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While visualization can support understanding complex phenomena, their effectiveness might vary with the 
recipient's familiarity with both the phenomenon and the visualization. The current study contrasted 
interpretations of simulated hurricane paths using student populations from a high frequency hurricane area 
versus no local hurricane risk. Non-expert understanding of trajectory predictions was supported via two 
visualizations: common cones of uncertainty and novel dynamic ensembles. General patterns of performance 
were similar across the two groups. Participants from the high hurricane risk area did show narrower decision 
thresholds, in both common and novel visualization formats. More variability was consistently considered 
possible when viewing the dynamic ensemble displays. Despite greater likelihood of experiences with 
variability of trajectories outside of forecast paths, greater familiarity tended towards narrower interpretations 
of the need for evacuations within the variability possible. The results suggest an advantage of dynamic 
ensembles in grasping uncertainty even in populations familiar with hurricanes. 
 

INTRODUCTION 
 

The 2020 Atlantic Hurricane season featured a record 30 
named storms, with 13 storms reaching hurricane status, 6 of 
which were major hurricanes (level 3-5 on the Saffir-Simpson 
Hurricane Wind Scale, with winds in excess of 111 mph). Such 
storms are a major threat to the coastal regions of the US in the 
Gulf and Atlantic. Individuals in affected regions must prepare 
for the potential of enormous disruptions and even possible 
evacuation. However, the path of an incoming storm is 
inherently uncertain, and people often struggle to understand 
these types of spatial uncertainty (Wickens et al., 2020). 

 One mechanism that attempts to enhance understanding 
of spatial uncertainty in the case of hurricanes is the use of 
National Hurricane Center Track Forecast Cones (‘cones of 
uncertainty’), which are frequently used by weather forecasters 
when conveying information about such storms to the general 
public (Broad et al., 2007). The cone of uncertainty draws from 
historical tendencies to capture 2/3 of deviations from the most 
likely storm track. While these types of visualizations might 
provide some assistance in interpreting spatial variability (see, 
for example, Pugh et al., 2018), numerous shortfalls in 
understanding cones of uncertainty have been highlighted in 
non-experts viewing them (Boone et al., 2018; Ruginski et al., 
2016; Padilla et al., 2017).  

Recently a new type of visualization to support the 
interpretation of hurricane paths was developed - dynamic 
ensembles (Witt & Clegg, 2021; Witt et al. 2020; see Figure 1). 
The visualization presents an array of simultaneously moving 
dots, each illustrating a potential path for the storm. Initial 
evidence suggested some advantages from dynamic ensembles, 
particularly in understanding the potential for risk outside of the 
central currently forecasted path, and in overcoming the 
containment heuristic (a tendency to view locations falling just 
inside the cone of uncertainty boundaries as far more likely than 
those just outside, despite their very similar actual probabilities; 
see Padilla et al., 2018). Previous research with this new type 
of tool intentionally used participants with limited knowledge 
of cones to assess underlying perceptual and decision-making 
properties without the influence of prior experience. 

 However, familiarity from prior experience with 
hurricane forecasts might change the understanding of these 

visualizations (Maltese et al., 2015) – either for cones that 
people will have seen and attended to if they live in high risk 
hurricane zones, or for novel dynamic ensembles if people from 
higher hurricane risk areas employ greater knowledge from 
their prior experiences about the potential variability of 
trajectories that could inform their interpretations. The current 
study looked at decisions around simulated incoming 
hurricanes supported with cones of uncertainty or dynamic 
ensembles, seeking to explore differences between two student 
populations: one drawn from a high-risk hurricane area and one 
from an area with no local hurricane threat. 

The University of West Florida (UWF) is a regional 
comprehensive university in Pensacola serving northwest 
Florida. Eighty-six percent of UWF students originate from 
Florida, with 60% from northwest Florida and the remaining 
26% coming from other Florida regions (University of West 
Florida, 2020). Of the 14% of students who attend UWF from 
out of state, just over half (7.23%) originate from other coastal 
states (Alabama, Georgia, Louisiana, Mississippi, North 
Carolina, South Carolina, and Texas). Thus, 93% of UWF 
students come from tropical storm and hurricane prone areas. 
Within the 2020 season alone, 11 storms made landfall in these 
eight states (National Hurricane Center, 2020a). In contrast, just 
5.07% of undergraduate students attending Colorado State 
University (CSU) come from these eight states, and Fort Collins 
is not at any risk from hurricanes, thus providing a sample with 
much lower exposure to threats from hurricanes or a personal 
need to regularly attend to hurricane forecasts. 

In September 2020 (about 6 months prior to the current 
data) UWF students experienced forecasts using a cone of 
uncertainty for Hurricane Sally first hand. The path at 8am on 
September 12, as the hurricane formed, had a cone of 
uncertainty that included Pensacola (National Hurricane 
Center, 2020b). By the forecast at 5pm on September 12, 
Pensacola was on the boundary of the cone, and by 8am on 
September 13 Pensacola was just outside the cone. When the 
hurricane subsequently slowed and unpredictably turned north, 
Pensacola again fell within the cone. Hurricane Sally made 
landfall at about 6am on September 16 in Gulf Shores, Alabama 
about 30 miles west of Pensacola. The impact from this 
relatively close distance was further accentuated by a high 
degree of asymmetry, and the strongest winds being on the 



eastern (Pensacola) side. Leading up to landfall, there was 
widespread exposure to cones of uncertainty from social media 
local news coverage, and local communications from the 
university, city, and county. Misinterpreting the uncertainty had 
very real consequences for UWF students, with widespread 
flooding, wind damage, and major infrastructure disruptions 
along with 10 days of campus closures. 
 

METHOD 
 

Design. Participants from two cohorts (Colorado, Florida) 
made evacuation decisions in response to an impending 
hurricane. The forecast was shown using two types of 
visualizations (cone of uncertainty; dynamic ensembles). 

Participants. Twenty students enrolled in an introductory 
psychology course at the UWF and 22 students enrolled in an 
introductory psychology course at CSU received course credit 
in exchange for completing the experiment through Qualtrics. 
All self-reported normal or corrected-to-normal vision.  
 Stimuli. All stimuli were created in R (R Core Team, 
2019) and presented in Qualtrics. The map depicted the Gulf 
coastline of the United States (see Figure 1). Storm predictions 
were set to a mean angle (50, 70, 90, 110°) with the standard 
deviation (SD; 10, 20, 30°) corresponding to low, medium, and 
high prediction uncertainty. The town was displayed on the 
coastline border as a red circle. Towns were positioned at 1 of 
13 locations, ranging from -2 to 2 times the storm prediction’s 
SD. Thus, towns presented at the farthest loc ations were twice 
as far out as the storm’s SD.  

Each storm prediction was displayed with two types of 
visualizations: the cone of uncertainty and dynamic ensembles 
(i.e., zoomies). The cone of uncertainty was created by 
connecting two lines with an arc. The lines were positioned at 
1 SD of the storm’s prediction. Lines originated from a filled 
circle surrounded by an outline, which signified the storm’s 
current position. Three additional filled circles, connected by 
lines, mapped the central storm predicted path. The central 
storm predicted path was oriented to match the storm’s 
predicted angle. 

 

 
Figure 1. An illustration of a cone trial (left) and dynamic 
ensemble (zoomie) trial (right). Both trials shown have the 
same storm angle, prediction uncertainty, and town position. 
For each trial, only one visualization was displayed. The 
zoomies traveled from the bottom of the screen towards the 
coastline. The zoomie display continued to loop until 
participants responded. 
 

The other visualization condition was the zoomies. The 
zoomies display was an animated GIF. The zoomies consisted 

of 50 small squares that moved towards the coastline from the 
center of the bottom of the display. Each zoomie followed a 
linear path at an angle that was determined through random 
sampling of a normal distribution with a mean equal to the 
storm angle and SD equal to the storm SD. Thus, most of the 
zoomies were within 1 SD, but zoomies were also presented 
beyond 1 SD. A slight jitter was added to the vertical 
displacement to increase the visibility of the zoomies. The full 
zoomie movement lasted 60ms, and the animation played on an 
infinite loop until the participant responded. 

Procedure. Participants followed self-paced instructions 
for both conditions. Instructions for the cone condition were: 

“Imagine it’s hurricane season and you are in charge of 
deciding whether to evacuate a town based on the predicted 
hurricane path. The town will be marked with a red circle. If 
you choose not to evacuate the town and a hurricane hits, 
damage will be extensive and costly. If you choose to evacuate 
the town and the hurricane does not hit there, money will be 
spent on the evacuation for nothing. Thus, there are benefits and 
costs to evacuating the town. Towns must be evacuated 12 
hours in advance of when the hurricane will hit. For each 
decision, a hurricane is hovering and is approximately 12 hours 
away, so it will be time to make your decision. You will see a 
cone that shows the predictions of the hurricane’s path. The 
cone shows the probable path of the storm center but does not 
show the size of the storm. Hazardous conditions can occur 
outside of the cone.” 

The description of the cone of uncertainty was based on 
the text presented on the National Hurricane Center website 
(National Hurricane Center, n.d.). The zoomies instructions 
were identical, except the italicized part was replaced with: 
“You will see several predicted hurricane paths, each presented 
as a black dot. These dots show the probable path of the storm 
center. Hazardous conditions can occur outside of these paths.” 
None of the text was italicized in the experiment.  

For each trial, participants viewed a map of the United 
States Gulf coastline with a predicted hurricane path displayed 
as either the cone of uncertainty or a distribution of zoomies 
(see Figure 1). Participants responded to the question “Should 
the town be evacuated?” by clicking ‘Yes’ or ‘No’. The 
visualization was displayed until they indicated their response; 
there was no time limit. No feedback was provided.  

Participants completed one block for the cone of 
uncertainty and one block for the zoomies. The block order was 
counterbalanced across participants, and trial order was 
randomized within each block. Each block contained 144 trials 
for a total of 288 trials.  

 
RESULTS 

 
 Mean evacuation rates as a function of town position, 
participant group, and visualization condition are shown in 
Figure 2. Responses were analyzed to assess two aspects of 
behavior: decision transitions and decision thresholds. Both are 
described below. Data scripts available at https://osf.io/rxhsv/. 
 



 
Figure 2. Mean evacuation rates for participants attending 
school in Colorado versus Florida as a function of town position 
and visualization condition. 
 
Decision Transitions 
 

Decision transitions refer to how decisions transitioned 
from being more likely to evacuate to being less likely to 
evacuate. In the case of abrupt transitions, the shift occurs 
swiftly over a short distance. For example, the containment 
effect is the idea that all towns located within the cone will be 
evacuated and towns located outside of the cone are perceived 
to not be at risk and are therefore not evacuated. The 
containment effect would lead to an abrupt transition. In 
contrast, if risk is perceived to gradually decrease with towns 
located further from the center of the storm’s predicted path, the 
transition should be gradual or less abrupt. Decision transitions 
were calculated as half the distance required to shift responses 
from 75% evacuation rates to 25% evacuation rates.  
Decision transitions (and 95% confidence intervals based on 
bootstrapping methods) are shown in Figure 3. Smaller decision 
transitions indicate a more abrupt shift from deciding to 
evacuate to deciding not to evacuate. In other words, for smaller 
decision transitions, the distance across which responses shift is 
shorter. Decision transitions were more abrupt (smaller) for the 
cone condition than for the zoomies condition. Participants had 
a greater sense of the risk for towns located beyond the 
boundaries of the cone in the zoomies condition. Decision 
transitions were similar across the two participant groups. 

Being a student in Florida did not measurably impact decision 
transitions for either visualization compared with students in 
Colorado. Using the bootstrap method, we calculated the 95% 
CIs for the difference between the two participant groups. 
These intervals overlapped zero for both the cone [-0.03, 0.04] 
and the zoomies [-0.11, 0.04]. 

 

 
Figure 3. Decision Transitions (left) and Decision Thresholds 
(right) as a function of visualization condition and participant 
group. Both are in units of storm SDs. Error bars are 95% 
confidence intervals via the bootstrap method. Left: Smaller 
decision transitions signify a more abrupt transition from being 
more likely to evacuate to being less likely to evacuate. Right: 
Decision thresholds at zero indicate the threshold was at 1 SD 
(which also coincides with the edge of the cone). Positive 
values indicate thresholds at locations beyond 1 SD; negative 
values indicate threshold at locations closer than 1 SD.  
 
Decision Thresholds 
 

Another aspect of behavior is the decision threshold. The 
decision threshold refers to the distance from the center of the 
predicted storm path where decisions are to evacuate 50% of 
the time. Towns located within this threshold will be more 
likely to be evacuated and towns located outside this threshold 
will be less likely to be evacuated. Decision thresholds were 
calculated as the distance at which evacuation rates were 50%.  

Decision thresholds are shown in Figure 3. Decision 
thresholds are the distance at which evacuation rates are at 50%. 
Thresholds at 0 indicate the threshold is located at 1 SDs, which 
is the same location as the edge of the cone. Positive values 
indicate decision thresholds beyond 1 SD, and negative values 
indicate decision thresholds less than 1 SD. Decision thresholds 
were further away from the center of the storm’s predicted path 
in the zoomies condition than in the cone condition. We 
calculated the 95% CIs for the difference between the decision 
thresholds for the zoomies versus the cone condition. These 



intervals did not include zero for the Colorado participants 
[0.26, 0.55] nor for the Florida participants [0.12, 0.37].  

Decision thresholds were also further away for the 
Colorado participants than for the Florida participants. The 95% 
CIs for the difference between the decision thresholds for the 
Colorado participants versus the Florida participants was 
positive and did not include zero for the cone [0.14, 0.51] nor 
for the zoomies [0.15, 0.78]. For the Florida participants, their 
thresholds were right at the edge of the cone for the cone of 
uncertainty condition. This is consistent with the containment 
effect, where towns located inside of the cone are evacuated and 
towns outside of the cone are not evacuated.  
 
Prediction Uncertainty 
 

We recalculated decision transitions and decision 
thresholds at each level of prediction uncertainty for each 
participant group for each visualization condition. The 
corresponding scores are shown in Figures 4 and 5. For storms 
with low uncertainty, decision transitions were less abrupt and 
decision thresholds were further from the storm’s center 
compared with storms with high uncertainty for both 
visualization conditions and participant groups. In cases with 
low uncertainty presented via zoomies, participants evacuated 
towns at the edge of the distribution of zoomies. Because we 
had not included towns far beyond this distribution, estimates 
of both decision transitions and decision thresholds were less 
precise (as indicated by the larger confidence intervals). Future 
studies should use a wider distribution of town locations. 

 
Figure 4. Decision Transitions (in units of storm SDs) as a 
function of visualization condition, participant group, and storm 
uncertainty. Error bars are 95% confidence intervals via the 
bootstrap method. 
 

In general, decision transitions and decision thresholds 
were similarly affected by prediction uncertainty across the two 
participant groups. However, for the participants in Florida, the 
decision threshold was always at the edge of the cone for the 

cone condition regardless of storm uncertainty. Hence 
familiarity with the cone visualizations was associated with a 
tendency to make standard judgments relative to the cone rather 
than extracting different information from different widths of 
cones. 

 
Figure 5. Decision Thresholds (in units of storm SD) as a 
function of visualization condition, participant group, and storm 
uncertainty. Decision thresholds at zero indicate the threshold 
was at 1 SD (which also coincides with the edge of the cone). 
Error bars are 95% confidence intervals via bootstrapping. 
 

DISCUSSION 
 

Hurricanes wreak havoc on coastal communities, with 
loss of lives, homes, businesses, and millions of dollars. 
Minimizing these costs requires effective communication of 
predictions of incoming storms. Yet, these predictions are 
inherently uncertain. Given that the mind struggles to 
understand uncertainty and reason under conditions with 
uncertainty, the task of communicating hurricane predictions is 
crucial and challenging.  

A common technique for communicating hurricane 
predictions is the cone of uncertainty, despite the variety of 
issues raised with this visualization strategy (see Introduction). 
One issue is the containment effect, such that people perceive 
that only areas encompassed by the cone are at risk. 

Evidence for the containment effect was found here, 
particularly for participants who attended university in West 
Florida. For these participants, the threshold at which their 
responses shifted from being more likely to evacuate to be less 
likely to evacuate coincided with the edge of the cone. 
Furthermore, their responses transitioned abruptly, with 78% of 
towns located within the cone to be evacuated and 79% of 
towns located beyond the cone to not be evacuated. A similarly 
abrupt transition was also evident in the students attending 
university in Colorado (see Figures 2 and 3). 

These data show that direct experience with hurricane 
uncertainty does not necessarily provide an advantage in 
evaluating risk. One possible explanation for the more 



conservative approach to evacuations in the Florida sample 
could be more experiences with false alarms in storm warnings 
and evacuations. Because evacuations are very time consuming, 
orders are typically made well in advance of landfall when 
uncertainty is high. This means that evacuation orders lead to 
false alarms as much as 90% of the time (Regnier, 2008). 
Additionally, the decision to evacuate is influenced by many 
factors (e.g., Morss et al., 2016), such as perceptions of 
warnings being overblown and anticipated traffic delays. A 
more experienced sample would be more likely to consider 
some of these barriers to evacuations. This may shift the 
criterion for those in hurricane prone areas to only recommend 
evacuation when a city is well within the cone of uncertainty, 
thereby showing a stronger containment effect.  

In contrast, the zoomies depicted some level of risk across 
the distribution of the potential path, particularly at the edges of 
the storm’s predicted path. Participants did not demonstrate a 
containment effect with the zoomies. Instead, their evacuation 
rates showed a gradual decrease as town distance increased. 
This behavior is more consistent with the actual risk of 
impending storms given the best predictions currently offered. 

Given that participants from Florida were likely more 
accustomed to seeing and using the cone of uncertainty to make 
decisions, we can assess whether this familiarity impacted their 
interpretation of the zoomies. Evacuation rates were similar 
between the two groups on the zoomies. This suggests that 
transitioning from using the cone of uncertainty to using the 
zoomies will not incur a cost for people who are more 
accustomed to seeing and using the cone of uncertainty. 

The zoomies are a dynamic ensemble. Perception of the 
zoomies likely benefits from the visual system’s immense 
capability to process properties of ensembles of objects 
(Whitney & Yamanashi Leib, 2018). Other ensemble displays 
include track ensembles for which potential hurricane paths are 
represented as lines or tracks. Prior work has shown similar 
evacuation decisions for static track ensembles as for the 
zoomies (Witt & Clegg, 2021). However, a potential advantage 
for zoomies is that they have a natural compatibility between 
the visual display and the underlying concept. The zoomies can 
travel along similar paths as hurricanes.  

The spread of the zoomies can indicate uncertainty about 
the storm’s path, thus avoiding the common error with the cone 
of uncertainty that increased cone size is misinterpreted as a 
prediction of increased storm size instead of increased 
uncertainty with time.  

Another advantage of the zoomies is that they can easily 
be manipulated to show a variety of features, such as using size 
or color to indicate various components of the impending threat 
such as storm surge or windspeed. In addition, the timing of the 
zoomies could provide a useful technique for communicating 
earliest reasonable as well as likely landfall of the impending 
hurricane. Future studies will be needed to determine whether 
people are sensitive to these features and can use them to make 
evacuation decisions. Given the variety of these potential visual 
manipulations, we propose zoomies will be able to convey 
impending hurricane information more precisely and therefore 
lead to smarter evacuation decisions. 
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