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for Uncertain Trajectories

Jessica K. Witt and Benjamin A. Clegg
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When making decisions about uncertain spatial trajectories, such as storm forecasts, people rely on
visualizations to support their understanding. Four experiments explored novel visualizations—dynamic
ensembles. Nonexperts used visualizations to interpret probabilistic information about potential paths of a
hurricane. Experiment 1 focused on global properties of the distribution, and showed dynamic ensembles
imply a larger area at risk than traditional cones of uncertainty. Experiment 2 compared decisions with cones
versus dynamic ensembles at specific individual locations. Dynamic ensembles offer more appreciation of
risk outside the center of the distribution, and less abrupt in transitions from evacuation to nonevacuation
choices. Experiment 3 compared decisions for dynamic ensembles versus static line ensembles. Similar
evacuation rates across the two conditions suggest ensembles, rather than dynamics, are the more critical
feature. Experiment 4 examined whether an additional dimension can be included in dynamic ensembles
using color coding. Decisions reacted to this ancillary feature, with higher evacuation rates for locations
threatened by more severe outcomes. Outcomes highlight the ability to systematically vary the level of risk
communicated through the ensembles while also communicating the continuous nature of the risk. The
overall findings show the viability of presenting uncertain spatial information using dynamic ensembles.

Public Significance Statement

communication of hurricane threats.

Current approaches to showing the potential path of an incoming hurricane have well-known flaws, and
this research investigates a new method to allow people to understand the areas that might be at risk.
Findings from several experiments demonstrate that showing multiple, simultaneous, fast moving icons
to illustrate the spread of possible tracks can provide a different sense of the possible threat, and
specifically, these “zoomies” better convey risk that the storm will deviate from the most likely forecast
path. Furthermore, these displays offer several design opportunities that could be used to communicate
additional factors such as the magnitude of the storm and thus could afford a more complete

Keywords: visualizations, ensembles, decision making, hurricane forecasts

As a tropical cyclone such as a hurricane or typhoon approaches,
people have to decide how to prepare. Preparations can range from
doing nothing at all to packing as many items as possible and
evacuating the area. Although an array of factors will influence their
decisions (see Cox et al., 2013; Dombroski et al., 2006; Goldberg
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et al., 2020; Pham et al., 2020), one key element identified is risk
perception (Thompson et al., 2017). In the case of an approaching
storm, gauging risk depends critically on understanding the potential
path (e.g., Broad et al., 2007). Greater lead time naturally facilitates
evacuations and is especially important for the timely evacuation of
large populations. But, there is a trade-off due to the nature of
weather forecasting with larger look ahead time associated with
more variability in the possible trajectory, which complicates deci-
sion making (Regnier, 2008; Regnier & Harr, 2006).

Reliable and appropriately presented information about uncer-
tainty can improve decision making (e.g., Kirschenbaum & Arruda,
1994; MacEachren et al., 1998, 2012; Nadav-Greenberg & Joslyn,
2009). However, nonexperts are often poor at grasping spatial
variability even when they directly experience a set of instances
from a distribution (Herdener et al., 2016), including when the
variability is their primary focus (Herdener et al., 2018). Wickens
et al. (2020) point to the general tendency to underestimate spatial
variability, but also highlight how a range of factors influence the
extent to which that occurs. Importantly for the current context,
according to the model (Wickens et al., 2020), rapid perceptual-
based processing (e.g., Witt, 2019a) offers one potential mechanism
to overcome a bias toward the underestimation of variability.
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2 WITT AND CLEGG

The question then arises as to how best to convey the future risk to
various locations from an inherently uncertain future path of a storm?
This article presents initial evidence to support a novel method,
dynamic ensembles, to enhance understanding of uncertain geospa-
tial information such as forecasts for storm tracks. Although we
ground this example in the context of hurricane paths, the same
underlying methods can be applied to assist people in understanding
other forms of spatiotemporal uncertainty, like the potential spread of
wildfires, the search for a downed plane, or the hunt for a submarine.

Visualizations to Support Understanding

An effective way to improve understanding is through the use of
visualizations (Card et al., 1999; Scaife & Rogers, 1996; Spence,
2001; Thomas & Cook, 2005; Tufte, 2001). Specifically, graphical
depictions of relevant information can improve understanding and
decision making (e.g., Hegarty et al., 2010; Sanfey & Hastie, 1998),
which importantly extends to situations featuring spatial uncertainty
(e.g., Cheong et al., 2016; Greis et al., 2018). However, there are
challenges for presenting effective visualizations of geospatial
information, and associated strengths and weaknesses for the dif-
ferent approaches that can be adopted (MacEachren & Kraak, 2000;
Mason et al., 2017).

In the United States, one way the National Weather Service
provides information about the potential path of storms is using
National Hurricane Center Track Forecast Cones (“cones of

Figure 1

uncertainty,” e.g., see Figure 1). A cone of uncertainty repre-
sents deviation from most likely path, showing an area that
captures two thirds of the forecast errors from a 5-year sample
(National Oceanic and Atmospheric Administration, 2020) with a
solid area showing the projection for 3 days, and a shaded area
capturing out to 5 days. This same general approach of presenting
a cone to represent potential variability of the path is commonly
adopted by local weather forecasts presented to the general public
(Broad et al., 2007), and these presentations are the primary
source of information for the general public (Demuth
et al., 2012).

Problems With the Cone of Uncertainty

Unfortunately, a number of problems have been identified with
using cones of uncertainty and its attempt to convey the range of
potential paths that a storm might take. At the most fundamental
level, it is not always apparent to nonexperts what the cone repre-
sents. In looking at impressions in the general public, Broad et al.
(2007) found that the people consistently misinterpreted or misap-
plied the features of cones, including an assumption that locations
outside the cone would not be impacted, and example statements
such as that the graphic represents past and future locations (rather
than just current and forecast positions). The use of a single “most
likely” path, to which the historically derived deviation around that is
added as the cone, means the typical representation includes only one

National Oceanic and Atmospheric Administration Images of Cone of Uncertainty for Hurricane
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actual instance of a path. This creates a tendency to overly focus on
that central forecast track of the storm.

Similarly, as measured in the context of lab-based experiments,
people consistently confuse increased size of the cone of uncertainty,
which represents an increase in uncertainty, with increased size or
intensity of the storm instead (Boone et al., 2018; Padilla et al.,
2017; Ruginski et al., 2016). Indeed one drawback of a standard cone
representation is that, despite attempting to convey multiple dimen-
sions of information, it only displays the most likely path of the storm
and its historical potential for deviation from that path, and does not
actually convey the important information on the predicted size of the
storm and the area likely to be affected (although dots with letters are
included to denote whether the predicted strength is that of a tropical
storm or of a hurricane).

The boundaries of the cone also lend themselves to the contain-
ment heuristic, with the implication that locations just inside the
boundary of the cone are incorrectly seen as disproportionately more
probable than those just outside the boundary simply by virtue of
being contained within the visualization (Padilla et al., 2018; see,
e.g., McKenzie et al., 2016, and the related earlier example of the
“within-the-bar bias,” Newman & Scholl, 2012). For cones of
uncertainty, this produces a large drop-off in perceived likelihood
of paths outside the cone boundary compared to those inside, as if
the cone contains all possible hurricane paths.

Another set of concerns result from probabilistic nature of the
visualization. From the graphic alone (as shown in Figure 1), it is
not self-evident that one would anticipate a 1/3 chance the storm’s
track will fall outside the cone. In addition, even with information
about the probabilities, decision making could be improved through
methods that expose individuals to concrete, natural frequencies of
events rather than abstract, probabilistic information (see, e.g.,
Gigerenzer, 1994; Gigerenzer et al., 2005).

Experiments also raise questions about the basic efficacy of cone
of uncertainty visualizations. For example, the findings from

Figure 2

Ruginski et al. (2016) suggest that cone representations caused
people to falsely assume that a storm is growing over time, and
likely to inflict more damage, which would logically imply those
same people do not understand that actual meaning: that the future
path of the storm is increasingly uncertain. Moreover, in an abstract
task that involved experiencing a set of instances from a spatial
distribution, the use of cone visualizations did little to improve
understanding of the variability (Pugh et al., 2018).

Other potential drawbacks with the use of cones of uncertainty in
forecasts can be seen from real-world examples. As Hurricane Irma
approached Florida in 2017, a number of forecast potential trajec-
tories indicated it would pass up either the East or West coast of
Florida, but the cone of uncertainty does nothing to convey the
higher relative probabilities of those types of paths (see Figure 2
right panel). In 2004, Hurricane Jeanne was forecast to make a loop
(which it did), but this behavior turned the cone of uncertainty into a
circle (see Figure 2 left panel), and therefore failed to provide
information to the viewer on how to best extrapolate its future path.

Alternative Visualizations

Although there are a variety of different types of visualizations
employed in meteorology (for a review, see Rautenhaus et al., 2018),
given emerging techniques and technologies that allow the production
of multiple, parallel forecasts for a storm’s trajectory, Hamill et al.
(2012) proposed the potential value of ensemble techniques to convey
uncertainty around tropical cyclones. An ensemble representation
involves showing simultaneously multiple individual paths, with these
instances illustrating divergence over time. A common class of these
would be lagged ensemble track forecasts (“track ensembles”) that
show lines for several possible predicted paths.

Ensembles occur when collections of objects or features share
common elements. The human visual system is adept at integrating
across the individual items and extracting a summary of that

National Oceanic and Atmospheric Administration Images of Cones of Uncertainty for Hurricane Jeanne (Left Panel) and Hurricane Irma

(Right Panel) From the National Weather Service
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information (see Whitney & Yamanashi Leib, 2018, for a compre-
hensive review). People can readily extract the average size, direc-
tion of motion, or length and orientation of a set of entities
(e.g., Miller & Sheldon, 1969; Watamaniuk & McKee, 1998).
Importantly for the current context, ensemble perception includes
an ability to derive not just the average of the group, but also an
accurate sense of the variability (e.g., Norman et al., 2015).

The inherent ability of the human visual system to process
ensembles across multiple levels is leveraged in ensemble visuali-
zations. Although one approach to visualization, as in the case of the
cone of uncertainty, is to provide a graphic that attempts to
summarize the average trajectory and in some form represent the
possible variability; ensemble visualizations convey multiple in-
stances that reflect a range of potential outcomes and let the visual
system extract information from those. This approach can overcome
some of the pitfalls, problems, and biases associated with the cone of
uncertainty that are outlined above. As discussed above, the use of
short time course perceptual information can also overcome a
tendency to underestimate the variability present (see Wickens
et al., 2020). In addition, because multiple ensemble features can
be extracted simultaneously, this offers the potential to increase the
amount of information that could be effectively communicated—
adding, for example, dimensions to convey the predicted size or
intensity of different storm tracks.

There has been research examining line, scatter, and heat map-
based ensembles and their potential advantages versus various forms
of cones of uncertainty (see, e.g., Cox et al., 2013; Ruginski et al.,
2016). Cox et al. (2013) looked at a set of specific hurricane cases,
comparing ensembles generated from overlaid tracks that faded out
gradually to cones. Although this visualization changed behavior, the
findings were somewhat mixed and failed to demonstrate a consistent
benefit for ensembles. In addition, this work looked only at relative
estimates of probabilities within eight sectors across 360°, and the
authors note the importance of also including fine-grained decisions
in future studies. Ruginski et al. (2016) employed damage judgments
as measures, and although their findings suggest some important
misunderstandings associated with cone visualizations, the results do
not speak directly to evaluations of the likely paths of the storms.

One problem with the use of ensembles is a propensity for some
participants to make judgments based on the individual instances
presented (Padilla et al., 2017; Pappenberger et al., 2013; Ruginski
et al., 2016). Rather than extracting general properties from the ensem-
ble, at least some individuals focused on specific paths of the instances
presented. For example, in one experiment, participants judged which of
two oil rigs was more likely to be damaged by the impending hurricane.
The rig closer to the center of the predicted path is always the correct
answer. When this rig was located on a specific track, participants
always selected this rig. However, they selected the farther rig 40% of
the time when that rig was located on one of the specific paths and the
closer rig was not. In other words, they were biased to believe rigs
located on the paths were at higher risk than rigs located off the paths
and biased to believe this information was nearly as relevant as the
general properties of the ensemble (Padilla et al., 2017).

An alternative ensemble technique to showing predicted hurricane
paths is to instead show an ensemble of possible hurricane positions
at various time points (Liu et al., 2015, 2017). For example, rather
than convey the paths, a display could convey anticipated risk and
uncertainty at various locations using scalar fields with high satura-
tion depicting areas at highest risk (Liu et al., 2015). Alternately, a

display could also depict anticipated location and magnitude of the
storm by positioning icons resembling hurricanes along the areas at
risk and labeling each icon with a numeric code (e.g., 5 = category 5
hurricane). These displays encode anticipated storm severity using
numbers and encode uncertainty using the density or quantity of
icons (Liu et al., 2017). These displays led to increased rating of
expected damage to locations at the center of the predicted path, but
failed to communicate the increased risk beyond the center paths (Liu
et al., 2017). It seems that the icons also led people to use the
containment heuristic (Padilla et al., 2018).

Dynamic Ensemble Visualizations

So how should hurricane predictions be visualized? We propose
the use of a dynamic ensemble that resembles hurricane trajectories.
A selection of predicted hurricane paths is shown with marks that
move, dynamically, along each of the predicted paths. With an
increase in digital communication, dynamic or animated visualiza-
tions are a realistic option to convey information to large numbers of
people. A dynamic ensemble leverages powerful and automatic
ensemble processes in the visual system, has the advantage of
presenting information using natural frequencies rather than proba-
bilities, and requires less explanation for how the various marks map
onto the underlying concepts (Hullman et al., 2015). Aligning the
compatibility between the visual presentation and the underlying
concepts is important for visualization comprehension (Witt, 2019b).

With respect to understanding hurricane forecasts, people under-
stand the threat to areas located at the center of the forecasted path.
What is lacking is a clear understanding that areas beyond the
boundaries of the cone of uncertainty still have some risk, and that
this risk declines with increased distance. Thus, to determine
whether the dynamic ensemble improves understanding, we mea-
sured performance in two ways. One was to assess whether people
would set the zone to be evacuated as greater after seeing the
dynamic ensemble than after seeing the cone of uncertainty. The
second method was to measure evacuation decisions for specific
locations—towns located at the center, on the edge, and beyond the
edge for both types of visualizations. To preview our results, the data
showed increased understanding for risk at the edges after seeing the
dynamic ensemble than after seeing the cone of uncertainty.

Experiment 1: Setting an Evacuation Zone

The first experiment compared decisions made when viewing a
cone of uncertainty to convey the extent of the area under threat
versus a dynamic ensemble that demonstrated an array of possible
paths with a probabilistic distribution (see Figure 3). Given that, as
discussed above, people view paths outside of the cone of uncer-
tainty to be unlikely, the key question was whether extracting
information from dynamic ensembles offers a sense that a larger
area could be under threat. In this initial experiment, to best assess
whether ensembles can convey effective information about the
potential variability of a storm’s path, participants were asked to
judge the total area that needed to be evacuated.

Participants viewed a hurricane forecast prediction then adjusted the
size of the evacuation zone. Forecast predictions were presented as a
cone of uncertainty or with a dynamic display of potential paths, hereby
referred to as zoomies. We predicted larger evacuation zones for the
dynamic ensemble displays than the cone of uncertainty displays.
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Figure 3

Hllustration of the Zoomies (Left) and the Simplified Cone of Uncertainty (Right)

Should the town be evacuated?
'y' = Yes or 'n' = No

Note. The zoomies moved from left to right. Here, successive screenshots are shown to illustrate their paths. All zoomies traveled in straight linear paths with
smooth and continuous motion from their origination point but varied in angle and speed to create the scattering of potential paths for the incoming storm.
An animation of the zoomies can be found at https://osf.io/fd682/. See the online article for the color version of this figure.

Method
Design

The study measured the evacuation zone size set by participants
across 2 types of visualization (cones vs. zoomies) X 3 levels of
prediction uncertainty (low, medium, and high). To maximize
statistical power to detect effects and minimize the role of individual
differences in interpretation, the studies employed a within-subjects
design. The first visualization presented was counterbalanced across
participants. Participants completed 72 trials for each visualization
condition for a total of 2,160 trials in the analysis.

Participants

Nineteen participants volunteered in exchange for course credit.
Pilot studies were conducted with 7—15 participants per experiment
(Wittet al., 2020). With so many trials per participant and such large
effects, not many participants were needed to detect significant
effects. Participants were recruited from the pool of students taking
introductory psychology courses. We did not ask whether they had
ever lived in a geographic location for which hurricanes were a risk.
As our governor pointed out, Colorado is not at risk for hurricanes.'
Over 70% of the undergraduates in our college are from Colorado,
and only around 5% of undergraduates throughout the university are

from states or territories that are the most hurricane-prone areas in
the country. In this case, however, there is an advantage to assessing
the basic properties of these visualizations using naive participants
whose judgments are not likely to be confounded by frequent
previous exposure to hurricane forecasts and outcomes (we return
to this topic in the Discussion). All experiments were approved by
the Colorado State University Institutional Review Board.

Stimuli and Apparatus

The stimuli were viewed on a 19” computer monitor with
1,280 x 1,024 resolution. On the right side of the screen, a map of
a coastline was presented (see Figure 3). There were two types of
trials: cones and zoomies. On cone trials, a cone (created as two lines
and an arc connecting them) was presented to the left of the coastline.
The left-right length of the cone was 18 cm. The width of the cone
was set to 1 of 3 widths depending on the level of spread. For the
narrow spread, the width was 4.7 cm. For the medium and wide
spreads, the widths were 7.1 and 9.4 cm, respectively. These three
levels of spread corresponded to three levels of prediction uncertainty
(low, medium, and high, respectively). A narrow spread meant there

! https://www.facebook.com/PolisForColorado/posts/even-though-colorado-
is-not-at-risk-for-hurricanes-scientists-at-colorado-state-/10157383273703921/
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was less uncertainty about the predicted hurricane path. The center of
the cone was either at the center of the screen, 0.6 cm above the center,
or 0.6 cm below the center of the screen. This corresponded to the
manipulation of the angle of the storm (up, center, or down). The cone
was shown for 500 ms before the evacuation zone appeared.

On the zoomie trials, 18 small squares (0.44 cm?) originated from
the center of the left side of the screen (1.5 cm from the left edge) and
moved toward the coastline. Their distribution approximated a normal
distribution with 4 zoomies just above the center path, 4 just below, 2
each on either side of that, and 3 evenly spaced outside each of those
(see Figure 3). The 12 in the center (67%) would all have been inside
the cone had the cone been present (cones and zoomies were never
presented at the same time). As the spread increased, the spatial paths
of the zoomies were more spread apart. The spatial paths were also
manipulated to be up, center, or down depending on the angle of the
storm. Each zoomie moved at a constant speed for which some
random noise was added at the beginning of each trial. The speeds
ranged from 1.2 to 1.9 m/s. It took approximately 144 ms for them to
make their movements.

Procedure

Participants gave informed consent and then the following in-
structions were provided on self-paced introductory screens: “You
are in charge of evacuating a coastal region when hurricanes
approach. If you choose not to evacuate a zone and a hurricane
hits, damage will be extensive and costly. If you choose to evacuate
a zone and the hurricane does not hit there, money will be spent on
the evacuation for nothing. Thus, there are benefits and costs to
selecting smaller and larger evacuation zones. Regions must be
evacuated 12 hr in advance of when the hurricane will hit. For each
decision, a hurricane is hovering and is approximately 12 hr away,
so it will be time to make your decision. You will see a model that
shows the best predictions of the hurricane’s anticipated path. The
model shows a region that contains 67% of the predicted paths.
Hurricanes are unpredictable, so make your best guess of how much
of the coast to evacuate.” None of the text was italicized but it is here
because this is the part that was different depending on the condi-
tion. For the zoomies condition, the italicized text was replaced with
“The model shows animations of the most likely potential hurricane
paths.” Everything else about the instructions was the same.

Each trial began with a fixation screen for 1,000 ms. For cone trials,
the coast line and the cone of uncertainty appeared. After 500 ms, a red
rectangle signaling the evacuation zone appeared. The rectangle was
either 1.5 cm or 5.9 cm tall. Participants used the arrows on the
keyboard to move the evacuation zone up and down. Each key press
corresponded to a move of 0.44 cm. Participants used the numbers 1, 2,
4, and 5 on a keypad to make the evacuation zone bigger or smaller by
small increments (0.1 cm) or big increments (0.3 cm). Their task was to
set the evacuation zone as they saw fit before continuing on to the next
trial. Participants completed 72 trials in the cone condition (3 spreads X
3 angles X 2 start sizes X 4 repetitions) and the same number of trials in
the zoomies condition. Order of visualization condition was random-
ized across participants. Trial order within block was randomized.

Results and Discussion

Five participants did not complete the experiment, although one
completed all but 4 trials. The other four were excluded from analyses.

Evacuation zones and prediction uncertainty spreads were transformed
into approximate miles based on the assumption that the visible
coastline was 800 miles. In this metric, the width of the cone for
the 3 levels of prediction uncertainty were 70, 105, and 140 miles,
respectively. The sizes of the evacuation zones were analyzed with a
linear mixed model. The dependent variable was evacuation zone size.
The fixed effects were visualization type, prediction uncertainty, and
their interaction. Visualization type was entered as a factor with the
zoomies as the reference. Prediction uncertainty was minimum cen-
tered by subtracting 70 miles. The random effects were intercepts and
slopes for each fixed effect by participant.
The main effect of visualization type was significant, t = —4.13,
p = .001, estimate = —26.87 miles, SE = 6.51 miles. Participants
made the evacuation zone nearly 27 miles wider after viewing the
zoomies than after viewing the cone of uncertainty. The main effect of
prediction uncertainty was significant, t = 3.22, p = .006, estimate =
0.29 miles, SE = 0.09 miles. For each increase of 40 miles in
prediction uncertainty, participants set the evacuation zone to be 11
miles wider. The interaction between visualization type and prediction
uncertainty was significant, t = 2.61, p = .020, estimate = 0.23 miles,
SE = 0.09 miles. As prediction uncertainty increased, participants
increased the size of the evacuation zone at a greater rate when viewing
the cone of uncertainty than when viewing the zoomies (see Figure 4).
In both conditions, participants set the size of the evacuation zone to
cover the most likely storm paths, while excluding predicted storm paths
located at the edge and beyond the cone or predicted storm paths where
the density of the zoomies was low. However, the size of the evacuation
zone was set to be larger with the zoomies than with the cone of
uncertainty. This suggests that participants consider larger areas to be at
risk with the zoomies. The findings from Experiment 1 imply potential
real-world value from employing dynamic ensembles to convey the
possible future path of an incoming storm, specifically through benefits

Figure 4
Size of the Evacuation Zone as a Function of Prediction Uncertainty
and Visualization Type for Experiment 1

140
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CIs calculated from the model. See the online article for the color version of
this figure.
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from increased appreciation of uncertainty being represented. In antici-
pating an actual storm, this suggests dynamic ensembles could lead to
earlier preparations for potential evacuation by more people.

Experiment 2: Decision to Evacuate a Town

Although Experiment 1 provides evidence that dynamic ensem-
bles when viewed globally have the potential to be an effective
visualization, the nature of the judgment in the first study may have
encouraged people to think about the general properties of the
ensemble. Although emergency planners may have to make deci-
sions about the size of an area to be evacuated, most individuals are
making decisions about whether to evacuate their specific location.
This shift in focus from the area potentially impacted to the need to
evacuate a single location could change the effectiveness of dynamic
ensemble visualizations. Instead of assessing the properties of the
ensemble, single-location judgments might make participants prone
to focus on the individual instances (as has been observed with static
ensemble displays) overriding the benefits from the ensemble
information. Thus, Experiment 2 was the same as Experiment 1
except instead of setting an evacuation zone, participants were
shown a single town and had to decide whether to evacuate it.

We hypothesized that participants would have similar under-
standing of risk for locations at the center of the storm’s predicted
path but that participants would perceive locations beyond the center
as being low risk for the cone of uncertainty (thereby demonstrating
the aforementioned containment effect; Padilla et al., 2018) and at a
relative higher risk for the zoomies. In other words, we predicted that
people would not be prone to the containment effect with the
zoomies, but it would occur with the cone of uncertainty.

Method
Design

The experiment employed a fully within-subjects 2 (types of
visualization: cones vs. zoomies) X 3 (levels of prediction uncer-
tainty) X 6 (town location; labeled as town zone) design. Visualiza-
tion condition was blocked; starting order was counterbalanced
across participants. Prediction uncertainty and town zone were
randomized within block.

Participants

Twelve students were recruited in the same way as in Experiment
1 and participated in exchange for course credit.

Procedure

Everything was the same as in Experiment 1 except the display
showed a single town, and participants decided whether to evacuate
the town. The following instructions were given prior to the
zoomies block:

You are in charge of evacuating a town when hurricanes approach. The
town will be marked with a red square. If you choose not to evacuate the
town and a hurricane hits, damage will be extensive and costly. If you
choose to evacuate the town and the hurricane does not hit there, money
will be spent on the evacuation for nothing. Thus, there are benefits and
costs to evacuating the town. Towns must be evacuated 12 hr in
advance of when the hurricane will hit. For each decision, a hurricane

is hovering and is approximately 12 hr away, so it will be time to make
your decision. The forecast shows animations that illustrate some of the
potential paths the hurricane might take. However, hurricanes are
unpredictable, so make your best guess of whether to evacuate the town.

The text shown to participants was not italicized. The text in
italics was the only part that differed for the instructions with the
cone block, which instead stated “The model shows a region that
contains 67% of the predicted paths.”

On each trial, a blank screen was shown for 20 ms. Then, the
coastline appeared. The town was a red square that was 0.9 cm? and
appeared along the coast. With equal frequency, the town could be
in a location corresponding to above and outside the cone boundary,
within the cone boundary, or below and outside the cone boundary.
Within each area, the specific placement was randomized using a
uniform randomizer. When the town was above or below the cone,
the town was limited to be at least 1.5 ¢cm from the top or bottom of
the display. The same placement rules were used on the zoomie
trials, so the town could be above, within, or below the center
12 zoomies.

Participants completed 108 trials with each visualization (3 levels
of prediction uncertainty X 3 storm angles X 3 town positions X
4 repetitions). Order within condition was randomized, and order of
condition was randomized across participants.

Results

Four participants did not complete the experiment and were
excluded from the analyses. The data that were analyzed constituted
6,912 trials (8 participants X 2 blocks X 108 trials). We analyzed
four performance metrics. One performance metric was the propor-
tion of evacuations for towns located within the areas most likely to
be hit by the hurricane. These were towns that were or would have
been located within the cone of uncertainty. Another performance
metric was the proportion of evacuations for towns located in areas
less likely to be hit by the hurricane. These were towns that were or
would have been located beyond the boundaries of the cone of
uncertainty. We were also interested in how behavior transitioned
from high-likelihood regions to low-likelihood regions. We discuss
our two novel measures of transition behavior below. For each
performance metric, we assessed how visualization type and pre-
diction uncertainty affected evacuation decisions.

We recoded town position into zone such that towns located at the
center of the predicted path were coded as Zone 1, towns located
beyond zone 1 but within the boundaries of the cone were coded as
Zone 2, towns located at the cone’s edge as Zone 3, and towns
located beyond the cone as Zones 4-6 as distance from center
increased. Zone 6 was beyond the boundary of the most extreme
zoomies (see Figure 5). How evacuation decision varied across
zones is shown in Figure 6.

Highest Risk Town Decisions

To assess decisions for in-cone towns, we conducted a general
linear mixed model with data for which town were or would have been
located well within the boundary of the cone. These included Zones 1
and 2. The dependent variable was the binary decision to evacuate or
not (coded as 1 and 0). The within-subjects fixed effects were
visualization type (cone, zoomies), prediction uncertainty (low,
medium, high coded as —1, 0, 1, respectively), and their interaction.
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8 WITT AND CLEGG

Figure 5
The Black Lines Show the Mean Path Traveled by Each Set of Zoomies
for the Medium Level of Prediction Uncertainty and the Middle Angle

0')()1-#(.\)!\)

Note. The thickness of the line indicates the number of zoomies traveling
along that path (4 zoomies for thickest lines, 2 zoomies for medium lines, and
1 zoomie for thinnest lines). The solid purple lines show the outer edges of
the cone of uncertainty, and the dotted purple lines show how these lines
would extend to the town location. All town locations for this condition
across all participants are shown as points. The points are color coded
according to zone, and each zone is labeled. See the online article for the
color version of this figure.

Random effects were included for participant. The model was singular
or did not converge when we included random slopes for both trial
range and prediction uncertainty (including or excluding the interac-
tion between them). The model converged with either random slope
included and with all random slopes excluded. The three models
produced nearly identical outcomes with respect to the interaction. The
models differed for the main effects such that the p values were less
when a factor was not included as a random slope. Thus, we present
the model with no random slopes to show the minimum p values for
the main effects, none of which were significant.

Participants were highly likely to evacuate towns located in the
areas most likely to get hit, M = 0.95, SEM = 0.01. Evacuation
decisions did not vary across visualization type, estimate = 0.17,
SE = 0.09, z = 1.83, p = .068. Evacuation decisions also did not
vary across prediction uncertainty, estimate = —0.16, SE = 0.11,
z = —1.49, p = .137. However, as prediction uncertainty increased,
evacuation decisions differed between the two visualization types,
estimate = —0.577, SE = 0.11, z = —=5.26, p < .001. For the cone
condition, evacuation decisions increased as the prediction uncer-
tainty increased, p = .004 (Ms = 0.93, 0.95, 0.97), whereas for the
zoomies, evacuation decisions decreased as prediction uncertainty
increased, p < .001 (Ms = 0.98, 0.96, 0.93).

These results (see also Witt et al., 2020) suggest that at least some
people derive a sense that changes in the uncertainty of the path of
the tracks imply different need to evacuate from what would be
high-probability areas along the center of the distribution. One
possibility is that, as in the case of track ensembles (Padilla
et al., 2017), people are using instances to determine the risk—
that is, making judgments based on one of the tracks intersecting the

location or passing close by. We return to this issue in the General
Discussion.

Lower Risk Town Decisions

To assess decisions for towns located beyond the boundary of
cone (or the equivalent location for the zoomie condition), we
conducted a general linear mixed model on trials for towns located
in this range. This included towns located in Zones 4-6. The
dependent variable was the binary decision to evacuate or not
(coded as 1 and 0). The within-subjects fixed effects were visuali-
zation type (cone, zoomies), prediction uncertainty (low, medium,
high coded as —1, 0, 1, respectively), and their interaction. Random
effects were included for participant, including random slopes for
both fixed effects and their interaction.

Decisions to evacuate these towns that were beyond the central
zones of the predicted hurricane path varied across visualization
type, z = 8.50, p < .001, estimate = 1.99, SE = 0.23. Participants
were far more likely to evacuate these towns when the visualization
was zoomies (M = 0.39, SEM = 0.07) than when the visualization
was the cone of uncertainty (M = 0.08, SEM = 0.02).

Participants were more likely to evacuate these towns as predic-
tion uncertainty increased, z = 5.17, p < .001, estimate = 0.48,
SE = 0.09. Thus, less certain predictions made participants evacu-
ate a greater region. The interaction between visualization type and
prediction uncertainty approached significance, estimate = —0.20,
SE=0.11, z=-1.77, p=.078. As prediction uncertainty
increased, the increase in evacuations increased for both the cone
of uncertainty, p = .015, and the zoomies, p < .001, and the
increase in evacuation rate was almost double for zoomies as for
the cone (Ms = 0.48, 0.28, respectively).

Figure 6
Median Proportion of Towns Evacuated by Eccentricity of Location
for Cone and Zoomies Conditions for Experiment 2
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Note. Medians were calculated after computing a mean for each partici-
pant. Error bars are 1 SEM calculated within-subjects. See the online article
for the color version of this figure.
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Transitions in Evacuation Decisions

To understand how participants’ responses transitioned from
being more likely to evacuate to being less likely to evacuate,
we analyzed their data with a general logistic mixed regression. The
dependent measure was whether the town was evacuated (coded as
1) or not (coded as 0). The fixed effects were the town’s zone, the
visualization type, and the prediction uncertainty. All two-way and
three-way interactions were also included. Random effects for each
participant were included (intercepts and slopes for each fixed
effect). Zone was centered by subtracting 3, so all main effects
and interactions that did not include zone correspond to responses
when towns were at the boundary of the cone. Visualization type
was entered as a factor with the cone condition serving as the
reference factor. Prediction uncertainty was centered and entered as
—1, 0, and 1 from less to more uncertain, respectively.

There are two performance metrics of interest. One is the
strictness by which evacuation decisions transition from being
more likely to evacuate to being less likely to evacuate. For example,
if people only evacuate towns located in the cone and not beyond the
cone, the decision transition would be extremely strict, thereby
showing the containment effect (Padilla et al., 2018). In contrast,
decisions might be more probabilistic with a gradual decline in
evacuation rates. The statistical test of decision transition strictness
is the interaction between visualization type and zone, with steeper
slopes corresponding to stricter decisions. This interaction was
significant, z = 3.89, p < .001, estimate = 0.64, SE = 0.16. As
shown in Figure 7, decision transitions were stricter (steeper) for
the cone of uncertainty than for the zoomies.

Decision transition strictness was affected by trial range, and this
effect differed by visualization type as revealed by the significant
three-way interaction, z = 5.48, p < .001, estimate = 0.42,

Figure 8

Figure 7
The Proportion of Towns That Were Evacuated is Plotted as a
Function of Zone and Visualization Type From Experiment 2
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Note. Shading corresponds to 1 SEM calculated from the model. See the
online article for the color version of this figure.

SE = 0.08. For predictions with the lowest uncertainty, slopes
were similar between the cone and the zoomies, p = .23, but for
predictions with medium or highest uncertainty, the slopes for the
cone were steeper than for the zoomies, ps < .001 (see Figure 8).

Another performance metric is the location at which decisions
switch from being more likely to evacuate to being less likely to
evacuate. This threshold was calculated using the coefficients from

The Proportion of Towns That Were Evacuated is Plotted as a Function of Zone, Visualization Type, and

Prediction Uncertainty for Experiment 2

Low Medium

1.00

o
~
(8)]

Proportion of Towns Evacuated
o o
> 3

0.00

High

Condition

Cone
Zoomies

1 2 3 4 5 61 2 3

Zone

Note. Shading corresponds to 1 SEM calculated from the model. See the online article for the color version of this

figure.
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10 WITT AND CLEGG

the model as the zone for which evacuation decisions were 0.50. For
the cone of uncertainty, this point was 3.30, which means this point
was approximately just beyond the edge of the cone. This value is
what was expected based on claims that the cone of uncertainty lead
to a containment effect (cf., Padilla et al., 2018). For the zoomies,
the point was 4.48. Given that 6 was beyond the range of all
zoomies, a value of 4.48 corresponds to the locations for which
the zoomies were sparse but still present. Thus, the type of visuali-
zation altered the threshold at which decisions switched from more
likely to less likely to evacuate.

Discussion

As in Experiment 1, these results suggest that dynamic ensembles
imply to individuals a larger area at potential risk. Once again, the real-
world value of employing this type of visualization might be seen in
people recognizing that they may be at risk even if they are located
some distance away from the single, most likely forecast path.

The outcomes show striking differences between the two visuali-
zation types. The cone of uncertainty lead to strict decision transi-
tions with thresholds that were located just beyond the edge of the
cone. In contrast, when presented with zoomies, a decision transi-
tions were less strict, these transitions were more affected by
prediction uncertainty, and the threshold was where zoomies
were sparse. Thus, visualization type affected both transition strict-
ness and the threshold for decisions.

Overall the findings of the second experiment suggest several
positive prospective aspects for using dynamic ensembles in real-
world contexts, including an increased sense of risk for peripheral
locations, avoiding containment effects, and decisions that react to
the level of uncertainty being portrayed.

Experiment 3: Zoomies Versus Track Ensembles

In the previous experiment, zoomies led to different kinds of
behavior than the cone of uncertainty. Behavior consisted of less
strict decision transitions, particularly as prediction uncertainty
increased. In addition, towns that were at risk but further from
high-probability paths were more likely to be evacuated with the
zoomies visualization than with the cone of uncertainty. This raises
the issue of whether these differences in behavior were due to the
animated nature of zoomies or to the fact that individual prediction
paths were presented rather than aggregated predictions as with the
cone of uncertainty. Another format for presenting individual pre-
diction paths is track ensembles (sometimes colloquially referred to
as “spaghetti plots”). Track ensembles show the predicted hurricane
paths as lines. Like zoomies, they show individual predicted paths,
but they are not dynamic and thus do not have the same visual-
conceptual compatibility as zoomies, which show the paths as a
visual analog to storms moving toward the coast. We examined
whether behavior would be equivalent when storm path predictions
were presented via dynamic ensembles versus static track ensembles.

Method
Participants

Thirty-nine participants were recruited as before. We initially
recruited fewer participants. Once it was clear there were little-to-no

differences between evacuation rates for the dynamic ensembles and
the static track ensembles, we recruited more participants to be able
to differentiate between a small effect and a null effect. This type of
sequential analysis requires adjusting o to avoid inflating type I
errors. Based on simulations using the phackRM function (Sherman,
2014), o was adjusted to 0.018.

Design and Procedure

The procedure was the same as in Experiment 2 except instead of
the cone of uncertainty, we compared zoomies to track ensembles.
The track ensembles were 18 straight lines that followed the same
parameters as the zoomies (as in Figure 5). Participants completed
one block with the zoomies and one with the track ensembles;
starting order was randomized across participants. A total of 16,772
trials were included in the analysis.

Results and Discussion

As before, we analyzed data for the towns most likely to get hit
separately from the towns less likely to get hit, then we analyzed the
transitions. An overview of the evacuation decisions is shown in
Figure 9.

Evacuation decisions for towns in Zones 1 and 2 were analyzed
with a general linear mixed model. The fixed effects were visuali-
zation type, prediction uncertainty, and their interaction. The ran-
dom effects for participant included intercepts and both main effects.
The main effect of visualization type was not significant, z = —0.30,
p = .76, estimate = —0.08, SE = 0.28. The main effect of prediction
uncertainty was significant, 7 = —6.52, p < .001, estimate = —0.94,

Figure 9
Median Proportion of Towns Evacuated by Eccentricity of Location
for Zoomies and Track Ensemble Conditions for Experiment 3

o _
=
* = * Zoomies
® Track Ensembles

e
ko) «© |
© o
35
Q
m i
>
w o
2 o
£
()
}_
Y
o <
e =4
s °
£
[o]
[e N
5 . :
o o

T T T T

1 2 3 4 5 6
Zone

Note. Medians were calculated after computing a mean for each partici-
pant. Error bars are 1 SEM calculated within-subjects. See the online article
for the color version of this figure.
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SE = 0.14. The interaction between visualization type and prediction
uncertainty was significant, z = 2.34, p = .019, estimate = 0.42,
SE = 0.18. Participants were more likely to evacuate when prediction
uncertainty was lower than when it was higher, and this difference
was greater for the zoomies condition (Ms = 0.98, 0.96, 0.90) than
the track ensembles condition (Ms = 0.97, 0.95, 0.93, respectively).

Evacuation decisions for towns in zones 4-6 were similarly
analyzed. There was no difference between visualization types,
z=0.30,p = .76, estimate = 0.04, SE = 0.14. As prediction uncer-
tainty increased, evacuation rates increased, z = 3.11, p = .002,
estimate = 0.30, SE = 0.10. This increase was slightly greater for
zoomies than for track ensembles but was not significant, z = 1.87,
p = .062, estimate = 0.12, SE = 0.07.

Decision Transitions: Strictness and Thresholds

To analyze decision transition strictness and thresholds, we ran a
general binary linear model as in Experiment 2. The main effect of
zone was significant, z = —11.39, p < .001, estimate = —1.53,
SE = 0.13. As zone increased, evacuation decision decreased.
The interaction between zone and visualization type was not signifi-
cant, z = 0.93, p = .35, estimate = 0.08, SE = 0.09. The three-way
interaction was also not significant, z = —0.73, p = .47, estimate =
—0.03, SE = 0.04. These nonsignificant results suggest that the
strictness of the decision transition was similar for zoomies and
track ensembles (see Figure 10).

The two visualization types differed in how prediction uncertainty
affected the threshold at which decisions switched from more likely to
less likely, as shown by the significant interaction between visualiza-
tion type and prediction uncertainty, z = —2.55, p = .011, estimate =
—0.17, SE = 0.07. We calculated the threshold at which decisions
were (.50 to evacuate. For the track ensembles, these thresholds were

Figure 10
The Proportion of Towns That Were Evacuated is Plotted as a
Function of Zone and Visualization Type From Experiment 3
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Note. Shading corresponds to 1 SEM calculated from the model. See the
online article for the color version of this figure.

Figure 11

The Proportion of Towns That Were Evacuated is Plotted as a
Function of Zone, Visualization Type, and Prediction Uncertainty
for Experiment 3
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Note. Shading corresponds to 1 SEM calculated from the model. See the
online article for the color version of this figure.

4.30, 4.07, and 3.80 as decision uncertainty increased. For the
zoomies, these thresholds were 4.20, 3.95, and 3.66. Prediction
uncertainty had a greater impact on thresholds for the zoomies than
the track ensembles.

Opverall, performance was similar for both the dynamic ensemble
display (zoomies) and the static ensemble display (track ensembles).
The only difference that emerged was when prediction uncertainty
was high, the overall rate of evacuations was lower for the zoomies
than the track ensembles (blue lines in Figure 11).

One known issue with track ensembles is that people overesti-
mate the risk of towns located on one of the paths (Padilla et al.,
2017). We did not code whether a line or a zoomie crossed the town
in this experiment; future studies should explore whether this
proximity bias exists for zoomies as it does for track ensembles.
If zoomies do not lead to the same bias as track ensembles that
would be an important advantage for zoomies over track ensem-
bles. In general, the results suggest that ensemble displays, rather
than animate displays, largely drive behavior following the pre-
sentation of zoomies.

We should also note that it is possible that dynamic ensembles
have advantages over track ensembles that were not captured in the
current experiment. For example, relative to a static display, a
dynamic display may be more effective at communicating informa-
tion about predicted timing of when the storm will progress to a
certain location or differences in predicted storm speeds across
potential paths. Future studies are needed to address these questions.

Experiment 4: Severity of the Storm

Although Experiment 3 suggests a high degree of similarity in the
decisions from static track versus dynamic ensembles, a potential
advantage of a visualization like zoomies is how other dimensions
can be readily incorporated into the representation (for a related
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example see, Liu et al., 2018). For example, specific predictions
about the severity of the storm across locations can be included as an
additional feature. In real-world situations, the severity of a storm
might vary depending on the trajectory it follows, with potential
storm paths moving over shallower, warmer water leading to more
severe outcomes. Experiment 4 tested whether people could effec-
tively interpret such additional dimensions incorporated into the
ensemble displays. Here, we represented severity by the color of the
storm, with red indicating more severe and orange indicating less
severe. We measured the effect of representing predicted storm
severity on evacuation decisions. We hypothesized that participants
would be able to take into account both the density of the zoomies
and their color when making evacuation decisions.

Method
Design

The experiment employed a within-subjects 2 (storm intensity
denoted: black vs. red/orange) X 3 (level of prediction uncertainty) X
6 (town zone) design. Whether storm intensity was denoted (using
red and orange zoomies) or not (using all black zoomies) was
blocked. The block that was presented first was counterbalanced
across participants. A total of 6,676 trials were included in the
analysis.

Participants

Participants were recruited as before. A total of 17 students
completed the experiment.

Procedure

Participants completed two blocks of trials. One block was the
same as the zoomie blocks in Experiments 2 and 3 for which the
zoomies were black. In the other block, some of the zoomies were
red and some were orange (see Figure 12). The red zoomies were
either at the top or bottom of the 18 zoomies in which case 5 of the
18 zoomies were red and the rest were orange. Or the red zoomies
were in the center in which case 8 of the 18 zoomies were red and the
rest were orange. Prior to this block of trials, the instructions stated
as follows:

The task is the same except now you will see predictions that also tell
you about the severity of the incoming storm. Orange means the storm is
predicted to be moderate whereas red means the storm is predicted to be
severe. The forecast shows animations that illustrate some of the
potential paths the hurricane might take. However, hurricanes are
unpredictable, so make your best guess of whether to evacuate the
town. You decide whether or not to evacuate each town.

Results and Discussion

The mean values are shown in Figure 13. We analyzed the
decision to evacuate (1 = evacuate; 0 = do not evacuate) with a
binary general linear mixed model. The fixed effects were zone, the
color of the zoomie that was closest to the town (black, red, and
orange), prediction uncertainty, and all two-way and three-way
interactions. Because no zoomies went into zone 6 by definition,
we only included data for Zones 1-5 in this analysis. Zoomie color
was entered as a factor with black as the reference. Zone and

Figure 12
Lllustrations of Differences Between Stimuli With All Black Zoomies
(Top Panel) and Red and Orange Zoomies

Note. Middle panel shows a sample stimulus with red zoomies in the
middle, and bottom panel shows a sample stimulus with red zoomies on
the bottom. The town (blue square) is located in the middle in each display.
See the online article for the color version of this figure.

prediction uncertainty were centered as before. Random effects
for participant included intercepts and slopes for each main effect
and for the zone by color interaction. Model outcomes are shown in
Figure 14.

The main effect of zone was significant, z = —9.51, p < .001,
estimate = —1.24, SE = 0.13. Towns further from the predicted



S

publishers.

>
2
<]
e}
=
4
s
g
3}
7]
%
=]
9
s}
]
S
=
»
=]

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

DYNAMIC ENSEMBLE VISUALIZATIONS 13

Figure 13
Median Proportion of Towns Evacuated by Zone and Zoomie Color
Conditions for Experiment 4
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Note. Medians were calculated after computing a mean for each partici-
pant. Error bars are 1 SEM calculated within-subjects. See the online article
for the color version of this figure. See the online article for the color version
of this figure.

center of the storm were evacuated at lower rates. Zoomie color affected
evacuation rates. Towns were evacuated at a higher rate for red zoomies
than black zoomies, z = 4.69, p < .001, estimate = 1.11, SE = 0.24.
Towns were evacuated at a lower rate for orange zoomies than for
black zoomies, z = —5.76, p < .001, estimate = —1.65, SE = 0.29.

Figure 14
Proportion of Towns Evacuated is Plotted as a Function of Zone
and Zoomie Color (Black, Orange, or Red) for Experiment 4
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Note. Shading represents 1 SEM from the model. See the online article for
the color version of this figure.

Because black was the reference, the model did not give a direct
estimate of red versus orange, but post hoc analysis showed evacua-
tion rates differed between the two colors, p < .001.

The significant interactions between zone and zoomie color showed
that evacuation rates decreased with distance to town at different rates
across the colors (see Figure 14). The interaction between zone and
black versus red zoomies was significant, z = 4.19, p < .001, esti-
mate = 0.67, SE = 0.16. The evacuation rates decreased more rapidly
for the black zoomies than for the red zoomies as distance to the town
increased. The interaction between zone and black versus orange
zoomies was significant, z = 2.37, p = .018, estimate = (.26,
SE = 0.11. Again, the evacuation rates decreased more rapidly for
the black zoomies than for the orange zoomies as distance to the town
increased. Post hoc analysis also showed a significant difference
between red and orange zoomies, p = .013.

The outcomes of the analyses with prediction uncertainty are
shown in Figure 15. The main effect of prediction uncertainty and
two-way and three-way interactions with prediction uncertainty
were all significant, ps < .019. To better interpret these effects,
we reran the model separately for each zoomie color with zone,
prediction uncertainty, and their interaction as fixed effects. For the
black zoomies, both the main effect of prediction uncertainty and the
interaction between prediction uncertainty and zone were significant,
ps < .001. With lower levels of prediction uncertainty, towns located
farther from the center of the predicted path were evacuated at a
higher rate and the rate of evacuation decreased more dramatically
than with higher levels of prediction uncertainty. For the orange
zoomies, there was a main effect of prediction uncertainty, p < .001,
but not a significant interaction between prediction uncertainty and
zone, p = .24. The threshold at which storms were evacuated shifted
with prediction uncertainty for the orange zoomies, but the rates of
evacuation did not. For the red zoomies, evacuation rates did not
significantly differ across levels of prediction uncertainty, p = .25,
and the interaction between zone and prediction uncertainty was not
significant, p = .94. Evacuation rates were similar regardless of
prediction uncertainty for the red zoomies.

The key thing this experiment demonstrates is the potential to
include other dimensions into dynamic ensembles, with such infor-
mation factored into decisions in appropriate ways—in this case
with higher severity storms showing greatly increased rates of
evacuation in those areas. As predicted, people could extract
multiple dimensions of information from the dynamic ensembles.
This benefit of dynamic ensembles could be leveraged to include
other types of information within a forecast beyond the current
generic example of storm severity. Other potential elements might
include changing the size of the zoomies to represent, for example,
storm surge or changing the rate of rotation of an icon to convey
wind speed threat. Although exploring such variants is beyond the
scope of the present article, the value of representations that can
successfully convey additional valuable information further en-
hances their utility.

General Discussion

Hurricanes do enormous damage, taking lives, destroying homes
and businesses, disrupting infrastructure, and costing millions of
dollars in repairs and lost tourism. Two important steps to reducing
the damage are to better predict when and where hurricanes will
occur and communicating these predictions to the public. Because
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Figure 15

Proportion of Towns Evacuated Plotted as a Function of Zone,
Zoomie Color (Red, Black, Orange), and Prediction Uncertainty
(Low, Medium, High) From Experiment 4
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Note. Shading represents 1 SEM estimated from the model. See the online
article for the color version of this figure.

hurricane predictions have a large amount of uncertainty, commu-
nication to the public must make both the information and the
uncertainty clear. However, people struggle to reason with uncer-
tainty (e.g., Herdener et al., 2018), and have specific difficulties
understanding current visualizations used to communicate hurricane
predictions (e.g., Broad et al., 2007).

We propose a new way to visualize spatial uncertainty using
dynamic ensembles and show how these “zoomies” can be utilized
to convey the uncertain future path of hurricane predictions.
Although the mechanisms to generate the instances for real storm
ensembles are well beyond the scope of the present article, this could
be accomplished given the presence of multiple different forecasts
for storms, and the ability to rerun models with minor variations in
parameters (see, e.g., Cox et al., 2013). Emerging cases where static
track ensembles are already used for storms suggest such informa-
tion can be generated. This new method does require animation.
Animation would not have been feasible when news was primarily
communicated through static media such as newspapers but is
increasingly more feasible with digital media being more universal.
Thus, the types of visualizations examined here could in the future
plausibly be generated and could be presented to large numbers of
nonexperts with no specialized equipment required.

Although there were no major differences between these novel
dynamic ensembles and the static, track ensembles under the
conditions employed here, the findings illustrated that ensemble
visualizations avoid many of the problems associated with the
current method of displaying the cone of uncertainty. The cone
of uncertainty shows an increase in the size of the cone in an attempt
to communicate the increase in uncertainty, but people misinterpret

the visualization as showing the prediction that the storm will
increase in size (e.g., Broad et al., 2007; Ruginski et al., 2016).
Empirically, the cone of uncertainty leads to a containment effect
(Padilla et al., 2018). People interpret the visualization as showing
the only areas of risk being those contained within the cone, so they
misunderstand that areas beyond the cone are also at risk. The cone
of uncertainty can also be misleading if the predicted hurricane paths
generally fall along two clusters of paths directions. Although the
central path through the cone is at the highest risk (cones are
generated around the most likely trajectory), risk may not necessar-
ily be even along both sides of the cone depending on the cluster
positions, and indeed the cone may not even necessarily encapsulate
both clusters if one set of predictions diverges radically from the
most likely path.

In contrast, dynamic ensembles do not have a clear outline. Our
findings here showed that with the zoomies, people’s decisions
about what towns to evacuate did not show the same containment
effect as with the cone of uncertainty. The zoomies eliminated the
sense of a container and communicated the presence of risk in the
surrounding areas. The potential to recognize greater uncertainty of
the path might be vitally important for real world storms, where, for
example, with Hurricane Katrina, the city of New Orleans did not
fall inside the National Weather Service (NWS) cone of uncertainty
until just a couple of days before it struck close to the city. In
addition, the zoomies do not have features of the cone of uncertainty
that are likely to be misunderstood, such as that it represents the size
of the storm, rather than uncertainty that increases with time.

Although there can be important advantages from using a visual-
ization like dynamic ensembles that offers heightened awareness of
the possible threat from an incoming storm for those outside the
current forecast most likely path, in real world situations these
benefits need to be weighed against potential costs. For example, if
larger areas see themselves at potential risk then more preparatory
resources might be demanded, and if people move beyond prepara-
tions to actually begin to attempt to evacuate, then increased strain
on infrastructure like roads could result. Critically, features of the
zoomies can be used to convey threat such as the color of the
zoomies (as shown in Experiment 4). Although not directly tested
here, presumably the number or density of the zoomies also conveys
the threat as shown by the decrease in evacuation rates as the number
or density of the zoomies decreased. Thus, the overall level of risk
and corresponding consequences for thresholds for decisions might
be manipulated by changing aspects of the zoomies display.

It is unclear how people will come to view repeated instances
when an ensemble display gives an indication of some risk that is not
then followed by the storm impacting their local area. Whether these
scenarios are seen as a natural function of the uncertainty or come to
be viewed as generating more false alarms might have important
implications for future reactions. In addition, future work will be
needed to assess how these ensemble displays including the zoomies
impact trust over time.

Two other aspects of the dynamic ensembles provide advantages
for better communicating predictions and uncertainty. One is that
the zoomies, like the track ensembles, show natural frequencies:
Each zoomie shows a potential hurricane path, rather than a
summary of the probabilities as is shown in the cone of uncertainty.
The other is that there is intuitive mapping between the visual
features in the display and their underlying concepts. The zoomies
move along the same paths the hurricanes are predicted to move.
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This kind of conceptual compatibility increases comprehension and
decreases bias in other visualization contexts (Witt, 2019b).

Zoomies also have the potentially incredible advantage of being
able to communicate more information. With hurricanes, there are
many risk factors at play. Although wind speed is typically the
focus, storm surge, rainfall, and flash flooding are often the major
hazards, particularly in some areas. Communicating all the different
risk factors as well as the storm’s anticipated timing leads to a
cluttered display, particularly with the cone of uncertainty. The
dynamics of the ensemble visualizations can inherently convey a
sense of temporal uncertainty, illustrating how uncertainty in speed
might impact the time of arrival, or how the risk of stalled forward
movement of the weather system might create particularly hazard-
ous conditions in a certain location. Dynamic ensembles can also
accommodate the use of different visual features to communicate all
the risk factors. In Experiment 4, we showed that one visual feature,
color, could effectively communicate the severity of the storm. The
next step is to determine which visual features are most effective and
how many features can be effectively communicated. Drawing from
human factors, it would also be important that any continuous scale
also did a good job of communicating when high risk is predicted,
regardless of the source of that risk.

Moving forward, there are many other questions that need to be
answered before the dynamic ensembles should be implemented for
hurricane predictions. One is whether there are biases to perceive areas
that are directly in the path of a zoomie as being at higher risk than
areas not along one of the paths. This pattern was found for track
ensembles (e.g., Padilla et al., 2017) and reveals a lack of understand-
ing the displays as showing a sample of possible hurricane paths. One
way to alleviate this confusion, should it also occur with the zoomies,
is to continually repeat the display and show different samples for each
presentation. Another possibility would be to substantially increase the
number of zoomies in the displays so that more central locations are in
the path of at least one instance. Yet, another alternative is to increase
the size of each element shown, with fewer items then able to
encompass a larger area for each prospective path.

These issues should be addressed so that there are clear recom-
mendations on how to present the zoomies and thus the presentation is
standardized. In observing that track ensembles are rarely shared on
social media as information about hurricanes (chosen only 3% of the
time), Bica et al. (2019) point to the potential role of unfamiliarity and
lack of standardization with these line ensemble visualizations. To
avoid a similar issue with zoomies, the displays should first be
empirically evaluated and standardized. These recommendations
should determine the number of zoomies that should be displayed
and the speed by which they travel. Too many zoomies may lead to
visual crowding and confusion; too few zoomies may lead to
decreased risk perception in areas with fewer zoomies. Zoomies
that move fast allow for repeated presentations but might miscom-
municate the speed of the storm. It is possible that faster presentation
will also be harder to comprehend, although we are less worried about
this possibility given that ensemble processing is amazingly accurate
even with brief presentations (see Whitney & Yamanashi Leib, 2018).

We also note that our initial exploration of the viability of these
types of visualizations only examined straight line paths, and the
question of their relative benefits for more complex paths remains
one for future research. When visualizing hurricane predictions,
forecasters can choose to display specific paths outputted from the
model, or they can display a set of paths that was constructed from

the model predictions but has properties to assist the visual proces-
sing of the spatial distribution (Liu et al., 2018). These same
decisions can be made with dynamic presentations. For both static
and dynamic displays, more research is necessary to determine the
benefits and costs of displaying specific model paths versus a set
constructed to represent overall predictions.

The principles underlying the use of dynamic ensembles to
communicate predictions and their uncertainty are not specific to
hurricanes. Indeed, they could also be applied to other kinds of
natural disasters such as wildfires or other kinds of spatial-temporal
trajectories with uncertainty such as tracking other boats or drones.
Empirical evaluations need to confirm their generalizability, but the
theoretical underpinnings support the idea of principles that should
apply to many different contexts.

Summary

In conclusion, displaying hurricane predictions as a dynamic
ensemble, or zoomies, can influence understanding of risk, particu-
larly for areas on the edges of the set of the predicted hurricane paths.
This visualization may have particular promise for early notification
of potential areas under threat where lack of appreciation of the
uncertainty may lead those far from the central path failing to begin
to prepare. The zoomies have an intuitive mapping, show natural
frequencies rather than probabilities, leverage the immense ensem-
ble processing capabilities of the visual system, and can be further
designed to communicate additional risk factors. With the ubiquity
of digital media, visualizations that are animated are increasingly
feasible. We recommend pursuing the use of visualizing hurricane
predictions using ensembles and highlight some potential advan-
tages of using dynamic ensembles.
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