
Global Internet Traffic Routing and Privacy

Abstract—Current Internet Protocol routing provides minimal
privacy, which enables multiple exploits. The main issue is that
the source and destination addresses of all packets appear in
plain text. This enables numerous attacks, including surveillance,
man-in-the-middle (MITM), and denial of service (DoS). The
talk explains how these attacks work in the current network.
Endpoints often believe that use of Network Address Translation
(NAT), and Dynamic Host Configuration Protocol (DHCP) can
minimize the loss of privacy. We will explain how the regularity of
human behavior can be used to overcome these countermeasures.
Once packets leave the local autonomous system (AS), they are
routed through the network by the Border Gateway Protocol
(BGP). The talk will discuss the unreliability of BGP and current
attacks on the routing protocol. This will include an introduction
to BGP injects and the PEERING testbed for BGP experi-
mentation. One experiment we have performed uses statistical
methods (CUSUM and F-test) to detect BGP injection events.
We describe work we performed that applies BGP injects to
Internet Protocol (IP) address randomization to replace fixed IP
addresses in headers with randomized addresses. We explain the
similarities and differences of this approach with virtual private
networks (VPNs). Analysis of this work shows that BGP reliance
on autonomous system (AS) numbers removes privacy from the
concept, even though it would disable the current generation of
MITM and DoS attacks. We end by presenting a compromise
approach that creates software-defined data exchanges (SDX),
which mix traffic randomization with VPN concepts. We contrast
this approach with the Tor overlay network and provide some
performance data.

Index Terms—BGP Injection, SDN, MitM, Privacy

I. INTRODUCTION

Today’s Internet is a global infrastructure that supports fi-
nance, business, research, politics, journalism, entertainment,
and private personal communications. These applications are
subject to surveillance, filtering, and tampering by attackers
anywhere on Earth. Attackers can be (and are) criminals,
governments, jealous partners, voyeurs, business competitors,
private companies, . . . , and combinations thereof. Routing
insecurity enables:

• Countries and corporations routinely perform Domain
Name System (DNS) [12], [21] and IP address [10]
black-list filtering to block users from accessing network
address ranges.

• Deep packet inspection (DPI) [4], [26] blocks network
streams, sometimes by inserting reset packets when key-
words of interest are detected [8], [24].

This material is based upon work sponsored by the National Science
Foundation under Grant No. 1643020.

• Denial of Service (DoS) attacks deny all legitimate access
to a service [20].

• Man in the Middle attacks occur by intercepting network
connections and placing malicious logic in the middle of
a network connection [9].

The basic problem is that network connections are treated
as non-sensitive information. Little is done to keep this infor-
mation confidential. In the current Internet architecture:

• DNS is a global database mapping clear-text symbolic
node names to clear-text IP addresses. Most DNS traffic
is currently in clear text; subject to surveillance; and vul-
nerable to man-in-the-middle attacks. Even when the “last
mile” is encrypted, users access DNS request information
from local ISPs or open DNS servers with their own
legal restrictions. ISP’s are subject to local regulations.
Note that for companies, DNS traffic logs reveal sensitive
information about internal R&D efforts.

• Communications, except for traffic using tools like Tor
and Psiphon, are routed directly from one node to another
using source and destination IP address information that
is available in clear-text in the packet header. IP addresses
belong to specific entities. It is trivial to block access to
sites, like the New York Times, by blocking all traffic to
and from the New York Times range of IP addresses.1

• Traffic monitoring and profiling are easy. The set of
DNS and IP addresses accessed are easily tracked by
anyone with access to the regional network. Classes of
communications can either be read directly from IP port
numbers.

• Global traffic can be almost arbitrarily rerouted through
misuse of the Border Gateway Protocol (BGP). BGP de-
fines IP routing paths by propagating perceived distances
between autonomous systems. Packets take the shortest
route from packet source to destination, as defined by the
hop’s BGP tables. In one example of this abuse, China
arbitrarily hijacks US Internet traffic steering it into China
for later analysis [11].

• denial of service attacks are trivial. Since there is no
filtering of data entering the network globally, it is easy
to introduce an excessive volume of network traffic aimed
at the IP address of a site that is considered undesirable.

1The existence of content delivery networks can make filtering IP addresses
slightly more complicated, but not enough to make traffic filtering and DoS
less widespread.
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Fig. 1. BGP incidents logged at bgpstream.com on August 28, 2020.

Root DNS servers have been disabled; credit card com-
panies have suffered an economic loss, and many media
sites have been targeted [20].

Some efforts have been attempted to make it difficult to tamper
with DNS and BGP infrastructure, but little has been done to
make meta-data about connections confidential.

VPNs encrypt all traffic, including IP addresses, but traffic
can still be inferred using side-channel attacks (timing, packet
size) [15], [28]. As [3], [28] found, these solutions are imper-
fect. There are also solution specific issues–Lantern is only
active when a website is blocked [23], leading to a myriad
of potential attacks. In practice, VPN companies must choose
between turning over logs or facing federal charges [25]. In all
of these cases, the users’ privacy is in the hands of their chosen
solution. Additionally, these solutions are easily detected with
IP blacklist or PCAP-based rules to detect VPNs.

Since proxies and VPNs fail to provide sufficient privacy
in several cases, anonymity networks like Tor [2] and I2P [1]
have arisen. Tor’s Onion Routing encrypts traffic at least three
times, letting only the current node know the next destination.
I2P is not widely used, despite being similar to Tor in many
ways. There have been proof-of-concept attacks against the
anonymity of Tor users.

This paper discusses vulnerabilities with establishing and
maintaining Internet connections and innovative ways to re-
move the flaws that make them vulnerable while maintaining
existing infrastructure.

II. BGP HIJACKING

Frequent errors occur with BGP routing. Figure 1 is a map
showing the locations of BGP errors detected around August
28, 2020. BGP allows AS’s to advertise IP prefixes they
serve and routes its neighbors can reach through them. Major
telecom service providers are labeled as tier 1. They have
a direct connection to the Internet backbone. IP traffic is
served according to a peer-or-pay system, where networks
either provide services for each other (peer) or have to pay
when their traffic moves through another network. Tier 1 nodes
reciprocally share massive volumes of data without paying
fees [7].

BGP trusts AS’s to only advertise IP ranges they own and
legitimate paths. Unfortunately, trust is not always merited;
causing IP traffic to route incorrectly. Four general classes of
IP hijacking are [7]:

1) typographical errors;
2) prepending mistakes;
3) origin changes; and
4) forged AS paths.

The first two are typically due to human error, also known as
fat fingering. The last two are more often malicious. Figure 2
is a graph showing information related to a Russian AS’s BGP
leak.

For example, China Telecom has ten Internet points of
presence (PoPs) located on the Internet backbone in North
America. Eight are in the USA and two in Canada. The USA
has no PoPs in China. This allows China to route North
American IP traffic into its network at will. Such as [11]:

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 30,2021 at 19:12:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Example BGP incident display for Russian AS.

• April 8, 2010 china Telecom rerouted 15% of IP traffic
into China for 18 minutes, which was believed to be a
proof-of-concept test that it can reroute traffic at will;

• Starting in February 2016, Internet traffic between the
Canadian and South Korean governments were routed
through the Chinese mainland for six months. This detour
has re-appeared since then for shorter duration;

• In October 2016, traffic from several USA financial
IP sites to their European headquarters in Milan was
redirected through China. It appears that no route was
found from China to Milan; leading the traffic to be
eventually discarded.

• In April and May of 2017, Internet traffic for a US news
organization was routed through China from Scandinavia
to Japan.

The supposition is that these traffic detours were made to
enable either traffic analysis or MITM. Other notable BGP
misdirection incidents include:

• In 2008, Pakistan sink-holed YouTube for the entire world
in an effort to make content contrary to Islam [11];
unreachable [11];

• In 2018, Google traffic was routed through Nigeria,
China, and Russia [27]; and

• An August 28, 2020 review of [5] reports possible
hijacks in the USA, Brazil, Poland, UK, Portugal, Latvia,
Argentina, Peru, Australia, Singapore,. . . . With suspected
attack sources being just as varied.

Modifications to BGP exist that use public-key cryptography
to associate IP address ranges with AS’s, but as of September
2020, a current list of 28 major operators 2 only shows 8 of
them fully participating. There are multiple reasons for slow
adoption of these BGP modifications [13]. These include costs

2https://isbgpsafeyet.com/

and the fact that BGP update rules include informal social
agreements.

BGP routing insecurity means that IP traffic can be routed
arbitrarily. This includes possible denial of service for any
IP address from any location by sinkholing, as illustrated by
Pakistan’s inadvertent sinkholing of YouTube for the whole
world. It allows web traffic to/from any specific IP range to
be observed and recorded anywhere on Earth. Man-in-the-
middle attacks are enabled by intentionally routing IP traffic
into network segments controlled by malicious parties.

To date, BGP routing misbehavior is detected by historical
analysis of BGP updates. The PEERING testbed3 provides
access to the BGP routing infrastructure for research. We used
PEERING to simulate BGP hijacking for active TCP sessions.
The endpoints for the sessions remained constant, but BGP
updates would modify the traffic paths.

We hypothesized that modifying the paths taken by the
packets would likely change traffic dynamics. We used PEER-
ING to test this hypothesis. To avoid abuse, PEERING requires
a strict definition of the experiments. We were given access to
three points-of-presence. The experiment set up TCP connec-
tions that mimicked traffic from Phasor Measurement Units.
During the sessions, we used BGP injects to reroute the TCP
sessions. The route between the source and destination AS’s
moved to another continent.

Changing the route taken by a TCP session modifies the
routers that forward the traffic, the number of routers in
the path, and the interactions between various Internet data
streams. We measured the following attributes that should
reflect these changes:

1) Path latency;
2) Path latency variance (Jitter);

3https://peering.usc.edu
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3) Inter-packet delay; and
4) Inter-packet delay variance (jitter).

To detect these changes, we use CUSUM change point de-
tection and the F-Test from statistics. In [6], [19], CUSUM
detects Distributed Denial of Service (DDoS) attacks. The F-
Test is an established statistical test to see if two samples have
the same variance.

CUSUM detects significant mean value changes hidden in
noise. Detection uses a sequential probability ratio test (SPRT).
The modified CUSUM algorithm is:

S̃[t] = max{0, (S̃[t− 1] + |m̃S [t]−mL[t]|−C)}; S̃[0] = 0

S[t− 1] is the old CUSUM value, mS [t] is the short window
average of packets’ latency, mL[t] is the long-term average
of packets’ latency, calculated with a given long term average
memory parameter ε, 0 < ε < 1:

mL[t] = εmL[t− 1] + (1− ε)mS [t]; mL[0] = 0

To reduce high frequency noise, local averaging uses α to
create a low-pass filter:

m̃S [t] = αmS [t] + (1− α)m̃S [t− 1]; m̃S [0] = 0

C is a correction parameter that forces small CUSUM values
to 0. S̃[t] will increase when the short term average is
consistently significantly larger than the long term average.

The F-Test is an established statistical hypothesis test to
see if two samples have the same variance [17]. We check
to see if the current time series variance is the same as the
time series’s historical variance. Let vS [t] be the variance of
the current data sample with ns samples at time t. Let vL[t]
be the historical variance of the data sample with nL > nS

samples at time t. Then the F-Test statistic is:

(vL[t])2/(vS [t])2

The critical value found using a table of F statistics for
nL − 1, nS − 1 degrees of freedom with 95% confidence, the
hypothesis that two data set have the same variance can be
rejected or accepted.

We apply CUSUM and F-Test to absolute and inter-packet
delays of the captured traffic. ROC curves are shown in Figs
3a to 3d.

The ROC curves indicate that CUSUM detects BGP route
change using mean traffic latency with high True Positive Rate
(TPR) and low False Positive Rate (FPR). However, as the
inter-packet delay mean is not significantly affected by BGP
route changes, CUSUM analysis of inter-packet delays are not
effective. The F-Test detects the BGP route change on both
the inter-packet and absolute delay. Compared to the CUSUM
test; the F-Test provides higher TPR and FPR on inter-packet
delays. This analysis is based on experimental data.

Unfortunately, the experimentation platform limited us to
a small number of points of presence and AS’s. While we
hypothesize that this approach might allow network users
to identify when network connections are subjected to BGP
hijacking.
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(a) CUSUM ROC for PMU packets
absolute delay for BGP hijacking
detection. The best operation point
gives 91.56% TPR and 4.47% FPR
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(b) F-Test ROC for PMU packets
absolute delay for BGP hijacking
detection. The best operation point
gives 97.72% TPR and 6.35% FPR
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(c) CUSUM ROC for PMU packets
inter-packet delay for BGP hijacking
detection. The best operation point
gives 50% TPR and 56% FPR
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(d) F-Test ROC for PMU packets
inter-packet delay for BGP hijacking
detection. The best operation point
gives 89.61% TPR and 14.12% FPR

III. USER ATTRIBUTION

Murdoch and Danezis used statistical traffic analysis to
deanonymize the Tor network by measuring the load on
relay nodes [16]. Øverlier and Syverson used timing-based
correlations to deanonymize hidden services [18]. Johnson
et al. extend these ideas with user behavior and common
services to show realistic adversary can deanonymize Tor [14].
We use BGP injection as the basis for more complex traffic
analysis. An observer can redirect traffic en-route and use
traffic metadata to classify users.

To show user attribution, we designed an experiment to
classify traffic from three users. Two characteristics defined
the simulated traffic from each user–size and interpacket delay.
The size is the full size of the packet in bytes (including
header), and the interpacket delay is the time between two
packets in seconds. The traffic from each user is combined
and sent to an observer that infers the user from traffic
characteristics. User i’s traffic characteristics are defined in
Equation 1.

User i Packet Size = N(µs,i, σsize)

User i IPD = N(µipd,i, σipd)
(1)

We considered two cases, shown in Table I. For the size,
σsize was 250 bytes, and for the interpacket delay, σipd was
0.01 seconds.
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TABLE I
USER CHARACTERISTIC PARAMETERS.

1− σ 3− σ
User Size µi (kB) IPD µi (s) Size µi (kB) IPD µi (s)

1 1250 0.04 1000 0.03
2 1500 0.05 1750 0.06
3 1750 0.06 2500 0.09

The simulated user traffic for the user characteristics three
standard deviations apart is visualized in Figure 3a and
Figure 3b. Since the traffic is combined, some information
conveyed by the IPD is lost. Figure 3a shows no distinct peaks
that represent each user.
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(a) Observed interpacket delay with
three users (3-σ separation).
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(b) Observed packet size with three
users (3-σ separation).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

200

400

600

800

1000

P
a
c
k

e
t 

C
o

u
n

t

IPD (s)

(c) Observed interpacket delay with
three users (1-σ separation).
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(d) Observed packet size with three
users (1-σ separation).

Fig. 3. Two sets of characteristics (size and IPD) used to model user traffic.

In contrast, Figure 3b shows three distinct peaks that repre-
sent each user. The first user’s peak is higher because of the
smaller interpacket delay, which led to more observations. The
simulated user traffic for the user characteristics one standard
deviations apart is visualized in Figure 3c and Figure 3d. In
this case, Figure 3c still shows no distinct peaks, despite the
mean IPDs being closer. The observed packet size distribution
also has no distinct peaks, as expected in such a closely
clustered case.

We used sklearn [22] to test two classifiers against this data:
a simplistic a priori minimum distance classifier and a random
forest classifier (RFC). The higher IPD led to label imbalance,
as evident in Figure 3b, so the weighted classifier metrics were
used to evaluate performance. We used a 66%-33% split of
the train-test data to train the sklearn classifiers. The a priori
minimum distance classifier is defined in Equation 2.

Min Distance(θ) = i s.t. |µi − θ| ≤ |µk − θ| ∀k (2)

TABLE II
CLASSIFIER METRICS USING ONLY PACKET SIZE.

1− σ 3− σ
Metric Min. Distance GNB Min. Distance GNB

Precision 60 61 92 92
Recall 59 59 92 92

F1 60 60 92 92

TABLE III
CLASSIFIER METRICS USING ONLY IPD.

1− σ 3− σ
Metric Min. Distance RFC Min. Distance RFC

Precision 34 51 34 72
Recall 34 50 33 58

F1 34 50 31 62

If each user’s characteristics are known to the observer,
this classifier chooses the user with the mean closest to the
observed value. Table II shows the classification results using
the size feature alone. We compared the minimum distance
classifier to a Gaussian Naive-Bayes (GNB) classifier, which
did not know the user characteristics.

Both classifiers perform well when three standard deviations
separate the user characteristics, but performance degrades
when only a single standard deviation separates them.

When considering only IPD, classification becomes harder.
Table III shows the classification results using the same mini-
mum distance classifier compared to a random forest classifier.
We calculate the minimum distance between the average IPD
for each user and the cumulative sum of each IPD in a given
window. This classifier is defined in Equation 3.

Min Distance(θ̂) = i

s.t. |µi − ΣM
j=0θj | ≤ |µk − ΣM

j=0θj | ∀k
where θ̂ = {θ0, θ1, ..., θM}

(3)

The random forest classifier was successful using the IPD
characteristic as a feature. In both the one and three standard
deviation separations, the minimum distance classifier was no
better than guessing, but the random forest classifier provided
promising results.

The minimum distance classifier and the random forest
classifier used all features for user classification. The Gaussian
Naive-Bayes classifier was used as a meta-classifier to com-
bine the two minimum distance classifications. The random
forest classification used both size and IPD features.

TABLE IV
CLASSIFIER METRICS USING IPD AND PACKET SIZE.

1− σ 3− σ
Metric Min. Distance RFC Min. Distance RFC

w/ GNB w/ GNB
Precision 64 65 92 93

Recall 58 63 92 93
F1 60 64 92 93
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Fig. 4. TARN architecture for providing privacy using BGP injection
principals.

Since the was so much information available in the size
characteristic, the classifier using both size and IPD tended
towards the results obtained when only using size as a feature.
The classifiers performed similarly in both the one standard
deviation case and the three standard deviation cases.

Regardless of the classifier used, it is possible to
deanonymize users to a degree using the most simplistic char-
acteristics. The de-anonymization becomes more challenging
as the characteristics become closer together (one standard
deviation separation versus three standard deviations).

IV. MITIGATIONS

The Traffic Analysis Resistant Network (TARN) is an SDX-
based architecture that addresses traffic analysis and this form
of user classification, using the principals of BGP injection
discussed in Section II. Encrypting traffic provides a degree of
privacy, but the classification discussed in Section III work re-
gardless of encryption4. TARN has several fundamental prop-
erties that counteract these (and many other) de-anonymization
techniques using ideas derived from BGP injections. Figure 4
shows the high-level TARN architecture.

User traffic from an AS is sent(via a secure L2 connection)
to a TARN SDX node. Each SDX node connects to ASes
that it services, an internet gateway, and other TARN SDX
nodes. TARN randomly routes user traffic through several
other TARN SDX nodes before sending it over the internet.
Further, a single flow could get split between multiple TARN
nodes. Each TARN node is addressable via other TARN nodes
by a set of IP addresses. The set of IP addresses assigned
to each node changes on a fixed interval, so traffic between
nodes appears to have random IP addresses. Observing BGP
announcements would allow an attacker to abstract the TARN
node to the AS using the prefix, but eBGP allows ASes to
share IP prefixes, and it can obfuscate the AS associated with
the source and destination.

TARN encrypts the connection between nodes and uses a
fixed packet size. The resulting histogram of traffic sizes for
all users resembles Figure 5, and it leaves no information
for a classifier (a priori or otherwise) to use to classify user

4VPN packet sizes are usually rounded up to the nearest block size, which
is still an effective classification feature
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Fig. 5. All user packet sizes in a TARN connection.

traffic. TARN nodes combine user traffic and randomly send
it to another TARN node. In contrast, moving target defense
changes the perceived network topology dynamically. Thus
far, there have been no infrastructure-based moving target
defense solutions. All existing solutions rely on controlling
the infrastructure. Classifying TARN traffic approximates the
case of trying to classify traffic by IPD when the IPDs are
very similar (Figure 3c). From Section III, we showed that
in the simplest case, the random forest classifier was virtually
equivalent to random guessing.

V. CONCLUSIONS

Current Internet Protocol routing provides minimal privacy,
which enables multiple exploits. BGP injection presents a real
threat to any user sending traffic over the internet. Regardless
of source or destination, BGP injections can allow an attacker
to redirect traffic to their infrastructure.

Currently, BGP malfeasance detection is done offline by
analyzing historical traces of BGP injection traffic. We tested
the hypothesis that online analysis of IP traffic dynamics could
provide a reasonable detection metric for BGP tampering.
This hypothesis warrants larger-scale testing when experi-
mental resources become available. Ideally, these dynamic
features could alert the AS that is being attacked. The AS
could examine relevant BGP injection traffic for verification.
At which point, technical and social countermeasures could
be undertaken in real-time. Further research and testing are
needed before this vision can be realized.

Traffic analysis presents a severe threat, even with existing
privacy tools. Our user classification experiment used two
general traffic characteristics packet size and interpacket delay
(IPD). Using both these features, we showed that both an a
priori classifier and a random forest classifier were effective
at classifying user traffic with distinct features (three standard
deviation separation). When the traffic was more uniform (one
standard deviation of separation), both classifiers’ performance
deteriorated, but they were still better than randomly guessing.
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By classifying using only these features, we show that most
privacy tools are vulnerable to this form of classification unless
they actively change them to prevent analysis.

Finally, we present an SDX-based Traffic Analysis Resistant
Network (TARN) solution that uses BGP injection’s funda-
mental principles to prevent analysis and user classification.
Each TARN node uses pseudo-random IP addresses with a
dynamic eBGP announcement to hide the traffic’s real source
and destination. TARN’s uniform encrypted packet size and
user traffic splitting (effectively randomizing IPD) obscure
even the most basic classification features. TARN presents a
unique infrastructure-based solution to privacy that leverages
one of the most insecure aspects of the modern internet.
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