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While visualization can support understanding complex phenomena, their effectiveness might vary with the
recipient's familiarity with both the phenomenon and the visualization. The current study contrasted
interpretations of simulated hurricane paths using student populations from a high frequency hurricane area
versus no local hurricane risk. Non-expert understanding of trajectory predictions was supported via two
visualizations: common cones of uncertainty and novel dynamic ensembles. General patterns of performance
were similar across the two groups. Participants from the high hurricane risk area did show narrower decision
thresholds, in both common and novel visualization formats. More variability was consistently considered
possible when viewing the dynamic ensemble displays. Despite greater likelihood of experiences with
variability of trajectories outside of forecast paths, greater familiarity tended towards narrower interpretations
of the need for evacuations within the variability possible. The results suggest an advantage of dynamic

ensembles in grasping uncertainty even in populations familiar with hurricanes.

INTRODUCTION

The 2020 Atlantic Hurricane season featured a record 30
named storms, with 13 storms reaching hurricane status, 6 of
which were major hurricanes (level 3-5 on the Saffir-Simpson
Hurricane Wind Scale, with winds in excess of 111 mph). Such
storms are a major threat to the coastal regions of the US in the
Gulf and Atlantic. Individuals in affected regions must prepare
for the potential of enormous disruptions and even possible
evacuation. However, the path of an incoming storm is
inherently uncertain, and people often struggle to understand
these types of spatial uncertainty (Wickens et al., 2020).

One mechanism that attempts to enhance understanding
of spatial uncertainty in the case of hurricanes is the use of
National Hurricane Center Track Forecast Cones (‘cones of
uncertainty’), which are frequently used by weather forecasters
when conveying information about such storms to the general
public (Broad et al., 2007). The cone of uncertainty draws from
historical tendencies to capture 2/3 of deviations from the most
likely storm track. While these types of visualizations might
provide some assistance in interpreting spatial variability (see,
for example, Pugh et al, 2018), numerous shortfalls in
understanding cones of uncertainty have been highlighted in
non-experts viewing them (Boone et al., 2018; Ruginski et al.,
2016; Padilla et al., 2017).

Recently a new type of visualization to support the
interpretation of hurricane paths was developed - dynamic
ensembles (Witt & Clegg, 2021; Witt et al. 2020; see Figure 1).
The visualization presents an array of simultaneously moving
dots, each illustrating a potential path for the storm. Initial
evidence suggested some advantages from dynamic ensembles,
particularly in understanding the potential for risk outside of the
central currently forecasted path, and in overcoming the
containment heuristic (a tendency to view locations falling just
inside the cone of uncertainty boundaries as far more likely than
those just outside, despite their very similar actual probabilities;
see Padilla et al., 2018). Previous research with this new type
of tool intentionally used participants with limited knowledge
of cones to assess underlying perceptual and decision-making
properties without the influence of prior experience.

However, familiarity from prior experience with
hurricane forecasts might change the understanding of these

visualizations (Maltese et al., 2015) — either for cones that
people will have seen and attended to if they live in high risk
hurricane zones, or for novel dynamic ensembles if people from
higher hurricane risk areas employ greater knowledge from
their prior experiences about the potential variability of
trajectories that could inform their interpretations. The current
study looked at decisions around simulated incoming
hurricanes supported with cones of uncertainty or dynamic
ensembles, seeking to explore differences between two student
populations: one drawn from a high-risk hurricane area and one
from an area with no local hurricane threat.

The University of West Florida (UWF) is a regional
comprehensive university in Pensacola serving northwest
Florida. Eighty-six percent of UWF students originate from
Florida, with 60% from northwest Florida and the remaining
26% coming from other Florida regions (University of West
Florida, 2020). Of the 14% of students who attend UWF from
out of state, just over half (7.23%) originate from other coastal
states (Alabama, Georgia, Louisiana, Mississippi, North
Carolina, South Carolina, and Texas). Thus, 93% of UWF
students come from tropical storm and hurricane prone areas.
Within the 2020 season alone, 11 storms made landfall in these
eight states (National Hurricane Center, 2020a). In contrast, just
5.07% of undergraduate students attending Colorado State
University (CSU) come from these eight states, and Fort Collins
is not at any risk from hurricanes, thus providing a sample with
much lower exposure to threats from hurricanes or a personal
need to regularly attend to hurricane forecasts.

In September 2020 (about 6 months prior to the current
data) UWF students experienced forecasts using a cone of
uncertainty for Hurricane Sally first hand. The path at 8am on
September 12, as the hurricane formed, had a cone of
uncertainty that included Pensacola (National Hurricane
Center, 2020b). By the forecast at Spm on September 12,
Pensacola was on the boundary of the cone, and by 8am on
September 13 Pensacola was just outside the cone. When the
hurricane subsequently slowed and unpredictably turned north,
Pensacola again fell within the cone. Hurricane Sally made
landfall at about 6am on September 16 in Gulf Shores, Alabama
about 30 miles west of Pensacola. The impact from this
relatively close distance was further accentuated by a high
degree of asymmetry, and the strongest winds being on the



eastern (Pensacola) side. Leading up to landfall, there was
widespread exposure to cones of uncertainty from social media
local news coverage, and local communications from the
university, city, and county. Misinterpreting the uncertainty had
very real consequences for UWF students, with widespread
flooding, wind damage, and major infrastructure disruptions
along with 10 days of campus closures.

METHOD

Design. Participants from two cohorts (Colorado, Florida)
made evacuation decisions in response to an impending
hurricane. The forecast was shown using two types of
visualizations (cone of uncertainty; dynamic ensembles).

Participants. Twenty students enrolled in an introductory
psychology course at the UWF and 22 students enrolled in an
introductory psychology course at CSU received course credit
in exchange for completing the experiment through Qualtrics.
All self-reported normal or corrected-to-normal vision.

Stimuli. All stimuli were created in R (R Core Team,
2019) and presented in Qualtrics. The map depicted the Gulf
coastline of the United States (see Figure 1). Storm predictions
were set to a mean angle (50, 70, 90, 110°) with the standard
deviation (SD; 10, 20, 30°) corresponding to low, medium, and
high prediction uncertainty. The town was displayed on the
coastline border as a red circle. Towns were positioned at 1 of
13 locations, ranging from -2 to 2 times the storm prediction’s
SD. Thus, towns presented at the farthest loc ations were twice
as far out as the storm’s SD.

Each storm prediction was displayed with two types of
visualizations: the cone of uncertainty and dynamic ensembles
(i.e., zoomies). The cone of uncertainty was created by
connecting two lines with an arc. The lines were positioned at
1 SD of the storm’s prediction. Lines originated from a filled
circle surrounded by an outline, which signified the storm’s
current position. Three additional filled circles, connected by
lines, mapped the central storm predicted path. The central
storm predicted path was oriented to match the storm’s
predicted angle.

‘Should the town be evacuated?

Yes No Yes No

Figure 1. An illustration of a cone trial (left) and dynamic
ensemble (zoomie) trial (right). Both trials shown have the
same storm angle, prediction uncertainty, and town position.
For each trial, only one visualization was displayed. The
zoomies traveled from the bottom of the screen towards the
coastline. The zoomie display continued to loop until
participants responded.

The other visualization condition was the zoomies. The
zoomies display was an animated GIF. The zoomies consisted

of 50 small squares that moved towards the coastline from the
center of the bottom of the display. Each zoomie followed a
linear path at an angle that was determined through random
sampling of a normal distribution with a mean equal to the
storm angle and SD equal to the storm SD. Thus, most of the
zoomies were within 1 SD, but zoomies were also presented
beyond 1 SD. A slight jitter was added to the vertical
displacement to increase the visibility of the zoomies. The full
zoomie movement lasted 60ms, and the animation played on an
infinite loop until the participant responded.

Procedure. Participants followed self-paced instructions
for both conditions. Instructions for the cone condition were:

“Imagine it’s hurricane season and you are in charge of
deciding whether to evacuate a town based on the predicted
hurricane path. The town will be marked with a red circle. If
you choose not to evacuate the town and a hurricane hits,
damage will be extensive and costly. If you choose to evacuate
the town and the hurricane does not hit there, money will be
spent on the evacuation for nothing. Thus, there are benefits and
costs to evacuating the town. Towns must be evacuated 12
hours in advance of when the hurricane will hit. For each
decision, a hurricane is hovering and is approximately 12 hours
away, so it will be time to make your decision. You will see a
cone that shows the predictions of the hurricane’s path. The
cone shows the probable path of the storm center but does not
show the size of the storm. Hazardous conditions can occur
outside of the cone.”

The description of the cone of uncertainty was based on
the text presented on the National Hurricane Center website
(National Hurricane Center, n.d.). The zoomies instructions
were identical, except the italicized part was replaced with:
“You will see several predicted hurricane paths, each presented
as a black dot. These dots show the probable path of the storm
center. Hazardous conditions can occur outside of these paths.”
None of the text was italicized in the experiment.

For each trial, participants viewed a map of the United
States Gulf coastline with a predicted hurricane path displayed
as either the cone of uncertainty or a distribution of zoomies
(see Figure 1). Participants responded to the question “Should
the town be evacuated?” by clicking ‘Yes’ or ‘No’. The
visualization was displayed until they indicated their response;
there was no time limit. No feedback was provided.

Participants completed one block for the cone of
uncertainty and one block for the zoomies. The block order was
counterbalanced across participants, and trial order was
randomized within each block. Each block contained 144 trials
for a total of 288 trials.

RESULTS

Mean evacuation rates as a function of town position,
participant group, and visualization condition are shown in
Figure 2. Responses were analyzed to assess two aspects of
behavior: decision transitions and decision thresholds. Both are
described below. Data scripts available at https://osf.io/rxhsv/.




N Colorado
@ ®
@ S
n: o
8 =
T w |
3 [
B
Il o 7 * Zoomies
- * Cone
B
Florida
o
@ ®
@ S |
m o
6 =
T <
o (=]
o
> oy
w o 7
o |
= T T T T T
3 -1 0 1 2

Town Position (in SDs)

Figure 2. Mean evacuation rates for participants attending
school in Colorado versus Florida as a function of town position
and visualization condition.

Decision Transitions

Decision transitions refer to how decisions transitioned
from being more likely to evacuate to being less likely to
evacuate. In the case of abrupt transitions, the shift occurs
swiftly over a short distance. For example, the containment
effect is the idea that all towns located within the cone will be
evacuated and towns located outside of the cone are perceived
to not be at risk and are therefore not evacuated. The
containment effect would lead to an abrupt transition. In
contrast, if risk is perceived to gradually decrease with towns
located further from the center of the storm’s predicted path, the
transition should be gradual or less abrupt. Decision transitions
were calculated as half the distance required to shift responses
from 75% evacuation rates to 25% evacuation rates.

Decision transitions (and 95% confidence intervals based on
bootstrapping methods) are shown in Figure 3. Smaller decision
transitions indicate a more abrupt shift from deciding to
evacuate to deciding not to evacuate. In other words, for smaller
decision transitions, the distance across which responses shift is
shorter. Decision transitions were more abrupt (smaller) for the
cone condition than for the zoomies condition. Participants had
a greater sense of the risk for towns located beyond the
boundaries of the cone in the zoomies condition. Decision
transitions were similar across the two participant groups.

Being a student in Florida did not measurably impact decision
transitions for either visualization compared with students in
Colorado. Using the bootstrap method, we calculated the 95%
CIs for the difference between the two participant groups.
These intervals overlapped zero for both the cone [-0.03, 0.04]
and the zoomies [-0.11, 0.04].
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Figure 3. Decision Transitions (left) and Decision Thresholds
(right) as a function of visualization condition and participant
group. Both are in units of storm SDs. Error bars are 95%
confidence intervals via the bootstrap method. Left: Smaller
decision transitions signify a more abrupt transition from being
more likely to evacuate to being less likely to evacuate. Right:
Decision thresholds at zero indicate the threshold was at 1 SD
(which also coincides with the edge of the cone). Positive
values indicate thresholds at locations beyond 1 SD; negative
values indicate threshold at locations closer than 1 SD.

Decision Thresholds

Another aspect of behavior is the decision threshold. The
decision threshold refers to the distance from the center of the
predicted storm path where decisions are to evacuate 50% of
the time. Towns located within this threshold will be more
likely to be evacuated and towns located outside this threshold
will be less likely to be evacuated. Decision thresholds were
calculated as the distance at which evacuation rates were 50%.

Decision thresholds are shown in Figure 3. Decision
thresholds are the distance at which evacuation rates are at 50%.
Thresholds at 0 indicate the threshold is located at 1 SDs, which
is the same location as the edge of the cone. Positive values
indicate decision thresholds beyond 1 SD, and negative values
indicate decision thresholds less than 1 SD. Decision thresholds
were further away from the center of the storm’s predicted path
in the zoomies condition than in the cone condition. We
calculated the 95% ClIs for the difference between the decision
thresholds for the zoomies versus the cone condition. These



intervals did not include zero for the Colorado participants
[0.26, 0.55] nor for the Florida participants [0.12, 0.37].

Decision thresholds were also further away for the
Colorado participants than for the Florida participants. The 95%
CIs for the difference between the decision thresholds for the
Colorado participants versus the Florida participants was
positive and did not include zero for the cone [0.14, 0.51] nor
for the zoomies [0.15, 0.78]. For the Florida participants, their
thresholds were right at the edge of the cone for the cone of
uncertainty condition. This is consistent with the containment
effect, where towns located inside of the cone are evacuated and
towns outside of the cone are not evacuated.

Prediction Uncertainty

We recalculated decision transitions and decision
thresholds at each level of prediction uncertainty for each
participant group for each visualization condition. The
corresponding scores are shown in Figures 4 and 5. For storms
with low uncertainty, decision transitions were less abrupt and
decision thresholds were further from the storm’s center
compared with storms with high uncertainty for both
visualization conditions and participant groups. In cases with
low uncertainty presented via zoomies, participants evacuated
towns at the edge of the distribution of zoomies. Because we
had not included towns far beyond this distribution, estimates
of both decision transitions and decision thresholds were less
precise (as indicated by the larger confidence intervals). Future
studies should use a wider distribution of town locations.
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Figure 4. Decision Transitions (in units of storm SDs) as a
function of visualization condition, participant group, and storm
uncertainty. Error bars are 95% confidence intervals via the
bootstrap method.

In general, decision transitions and decision thresholds
were similarly affected by prediction uncertainty across the two
participant groups. However, for the participants in Florida, the
decision threshold was always at the edge of the cone for the

cone condition regardless of storm uncertainty. Hence
familiarity with the cone visualizations was associated with a
tendency to make standard judgments relative to the cone rather
than extracting different information from different widths of
cones.
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Figure 5. Decision Thresholds (in units of storm SD) as a
function of visualization condition, participant group, and storm
uncertainty. Decision thresholds at zero indicate the threshold
was at 1 SD (which also coincides with the edge of the cone).
Error bars are 95% confidence intervals via bootstrapping.

DISCUSSION

Hurricanes wreak havoc on coastal communities, with
loss of lives, homes, businesses, and millions of dollars.
Minimizing these costs requires effective communication of
predictions of incoming storms. Yet, these predictions are
inherently uncertain. Given that the mind struggles to
understand uncertainty and reason under conditions with
uncertainty, the task of communicating hurricane predictions is
crucial and challenging.

A common technique for communicating hurricane
predictions is the cone of uncertainty, despite the variety of
issues raised with this visualization strategy (see Introduction).
One issue is the containment effect, such that people perceive
that only areas encompassed by the cone are at risk.

Evidence for the containment effect was found here,
particularly for participants who attended university in West
Florida. For these participants, the threshold at which their
responses shifted from being more likely to evacuate to be less
likely to evacuate coincided with the edge of the cone.
Furthermore, their responses transitioned abruptly, with 78% of
towns located within the cone to be evacuated and 79% of
towns located beyond the cone to not be evacuated. A similarly
abrupt transition was also evident in the students attending
university in Colorado (see Figures 2 and 3).

These data show that direct experience with hurricane
uncertainty does not necessarily provide an advantage in
evaluating risk. One possible explanation for the more



conservative approach to evacuations in the Florida sample
could be more experiences with false alarms in storm warnings
and evacuations. Because evacuations are very time consuming,
orders are typically made well in advance of landfall when
uncertainty is high. This means that evacuation orders lead to
false alarms as much as 90% of the time (Regnier, 2008).
Additionally, the decision to evacuate is influenced by many
factors (e.g., Morss et al., 2016), such as perceptions of
warnings being overblown and anticipated traffic delays. A
more experienced sample would be more likely to consider
some of these barriers to evacuations. This may shift the
criterion for those in hurricane prone areas to only recommend
evacuation when a city is well within the cone of uncertainty,
thereby showing a stronger containment effect.

In contrast, the zoomies depicted some level of risk across
the distribution of the potential path, particularly at the edges of
the storm’s predicted path. Participants did not demonstrate a
containment effect with the zoomies. Instead, their evacuation
rates showed a gradual decrease as town distance increased.
This behavior is more consistent with the actual risk of
impending storms given the best predictions currently offered.

Given that participants from Florida were likely more
accustomed to seeing and using the cone of uncertainty to make
decisions, we can assess whether this familiarity impacted their
interpretation of the zoomies. Evacuation rates were similar
between the two groups on the zoomies. This suggests that
transitioning from using the cone of uncertainty to using the
zoomies will not incur a cost for people who are more
accustomed to seeing and using the cone of uncertainty.

The zoomies are a dynamic ensemble. Perception of the
zoomies likely benefits from the visual system’s immense
capability to process properties of ensembles of objects
(Whitney & Yamanashi Leib, 2018). Other ensemble displays
include track ensembles for which potential hurricane paths are
represented as lines or tracks. Prior work has shown similar
evacuation decisions for static track ensembles as for the
zoomies (Witt & Clegg, 2021). However, a potential advantage
for zoomies is that they have a natural compatibility between
the visual display and the underlying concept. The zoomies can
travel along similar paths as hurricanes.

The spread of the zoomies can indicate uncertainty about
the storm’s path, thus avoiding the common error with the cone
of uncertainty that increased cone size is misinterpreted as a
prediction of increased storm size instead of increased
uncertainty with time.

Another advantage of the zoomies is that they can easily
be manipulated to show a variety of features, such as using size
or color to indicate various components of the impending threat
such as storm surge or windspeed. In addition, the timing of the
zoomies could provide a useful technique for communicating
earliest reasonable as well as likely landfall of the impending
hurricane. Future studies will be needed to determine whether
people are sensitive to these features and can use them to make
evacuation decisions. Given the variety of these potential visual
manipulations, we propose zoomies will be able to convey
impending hurricane information more precisely and therefore
lead to smarter evacuation decisions.
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