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Fast Position-Aided MIMO Beam Training
via Noisy Tensor Completion
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Abstract—In this paper, a data-driven position-aided approach
is proposed to reduce the training overhead in MIMO systems,
by leveraging side information and on-the-field measurements.
A data tensor is constructed by collecting beam-training mea-
surements on a subset of positions and beams, and a hybrid
noisy tensor completion (HNTC) algorithm is proposed to predict
the received power across the coverage area, which exploits
both the spatial smoothness and the low-rank property of
MIMO channels. A recommendation algorithm based on the
completed tensor, beam subset selection (BSS), is proposed to
achieve fast and accurate beam-training. Besides, a grouping-
based BSS algorithm is proposed to combat the detrimental
effect of noisy positional information. Numerical results evaluated
with the Quadriga channel simulator at 60 GHz millimeter-wave
channels show that the proposed BSS recommendation algorithm
in combination with HNTC achieve accurate received power
predictions, enabling beam-alignment with small overhead: given
power measurements on 40% of possible discretized positions,
HNTC-based BSS attains a probability of correct alignment of
91%, with only 2% of trained beams, as opposed to a state-
of-the-art position-aided beam-alignment scheme which achieves
54% correct alignment in the same configuration. Finally, an
online HNTC method via warm-start is proposed, that alleviates
the computational complexity by 50%, with no degradation in
prediction accuracy.

Index Terms—Tensor completion, sparse learning, millimeter
wave, position-aided, beam training, MIMO communication.

I. INTRODUCTION

Future wireless networks will be required to sustain high
data rates, low latencies, and improved power efficiencies for
users (UEs) in a wide variety of conditions [2]. In the last few
years, millimeter-wave (mmWave) communication has been
gaining more attention as a viable solution to address the
throughput enhancement challenges faced by 5G and beyond
wireless networks, thanks to the large bandwidth availability
[3]–[5]. Nonetheless, mmWave communication suffers from
severe pathloss due to the high frequency of the signal, hence it
requires the use of narrow beam communication to compensate
the signal attenuation. This is achieved with the use of large
antenna arrays at the transmitter and receiver via massive
multiple-input and multiple-output (MIMO) systems. How-
ever, traditional massive MIMO channel estimation methods
are impractical, especially in mobile environments, because of
the unacceptably large overhead induced by the large number
of antennas.

The overhead of massive MIMO channel estimation, ei-
ther operating at mmWave or sub-6GHz frequencies, can be
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reduced by exploiting the spatial sparsity of the channel,
resulting from few dominant clusters or paths in the angular
domain and the high spatial resolution [6]. This sparsity allows
to predesign a set of directional beams pointing in specific
directions, so that beam training can be done directly on this
predefined set, rather than on the MIMO channel matrix. The
standard approach to beam training is to search in an exhaus-
tive fashion through all possible combinations of transmit and
receive beams, to determine the beam pair with maximum sig-
nal power. However, this approach incurs enormous overhead,
due to the large number of possible beam combinations that
need to be periodically trained. To reduce the overhead of
exhaustive search, several beam-alignment schemes have been
proposed in the literature, ranging from feedback-based meth-
ods [7]–[9], AOAs/AODs estimation [10]–[12], to data-assisted
schemes [13]–[19]. Feedback-based methods adapt the beam-
training procedure in an online fashion based on feedback
collected. AOAs/AODs estimation leverages the spatial sparsity
of the mmWave channel via compressed sensing techniques to
recover AOAs/AODs and gains of the channel paths.

In a data-assisted scheme, the beam-training process is
aided by side information from the available sensors other than
mmWave communication, such as radar [13], LIDAR [14],
lower-frequency communication [15], [16], or GPS position
information [17]–[19]. Our work uses the positional informa-
tion. Inverse fingerprinting for beam alignment is proposed in
[17], using prior measurements at a given position to provide
a set of candidate beam directions at the same position. Their
work demonstrated that the positional information of the user
can be utilized to predict a small set of candidate beams
to train, based on long-term channel information collected
in the database. The mmWave beam selection problem at
specific locations is formulated in [18] as a machine learning
classification problem using past beam training measurements
with the situational awareness, which captures the environ-
mental condition by encoding the obstacles’ coordinates. In
[19], a multiple-fingerprint beam alignment method which
intelligently selects the fingerprint beam alignment based on
the traffic density via learning is proposed.

However, all works on positional data-assisted beam-
alignment techniques [17]–[19] fail to provide the channel
information in the positions whose prior measurements are
not available (new positions). For this reason, the existing
approaches require the collection of an extremely large amount
of channel measurements to cover a given service region,
which may not be practical. Furthermore, the user’s position
acquired by the process of global navigation satellite system
(GNSS)/global positioning system (GPS) estimation is possi-
bly noisy due to the estimation error and the user’s mobility
[20], [21]. Positional estimation error degrades the perfor-
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mance of position-aided data-assisted schemes. To address
these general problems, we seek to do the channel prediction
in new positions based on the channel information in observed
positions, and propose a beam-recommendation scheme robust
against errors in positional information.

Recently, channel cartography (channel charting) [22], [23]
of the wireless network has been investigated. The prior
channel measurements on positions provide helpful infor-
mation for reducing the training overhead of the UE in
the service area. The work [22] estimates the spatial loss
field map from the measurements on few positions aided
by a matrix completion technique which leverages the low-
rank structure and sparsity. The channel gain between two
points is modeled as the tomographic accumulation of the
spatial loss field along the propagation path. The work [23]
proposed a channel charting framework for locating users in
multiple-antenna wireless networks, learning the relationship
between channel state information and user’s location with
the tools from dimensionality reduction, manifold learning,
and neural networks. In our work, we borrow ideas to learn
the radio geometry by constructing a data tensor recording
the average received power of beams on few positions. The
average received power tensor is recovered by the proposed
tensor completion, hybrid noisy tensor completion (HNTC),
exploiting the low-rank structure of the channel sparsity and
the smoothness from the spatial correlation.

A. Related Work

Real world data often exhibit various structural properties,
which enable reconstruction from sparse samples [24], [25].
In the two-dimensional (2D) data structure (matrix), rank is
a powerful factor capturing the global information. Low-rank
matrix approximation has been intensely investigated [25]–
[29], and various algorithmic approaches capable of estimating
missing values have been developed. In [25], [26], the nuclear
norm has been shown as the tightest convex envelope for the
matrix rank function; and an efficient algorithm, singular value
thresholding (SVT), was proposed. In [27], [28], the authors
showed that the rank minimization problem can be solved by
minimizing the nuclear norm under certain conditions, which
justified the validity of using nuclear norm as the surrogate of
the rank function theoretically. Low-rank matrix completion
with noisy data is investigated in [29]. Smoothness [30], [31]
is also an important feature aiding the matrix completion. The
work [30] considered total variation as the objective function
for the matrix completion problem. In [31], the authors ex-
ploited both the low-rank and smoothness simultaneously for
the matrix completion.

In addition to the matrix approximation, there are works de-
veloped for tensors, which are higher dimensional extensions
of matrices. Tensor completion has gained attention recently
due to its multidimensional character in describing intricate
datasets, with many applications. Most works developed the
tensor completion approaches for image processing because
the image color is composed of red/green/blue, which makes
tensor a suitable structure. Recently, various models have
been used for tensor completion including Tucker rank [24],
[32]–[35], canonical decomposition/parallel factors (CANDE-

COMP/PARAFAC) rank (also known as CP rank) [35], [36],
and total variation (TV) [34], [36], [37]. TV tensor completion
takes advantage of the data smoothness, and the remaining
models exploit the low-rank of the tensor. However, computing
the rank of the tensor is an NP hard problem [38], so the best
model for low-rank tensor approximation generally does not
exist. A suitable solution for tensor completion depends on the
application.

Tensor completion algorithms using both low-rank and
smoothness are investigated in [34], [36]. The work [34]
formulated the problem considering the low Tucker rank and
data smoothness of the tensor model; and an algorithm, LRTV-
PDS, was proposed using the primal-dual splitting approach.
In [36], the authors proposed an algorithm, SPCTV, based on
the low CP rank with the smoothness constraint. The works
[34], [36] considered the low-rank property and the smooth-
ness consistent on all dimensions. However, the properties of
the tensor dimensions are based on the assumed structural
properties. It is possible that the low-rank property only exists
in some dimensions, and the data of the remaining dimensions
are smooth. Moreover, the tensor completion problem with
noisy data is investigated in [34]. In this work, we seek to
devise a noisy tensor completion algorithm which exploits the
low-rank and smoothness properties on separate dimensions
for noisy measurement data.

B. Contribution

We develop a new tensor completion algorithm, HNTC, to
enable fast and accurate MIMO beam training. To chart the
MIMO channel conditions in the service area, we construct
a data tensor by collecting the received power on a subset
of positions and beams. The data tensor has the dimensions
corresponding to the positional and beam information, respec-
tively. Using the sparsity of MIMO channels [3], [4], [6],
the data tensor exhibits the low-rank property in the beam
dimensions. On the other hand, the spatial correlation of the
channel induces smoothness across the position dimension of
the data tensor. To account for noise in the received signal
and random fluctuations in the channel, we formulate the data
recovery as a noisy tensor completion problem considering
locally low-rank and spatial smoothness in distinct dimensions,
which is a convex optimization problem with a noise inequality
constraint.

The contributions of the paper are detailed as follow:
• We propose a tensor completion algorithm, HNTC, that

uses the low-rank and smoothness properties across the
different dimensions in the data to reconstruct channel
properties from noisy measurements.

• We develop an online version of HNTC using warm-start.
• We propose a position-aided beam recommendation algo-

rithm for fast and accurate MIMO beam-training, beam
subset selection (BSS), which uses the tensor completed
via HNTC to recommend a small subset of beams to train.

• We propose a grouping-based BSS (G-BSS) algorithm to
combat the effect of errors in positional information.

The rest of the paper is organized as follows. Section II
reviews the preliminaries on tensor completion. Section III
introduces a data-driven approach for learning the channel
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conditions, which motivates a new noisy tensor completion
problem. Section IV-A proposes the algorithm HNTC aided
by alternating direction method of multipliers (ADMM) [39],
and Section IV-B introduces online HNTC. Section IV-C
discusses the computational complexity. Section V evaluates
the performance of HNTC and position-aided beam-alignment.
Section VI concludes the paper.

II. PRELIMINARIES ON TENSOR COMPLETION

Tensors are commonly used in many areas of engineering
and science [40], but they have received only limited interest
in communication theory. In the following, we introduce the
tensor notation and terminology used throughout the rest of
the paper.
A. Notations

Bold uppercase letters X denote matrices, and calligraphic
letters X represent tensors. X ⊗Y is the Kronecker product
of X and Y. An M -th order tensor is defined as X ∈
RI1×I2×...×IM , with M being the number of dimensions (a
matrix can be interpreted as a second order tensor). Given an
M -th order tensor X , we denote its i1:M = (i1, i2, . . . , iM )-th
element as X (i1:M ) = X (i1, i2, . . . , iM ). The inner product
of two tensors X ,Y ∈ RI1×...×IM is defined as

〈X ,Y〉 ,
∑
i1:M

X (i1:M )Y(i1:M )

and the Frobenius norm of X is denoted by ‖X‖F ,√
〈X ,X〉. The mode-m unfolding (or the mode-m matriciza-

tion) of a tensor X is the matrix X(m) ∈ RIm×JM+1 with
entries X(m) (im, j) = X (i1:M ), ∀i1:M , where

j = 1 +
M∑

k=1,k 6=m

(ik − 1)Jk,

with Jk =
∏k−1
d=1,d6=m Id. The inverse operation of folding

recovers the original tensor from its unfolded representation,
and is denoted as foldm(X(m)) , X .
B. Preliminaries

The low-rank tensor completion is a natural extension of
low-rank matrix completion to more than two dimensions.
Given an M -th order incomplete tensor T with Ψ as the
indices of known elements, the low-rank tensor completion
problem is formulated as

min
X

rank(X ) s.t. XΨ = TΨ, (1)

where rank(X ) is the smallest number of rank-one tensors
needed to sum together to construct X (also known as CP
rank), which is an analogue to the definition of matrix rank
[40]. Here, a tensor X ∈ RI1×···×IM is rank-one if it can be
expressed as the outer product of M vectors, ad ∈ RId×1, d =
1, . . . ,M , so that X (i1, i2, · · · , iM ) =

∏M
d=1 ad(id) [40].

However, finding the rank of a specific tensor is an NP-
hard problem [38], and the best rank approximation may not
exist [41]. For this reason, alternative definitions of rank have
been used in the literature. A well developed definition is the
Tucker rank [40], defined as the rank of the unfolding matrices,

rank(X(n)), n = 1, . . . ,M . The work [24] defined the tensor
nuclear norm as a weighted sum of the Tucker ranks of all the
unfolding matrices:

‖X‖∗ =
M∑
k=1

αk‖X(k)‖∗, (2)

where the constant coefficients αk > 0 and
∑M
k=1 αk = 1;

and then proposed the low-rank tensor completion problem as

min
X

M∑
k=1

αk‖X(k)‖∗ s.t. XΨ = TΨ. (3)

The high accuracy low-rank tensor completion (HaLRTC)
method [24] was proposed to solve (3) via ADMM.

Smoothness has been considered a useful property to aid
matrix completion [31], especially with high ratio of missing
elements. In [31], the authors proposed a combination of low-
rank and smoothness minimization for the matrix completion,
termed the linear total variation approximate regularized
nuclear norm minimization problem (LTVNN). Given an in-
complete matrix M with Ω as the indices of known elements,
the completion problem is formulated as

min
X
‖X‖∗ + γ‖X‖LTV , s.t. XΩ = MΩ, (4)

where γ is the trade-off factor between low-rank and smooth-
ness, and ‖X‖LTV is the linear total variation, defined as

‖X‖LTV =
∑
i,j

δ2
1(X(i, j)) + δ2

2(X(i, j)), (5)

where δ1(X(i, j)) ≡ X(i+ 1, j)−X(i, j) and δ2(X(i, j)) ≡
X(i, j + 1) −X(i, j). This optimization problem (4) can be
solved with the ADMM method [39].

For the tensor completion, there were previous works [34],
[36] considering both low-rank and smoothness minimization.
The work [34] proposed the algorithm considering low Tucker
rank model with data smoothness, called LRTV-PDS. In [36],
the tensor completion is based on the low CP rank with
the smoothness on the CP components. However, the low-
rank property and the smoothness are not always consistent
through all dimensions. In this work, we seek to estimate
the missing entries of a tensor which exhibits the low-rank
property in some dimensions, and the smoothness property in
the remaining dimensions.

III. MOTIVATING EXAMPLE

In this section, we provide a wireless channel learning
framework which motivates a noisy tensor completion prob-
lem. The objective is to provide an approach to portray the
map-based wireless channel conditions over the service area.
In Section III-A, we introduce the map-based channel model
[42]. In Section III-B, we introduce the cloud-based position-
aided beam recommendation approach. In Section III-C, we
explain the collection of channel measurements, which are
post-processed and recorded along with the side information,
constructing a data tensor. In Section III-D, we describe our
proposed cloud-based approach for MIMO beam training.
We further investigate the inherent properties of the data
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Fig. 1. Network layout of the considered scenario. A BS services the mobile
UE at GPS g in the service area G.

measurements, which motivate the design of our proposed
tensor completion problem, HNTC.

A. Wireless System Model and Problem Description

We consider a wireless network supporting a geographic
region, as depicted in Fig. 1. A base station (BS) serves mobile
UEs in a service area G ⊂ R2, modeled as a compact set. We
assume the BS is at a fixed position and height, and employs
an antenna array with Mr antennas with fixed orientation. We
consider a reference UE, whose position at time k is denoted as
g(k) ∈ G, which employs an antenna array with Mt antennas,
with time-varying orientation.

We consider an uplink system to be suitable for data
collection since we expect to collect and exploit the measured
data from the UE at possible positions in the service area. Due
to the channel reciprocity, the collected data can also operate
in the downlink; in this case, the signal strength received at
the UE needs to be fed back to the BS. The UE transmits an
Mt × 1 signal vector x[k] at timeslot k, yielding the Mr × 1
received signal vector

y[k] = H[k]x[k] + n[k], (6)

where H[k] is an Mr × Mt narrowband channel matrix of
the UE experienced at time k, and n[k] ∼ CN (0, σ2

nI) is an
Mr × 1 noise vector. Generally, the channel H[k] depends on
the positions of the BS and UE, the antenna setup (orientation
and design) of the BS and UE, and the scattering clusters
in the environment and may vary over time as a result of
dynamics in the propagation environment, such as fading and
mobility of clusters, mobility of the UE and changes in the
orientation of the UE’s antenna array. However, it exhibits
some patterns which depend on the UE position g(k). In this
paper, we are interested in developing a data-aided framework
that exploits these position-dependent patterns to aid the beam-
training procedure.

The BS receives the signal with the unit-norm combining
vector w ∈ W taking values from the BS codebook W , the
UE employs a unit-norm beamforming vector f ∈ F taking
values from the UE codebook F . The transmit signal can then
be expressed as

√
Ptf · s, where Pt is the transmit power, and

s = [s1, . . . , sQ] is the known training sequence vector with
norm

√
Q. After signal combining at the receiver with the unit-

norm combining vector w ∈ W , the received signal vector can
be expressed as

ỹ[k] =
√
Ptw

HH[k]f · s + ñ[k], (7)

where the received noise vector ñ[k] ∼ CN (0, σ2
nI). The

received signal power can be expressed as

r[k] = |ỹ[k]sH |2 = |
√
Ptw

HH[k]f ·ssH + n̂[k]|2. (8)

where n̂[k] = ñ[k]sH is a zero-mean complex Gaussian noise
with variance σ2

nssH .
We assume the use of uniform planar arrays (UPAs) [4]

at the BS in this work. However, the framework presented
in this paper can be applied to any codebook design, not just
UPAs. The UPA codebook can be described by the parameters
(Cy, Cz, Cθ, Cφ), where (Cy, Cz) are the number of antennas
in the y and z directions with half wavelength antenna spacing,
and (Cθ, Cφ) are the number of quantized beams along the
elevation and azimuth angular directions. The array response
vector representing a beam pointing in the elevation angle
θ ∈ [−π/2, π/2) and the azimuth angle φ ∈ [−π/2, π/2)
is denoted as

a(θ, φ) =
1√
CyCz

[
1 ejΩz · · · ej(Cz−1)Ωz

]T ⊗[
1 ejΩy · · · ej(Cy−1)Ωy

]T
,

(9)

with Ωz=π sin θ sinφ, Ωy=π sin θ cosφ. To construct the UPA
codebook, θu and φv are uniformly quantized in [−π/2, π/2)
with resolution π/Cθ and π/Cφ as

θu = −π
2

+ (u− 1)× π

Cθ
, u = 1, . . . , Cθ, (10)

φv = −π
2

+ (v − 1)× π

Cφ
, v = 1, . . . , Cφ. (11)

We index the beamforming vectors in the codebook as

K ≡ {(u, v) : u = 1, · · · , Cθ, v = 1, · · · , Cφ},

and we denote the beamforming vector wu,v indexed by
(u, v) ∈ K.

In this work, we aim to provide a channel learning frame-
work covering the service area in the wireless network. With
the framework, we are able to provide a set of candidate
beams to do the channel estimation for the UE at any possible
position. To the best of our knowledge, the map-based channel
model can only be acquired by real channel measurements,
or by simulation via ray-tracing software which simulates the
propagation environment. To attain our objective upon these
facts, we should do the channel measurements or ray-tracing
on every possible positions, as assumed in the state-of-the-
art [17], which is impractical in a real system due to the
prohibitively large overhead. To address the challenge, we
propose an efficient data-driven approach to learn the channel
conditions of the whole service area with limited number of
channel measurements.

B. Cloud-Based Position-Aided Beam Alignment

The idea of this approach is to provide a set of candidate
beams at a give UE position. Since the overhead of the con-
ventional beam-sweeping approach is unacceptable (it scales
up with |W| · |F| and is typically very large), our objective
is to design a learning algorithm that recommends a small
subset S ⊂ W of beams to train at the BS, which is likely to
contain the best BS beam (the one with the largest received
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Fig. 2. Cloud-based position-aided beam alignment protocol.

signal power). Thus, the training overhead can be reduced to
|S| · |F|.

In Fig. 2, we introduce the flow diagram of the cloud-based
position-aided beam alignment. In Step 1, the UE initiates the
uplink transmission request with its current GPS coordinate
g(k) to the BS using sub-6 GHz control channels. This
information is available via a suite of sensors such as GPS
[20], [21]. In Step 2, the BS forwards the GPS coordinate g(k)
to the cloud, which processes the learning algorithm to provide
the recommended beam set S to train at the BS. Note that,
in order to provide robustness against different UE antenna
designs (such as UPAs with different number of antennas
and configurations) and temporal dynamics in UE antenna
orientation, our proposed algorithm recommends the beam-
training set S only on the BS side (whose antenna has a fixed
position and orientation), but does not recommend a beam-
training set on the UE side, so that the UE is required to scan
all possible beamforming vectors in F to acquire the best one
to be used for data communication. Feedback-based beam-
training schemes such as [7]–[9], or schemes that leverage
the mobility of the UE such as [43], can be used to further
reduce the training overhead, but the analysis of this case is
out of the scope of this paper. In Step 3, the UE transmits a
sequence of |S| · |F| known signals, where the BS receives the
signals with the beam pairs {(w, f) : w ∈ S, f ∈ F}. Then,
the BS selects the best (w∗, f∗) among all candidate beam
pairs ranked by the received power. In Step 4, the BS feeds
back the selected UE beamforming vector f∗ to the UE. In
Step 5, the UE communicates with the BS using the selected
beam pair (w∗, f∗) for the subsequent uplink or downlink data
transmission.
C. Data Model

Here, we describe how we collect the channel measure-
ments, and store the information in the database. Let Ḡ =
[X0, Xend] × [Y0, Yend] be a rectangular region containing
the service area G. We discretize Ḡ with resolution ∆s, thus

defining the discrete GPS coordinates g = (gx, gy) ∈ Ḡ.
Then, we define the position labels p = (px, py) with px ∈
{1, · · · , Lx} and py ∈ {1, · · · , Ly}, where Lx =

⌈
Xend−X0

∆s

⌉
and Ly =

⌈
Yend−Y0

∆s

⌉
are the number of points in the x and y

axes, and dxe is the ceiling function. The function ρ(g) maps
the coordinate g ∈ Ḡ to the closest discretized position label
p as

p = ρ(g) =

(
1 +

⌊
gx −X0

∆s

⌉
, 1 +

⌊
gy − Y0

∆s

⌉)
, (12)

where bxe denotes the nearest integer to x.

During the data collection, the BS measures the received
power, using the UE’s current position and beam as side
information. To do so, the BS receives the signal using an
arbitrary combining vector wu,v ∈ W indexed by (u, v) ∈ K,
whereas the UE performs the beam-training exhaustively over
the UE beamforming set F ; with the UE in the discretized
position p = ρ(g(k)), the strongest received signal power is
then denoted as

r
(p,u,v)
k = max

fi∈F
i=0,...,|F|−1

|
√
Ptw

H
u,vH[k+ i]fi+ n̂[k+ i]|2, (13)

where H[k] is the uplink MIMO channel of the UE at timeslot
k, and n̂[k] is the received noise at timeslot k. We assume
that, during this process, the discretized UE position does not
change, i.e. ρ(g(k+ i)) remains fixed ∀i = 0, . . . , |F|−1. The
received signal power r(p,u,v)

k at timeslot k, along with the
side information p (UE discretized position) and (u, v) (BS
beamforming index), is then recorded in the database, with the
procedure described below.

The BS might collect multiple measurements on a given
combination of position p and combining vector wu,v . There-
fore, the cloud database stores an average of the measurements
collected. Moreover, to enable adaptation in non-stationary
environments, it computes a weighted average which discounts
past measurements. To this end, let χ(p,u,v)

k ∈ {0, 1} be an
indicator variable, equal to one if and only if a measurement
is collected at time k in the discretized position p on the
combining vector wu,v . Let r̄(p,u,v)

k be the corresponding
weighted received power stored in the database at time k

(initially, r̄(p,u,v)
0 = 0). This is computed as

r̄
(p,u,v)
k =

∑k
`=0 α

`χ
(p,u,v)
k−` r

(p,u,v)
k−`∑k

`=0 α
`χ

(p,u,v)
k−`

, (14)

where α ∈ (0, 1] is a discount factor which enables adaptation
to non-stationary environments. In the stationary-case, one
can set α = 1 and (14) yields the sample average of past
measurements. In addition to r̄(p,u,v)

k , the database stores also
the weighted number of past measurements collected on a
given position and beam, denoted as N̄ (p,u,v)

k and given by

N̄
(p,u,v)
k =

k∑
`=0

α`χ
(p,u,v)
k−` , (15)

which yields the total number of measurements collected up
to time k in the stationary case (α = 1). In fact, the average
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received power r̄(p,u,v)
k is a noisy estimate of the expected

signal power, and the variance of this measurement typically
decreases with the number of measurements. In case of N
i.i.d. measurements, the variance decreases by a factor 1/N .
Therefore, the term N̄

(p,u,v)
k will be used to track the accuracy

of the received power estimates stored in the database, and will
be used in the noisy tensor completion algorithm developed
in the next section.

Note that (14) and (15) can be computed in an online
fashion, without requiring to store all past measurements. In
fact, upon collecting a new measurement r(p,u,v)

k+1 in position
p using the combiner wu,v at timeslot k + 1, (14) and (15)
can be updated as

N̄
(p,u,v)
k+1 = αN̄

(p,u,v)
k + χ

(p,u,v)
k+1 , (16)

r̄
(p,u,v)
k+1 = r̄

(p,u,v)
k +

χ
(p,u,v)
k+1

N̄
(p,u,v)
k+1

(
r

(p,u,v)
k+1 − r̄(p,u,v)

k

)
, (17)

which are updated in the database along with the side in-
formation, including the UE position p and the index of BS
combining vector (u, v), as in TABLE I.

TABLE I
DATABASE FORM

px py u v r̄(p,u,v) N̄ (p,u,v)

1 1 1 4 5.2 3
1 2 4 5 6.1 1
...

...
...

...
...

...

We represent the average receive power as a fourth order
tensor in RLx×Ly×C

r
θ×C

r
φ :

T (p, u, v) =

{
r̄(p,u,v), (p, u, v) ∈ Ψ,
0, otherwise,

(18)

where Ψ is the set of observed combinations of positions
and BS codewords stored in the database and the unobserved
entries (p, u, v) /∈ Ψ are set to zero. Moreover, the weighted
number of measurements for all positions and BS codewords
are recorded as a fourth order tensor in RLx×Ly×C

r
θ×C

r
φ :

V(p, u, v) = N̄ (p,u,v), (19)

which can be updated in an online fashion as new measure-
ments are collected, as described previously. It is impractical
to collect the measurements with all combinations of positions
and BS codewords into the database due to the limited sam-
pling resource and non-stationarity of the propagation envi-
ronment which causes past measurements to become outdated.
Therefore, some positions possibly have no representation in
the database. Even in the observed positions, there might be
only a limited number of BS codewords’ information recorded.
Thus, the data tensor T may be highly incomplete.

D. What do we do with the data?

Our goal is to recommend a set of Ntr candidate beams for
the BS to train based on UE position. If the UE is in a position
p represented in the database, and the measurements with all
beams available, then this task can be easily accomplished by
recommending the Ntr beams with highest average received

power in the given position. Otherwise, we are required to de-
sign an algorithm based on tensor completion that employs the
knowledge of limited number of beams’ information at UE’s
neighboring positions to provide the beam recommendation.

To address the issue, given the data tensor T (18) and the
measurement tensor V (19), we formulate the noisy tensor
completion problem as

arg min
X

∑
px,py

‖X (px, py, :, :)‖∗ + γ
∑
u,v

S (X (:, :, u, v)) (20)

s.t.
∑
ψ

W(ψ) (T (ψ)−X (ψ))
2 ≤ η, (21)

where γ is the trade-off parameter between the smoothness
property across the positional dimensions and the low-rank
property across the beam dimensions. The smoothness func-
tion S(X ) measures the difference between the values of
adjacent elements in X . The minimizer tensor X ∗ is the
reconstructed tensor. The tensor W is the weighting tensor,
with elements W(ψ) = V(ψ)/

∑
ψ′ V(ψ

′
) associated to the

entry ψ. For an unobserved element ψ, W(ψ) = 0, so that
the corresponding entry has no contribution to the error term
(21). The inequality constraint (21) originates from the noisy
measurements, and induces an upper bound η on the weighted
sum of the mean square error between X and T , which
provides additional flexibility to the observed elements. The
noiseless tensor completion is a special case when η = 0.
Note that tensor entries associated to more measurements
(larger V(ψ)) are associated a larger weight (W(ψ)), so they
contribute more to the squared error term (21). In fact, this is
a desirable feature since the variance of the sample averaged
receive power decreases with the number of measurements.

The first term of the objective function (20) represents the
low-rank property of the measurement data. For each position,
the channel sparsity of mmWave propagation dictates that
only few combinations of beams lead to significant signal
measurements, which imposes the low-rank property to the
collected measurement data tensor in the beam dimensions.
However, the tensor completion with low-rank alone often
fails to provide predictions on unobserved positions due to
the dependence on the sampling set, especially in the case
with high ratio of missing elements. The smoothness can be
considered to support the data recovery. Regarding the second
term of the objective function (20), it quantifies the smoothness
of the measurement data. The spatial coherence of the channels
in adjacent positions can be exploited to learn the channel
conditions. The received power measured using a certain beam
exhibits spatial correlation, so that the corresponding data
tensor exhibits smoothness across the positional dimensions.

The low-rank property across the beam dimensions and the
smoothness property across the positional dimensions will be
exploited to develop the HNTC algorithm in the next section.

IV. HYBRID NOISY TENSOR COMPLETION

In the previous section, we introduced a data-driven ap-
proach to capture the channel conditions by constructing a data
tensor as in (18), containing the position and BS codeword
as the side information. In a wireless network, the UEs are
possibly equipped with different antenna designs. To enable
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our proposed approach on a variety of UE antenna designs,
we construct the data tensor by collecting the received signal
power under the best UE beam. Besides, the channel is time-
varying in the propagation environment, so we record the
weighted average received power in the data tensor to learn
some structures preserved over time. However, due to the
limited sampling resources, the collected data tensor might be
highly incomplete, so it is crucial to devise an algorithm for
the tensor completion problem that exploits both low-rank and
smoothness properties across separate dimensions. The noise
effect is also an important factor to be considered since the
signal in wireless systems is inevitably contaminated.

Section IV-A formulates a noisy tensor completion problem,
and then proposes the algorithm, HNTC, to solve the tensor
completion problem using the ADMM method. Section IV-B
proposes the online HNTC, and Section IV-C discusses the
computational complexity.

A. Proposed Noisy Tensor Completion

We propose a completion problem for recovering an incom-
plete data tensor, using the assumption that a portion of the
dimensions have the smoothness property and the remaining
dimensions are low-rank. As motivated in the previous sec-
tion, we consider a tensor T ∈RI

s
1×···×I

s
n1
×I`1×···×I

`
n2 which

separates its dimensions into two partitions. The first n1

dimensions are smooth and the last n2 dimensions have the
low-rank property. It means that the n1-th order subtensor
obtained by fixing the indices of the last n2 dimensions,
T (:, · · · , :, i1:n2

) ∈ RI
s
1×···×I

s
n1 , is a smooth tensor; and the

n2-th order subtensor obtained by fixing the indices of the
first n1 dimensions, T (i1:n1

, :, · · · , :) ∈ RI
`
1×···×I

`
n2 , is low-

rank. We use the following smoothness metric.

Definition 1. The linear tensor total variation (LTTV) of the
tensor B ∈ RI1×···×IM , quantifying the smoothness of the
tensor B, is defined as

LTTV(B) =
∑
i1:m

M∑
d=1

[δd(B(i1:m))]
2
,

where δd(B(i1:M )) = B(i1:M +ed)−B(i1:M ), ed is the vector
of zeros except in the d-th position in which it is equal to 1.

Note that LTTV(B) is a natural extension of linear total
variation (LTV) [31] to tensors, which accumulates the element
squared differences of B along every dimension.

Assuming an incomplete tensor T and the associated tensor
V representing the number of measurements collected on each
entry, the goal is to estimate the missing elements in T by
solving

arg min
X

∑
i1:n1

n2∑
k=1

αk

∥∥∥{X (i1:n1
, :, · · · , :)}(k)

∥∥∥
∗

(22)

+ γ
∑
i1:n2

LTTV (X (:, · · · , :, i1:n2
))

s.t.
∑
ψ

W(ψ) (T (ψ)−X (ψ))
2 ≤ η, (23)

where γ is the trade-off parameter between the smoothness
property across the first n1 dimensions and the low-rank prop-
erty across the remaining n2 dimensions, and the constraint
(23) accounts for the noise in the tensor T . Note that this
formulation employs the tensor nuclear norm defined in (2),
and the term {X (i1:n1

, :, · · · , :)}(k) is the mode-k unfolding

of X (i1:n1 , :, · · · , :) ∈ RI
`
1×···×I

`
n2 . The tensor W is the

weighting tensor, with elements W(ψ) = V(ψ)/
∑
ψ′ V(ψ

′
)

associated to the entry ψ. The minimizer tensor X ∗ is the
reconstructed tensor. The proposed HNTC optimization prob-
lem is convex, since it is a linear combination of the tensor
nuclear norm (convex, see (3)) and the LTTV (quadratic
and convex, see Definition 1), and the inequality constraint
is also a convex quadratic function. The problem (22) is a
general form of the tensor completion problem in (20), where
the positional information are associated with the smooth
dimensions, and the beam information are associated with the
low-rank dimensions. Note that the proposed HNTC problem
is a generalization of other state-of-the-art tensor completion
problems. By setting n1 = 0, we obtain the low-rank tensor
completion [24]; by setting n2 = 0, we obtain the linear tensor
total variation minimization of [31].

We use the ADMM technique [39] to solve (22). The
optimization problem is reformulated as

arg min
X ,{Yk}

n2
k=1

∑
i1:n1

n2∑
k=1

αk

∥∥∥{Yk(i1:n1 , :, · · · , :)}(k)

∥∥∥
∗

(24)

+ γ
∑
i1:n2

LTTV (X (:, · · · , :, i1:n2
)) +

n2∑
k=1

λ

2
‖(Yk −X )‖2F

s.t.
∑
ψ

W(ψ)(T (ψ)−X (ψ))2 ≤ η, (25)

X = Yk, k = 1, . . . , n2, (26)

where λ is a small fixed positive parameter. With ADMM,
we introduce the variables {Yk}n2

k=1 to separate the smooth
and low-rank dimensions of the tensor. The additional equality
constraints X = Yk, k = 1, . . . , n2 guarantee that (24) is
equivalent to the problem (22).

We introduce the Lagrangian multiplier Zk associated with
the k-th equality constraint (26), and µ associated with the
inequality constraint (25). The corresponding augmented La-
grangian function is expressed as

L
(
X , {Yk}n2

k=1, {Zk}
n2

k=1, µ
)

=

n2∑
k=1

{∑
i1:n1

αk

∥∥∥{Yk(i1:n1
, :, · · · , :)}(k)

∥∥∥
∗

+

〈
Zk,Yk −X

〉
+
λ

2
‖Yk −X‖2F

}
+ γ

∑
i1:n2

LTTV (X (:, · · · , :, i1:n2
))

+ µ

∑
ψ

W(ψ)(T (ψ)−X (ψ))2 − η

 . (27)
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The ADMM algorithm is implemented by minimizing L over
X ,Yk and then updating the Lagrangian multipliers Zk and µ
in an iterative fashion as

Xt+1 = arg min
X

L (X , {Yk,t}n2

k=1, {Zk,t}
n2

k=1, µt) ; (28)

Yk,t+1 = arg min
Yk

L (Xt+1, {Yk}n2

k=1, {Zk,t}
n2

k=1, µt) ,

∀k = 1, . . . , n2; (29)
Zk,t+1 = Zk,t + β1 (Yk,t+1 −Xt+1) , ∀k = 1, . . . , n2; (30)

µt+1 =

µt + β2

(∑
ψ

W(ψ)(T (ψ)−Xt+1(ψ))2 − η
)+

;

(31)

where β1 is the step-size for updating Zk, β2 is the step-size
for updating µ, and (µ)+ = max(µ, 0) is the projection of µ
onto R+.

To optimize X , we minimize L with fixed {Yk,t}n2

k=1,
{Zk,t}n2

k=1, and µt, yielding

Xt+1 = arg min
X

n2∑
k=1

{
λ

2
‖Yk,t −X‖2F + 〈Zk,t,Yk,t −X〉

}
+ γ

∑
i1:n2

LTTV (X (:, · · · , :, i1:n2
))

+ µt
∑
ψ

W(ψ)(T (ψ)−X (ψ))2. (32)

To solve (32), we consider the optimization problem for
each i1:n2

, separately. For a given i1:n2
, we define the sub-

tensor X̂ = X (:, · · · , :, i1:n2
), Ŷk,t = Yk,t(:, · · · , :, i1:n2

),
Ẑk,t = Zk,t(:, · · · , :, i1:n2

). For the data tensor, we define
the subtensor T̂ = T (:, · · · , :, i1:n2), Ŵ = W(:, · · · , :, i1:n2).
Then, the optimization problem can be reformulated as

arg min
X̂

n2∑
k=1

{
λ

2
‖Ŷk,t − X̂‖2F + 〈Ẑk,t, Ŷk,t − X̂ 〉

}
(33)

+ γLTTV
(
X̂
)

+ µt
∑
ψ

Ŵ(ψ)(T̂ (ψ)− X̂ (ψ))2.

Since the objective function is a quadratic function of X̂ , we
compute the derivative of (33) with respect to each element in
X̂ and set it equal to zero, yielding the system of equations〈

Ai1:n1 , X̂
〉

+ 2µtŴ(i1:n1
)
(
X̂ (i1:n1

)− T̂ (i1:n1
)
)

=

n2∑
k=1

{
λŶk,t(i1:n1) + Ẑk,t(i1:n1)

}
, ∀i1:n1 , (34)

where Ai1:n1 ∈ RI
s
1×···×I

s
n1 is defined in (35). There are∏n1

d=1 I
s
d unknowns and

∏n1

d=1 I
s
d linear equation, so that the

subtensor X̂ can be found by solving the linear system in (34).
Note that the linear independence of the system of equations

depends on the measurement data and may not be guaranteed,
so that the solution may not be unique (in this case, it can be
found using the Moore-Penrose pseudo-inverse).

The minimization of L over Yk with fixed Xt+1, {Zk,t}n2

k=1,
and µt can be formulated as

Yk,t+1 = arg min
Yk

∑
i1:n1

{
αk

∥∥∥{Yk(i1:n1
, :, · · · , :)}(k)

∥∥∥
∗

+
λ

2

∥∥∥{{Yk − (Xt+1 −
Zk,t
λ

)}
(i1:n1

, :, · · · , :)
}

(k)

∥∥∥∥2

F

}
.

For a given i1:n1
, we define X̃t+1 = Xt+1(i1:n1

, :, · · · , :), Ỹk =
Yk(i1:n1

, :, · · · , :), and Z̃k,t = Zk,t(i1:n1
, :, · · · , :). Thus, we

reformulate the problem as

arg min
Ỹk

αk

∥∥∥∥{Ỹk}(k)

∥∥∥∥
∗

+
λ

2

∥∥∥∥{Ỹk−(X̃t+1−
Z̃k,t
λ

)}
(k)

∥∥∥∥2

F

.

This problem is shown to be strictly convex [25], and the
solution is given by singular value thresholding. The update
can be written as

Ỹk = foldk

Dαk
λ

{X̃t+1 −
Z̃k,t
λ

}
(k)

 , (36)

where Dτ is the soft-thresholding operator. For a matrix A
with singular value decomposition (SVD) A = UΣVH ,
where Σ = diag(σ1, . . . σr), this operation is defined as
Dτ (A) = UDτ (Σ)VH , Dτ (Σ) = diag({max{σi − τ, 0}}).
With the update of Ỹk = Yk(i1:n1 , :, · · · , :) for each i1:n1 , the
updated Yk,t+1 can thus be completed.

Then, we update the Lagrangian multipliers Zk and µ as
in (30) and (31). With the convergence of ADMM [39], the
iteration approaches the primal feasibilities in (25) and (26),
and we set the stop criteria as

n2∑
k=1

‖Xt − Yk,t‖F < ε, (37)

where ε is a constant threshold, and∑
ψ

W(ψ)(T (ψ)−Xt(ψ))2 − η ≤ 0. (38)

The ADMM algorithm iteratively updates X , {Yk}n2

k=1,
{Zk}n2

k=1, and µ until the stop criteria (37) and (38) are
satisfied. It follows that ‖Zk,t+1 − Zk,t‖F = β1‖Yk,t+1 −
Xt+1‖F → 0, which guarantees the convergence of Zk.
The non-positive inequality constraint

∑
ψW(ψ)(T (ψ) −

Xt(ψ))2 − η ≤ 0, and the projection (·)+ guarantee the
convergence of µ. HNTC is shown in Algorithm 1.

Ai1:n1 (̂i1:n1) =

 n2 · λ+ 2γ
∑n1

k=1{δ(ik > 1) + δ(ik < Isk)} , if î1:n1 = i1:n1 ,

−2γ , if ‖̂i1:n1 − i1:n1‖2 = 1,
0 , otherwise.

(35)
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Algorithm 1 Hybrid Noisy Tensor Completion (HNTC)
Input: incomplete data tensor T , and weighting tensor W
Output: Tc

1: Initialization Xt = {Yk,t}n2

k=1 = T , {Zk,t}n2

k=1 = 0,
µt = 0, εt = ιt =∞

2: while εt > ε or ιt > 0 do
3: for i1:n2

∈ [1, I`1]× · · · × [1, I`n2
] do

4: Xt+1(:, · · · , :, i1:n2
) = X̂ ;

5: (X̂ is obtained by solving (34))
6: end for
7: for i1:n1 ∈ [1, Is1 ]× · · · × [1, Isn1

] do
8: Yk,t+1(i1:n1 , :, · · · , :) = Ỹk, k = 1, . . . , n2;
9: (Ỹk is obtained by (36))

10: end for
11: Update Zk,t+1, k = 1, . . . , n2, by (30);
12: Update µt+1 by (31);
13: εt+1 =

∑n2

k=1 ‖Xt+1 − Yk,t+1‖F ;
14: ιt+1 =

∑
ψW(ψ)(T (ψ)−Xt+1(ψ))2 − η;

15: t := t+ 1;
16: end while
17: Tc = Xt

B. Online Hybrid Noisy Tensor Completion

Since the tensor completion problem (22) is a very large-
scale convex optimization problem, the computing overhead
for solving the problem would be quite high, which is chal-
lenging in a real-time system. For the first channel estimation
aided by HNTC, the high computing overhead is not harmful
because we can do the offline learning, which means that there
is a predefined period of time for building and completing
the data tensor before it is applied for the efficient channel
training. However, for the subsequent channel estimation using
HNTC, the data tensor necessitates doing the tensor comple-
tion again to provide new predictions exploiting the updated
data. Thus, the large computing overhead of tensor completion
would be impractical in real-time system.

To address this issue, we introduce the warm-start method
[39], which initializes the iterative method using the solution
obtained from the previous iteration. In HNTC, we apply an
iterative method to solve the completion problem. The rate of
convergence for this iterative method highly depends on the
initial points of the variables, X ,Yk,Zk and µ, in the Lagrange
function (27). The warm-start method aims to select the initial
points of the variables X ,Yk,Zk, µ close to the convergence
point based on the prior knowledge. For tensor X , the initial
point could be arbitrarily chosen since it is first updated in
the iterative algorithm and irrelevant to the initial point of X .
For tensors Yk,Zk and µ, we choose their initial points as
Yk,old,Zk,old and µold, which are obtained in the previous
iteration. Since the data tensor records the average received
power which captures the long-term channel conditions, the
recorded data are not expected to change drastically for each
data update. Therefore, the previous ADMM iteration often
provides an acceptable guess which leads to fewer iterations
than the one with random initialization. The performance of
the proposed online HNTC is evaluated in Section V-C.

C. Complexity Analysis

The computational complexity of HNTC is dominated
by the update of X and Yk. The update of X requires
matrix inversions to solve the linear equations in (34),
leading to a complexity of O

((∏n2

j=1 I
`
j

)
(
∏n1

m=1 I
s
m)

3
)

.
For the update of Yk, the SVD is used to perform
the soft-thresholding operation, with the complexity as
O
(

(
∏n1

m=1 I
s
m) maxk

(
(I`k)2 ·

∏n2

j=1,j 6=k I
`
j

))
[44].

V. NUMERICAL RESULTS AND EXAMPLE APPLICATIONS

We evaluate the performance of HNTC with data generated
by Quadriga [45]. We consider an uplink MIMO scenario
with carrier frequency fc using UPAs (as in (9)) having Mr

antennas at the BS, and Mt antennas at the UE. The scenario
mmMAGIC UMi NLOS is selected [45]. The simulation pa-
rameters are given in Table II. The network layout is depicted
in Fig. 1, containing one BS in position (0, 0)m at height 10m
UEs in the rectangular area G = [10m, 60m] × [−25m, 25m]
at height 1.5m. We consider 51 × 51 = 2601 reference GPS
coordinates uniformly located in the area G. In each of the
reference GPS coordinate, we collect the MIMO channel as
the ground truth data. The position labels are derived as in
(12) within the rectangular region Ḡ = G, with resolution
∆s = 5 m, so that the number of discretized positions in the
x and y coordinates are Lx = Ly = 11. Thus, for each position
label, we have around 2601

11×11 ≈ 21 channel measurements.

TABLE II
COMMON SIMULATION PARAMETERS

Parameter Symbol Value
Carrier frequency fc 58.68 GHz

BS antenna number Mr (Cry , C
r
z ) 256 (16, 16)

UE antenna number Mt (Cty, C
t
z) 16 (4, 4)

BS codebook size |W| (Crθ , C
r
φ) 256 (16, 16)

UE codebook size |F| (Ctθ, C
t
φ) 16 (4, 4)

The ground truth data representing the noiseless average
received power on all combinations of positions and BS
codewords is collected in a fourth order tensor Tavg ∈
RLx×Ly×C

r
θ×C

r
φ . We define the incomplete data tensor T

containing the measured data, along with the tensor V denoting
the number of measurements collected. In our numerical
evaluations, we vary the ratio of observed positions Kop =
Cop/(LxLy), where Cop denotes the number of observed
positions. Regarding the incomplete data tensor T , we make
Assumptions 1, 2 for the experiment setting.

Assumption 1. The observed positions p are randomly chosen
from Lx × Ly grid. For an observed position p′, the mea-
surements of the reference GPS coordinates corresponding to
position p′, {g : ρ(g) = p′, g ∈ Ḡ}, are observed.

Assumption 2. For each observed GPS coordinate g, only
the measurements of the top 10% beams (ranked by received
signal power) are stored in the database.

With these two assumptions, T is incomplete in both
positions’ and beams’ dimensions. We consider two kinds
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of collected measurement data: noise-free data and noisy
data. For noisy data, we assume that channel measurements
are collected with a beamforming signal-to-noise ratio at the
receiver SNRr = 20 dB. Given a MIMO channel H, SNRr

is defined as

SNRr = 10 log10

Pt‖H‖22
σ2
n

, (39)

where Pt is the transmit power, and σ2
n is the noise variance.

Note that the data of T may be unavailable in some
positions, which means no reconstruction on unknown po-
sitions is possible if we only consider the low-rank prop-
erty. To show the advantage of HNTC, we compare it with
existing tensor completion methods that use both low-rank
and smoothness during reconstruction, LRTV-PDS [34] and
SPCTV [36]. LRTV-PDS considers the low Tucker rank and
smoothness during tensor reconstruction; SPCTV is based on
the low CP rank prior with a smoothness constraint. Since
these approaches [34], [36] are originally designed for image
reconstruction, they consider the data tensor model with low-
rank and smoothness consistent through all dimensions, and
they assume noiseless measurements in SPCTV or noisy
measurements in LRTV-PDS; in contrast, HNTC considers
smoothness and low rank on the distinct dimensions, and
is designed for noisy measurements, by taking into account
the number of measurements as weighting contribution to the
squared-error term.

A. Prediction Accuracy Comparison

In Fig. 3, we evaluate the relative square error (RSE) of the
reconstructed tensor versus the observed position ratio Kop.
The RSE is defined as

RSE =
‖Tc − Tavg‖F
‖Tavg‖F

, (40)

where Tc is the reconstructed tensor and Tavg is the ground-
truth data tensor. In Fig. 3, the trend of RSE is monotoni-
cally decreasing with Kop. In fact, with more measurements
recorded in the database, the tensor completion algorithms
provide better reconstruction. We observe that HNTC outper-
forms both LRTV-PDS and SPCTV in RSE, which means
that HNTC provides a better tensor approximation to Tavg .
Given noise-free measurements on only 40% of any possible
positions, HNTC attains RSE= 0.57, as opposed to LRTV-
PDS with RSE= 0.64, and SPCTV with RSE= 0.68 in
the same configuration. For the noisy measurement data, the
RSE degrades drastically for all approaches. Given the noisy
measurement tensor on 40% positions, the prediction accuracy
attains RSE = 0.87 for HNTC, RSE = 1.17 for LRTV-PDS,
and RSE = 1.2 for SPCTV. However, HNTC is more robust
to noise than the state-of-the-art schemes, since it accounts for
noisy measurements as seen in (23).

B. Position-Aided Beam Recommendation

1) Recommendation Algorithm: For the position-aided
beam-recommendation in Section III-B, we illustrate the beam
subset selection (BSS) algorithm. With the completed tensor
Tc, we have the estimated received power of all receive beams
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Fig. 3. The RSE of prediction versus the ratio of observed positions (Kop).

at UE position p. If the number of trained beams is Ntr,
the construction of the recommended beam set is a subset
selection problem, that selects the Ntr beams with largest
estimated received power in the completed tensor Tc, as shown
in Algorithm 2.

Algorithm 2 Beam Subset Selection (BSS)
Input: completed tensor Tc, number of trained beams Ntr,

BS codebook W with indices K, UE GPS coordinate g
Output: recommended beam subset SNtr

1: Initialization S0 ← ∅
2: for n = 1 : Ntr do
3: (u∗, v∗) = arg max(u,v)∈K\Sn−1

Tc(ρ(g), u, v)
4: Sn ← Sn−1 ∪ (u∗, v∗)
5: end for

2) Performance of Proposed Beam-Alignment: Here, we
evaluate the performance of the position-aided beam recom-
mendation with HNTC, compared with the ones with LRTV-
PDS and SPCTV. Our formulation with tensor completion
allows prediction for unknown positions by exploiting spa-
tial correlation. However, the state-of-art approach [17] for
position-aided beam alignment uses only the prior knowledge
available at a given position, and is thus unable to make pre-
dictions in positions where the measurements are not available.
For comparison, we consider the type-B fingerprinting method
[17] by providing the recommended beam set based on the
closest position having available prior knowledge if the prior
measurements of UE position are not given. Moreover, we con-
sider the position-aided beam recommendation aided by BSS
with Tavg , called Genie-Aided. The Genie-Aided approach is
expected to have the best recommendation performance since
it uses ground truth data at all positions and beams.

First, we evaluate the power loss probability Ppl(Sp) versus
the percentage of trained beams Ktr = Ntr/|K|, where Ntr is
the number of trained BS beams and |K| is the total number
of BS beams. The set Sp is the recommended beam subset
at position p using BSS. To measure the beam alignment
accuracy for the recommended set Sp, we define the power
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Fig. 4. Power loss probability (Ppl(Sp)) versus the percentage of trained
beams (Ktr), with the observed position ratio Kop = 40%.

loss probability metric as

Ppl(Sp) = P
(

max
(u,v)∈Sp

r(p,u,v) < max
(u,v)∈K

r(p,u,v)
)
,

where r(p,u,v) is the received power defined in (13). The
power loss probability is averaged over the channels at the
GPS coordinates corresponding to all positions. In Fig. 4, we
evaluate the power loss probability versus the percentage of
trained beams with the observed position ratio Kop = 40%.
For the Genie-Aided approach, it attains Ppl(Sp) = 10% with
Ktr = 1.1%. With Ktr > 3% of trained beams, the Genie-
Aided approach can always recommend the beam set including
the best receive beam. For the noise-free measurement data
tensor, only 1.5% of the trained beams is required for HNTC
to attain Ppl(Sp) = 10%, as opposed to 4% for LRTV-PDS,
12% for SPCTV, and 18% for Type-B. The position-aided
beam alignment approach supported by tensor completion
(HNTC, LRTV-PDS, or SPCTV) outperforms the state-of-
the-art method (Type-B) since the tensor completion provide
accurate power prediction on the unavailable positions. With
the noisy measurement data tensor, the Ppl(Sp) supported by
our proposed approach (HNTC) is more robust than the ones
using LRTV-PDS, SPC-TV, and Type-B. This behavior is in
line with the improved performance of HNTC observed in
Fig. 3.

3) Spectral Efficiency: Next, we evaluate the spectral ef-
ficiency versus the receive SNR. We define the achievable
transmission rate as

R = B log2

(
1 + SNRr

‖wHHf‖2

‖H‖22

)
, (41)

where B is the bandwidth; SNRr is the receive beamforming
SNR defined in (39); w/f is the BS/UE beamforming vector;
H is the MIMO channel. The selected BS/UE beamforming
vector (w∗, f∗) is the best beam pair (ranked by received
power) chosen from S × F , where S is the BS beam set
recommended by BSS, and F is the UE codebook. Since
the set of beam pairs S × F is scanned exhaustively, the
resulting overhead is Ttrain = (|S| · |F| + 1)δS , where the
microslot duration δS = 10 µs is the time required to scan a
single beam. The fraction of time used for data transmission
is fcomm =

Tframe−Ttrain
Tframe

, where Tframe = 10 ms is the
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Fig. 5. Spectral efficiency ( fcomm×R
B

) versus the receive SNR (SNRr)
with (Kop,Ktr) = (40%, 2%).

frame duration. The spectral efficiency is defined as fcomm×R
B ,

which accounts for the loss due to the training overhead.
The proposed recommendation-based method is much more
efficient than a conventional exhaustive search method, where
all BS and UE beam pairs W × F are scanned. In fact, the
conventional exhaustive search cannot be implemented in our
considered scenario since its training overhead exceeds the
frame duration, Ttrain = (|W| · |F|+ 1)δS > Tframe, leaving
no time for data transmission.

In Fig. 5, we evaluate the spectral efficiency ( fcomm×RB )
versus SNRr with (Kop,Ktr) = (40%, 2%). The Genie-Aided
approach attains the largest spectral efficiency because it has
the smallest power loss probability Ppl(Sp) = 2.5% with the
support of available information on all possible positions. For
the noise-free measurement data and a reference SNRr =
20 dB, the spectral efficiency of HNTC is 4.16 bit/s/Hz, which
is better than the state-of-the-art approach (Type-B) with 3.35
bit/s/Hz. Besides, compared with the beam recommendation
aided by other tensor completion approaches, the spectral
efficiency of HNTC outperforms the one with LRTV-PDS by
0.13 bits/s/Hz, and the one with SPCTV by 0.43 bits/s/Hz.
For the compared approaches, the spectral efficiency with
the noisy measurement data is worse than the one with the
noise-free measurement data. However, our proposed HNTC
with noisy measurement data has almost the same spectral
efficiency as HNTC with noise-free measurement data. HNTC
is more robust because Ppl(Sp) with noisy measurement data
is still fairly low (< 10%) in this configuration (as shown
in Fig. 4), which is quite similar to Ppl(Sp) with noise-free
measurement data.

C. Evaluation of Online Hybrid Noisy Tensor Completion

We evaluate the performance of the online HNTC proposed
in Section IV-B with the warm start, compared with the one
without warm start. For the prediction accuracy, we observe
the RSE between the reconstructed tensor and Tavg and also
the number of iterations of ADMM for the convergence rate.
The noise-free measurement data tensor T is considered. For
the online updating scenario, at update instant 0, we consider
the initial ratio of observed positions Kop as Kini = 30%. We
assume that the measurements of Nupd = 5 new positions are
updated to the data tensor T in each subsequent update instant.
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Fig. 6. RSE and average number of iterations comparison between HNTC
with warm start and HNTC without warm start, (Kini, Nupd) =
(30%, 5).

For HNTC with warm start, we initialize the variables in
ADMM as the ones retrieved from the previous update instant.

In Fig. 6, for the RSE comparison, the HNTC with warm
start is close to the HNTC without warm start. In update
instant 0, the average number of iterations of both cases is
around 6.3 because there is no available prior information. For
the subsequent update instants, HNTC with warm start con-
verges in around 3.2 iterations, while HNTC without warm
start requires 6.3 iterations. The warm start method reduces
the computational complexity by converging in 50% fewer
iterations without compromising on the prediction accuracy.

D. Noisy Positional Information

Here, we investigate the influence of noisy positional in-
formation on the position-aided beam recommendation. In a
practical setting, the positional information is acquired via
the process of GNSS/GPS estimation [20], [21]. Due to the
mobility and estimation error, the obtained positional infor-
mation may be noisy, which would impair the performance of
the position-aided channel estimation. To model the positional
error, let E(d) = {x ∈ R2 : ‖x‖2 ≤ d} be a two dimensional
closed disk centered at the origin with radius d; we then model
the random error as e ∈ R2 uniformly distributed in E(d) [21].
The noisy spatial coordinate is defined as gr = g + e, where
g is the ground truth.

To alleviate the impairment of the noisy spatial coordinates,
we propose the grouping-based beam subset selection (G-BSS)
in Algorithm 3. Given the received noisy spatial coordinate
gr and error radius d, we collect all possible positions as a
set P = {ρ(g) : ‖g − gr‖2 ≤ ζd}, where ζ is a constant
coefficient. Note that the performance is influenced by the
selection of ζ, and we choose ζ = 0.4 in this work. Then, we
derive the subtensor R̄ = 1

|P|
∑

p∈P Tc(p, :, :), which contains
the predicted received power of each beam by averaging over
all possible positions in the set P . Finally, we use the tensor
R̄ to provide the beam recommendations for the UE.

In Fig. 7, we evaluate the power loss probability versus the
percentage of trained beams, under the scenario with noisy po-
sitional information. We compare the performance of G-BSS
with that of BSS, which neglects the error in the positional in-
formation. The completed tensor Tc is reconstructed by HNTC,
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Fig. 7. Power loss probability versus the percentage of trained beams in the
scenario with noisy positional information.

and the noise-free measurement data is considered. With the
BSS in Algorithm 2, the power loss probability increases
when the positional error radius d increases. The performance
of the position-aided beam recommendation is impaired by
the noisy positional information. However, G-BSS is more
robust than BSS against these impairments. Given Ktr = 10%,
the BSS with perfect GPS attains Ppl(Sp) = 0.87%. For
the scenario with positional error d = 10 m, the power loss
probability is improved by G-BSS to be Ppl(Sp) = 1.2%,
compared with Ppl(Sp) = 1.5% by BSS. If the positional
error increases to d = 20 m , the power loss probability is
improved with the support of G-BSS to be Ppl(Sp) = 4.5%,
as opposed to Ppl(Sp) = 5% by BSS.

Algorithm 3 Grouping-based Beam Subset Selection (G-BSS)
Input: completed tensor Tc, number of trained beams Ntr, BS

codebookW with indices K, UE noisy GPS gr, positional
error radius d

Output: recommended beam subset SNtr
1: Initialization S0 ← ∅
2: P = {ρ(g) : ‖g − gr‖2 ≤ ζd}
3: R̄ = 1

|P|
∑

p∈P Tc(p, :, :)
4: for n = 1 : Ntr do
5: (u∗, v∗) = arg max(u,v)∈K\Sn−1

R̄(u, v)
6: Sn ← Sn−1 ∪ (u∗, v∗)
7: end for

VI. CONCLUSIONS

In this paper, we proposed a learning framework to perform
data-assisted beamforming in MIMO communication over a
fixed service area with noisy power measurements on a small
subset of possible positions. In our model, the received power
and side information (e.g., user positions and receive beams)
were collected into a data tensor. We developed a noisy tensor
completion, HNTC, exploiting the low-rank and smoothness
properties of the channel data. The numerical results showed
that HNTC provides more accurate received power prediction
than the state-of-the-art tensor completion method [34], [36]
utilizing both the low-rank and the smoothness of the data.
Furthermore, the beam recommendation aided by HNTC was
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shown to improve the performance of beam alignment over the
state-of-the-art data-assisted beam alignment approach [17],
by improving the prediction accuracy and reducing the beam
training overhead.
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