-
ment every nonlinear function with customized instructions,
it will complicate the ISA and microarchitecture design. In
FlexACC, only the two most common nonlinear functions,
Sigmoid and Pow2 (power-of-2), are implemented with cus-
tomized instructions. Other nonlinear operations are handled
by a generic LUT instruction (using an operand of Act-Reg
as LUT, and another for parallel indexing). The performance
difference between customized instruction and generic LUT
will be studied in Section VII-D.

V. SOFTWARE MAPPING & PROGRAMMING

In this section, the software mapping and programming of
FlexACC is explained from three perspectives, including ten-
sor tiling, computation mapping, and sequential and irregular
Memory accesses.

Tensor tiling is an essential step to map vectors and
matrices to vector memories (VM1 and VMO) so that they
can be accessed during MAC or non-MAC SIMD operations.
Tensor tiling is based on the vector size N of FlexACC. Take
matrix-vector multiply as an example, the vector is tiled along
one dimension and the matrix is tiled along two dimensions.
As shown in Figure 9, a vector or matrix tile can be mapped to
1 bank or N banks of vector memory, respectively. This basic
concept can be applied to more complicated DNN kernels such
as Conv2D as well as matrix multiply in Attention and GCN.

Computation mapping is performed during the compila-
tion of C code from software to hardware functional units.
Figure 10 shows three examples illustrating how low-level C
code is mapped to application-specific FlexACC instructions.
From the controlling aspect, for-loop can be mapped to
ZLP (do-loop) instructions, and while-loop (e.g., for finding
neighboring nodes with an index array in GCN) is compiled
into jump and branch instructions. On the other hand, to
accelerate DNN computations, primitive functions of FlexACC
are leveraged in the C code. For instance, the acceleration of
Softmax is achieved by utilizing SIMD, Pow2 and Vsum (sum
of elements in an Act-Reg variable) primitive functions.

Sequential and irregular memory accesses are processed
in different manners in FlexACC. For sequential memory
access from scalar DM, vector VM1 and VMO, there are
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Tile 0 Tile 1

Tile 0 Tile 1 Tile 0

Tile 1

—

4 bank VM
Fig. 9: Tiling and Vector Memory mapping.

Conv2D (Inner-loops)
for (h = h_st; h < h_ed; h+) do (loop) x19, 6
for (W = w_st; w < w_ed; w+t) do (loop) x23, 3
for (ic 8; ic < Cin/N; ic++) vmac ae, mé, ve
acc_vec = MatVecMulAdd(...);

Attention (Softmax)
for (j = ©8; J < T/N; j++){ do (loop) x26, 31
act = pow2(act); pow2 (exp) a@, a@
sum += vsum(act); vsum (sum) x6, a@

} add x11, x9, x11
inv_sum = 65536 / sum div x11, x5, x11
GCN (Aggregation)

while (is_end != false) { do (loop) x24, 33

// Aggregate next node i (jump) 18

for (k = 9; k ¢ Cout/N; k++){ s

............... vadd a1, ae

Y e

} bne (branch) x2,x6,-18

Fig. 10: Three examples illustrating the mapping of C code
(left) to application-specific FlexACC instructions (right). De-
tailed memory access is omitted for clarity.

hardware-based addresses generators to increment addresses
by constant offsets. However, irregular access patterns can
only be managed in a software-based approach with additional
scalar or control instructions. Therefore, in order to efficiently
carry out the computations, the loop structures of a DNN
workload are specially arranged such that the memory access
of the inner-most loop is sequential. As an example, the input
channel dimension can be mapped to the inner-most loop
of Conv2D (in an output stationary dataflow). And for the
computation of Softmax in Attention and Aggregation (mainly
involving weighted sum of activation vectors) in GCN with
more irregular memory access patterns, the inner-most loops
can still be arranged to be sequential memory access as they
are essentially vector-based arithmetic.

V1. EVALUATION METHODOLOGY

To evaluate the performance of FlexACC, we implement it
with ASIP Designer [26], a commercial tool for application-
specific processor design, which also provides a software
compilation toolchain for simulation with complied C code.
The Flex ACC microarchitecture is experimented with different
vector size choices from 4 to 32 as summarized in Table
III. To obtain area and energy results, the RTL of FlexACC
is synthesized and evaluated in a commercial 12nm FinFET
technology with a commercial 12nm SRAM compiler for
memories. The design is also placed and routed in the same
12nm technology.

We also implement the RTL of two standalone fixed-
datapath accelerators for Conv2D and LSTM (Fixed-Conv2D
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TABLE III: Design parameters of FlexACC.

Vector Size (N) 4 8 16 32
#MACs 16 64 256 1024
# SIMD Lanes 4 8 16 32
VM bit-width 32b 64b 128b 256b
VM entries/bank 16384 4096 1024 256
VM # banks 4 8 16 32
VM total size 256kB 256kB 256kB 256kB
MAC bit-width 8b MUL and 32b ADD
SIMD bit-width 32b ADD/SHIFT..., 24b MUL, 10b PWL
CPU Core 3-Stage RISC-V with extensions
Program Memory 4096x64b
Data Memory 4096x32b
Technology node 12nm
Frequency 500MHz
Operating Condition TT Corner, 25C, 0.8V

and Fixed-LSTM) to make fair head-to-head comparisons.
Similar to the FlexACC microarchitecture, the fixed-datapath
designs have a controller unit (with multiple address genera-
tors), MAC array, and SIMD unit. However, all components
are specialized to compute only one dedicated DNN workload.
A host CPU is used for writing the attributes of target
workload, such as number of channels, to the configuration
registers via 32-bit AXI channel. The area and energy metrics
of the baseline accelerators are also collected with the same
technology node.

In this work, we focus on accelerator-level analysis and
assume instructions and data are preloaded into accelerator
memories. We leave system-level analysis, such as multi-
core solutions and data movements between accelerators and
DRAM, to our future work.

VII. EXPERIMENTAL RESULTS

A. Design Space Exploration

Figure 11 shows the area breakdown of the FlexACC
accelerator with different vector sizes (N = 4,8,16,32).
The total number of multipliers in MAC Array is N2, so
the area of MAC Array becomes more significant when N
is increased. On the contrary, the area of SIMD unit only
increases linearly with N, and maintains a relative small area
percentage for large vector sizes. Although the total memory
capacity remains constant, the memory area changes due to
different memory structures generated by SRAM compiler. A
physical implementation of FlexACC prototype (vector size
N = 8) is displayed in Figure 12.

Figure 13 (top) shows the performance of test bench-
mark workloads on FlexACC with different vector sizes.
It is observed that MatMul and Conv2D have the highest
MAC utilization since the SIMD Unit only needs to process
quantization operations. Due to the activation functions (e.g.
Sigmoid) and element-wise operations, the ratio of SIMD in
GRU/LSTM is larger than CNN. For Attention and GCN mod-
els, a large number of SIMD runtime cycles is observed for
processing Softmax and vertex aggregation operations. When
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Fig. 12: Physical layout of FlexACC (N=8).

the vector size of both SIMD and MAC array is increased
from 4 to 32, it is clearly observed that the latency of MAC
computation is significantly reduced while the SIMD and data
movement operations become the performance bottleneck. In
the experiment, the MAC utilization of 84%, 71%, and 36%
is achieved (IV 8) for Conv2D, LSTM and Attention,
respectively.

Figure 13 (bottom) provides the energy analysis for different
test cases. In FlexACC, the output stationary dataflow is
adopted, where a vector and a matrix (of size N8b, N28b)
are loaded from VMs for MAC contributing to a large portion
of total energy. However, for larger vector size designs, the
energy of VMs decreases as the SRAM becomes more energy
efficient with a larger word size, and input activation vectors
are reused more through broadcasting in MAC Array.

In summary, for MAC-centric DNN kernels like Matmul,
Conv2D, GRU and LSTM, more performance and energy
benefits are obtained by using a larger vector size (N = 16, 32)
to accelerate MAC operations. While the speedup and energy
reduction are limited for Attention and GCN when sweeping
the vector size from 4 to 32, as there is more non-MAC
operations. With configurable vector size N, FlexACC is
adjustable for different computational requirements.

B. Comparison with Fixed-Datapath Designs

In Figure 14, we compare the FlexACC area (N = 8) with
a standalone RISC-V pipeline and two fixed-datapath acceler-
ators. The area of RISC-V core (with only standard RISC-V
instructions) is also shown to illustrate the area cost of having
a separated host CPU in a heterogeneous SoC. Although
the core area of Fixed-Conv2D is much smaller (36% less)
than FlexACC for Fixed-Conv2D does not have SIMD PWL
functions, FlexACC only has a small area overhead (17%)
compared to Fixed-LSTM. It is also interesting to observe
that the RISC-V (and others) area of FlexACC is only 20%
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and 30% larger than the combined area of address generator
(AddrGen) and Controller in fixed-datapath designs, indicating
that customized memory access and control units are hardware
costly. Through the proposed programmable FlexACC, con-
ventional heterogeneous integration with a separate host CPU
is not needed, making FlexACC potentially more hardware
efficient at SoC integration level.

The performance and energy comparisons are presented
in Figure 15. Compared with fixed-datapath accelerators,
FlexACC only has 10% and 30% latency overhead. The
performance gap, is mainly related to not parallelizing MAC
and SIMD computations in FlexACC, which is another design
space to be explored in the future. The energy breakdown
shows that the main difference between the two types of
accelerators comes from the instruction fetch of PM. The total
energy consumption of FlexACC is only 15% and 11% higher
than that of fixed-datapath Conv2D and LSTM designs.

In summary, FlexACC can achieve the same level of per-
formance and energy-efficiency as fixed-datapath accelerators
with moderate cost in terms of hardware area to achieve the
benefit of high programmability.

C. Dataflow and Weight Reuse

To improve weight reuse and reduce total memory access,
the "for-loops” of a workload can be rearranged from station-
ary (OS) into a weight stationary (WS) dataflow. Contrary to
0S8, WS accesses different input vectors and output activations
while keeping the same weight matrix in Mat-Reg. The main
cost of WS dataflow is that activation vectors need to be
reloaded for accumulation. By replacing OS with WS, the
memory accesses corresponding to each MAC instruction
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changes from N28b+N8b (0S) to N8b+N32b+N32b (WS),
meaning that the total number of VM accesses can be reduced
when N > 8. Simulation results show that WS dataflow can
reduce VM accesses to 0.67x and 0.38x for N = 16 and 32
at the cost of 2.0x and 1.7x latency compared to OS dataflow.
With fine-grained instructions and programmable datapaths,
FlexACC has the flexibility to support different datafiows.

D. Customization and Speedup Analysis

To explain how each acceleration hardware unit impacts
the overall performance improvement, we further compare the
performance of Conv2D with the following settings: (1) Stan-
dalone RISC-V, (2) RISC-V+SIMD, (3) RISC-V+MAC, and
(4) RISC-V+SIMD+MAC. Figure 16 (left) shows an overall of
216x speedup over RISC-V when all acceleration components
(RISC-V+SIMD+MAC) are in place. It is software dependent
to determine the contributions of SIMD and MAC Array to the
overall performance, but the analysis shows the importance of
having both SIMD and MAC Array in the design.

Careful hardware implementation is often needed to ac-
celerate complex math functions in DNNs [17], but over-
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customization may result in area overhead and reduction of
flexibility. Figure 16 (right) compares the performance of
Sigmoid with different choices of customization: (1) floating
point on CPU, (2) integer approximation on CPU, (3) SIMD
with generic LUT instructions, and (4) SIMD with customized
instruction. It is observed that substantial speedup can be
obtained through both software and hardware customization.
However, there is a tradeoff between performance and flexi-
bility in choosing implementation methods. FlexACC finds a
good balance for the tradeoff by using SIMD with customized
instructions for the two most common nonlinear functions,
Sigmoid and Pow2, and other nonlinear functions can be
handled by a generic LUT instruction on SIMD.

VIII. CONCLUSION

Conventional fixed-datapath DNN accelerators often suffer
from limited programmability. In this work, we propose and
implement FlexACC accelerator with an application-specific
ISA for DNN inferences. To increase the accelerator pro-
grammability, the proposed application-specific ISA tightly
couples the general-purpose RISC-V with customized DNN
instructions. The experimental results affirm FlexACC is capa-
ble of performing a wide range of DNN inferences with decent
performance and MAC utilization. A head-to-head comparison
to fixed-datapath baselines further reveals that FlexACC has
moderate overhead to achieve high programmability.
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